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Abstract

Mahmoody et al. (TCC 2016-A) showed that basing indistinguishability obfuscation
(IO) on a wide range of primitives in a black-box way is as hard as basing public-key
cryptography on one-way functions. The list included any primitive P that could be
realized relative to random trapdoor permutation or degree-O(1) graded encoding oracle
models in a secure way against computationally unbounded polynomial-query attackers.

In this work, relying on the recent result of Brakerski, Brzuska, and Fleischhacker (ePrint
2016/226) in which they ruled out statistically secure approximately correct IO, we show
that there is no fully black-box constructions of IO from any of the primitives listed above,
assuming the existence of one-way functions and NP 6⊆ coAM.

At a technical level, we provide an alternative lemma to the Borel-Cantelli lemma that is
useful for deriving black-box separations. In particular, using this lemma we show that
attacks in idealized models that succeed with only a constant advantage over the trivial
bound are indeed sufficient for deriving fully black-box separations from primitives that
exist in such idealized models unconditionally.
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1 Introduction

The study of reductions between cryptographic primitives as computational building blocks has
long occupied a central role in the theory of cryptography. In this paper, we apply this lens to
indistinguishability obfuscation (IO), a primitive which has attracted special interest during the
last few years. IO was proposed nearly 15 years ago by Barak et al. [5, 6], recently constructed by
Gentry et al. [23] for general circuits based on multi-linear assumptions [21], and shown to be a
“central hub” [45] for cryptographic tasks/primitives (see [23, 24, 22, 16, 11, 26, 20, 46, 9] to name
a few).

Assumptions behind IO. Due to its applicability, it is important to identify the assumptions
that are necessary to construct IO. The first candidate construction of IO [23] and many subsequent
alternative constructions rely on polynomial-degree “multi-linear maps” or their idealized form
of “graded encoding schemes” [23, 14, 4, 43, 28, 2, 40, 47, 37, 25].1 Such assumptions are still
considered to be extremely strong, as there has been multiple attacks on various forms of multi-
linear maps [27, 19, 18].2 Thus, a fascinating question is to study whether we can base IO on
more standard assumptions such as trapdoor permutations, collision-resistant hash functions, DDH,
bilinear maps, etc. Goldwasser and Rothblum [31, 32] take the first step towards answering this
question and completely rule out the possibility of statistically secure IO if NP 6⊆ coAM. Their
result, however, leaves open whether (computational) IO can be based on standard computational
assumptions. In a recent beautiful work, Brakerski, Brzuska, and Fleischhacker [13] extend the
result of [32] to IO schemes that are only required to be approximately-correct assuming one-way
functions exist and that NP 6⊆ coAM.3

Black-box lower bounds. The most widely used framework to study the impossibility of basing
cryptographic tasks on other (more basic) assumptions is the black-box framework of Impagliazzo
and Rudich [36] and its subsequent formalization by Reingold, Trevisan, and Vadhan [44]. Consid-
ering the versatility of IO, it seems one should be able to prove that IO is indeed “too complex” to
be constructed in a black-box way from well-studied standard assumptions such as OWFs, CRHFs,
etc. Note that until we resolve the P vs NP question, any black-box separation result for the as-
sumptions behind IO will depend on some computational hardness assumption, because if P = NP,
then statistically secure IO exists.4

Relying on the work of [15, 42, 38] which studies virtual black-box obfuscation in idealized
models of computations, Mahmoody et al. [39] show the first barrier towards obtaining black-
box constructions of IO from certain powerful cryptographic assumptions. In particular, they
show that if NP 6= co-NP, IO with perfect completeness cannot be based on collision-resistant
hash functions (CRHFs) in a black-box way, and that basing IO on a large set of other stronger
primitives such as trapdoor permutations, bilinear maps, etc. is as hard as constructing public-
key encryption (PKE) from one-way functions. Impagliazzo and Rudich [36] rule out black-box
methods for the latter question; however, finding a non-black-box approach remains a major open

1Interestingly, the work of [37] shows how to get IO from constant-degree multi-linear maps in a non-black-box
way, using some extra assumptions.

2The work of [25] gives a new IO scheme that is resilient to these vulnerabilities.
3As we will describe, this result plays a major role in the proof of our main result.
4A statistically secure construction could be interpreted as a black-box construction from any primitive P that

simply ignores the oracle providing P!
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question in cryptography. Indeed, the authors do not believe that a construction of PKE from
OWFs is impossible; in particular, assuming IO, such constructions [45] already exist!

Thus, Mahmoody et al. [39] leave open whether their hardness of black-box constructions for
IO can be extended to fully black-box separations.5

Our main result. In this short paper we extend the hardness results of [39] into the following
black-box separation: Let P be any primitive that can be realized relative to the random trapdoor
permutation oracle or the degree-O(1) graded encoding model in a way that is secure against
polynomial-query attackers. Examples of P include CCA-secure public-key encryption [41, 7],
hierarchical identity based encryption [29, 35], non-interactive zero-knowledge proofs for NP [10, 8,
30], etc. We rule out fully-black-box constructions of indistinguishability obfuscators (IO) from any
such P under the widely believed assumption that one-way functions exist and that NP 6⊆ coAM.

1.1 Technical Overview

Recall that a fully black-box construction [44] of a primitive Q from another primitive P consists
of two oracle PPT algorithms (Q,S) such that QP implements Q given access to any oracle P that
implements P, and SP,A turns any oracle attacker A against QP into an attack against P itself (see
Definition 2.1).

Big picture of the argument. Similar to previous black-box separations (e.g., [36]), our proof
that P 6⇒BB IO presents a polynomial-query attacker A that breaks the security of any IO construc-
tion iO in an idealized model I that provides an “unquestionably secure” instantiation P (against
computationally unbounded polynomial-query attackers).6 Intuitively, the existence of such an A
rules out the possibility of a fully black-box construction construction (iO, S) of IO from P by

simple composition. First, the construction iOPI = (iOP )I yields an implementation of IO in the
same idealized model I. But attacker A breaks every such construction of IO and therefore the
security reduction SPI ,AI implies the existence of a new attacker (SA)I that calls the idealized
oracle I a polynomial number of times and breaks the implementation P I of P. But this leads to
a contradiction because P I is an “unquestionably secure” construction of P in I.

Attacks on IO in idealized models. The recent elegant work of Brakerski, Brzuska, and
Fleischhacker [13] when combined with previous works of [15, 42, 38] show an attacker that can
break any IO scheme in either of the idealized model I of random trapdoor permutations and degree-
O(1) graded encoding models by asking a polynomial number of oracle queries. In particular, the
previous works of [15, 42, 38] show how to “compile out” the idealized oracle I from the IO scheme
and achieve an approximately-correct IO scheme in the plain model that is correct on, say, 99/100 of
the input points. Brakerksi et al. then show that any such approximately-correct IO scheme can be

5As we pointed our earlier, such separations will be necessarily based on computational assumptions unless we
manage to prove that P 6= NP. However, proving separations based on assumptions like P 6= NP are qualitatively
different than just proving that such constructions are possible but hard to achieve.

6For example in the context of OWF 6⇒BB Key-Agreement, the idealized oracle that provides the OWF is a random
oracle, and [36] shows how to break any key-agreement protocol in the random oracle by asking only a polynomial
number of oracle queries to derive the separation.
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broken by a computationally unbounded attacker.7 As pointed out in [13] this means that any IO
scheme will be broken in the idealized model I, and in particular the computationally unbounded
attacker B can be modified into a computationally unbounded, yet polynomial-query attacker A
against the original IO in the idealized model I.

The challenge: fixing I while keeping the attack successful. At a first glance, it seems
that the attacker A of [13] against IO in an idealized model I would immediately imply the desired
black-box separation between IO and primitives that exist in model I. However, the challenge,
roughly speaking, is that the attacker of [13] does not succeed in breaking IO with probability close
to 1, and doing so is left as an open question. In order to see the challenge more clearly, we need
to further discuss the big picture argument above and see how an attack in the idealized model I
exactly implies the black-box separation.

A crucial point is that to apply the security reduction SPI ,AI and get the desired attack against
P I , we must fix the oracles P I and AI into deterministic functions (which requires us to sample and
fix I) because only then is S guaranteed to generate an attack. However, while fixing I, we want
to keep the promise that AI is still a “successful” attack. Handling both tasks simultaneously may
raise an issue because all attacks in idealized models (e.g., the attack of [36] against key-agreement
in random oracle model) and in particular the attack against IO in idealized models that is implied
by [13] are successful with probability taken over the randomness of the idealized oracle I.

Borel-Cantelli for highly successful attacks. Here is where the Borel-Cantelli lemma (Lemma
2.8) usually comes to help, but only if the attack succeeds with high probability. In particular, if
the demonstrated attacker A wins the security game for security parameter n with probability e.g.,
1−1/n4, then by an averaging argument, with probability at least 1−1/n2 over the sampled oracle
I, A successfully attacks the game on security parameter n. Therefore, since the probability of the
“fail” event is

∑∞
n=1 1/n2 = O(1), Borel-Cantelli lemma implies that with measure one over8 the

sampled oracle I it holds that A is a successful attack for all but finitely many security parameters.

An alternative to Borel-Cantelli lemma for mildly-successful attacks. By the above
discussion on how to use Borel-Cantelli, we would be done if the attacker of [13] succeeds with
probability 1 − 1/ poly(n). However, their attack works against (ε, δ) statistical approximate9 IO
when 2ε + 3δ < 1; thus, by making optimal parameter choices, their attacker only succeeds (in
guessing the obfuscated circuit) with probability ≈ 1/2 + 1/6 which is not arbitrarily close to 1. As
a result, when combined with the results of [15, 42, 38] we would only get an attack against IO in
idealized models that succeeds with some constant advantage over 1/2 (and thus fails with some
constant probabilty). Thus, we can no longer apply the Borel-Cantelli lemma as we did before
because the summation of the probability of failure becomes unbounded. Thus, we can no longer
conclude that this attack would remain successful for an infinite sequence of security parameters
n 10 when we sample and fix the idealized oracle I. In fact, there are examples of protocols in
idealized models with attacks against them with 1/ poly(n) advantage over the trivial bound, but

7The attack of [13] assumes the existence of OWFs and that NP 6⊆ coAM, and that is where we get these
assumptions for our separation as well.

8Since the probability distribution here is over infinite-size oracles, we cannot assign probabilities to arbitrary
events, but we can alternatively work with measurable sets.

9Here ε refers to the correctness error, and δ refers to the statistical closeness.
10Here n, the security parameter, is equal to the circuit size.
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once the randomized oracle is sampled and fixed, they do not remain successful over an infinite
sequence of security parameters (see Remark 2.5).

To overcome this issue, we provide a variant of the Borel-Cantelli lemma (see Lemma 2.9)
which allows us to make sufficiently strong conclusions about the attacker as long as the attacker
A succeeds with a constant advantage over the trivial bound. Note that Borel-Cantelli (when
applicable) would imply a stronger result, because it shows that the attack will remain successful
for all but finitely many security parameters, while our lemma shows that it only succeeds for an
infinite sequence of security parameters. However, even this weaker conclusion is still enough for
the security reduction SPI ,AI to be able to use A and give a polynomial-query attack against P I .

The scope of this argument does not seem to be at all limited to proving separations for IO,
and we believe that it could potentially be applied to other primitives as well. Namely, it shows
that to derive a black-box separation P 6⇒BB Q it is enough to break Q in an idealized model that
gives P by asking a polynomial number of queries and a constant advantage over the trivial bound.

Organization. In the next section, we provide the necessary definitions, the borrowed results
of [42, 38] and [13] as well as the new measure theoretic alternative lemma to Borel-Cantelli. In
Section 3 we formally prove the main result.

2 Preliminaries

2.1 Definitions

Definition 2.1 (Fully black-box constructions [44]). A fully-black-box construction of a primitive
Q from a primitive P consists of two PPT algorithms (Q,S) as follows:

• Implementation: if oracle P implements P, then QP implements Q.

• Security reduction: for any oracle P implementing P and for any (computationally un-
bounded) oracle adversary A breaking the security of QP , SP,A breaks the security of P .

Reingold, Trevisan and Vadhan [44] also defined other (more relaxed) notions of black-box
constructions, and Baecher, Brzuska, and Fischlin [3] further studied those notions in more details.
We refer the readers to [44, 3] for those extensions. We will, however, assume one general property
about the primitives that we deal with in this work: function P implementing P will be partitioned
into sub-domains indexed by “security parameter” n and any adversary A who successfully breaks
P would have to “win” over an infinite number of security parameters for a “noticeable” advantage.

We skip defining IO and approximate IO and directly define the generalized notion of approxi-
mate computational IO. We first recall a statistical variant of this notion defined by [13].

Definition 2.2 ([13] Approximate Statistical Correlation IO). A PPT O is an (ε, δ)-approximate
statistical correlation IO (CIO for short) if:

• Approximate correctness: Pr[O(C)(x) 6= C(x)] ≤ ε(|C|) where the probability is over the
randomness of the obfuscator and the input x.

• Statistical correlation: For every pair of circuits C1 ≡ C2 of the same size n, the statistical
distance between O(C1) and O(C2) (both defined over the randomness of O) is at most δ(n).
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A computational variant of Definition 2.2 can be defined analogously:

Definition 2.3 (Approximate Computational Correlation IO). A PPT O is an (ε, δ)-approximate
computational CIO if it satisfies the same correctness condition as approximate statistical CIO and:

• Computational correlation: For every poly-time adversary A and for every pair of circuits
C1 ≡ C2 of equal size n, it holds that Pr[A(O(C1)) = 1]− Pr[A(O(C2))] ≤ δ(n).

Fully-black-box constructions of IO. A fully-black-box construction of approximate compu-
tational CIO from primitive P could be defined through a combination of Definitions 2.1 and 2.3.
Here we emphasize that the input circuits do not have any oracle gates while the obfuscation algo-
rithm and the final circuits could use the oracle implementing P. This seemingly restricted model
is in fact sufficient for all known applications (see [39] for more discussions).

Idealized Models. An idealized model I is a randomized oracle; examples include the random
oracle, random trapdoor permutation oracle, generic group model, graded encoding model, etc. An
I ← I can (usually) be represented as a sequence (I1, I2, . . . ) where In is the part of I that is
defined for “security parameter” n. The distribution over the infinite object I ← I could naturally
be defined through finite distributions Di over the finite space of Ii. Caratheodory’s extension
theorem shows that such finite probability distributions could always be extended consistently to
a measure space over the full infinite space of I ← I (see Theorem 4.6 of [34] for a proof).

Definition 2.4 (Oracle-fixed Constructions in Idealized Models [39]). We say a primitive P has
an oracle-fixed black-box construction in the idealized model I if there is an oracle-aided algorithm
P such that:

• Completeness: P I implements P correctly for every I ← I.

• Black-box security: Let A be an oracle-aided adversary AI where the query complexity of
A is bounded by the specified complexity of the attacks for primitive P. For example if P is
polynomially secure (resp., quasi-polynomially secure), then A only asks a polynomial (resp.,
quasi-polynomial) number of queries but is computationally unbounded otherwise. Then, for

any such A, with measure one over the choice of I
$←I, it holds that A does not break P I .

Remark 2.5 (Oracle-fixed vs. Oracle-mixed Constructions). We called the constructions of Def-
inition 2.4 “oracle-fixed” because many constructions in idealized models use an “oracle-mixed”
security definition. In an oracle-mixed construction P of a primitive P in an idealized model I, the
completeness is defined similarly to Definition 2.4, but when it comes to security, the advantage of
A in breaking the scheme is calculated also over the randomness of I. Even though oracle-fixed
constructions seem to enjoy a stronger security guarantee than oracle-mixed ones, it can be shown
that the oracle-fixed security does not imply oracle-mixed security when the advantage of the attack
is only 1/ poly(n). For example consider a trivial primitive in the Boolean random oracle model
B in which a trivial attacker A succeeds in its attack over security parameter n if B is equal to 0
over the first log(n) queries. Then the only oracle for which A succeeds in its attack for an infinite
sequence of security parameters is the constant zero oracle, which has a measure zero of being
sampled.11 However, looking ahead, the proof of our main theorem shows that when the attacker

11In [39] oracle-fixed and orale-mixed constructions are, in order, called strong and weak constructions. However,
exactly because of such cases where oracle-fixed 6⇒oracle-mixed we did not use the same terminology as strong vs.
weak might might be very insightful.
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achieves constant Ω(1) advantage over the trivial bound, an oracle-fixed black-box construction is
also an oracle-mixed black-box construction.

In what follows, unless specified otherwise, by constructions in idealized models we refer to
oracle-fixed black-box constructions.

2.2 Borrowed Results

Theorem 2.6 ([13]). Suppose one-way functions exist, NP 6⊆ coAM, and δ, ε : N 7→ [0, 1] are
such that 2ε(n) + 3δ(n) < 1− 1/poly(n), then there is no (ε, δ)-approximate statistical CIO for all
poly-size circuits.

Theorem 2.7 ([42, 38]). Suppose O′ is an approximately correct obfuscation algorithm with error
at most ε′ in idealized model I where I is random trapdoor permutation oracle or the degree-O(1)
graded encoding model for finite rings. Suppose ε′′ ≥ 1/poly(n). Then there is another obfuscation
algorithm O in the plain model such that:

• The running time of O is poly(n/ε′′(n)) where n is the size of the input circuit and it is
approximately correct with error at most ε = ε′ + ε′′.

• There is a simulator Sim in the idealized model that runs in time poly(n/ε′′(n)), and for any
circuit C, the distributions SimI(O′I(C)) and O(C) have statistical distance negl(|C|).

2.3 Measure Theoretic Tools

By a probability space we mean a measure space with total measure equal to one, and by Pr[E] we
denote the measure of the measurable set E. For a sequence of measurable sets E = (E1, E2, . . . ) de-
fined over some measure space, the limit supremum of E is defined as limSup(E) =

⋂∞
n=1

⋃∞
m=nEm.

It can be shown that limSup(E) is measurable if Ei is so for all i.

Lemma 2.8 (Borel–Cantelli [12, 17]). Let E = (E1, E2, . . . ) be a sequence of measurable sets over
some probability space, and

∑∞
n=1 Pr[Ei] = O(1). Then limSup(E) has measure zero.

The following lemma follows from Exercise 2 of Section 7.3 of [33]. For completeness we give a
proof using continuity of probability.

Lemma 2.9. If E = (E1, E2, . . . ) is a sequence of measurable sets over some probability space, and
Pr[Ei] ≥ δ for all i ∈ N, then Pr[limSup(E)] ≥ δ.

Proof. We use the following well-known lemma whose proof could be found in [1] Proposition 37,
Part (iii).

Lemma 2.10 (Continuity of Probability). Let B1 ⊇ B2 ⊇ . . . be a sequence of measurable sets
over some measure space, and Pr[B1] <∞. Then Pr

[⋂∞
n=1Bn

]
= limn→∞ Pr[Bn].

Now let Bn =
⋃∞

m=nEm, and so limSup(E) =
⋂∞

n=1Bn. Since the measure space is a probability
space, thus we have Pr[B1] ≤ 1, and we can apply the above lemma to conclude that

lim
n→∞

Pr[Bn] = Pr
[ ∞⋂
n=1

Bn

]
= Pr[limSup(E)].

Finally, because Pr[Bn] ≥ Pr[Ei] ≥ δ for every n, we get δ ≤ limn→∞ Pr[Bn] = Pr[limSup(E)].

7



3 Proving the Main Separation

In this section we formally prove our main result. First we formalize the statement by specifying
the way P is constructed in the idealized models.

Theorem 3.1 (Main Result). Assuming the existence of one-way functions and NP 6⊆ coAM,
there is no fully-black-box construction of IO from any primitive P that has a oracle-fixed black-box
construction in the random trapdoor permutation oracle or the degree-O(1) graded encoding model
for any finite ring.

In fact, we prove a stronger separation that holds for approximate computational CIO as well.

Theorem 3.2. Assuming there is no (ε, δ)-approximate statistical CIO, there is no fully-black-box
construction of (ε′, δ′)-approximate computational CIO for any ε′ ≤ ε− n−Ω(1), δ′ ≤ δ − Ω(1) from
any of the primitives listed in Theorem 3.1.

Proving Theorem 3.1 using Theorems 2.6 and 3.2. Theorem 2.6 rules out (ε, δ)-approximate
statistical CIO (assuming OWFs and NP 6⊆ coAM) for some ε = 1/poly(n) and δ = 0.3. Thus, if
we choose ε′ = ε/2 and δ′ = δ/2, then Theorem 3.1 follows from Theorems 3.2 and 2.6.

In the following we will focus on proving Theorem 3.2.

Remark 3.3 (The need for constant δ.). Our proof of Theorem 3.2 crucially relies on the fact that
δ − δ′ ≥ Ω(1) which in turn requires δ ≥ Ω(1). Thus, the separation holds because the attacker of
[13] could achieve δ ≈ 1/3 (as opposed to just 1/ poly(n)). More technically, our proof will make
use of Lemma 2.9 rather than the Borel-Cantelli lemma, and that is the source of our need for
δ ≥ Ω(1). However, in case one can improve the result of [13] to cover the setting of ε = 1/ poly(n)
and δ = 1− α for arbitrary small α = 1/ poly(n), then our Theorem 3.2 could be improved to any
δ′ = δ − 1/poly(n). In fact the proof will be simple and will not use our Lemma 2.9 and could be
based on the Borel-Cantelli lemma (see the end of this section for a sketch).

Remark 3.4 (Ruling out relativizing constructions). In Theorem 3.1 we focus on ruling out fully-
black-box constructions. However, the proof can be extended to rule out relativizing constructions
(of IO from the set of listed primitives) using standard techniques and the fact that an optimal
statistical distinguisher can be implemented in PSPACE. In particular, the separating oracle
would be a random sample from the idealized oracle I ← I and an oracle for a PSPACE-complete
oracle. However, interestingly, in our case the sampled I ← I would only work with constant
measure (which is enough since it is still a positive measure) due to using Lemma 2.9 as opposed
to measure one, which is typically the case in black-box separations.

of Theorem 3.2. In the following, let Q denote the primitive of (ε′, δ′)-approximate computational
CIO. Also let P be any primitive that can be constructed in the idealized models listed in Theo-
rem 3.1 (according to Definition 2.4), and let P be the implementation of P relative to I.

For sake of contradiction, in the following we let Q be the fully-black-box construction of Q
from P. First we recall a composition lemma from [39] showing that Q could also be implemented
relative to I as well.12 Then we rule out the existence of black-box constructions of Q from I to
conclude that Q could not exist.

12[39] proved a variant of Lemma 3.5 for semi-black-box constructions, and sketched the proof for fully-black-box
case. For sake of completeness here we recall the proof for fully-black-box constructions.
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Lemma 3.5 (Composition lemma [39]). Suppose Q is a fully-black-box construction of Q from P,
and suppose P is an (oracle-fixed black-box) implementation of P relative to I. Then QP is an
(oracle-fixed black-box) implementation of Q relative to the same idealized model I.

Proof. It is easy to see that QP is an implementation of Q relative to I (by completeness of the
constructions P and Q), and so the completeness holds. The proof of security follows. For sake of
contradiction, let AI be any efficient query successful attacker against the implementation QP (of
Q) in the idealized model I which rules out its oracle-fixed black-box property. Namely, there is a

non-zero measure fraction of I
$←I for which it holds that AI breaks the security of QP I

. For any
such fixed I, the security reduction SAI ,I (of the fully-black-box construction Q of P ) would break
the security of P I . By combining the algorithms S and A we get that the efficient query attacker

(SA)I = BI breaks the security of P I with non-zero measure over the sampled oracle I
$← I. But

this contradicts the assumption that P is securely realized in I in an oracle-fixed black-box way.
Therefore QP is also an oracle-fixed black-box construction of Q relative to I.

In the following we will use Theorems 2.7 and 2.6 to rule out the possibility of any oracle-fixed
black-box construction of Q relative to I which (with Lemma 3.5) shows that Q could not exist.

Let ε′′ = ε−ε′ ≥ 1/ poly(n) and δ′′ = δ−δ′ ≥ Ω(1). Since P is a construction of P relative to I,

we have thatO′I = (QP )
I

is an ε′-approximate obfuscation mechanism relative to I. LetO be the ε-
approximate obfuscator in the plain model that exists due to Theorem 2.7. The assumption in The-
orem 3.2 is that O cannot be an (ε, δ)-approximate statistical CIO. Therefore, there exists a compu-
tationally unbounded adversary A and an infinite sequence of circuit pairs (C1

0 , C
1
1 ), . . . , (Ci

0, C
i
1), . . .

such that for all i: |Ci
0| = |Ci

1|, Ci
0 ≡ Ci

1, and Prb←{0,1}[A(O(Ci
b)) = b] ≥ 1/2 + δ(n)/2.

Now consider another attacker A′ in the idealized model I which, given a circuit B′ as input,
runs the simulator of Theorem 2.7 to get the circuit B = SimI(B′) and then runs A over B to
output whatever A does. By the property of the simulator Sim we conclude that A′ is an efficient
query (computationally unbounded) attacker in the idealized model I that achieves

Pr
b←{0,1},I←I

[A′
I
(O′

I
(Ci

b)) = b] ≥ 1/2 + δ(n)/2− negl(n)

where |Ci
0| = |Ci

1| = n.
A crucial point is that the above probability is also over the randomness of the oracle I ← I

for every i, while we are interested in fixing I ← I and getting a successful attack for infinitely
many pairs of circuits at the same time. By a simple averaging argument we can get:

Pr
I←I

[
Pr

b←{0,1}
[A′

I
(O′

I
(Ci

b)) = b] ≥ 1/2 + δ′(n)/2

]
≥ δ′′(n)/2− negl(n).

Thus, if we define the event Ei over the sampled oracle I ← I as:

Ei holds if: Pr
b←{0,1}

[A′
I
(O′

I
(Ci

b)) = b] ≥ 1/2 + δ′/2

then we get Pr[Ei] ≥ δ′′(n)/2 − negl(n) ≥ δ′′/3 for every i ∈ N. Now we can apply Lemma 2.9 to
conclude that, with probability at least δ′′/3 over the choice of I ← I, an infinite number of the
events Ei’s would happen at the same time for I. We call I ← I a good oracle if it is indeed the
case that infinitely many of the events Ei’s happen over I. By definition, for any good oracle I,
the attacker A′ successfully breaks (QP )I (as an implementation of Q in model I) over infinitely

9



many pairs of circuits while asking only an efficient number of oracle queries to I. The existence of
such A′ who breaks (QP )I for non-zero (in fact ≥ δ′′/3) measure of the choice of the oracles I ← I
prevents QP from being a oracle-fixed black-box construction of Q relative to I.

Case of δ′ ≈ 1 − 1/ poly(n). Theorem 3.2 was sufficient for us to derive Theorem 3.1, however
that is not the strongest separation one can imagine for approximate computational CIO as it does
not cover the case of 1− 1/ poly(n). The work of [13] shows that whenever 2ε + δ > 1 then there
is in fact a way to achieve (ε, δ)-approximate statistical CIO. Thus one can imagine the possibility
that the result of [13] could ultimately be improved to rule out (ε, δ)-approximate statistical CIO
for O(ε) + δ < 1− 1/ poly(n). Below, we show that such a result, if proved, could be used to derive
lower bounds on the complexity of (ε′, δ′)-approximate computational CIO for δ′ ≈ 1− 1/poly(n).

Theorem 3.6. If there is no (ε, δ)-approximate statistical CIO for δ = 1 − ρ for sufficiently
small ρ = 1/ poly(n) (e.g., ρ = 1/n4 suffices), then there is no fully-black-box construction of
(ε′, δ′ = 1 − √ρ)-approximate computational CIO for any ε′ ≤ ε − n−Ω(1) from the primitives of
Theorem 3.1.

Thus, the main difference between Theorem 3.2 and Theorem 3.6 is that in Theorem 3.6 we
cover the case of δ′ = 1−1/ poly(n), but we also rely on stronger assumption that δ = 1−1/poly(n).

of Theorem 3.6. The proof is identical to that of Theorem 3.2 except for the following. Since the
attackers A and A′ will succeed in guessing the correct circuit with probability 1− 1/ poly(1) ≈ 1
we can do a better averaging argument to get a better attack after fixing the oracle. Namely, define
the event Ei as:

Ei holds if: Pr
b←{0,1}

[A′
I
(O′

I
(Ci

b)) = b] ≥ 1−
√
ρ(n)/2

where n is the size of the circuits Ci
0, C

i
1. Then we can conclude that Pr[Ei] ≥ 1− 10

√
ρ(n). Now,

since the events Ei happen with large probability and that
∑

n 10
√
ρ(n) < ∞ we can apply the

Borel-Cantelli lemma (Lemma 2.8) to conclude that with measure one over the choice of the oracle
I ← I all but finitely many of Ei’s would happen. The rest of the proof remains unchanged.

Acknowledgement. W thank Kasra Alishahi and Erfan Salavati for the reference of Lemma 2.9,
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