
What users should know about

Full Disk Encryption based on LUKS ?

Simone Bossi ?? and Andrea Visconti ? ? ?

Cryptography and Coding Laboratory (CLUB),
Department of Computer Science,
Università degli Studi di Milano
http://www.club.di.unimi.it/

simone.bossi2@studenti.unimi.it,andrea.visconti@unimi.it

Abstract. Mobile devices, laptops, and USB memory usually store large
amounts of sensitive information frequently unprotected. Unauthorized
access to or release of such information could reveal business secrets,
users habits, non-public data or anything else. Full Disk Encryption
(FDE) solutions might help users to protect sensitive data in the event
that devices are lost or stolen. In this paper we focus on the security
of Linux Unified Key Setup (LUKS) specifications, the most common
FDE solution implemented in Linux based operating systems. In partic-
ular, we analyze the key management process used to compute and store
the encryption key, and the solution adopted to mitigate the problem
of brute force attacks based on weak user passwords. Our testing activi-
ties show that unwitting users can significantly reduce the security of a
LUKS implementation by setting specific hash functions and aggressive
power management options.

Keywords: Linux Unified Key Setup (LUKS), Password-Based Key
Derivation Function 2 (PBKDF2), Full Disk Encryption (FDE), hash
functions, HMAC.

1 Introduction

Nowadays, mobile devices, laptops, USB memory are convenient and
easy to use. They are fast becoming the preferred choice of compa-
nies, customers and employees, especially by those who are on the

? A slightly different version of this paper appeared in the Proceedings of the 14th In-
ternational Conference on Cryptology and Network Security (CANS 2015), Springer
International Publishing, LNCS 9476.

?? Part of this work was performed as part of the author’s B.Sc. thesis, under the
supervision of Dr. Andrea Visconti

? ? ? Corresponding author: andrea.visconti@unimi.it

http://www.club.di.unimi.it/

move. These devices usually store large amounts of sensitive infor-
mation frequently unprotected. If such devices are lost or stolen, the
risk of unauthorized disclosure of confidential, sensitive, or classified
information is very high and the impact to the affected companies is
potentially billions of dollars [15]. However computer users are not
the only ones who do not pay attention to security when it comes to
protecting sensitive data. Many operating systems store temporary
files/swap partitions on hard drive and a number of problems arises
when these files contain sensitive data [10].

A possible solution is to encrypt the whole hard disk. Full Disk
Encryption (FDE) solutions, also known as “On-Disk Encryption”
or “Whole Disk Encryption”, work by encrypting every single bit
of data that resides on a storage device — i.e., operating systems,
applications, swap partitions, user’s files, and so on. FDE solutions
aim to provide data security, even in the event that an encrypted
device is lost or stolen. All information is encrypted/decrypted on
the fly, automatically and transparently. Without the encryption key,
the data stored on the disk remains inaccessible to any users (regular
or malicious).

One of the main issues facing Full Disk Encryption solutions is
the password management. Indeed, the master key used to encrypt
the whole disk is stored on it. A well-known solution to this prob-
lem, is to adopt a two level key hierarchy [16] but sometimes it is
not enough (e.g. two level key hierarchy adopted by Android 3-4.3
[6]), and a number of questions arise. Could the choice of specific
cryptographic parameters significantly reduce the security of a FDE
solution? How should users choose cryptographic parameters that
best meet security requirements? Could external factors (i.e. power
management options) affect the security of a FDE solution?

In this paper we try to find answers to these questions, evaluating
the level of security provided by Linux Unified Key Setup, the most
common Full Disk Encryption specification implemented in Linux
based operating systems. In particular, we analyze the key manage-
ment process used to derive the encryption key, and how the choice
of specific hash functions and aggressive power management options
may affect the security of a FDE solution.

The remainder of the paper is organized as follows. In Section 2,
we introduce the problems of managing passwords and the solution

adopted. In Section 3 we describe the LUKS design. In Section 4 we
analyze the key management process used by LUKS implementa-
tions, explaining the possible weaknesses found. Finally, discussion
and conclusions are drawn in Section 5.

2 Password management

An important problem to solve in FDE solutions is the password
management. Users know they need to generate a strong password
and change it frequently. But the process of changing encryption
password brings with it a series of problems, indeed, if a FDE solu-
tion has been implemented using a master key which encrypts/decrypts
the whole hard disk — i.e., single key schema — changing the mas-
ter key means re-encrypt all the data with the new key. This process
can be very time consuming and cause unacceptable unavailability
of data.

A well-known solution to this problem, is to adopt a two level
key hierarchy. A strong master key generated by the system is used
to encrypt/decrypt whole hard disk. Such key have to be split, en-
crypted with a secret user key — each user has their own secret key
— and stored on the device itself. The master key is unique but a
number of encrypted master key are stored on disk, one for each
user. This approach has a main advantage. If we set a new secret
user key, the encrypted master key stored on disk changes but the
master key does not. Hence, users can change password frequently
without re-encrypting all the data.

But, what happens when a device is lost or stolen? Is the two
level key hierarchy method strong enough to protect our sensitive
data? When devices are lost or stolen, it is desirable that the master
key cannot be decrypted by anyone. Unfortunately, master keys are
protected with user keys which are usually short and lack entropy.
Hence, an attacker would try to guess them constructing a list of
possible passwords. A solution to this problem is described in [12].
Morris and Thompson suggest to combine a user password with a
salt to generate a key. This approach allows to compute several pos-
sible keys for each user password. The effect is to discourage an
attacker from precomputing a list of possible keys. Another solution
described in literature [16] is to derive the key using a Key Derivation

Function (KDF). This approach tries to slow down the computation
of malicious users to mitigate the problem of brute force attacks.
In particular, the KDF allows legitimate users to spend a moder-
ate amount of time on key derivation, while inserts CPU-intensive
operations on the attacker side.

To face the problems of password management described in this
section, it is possible to adopt a solution based on a two level key
hierarchy and protect the master key using both salt and key deriva-
tion function.

2.1 PBKDF2: A key derivation function

PBKDF2 is a Password-Based Key Derivation Function described
in PKCS #5 [16], [13]. For providing better resistance against brute
force attacks, PBKDF2 introduce CPU-intensive operations. These
operations are based on an iterated pseudorandom function (PRF)
which maps input values to a derived key. The most important prop-
erties to assure is that the iterated pseudorandom function is cycle
free. If this is not so, a malicious user can avoid the CPU-intensive
operations and, as described in [18], get the derived key by executing
a set of functionally-equivalent instructions.

PBKDF2 inputs a pseudorandom function PRF , the user pass-
word p, a random salt s, an iteration count c, and the desired length
len of the derived key. It outputs a derived key DerKey.

DerKey = PBKDF2(PRF, p, s, c, len) (1)

More precisely, the derived key is computed as follows:

DerKey = T1||T2|| . . . ||Tlen (2)

where

T1 = Function(p, s, c, 1)

T2 = Function(p, s, c, 2)

...

Tlen = Function(p, s, c, len).

Each single block Ti — i.e., Ti = Function(p, s, c, i) — is computed
as

Ti = U1 ⊕ U2 ⊕ ...⊕ Uc (3)

where

U1 = PRF (p, s||i)

U2 = PRF (p, U1)

...

Uc = PRF (p, Uc−1)

The pseudorandom function applied to derive a key can be a hash
function [14], cipher, or HMAC [3], [4], and [11]. In the sequel, unless
otherwise specified, by PRF we will refer to HMAC with the SHA-1
hash function, which is the default as per [16], [9].

3 Linux Unified Key Setup

The Linux Unified Key Setup (LUKS) is a disk-encryption speci-
fication commonly implemented in Linux based operating systems.
It is a platform-independent standard on-disk format developed by
Clemens Fruhwirth in 2004 [9,8]. LUKS is based on a two level key
hierarchy. It protects the master key using PBKDF2 as key deriva-
tion function. To solve the problem of data remanence — i.e., data
continues to exist on hard disk even after it has been deleted —
an anti-forensic splitter (AF-splitter) is adopted. This AF-splitter
inflates and splits the master key before storing it on disk and, fur-
thermore, uses a hash function as diffusion element.

A LUKS partition has a simple layout (see Figure 1). It includes
the partition header, the key material (KM1, KM2, . . . , KM8), and
the user encrypted data.

Fig. 1. LUKS partition header

The partition header contains information about salt, iteration counts,
key slots (eight), used cipher, cipher mode, key length, hash func-
tion, master key checksum, start sector of key material, and so on
[8]. Among all these parameters, we look more closely at salt and
iteration counts because they allow to mitigate brute force attacks.
In particular, the salt is fetched from a random source [9], while
the iteration counts are automatically computed by making some
run-time tests when the encrypted partition is generated. Salt and
iteration counts are stored in plain text in LUKS partition header.

In addition, the solution adopted by LUKS has as many user
key as there are key slots. Therefore, the same master key can be
encrypted with eight different user keys, and stored in one of the
eight key material sections.

3.1 Master key recovery

In order to recover the master key, we need a valid LUKS partition
header. When a user key is provided, it unlocks one of the eight key
slots. As shown in Figure 2, PBKDF2, an anti-forensic splitter, and
a cipher are used to compute the master key. Such a key in turn will
unlock the encrypted data.

Fig. 2. Master key recovery process

More precisely, the following algorithm is processed:

Algorithm 1: Master key recovery process

1 Read the user password/passphare p;
2 Read salt s from active key slot;
3 Read first iteration count c from active key slot;
4 Use PBKDF2 to compute derived key DerKey;
5 Read the start sector of key material from active key slot;
6 Read the split master key from key material;
7 Decrypt the split master key using derived key DerKey;
8 Merge the split encrypted master key and obtain a candidate

master key;
9 Read the second iteration count for computing the master key

digest;
10 Use PBKDF2 to compute the candidate master key digest;
11 Compare such digest with those stored in the partition header;
12 If equal, the recovery is successful. Otherwise, the candidate is

not the correct master key.

4 Analysis of a LUKS implementation

In Linux world, LUKS implementations are based on cryptsetup and
dm-crypt. In order to mitigate the problem of brute force attacks
based on weak user passwords, LUKS combined the ideas of salt
and key derivation function (i.e., PBKDF2). Because salt parameter
is known and user password may be guessed, we focus on iteration
counts and their ability to slow down a brute force attack as much
as possible. In particular, we try to understand where and how the
iteration counts are used, how the choice of specific hash functions
may affect the iteration count computation, and how unwitting users
might significantly reduce the security of a LUKS implementation by
setting aggressive power management options.

4.1 Iteration counts: where and how

Two iteration counts are involved in the key management process.
The first iteration count is used to compute derived key (see point

4, Algorithm 1), while the second one is involved in the master key
checksum process (see points 9-10-11, Algorithm 1).

Table 1. Average iteration counts involved in the key derivation process

CPU OS sha1 sha512 sha256 ripemd160

Intel Atom z520 Debian 7.7 x86 31,035 7,019 18,567 29,491
Intel Core 2 Duo T6670 Kali 1.0 x86 151,772 22,821 67,634 111,791
Intel Pentium 3556U Xubuntu 14.04 x64 126,617 50,082 77,379 103,287
Intel Core i3 2310M Fedora 20 x64 136,375 50,107 77,682 111,536
Intel Pentium T4500 Ubuntu 12.04 x64 147,904 56,380 85,167 119,366
Intel Core i5 3320M Debian 7.7 x64 232,203 88,843 139,985 196,209
Intel Core i7 2860QM Kubuntu 14.04 x64 248,671 90,225 123,904 179,947
Intel Core i7 4710MQ ArchLinux x64 588,761 302,148 392,916 350,378

Table 2. Average iteration counts involved in the master key checksum process

CPU OS sha1 sha512 sha256 ripemd160

Intel Atom z520 Debian 7.7 x86 7,826 1,702 4,668 7,327
Intel Core 2 Duo T6670 Kali 1.0 x86 37,761 5,752 27,498 16,764
Intel Pentium 3556U Xubuntu 14.04 x64 31,419 12,406 19,318 25,659
Intel Core i3 2310M Fedora 20 x64 33,903 12,657 19,307 27,718
Intel Pentium T4500 Ubuntu 12.04 x64 36,913 14,009 21,495 29,951
Intel Core i5 3320M Debian 7.7 x64 58,218 22,026 34,802 49,138
Intel Core i7 2860QM Kubuntu 14.04 x64 54,371 19,353 30,926 44,927
Intel Core i7 4710MQ ArchLinux x64 147,727 75,570 98,929 87,572

Fig. 3. The first 1024 bytes on EXT-family file systems

We experimentally observed that about 75-80% of the compu-
tational effort required to compute a derived key is generated by
first iteration count (see Table 1), while the remaining 20-25% by
second one (see Table 2). Unfortunately, the master key checksum
process can be avoided exploiting the well known problem of file
system structure. Indeed, on EXT-family file systems the first 1024
bytes are reserved for the boot sector (see Figure 3, unencrypted
boot partition). When unused — recall that a hard disk can contain
several partitions, each with their own boot sectors — it is set to
zeros (see Figure 3, user encrypted data).

By decrypting the first bytes of the user encrypted data and
checking if such bytes are zeros, we are able to understand if the
candidate key is the correct master key or not. Hence, we substitute
points 9-10-11 of Algorithm 1 with a decryption operation.

This means that, for all encrypted LUKS partitions the second
iteration count can be avoided and the computational effort required
to compute the master key can be reduced by about 20-25%.

4.2 Iteration counts and hash functions

To better understand how the iteration counts are handled — re-
call that they are automatically computed by making some run-time
tests — we experimentally collected several partition headers related
to a number of encrypted devices.

We installed on our laptops a 32-bit or 64-bit operating system
(e.g. Debian 7.7 x86, Fedora 20 x64, Kubuntu 14.04 x64, Kali 1.0
x86, and so on), libgcrypt 1.6.3 [2] and cryptsetup 1.6.6 [1]. These
are the latest releases available at the time of testing.

To be sure that such values are not conditioned by external fac-
tors, e.g. running programs, we collected 3200 partition headers.
More precisely, for each processor (eight) and each hash function
(four) listed in Tables 1 and 2, we execute 100 runs for a total of
8 × 4 × 100 = 3200 partition headers collected. Then, we read salt
and iteration counts stored in each partition header. Tables 1 and 2
shown the average values collected. Notice that the variation across
runs is observed to be less than 0.4%.

As expected, devices with a different hardware configuration gen-
erate different iteration count values. For example, the values col-
lected for SHA1 run on average between 588,761 (Intel Core i7
4710MQ) and 31,035 (Intel Atom z520), with higher values corre-
sponding to a more powerful processor.

Surprisingly, even small changes in software, such as choose a
different function of the SHA family, may considerably decrease the
iteration count values. Notice the differences between 67,634 and
22,821 (Intel Core due duo T6670, SHA256 vs SHA512), or 18,567
and 7,019 (Intel Atom z520, SHA256 vs SHA512), or 139,985 and
88,843 (Intel Core i5 3320M, SHA256 vs SHA512). This abnormal
behavior was not found in all cases tested. For example, it is par-

tially mitigated in i7 4710MQ processor where the average values
collected are 392,916 and 302,148 (Intel Core i7 4710MQ, SHA256
vs SHA512).

The approach adopted by LUKS in defining iteration count values
does not always sound good. We found it curious that the iteration
counts related to SHA-256/512 are considerably smaller than those
of SHA-1. Although there is no reason why this should not happen
when we talk about the security against password guessing, from
an user’s point of view, SHA-256 and SHA-512 are still considered
more secure than SHA-1, therefore a FDE solution based on SHA-2
is expected to be stronger. We notice that the CPU time spent to
compute a list of master key candidates based on SHA-256/512 costs
less than one based on SHA-1. Hence, it is easier to attack a FDE
solution which makes use of a safer hash function (e.g., SHA256 or
SHA512) rather than one which uses a less secure function (e.g.,
SHA-1).

Furthermore, the computational time spent to compute a list of
master key candidates does not only depend on the iteration count
values. Even the number of fingerprints required to compute a single
iteration affects the total execution time. Indeed, assuming that the
decryption function involved in the master key recovery process is
AES (i.e. the default choice), we need a 256 bits derived key. A SHA-
1 fingerprint is only 160 bits in length and cannot be used as derived
key. As described in Equation 2, a second fingerprint is necessary —
i.e., DerKey = T1||T2. On the other hand, SHA-256 and SHA-512
generate enough bits to compute a derived key, hence DerKey = T1.
This means that, at equal iteration count values, a FDE solution
based on HMAC-SHA1 slow down the brute force process better
than one based on HMAC-SHA256 or HMAC-SHA512.

To point out this finding, we set the first iteration count to
500,000, and try to compute a list of 250,000 master key candidates
using a number of hash functions. Figure 4 can help us to visualize
the time necessary to execute a brute force attack on a i7 proces-
sor. Note that the gap between SHA-1, SHA-256, and SHA-512 hash
functions is partially mitigated by compensatory mechanisms such
as using a computationally more complex hash function.

Fig. 4. Time spent to compute a list of 250,000 master key candidates

4.3 Iteration counts and power management

Another important feature that users have to take into account dur-
ing encryption operations are the power management options. A
common way to increase the battery life of devices is to enable ag-
gressive power saving policies. Such policies save power, but they
also impact performance by lowering CPU clock speed. Hence, the
iteration count values fall down even further.

Table 3. Maximum and minimum CPU frequency of some devices

CPU OS Max Freq (Plugged) Min Freq (Unplugged)

Intel Atom z520 Debian 7.7 x86 1.33 GHz 0.80 GHz
Intel Pentium 3556U Xubuntu 14.04 x64 1.70 GHz 0.80 GHz
Intel Core i7 4710MQ ArchLinux x64 3.50 GHz 1.20 GHz

To better understand this behavior, we install a well-known Linux
power management package (i.e., Laptop Mode Tools package ver-
sion 1.66) and reduce the CPU frequency as much as possible (see
Table 3). Then, we run a number of tests and experimental results
are reported in Table 4.

Note that the reduction of the iteration count values is proportional
to the reduction of the CPU frequency. Indeed, for the i7 Core tested,
power save settings imply a lowering of iterations by about a factor 3.
Pentium, instead, has half the iteration counts, and Atom has about
a third less. These results suggest that power saving policies might

Table 4. Power saving policies and their impact on the iteration count values

SHA1 SHA512

CPU Plugged Unplugged Plugged Unplugged

Intel Atom z520 31,035 18,693 7,019 4,288
Intel Pentium 3556U 126,617 62,969 50,082 25,161
Intel Core i7 4710MQ 588,761 202,143 302,148 104,216

SHA256 RIPEMD

CPU Plugged Unplugged Plugged Unplugged

Intel Atom z520 18,567 11,094 29,491 17,813
Intel Pentium 3556U 77,379 38,714 103,287 51,603
Intel Core i7 4710MQ 392,916 135,207 350,378 121,483

have an important impact on the iteration count values, hence, on
the strength of the FDE solution adopted.

4.4 Testing

Our testing activity is not intended to decrypt a FDE solution —
PBKDF2 can be parallelized on GPU architecture or specialized
hardware (ASIC/FPGA) and interested readers can find more infor-
mation about this topic in [5], [7], and [17] — but only to evaluate
how the choice of PBKDF2 parameters and power management op-
tions can affect the security of a full disk encryption solution.

We implemented a brute-force attack based on a password-list
of 250,000 master keys. Cryptographic hash functions and PBKDF2
have been implemented using standard OpenSSL library. We run our
code on a laptop equipped with an i7 4710MQ processor. No GPUs
have been used. The brute force attack has been executed six times.
For each CPU listed in Table 3, we target two LUKS partitions
collected using the following configuration options:

1. default iteration count values, AES-256 XTS mode, HMAC-SHA1,
laptop plugged in;

2. default iteration count values, AES-256 XTS mode, HMAC-SHA512,
laptop unplugged;

Figure 5 visualizes the time spent attacking a FDE solution. Al-
though this is a toy example — 250,00 master keys are an ap-
proximation of the size of a dictionary — we can easily identify
the gap between different kinds of approach. The second approach

Fig. 5. A toy example: time spent attacking a FDE solution

abruptly reduce the timeframe for brute forcing, showing how the
simple choice of configuration parameters may affect a FDE solution
based on LUKS. Note that such an attack takes into account all the
weaknesses described in Section 4.1, 4.2, 4.3 and in [18].

5 Discussion and conclusions

In this paper, we addressed the security of a Full Disk Encryption
solution based on LUKS specification. Such a solution aims to pre-
vent data leakage even in the event that devices are lost or stolen.
We analyzed the key management process used to compute and store
the encryption key and how the problem of brute force attacks based
on weak user passwords has been mitigated.

We identify a number of issues that should be assessed and faced
when a full disk encryption is implemented.

– Firstly, the iteration count values are used to slow down a brute
force attack, therefore, they should not be too small. Experimen-
tal results show that sometimes they are.

– Secondly, power management options should not affect the strength
of a FDE solution. Testing results show that aggressive power-
saving approaches may have a relevant impact on the iteration
count values, hence, on the strength of the solution adopted.

– Thirdly, from an user’s point of view a FDE solution based on
HMAC-SHA256, or HMAC-SHA512, is expected to be much stronger
than one based on SHA-1, and be far more resistant to brute-force
attacks. Our testing disprove this.

– Fourthly, the well-known problem of EXT family file system (i.e.
the first block group contains the boot record or is set to zero)
allows attackers to substitute the master key checksum process
by a simple decryption operation. The CPU-intensive operations
used to compute a derived key should not be avoided by executing
a set of functionally-equivalent instructions.

– Fifthly, master keys stored on disk are protected with user keys
which should have a minimum length requirement in order to
prevent a brute force attack. We experimentally observed that a
number of distribution such as Debian, Ubuntu, and ArchLinux
have no minimum length requirement, while Fedora has (but only
eight characters).

Our testing activities show that unwitting users can significantly
reduced the security of LUKS by setting “stronger” hash function
(e.g. HAMC-SHA512 or HAMC-SHA256) and enabling aggressive
power management options. Because attacks always get better and
Moore’s Law will continue to march forward, we strongly suggest
to increase default iteration count values whenever a user key is
defined. Unfortunately, the most common user approach is to leave
the default values unchanged, although a number of parameters can
be easily adjusted by user as desired.

6 Acknowledgment

This research was partially supported by a grant from Università
degli Studi di Milano, “Piano di Sostegno alla Ricerca UNIMI 2015-
2017”.

References

1. Cryptsetup 1.6.6 release. https://gitlab.com/cryptsetup/cryptsetup (2015)

2. Libgcrypt 1.6.3 release. https://www.gnu.org/software/libgcrypt/ (2015)

https://gitlab.com/cryptsetup/cryptsetup
https://www.gnu.org/software/libgcrypt/

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Proc. of Advances in Cryptology—CRYPTO96. pp. 1–15. Springer
(1996)

4. Bellare, M., Canetti, R., Krawczyk, H.: Message authentication using hash
functions—the hmac construction. RSA Laboratories CryptoBytes 2(1), 12–15
(1996)

5. Dürmuth, M., Güneysu, T., Kasper, M., Paar, C., Yalcin, T., Zimmermann, R.:
Evaluation of standardized password-based key derivation against parallel process-
ing platforms. In: Proc. of ESORICS12, pp. 716–733. Springer (2012)

6. Elenkov, N.: Android Security Internals. No Starch Press (2014)
7. Frederiksen, T.K.: Using cuda for exhaustive password recovery (2011), http:

//daimi.au.dk/~jot2re/cuda/resources/report.pdf

8. Fruhwirth, C.: New methods in hard disk encryption (2005), http://clemens.

endorphin.org/nmihde/nmihde-A4-ds.pdf

9. Fruhwirth, C.: LUKS On-Disk Format Specification Version 1.2.1 (2011), http:
//wiki.cryptsetup.googlecode.com/git/LUKS-standard/on-disk-format.pdf

10. Gutmann, P.: Secure deletion of data from magnetic and solid-state memory
(1996), https://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

11. Krawczyk, H., Bellare, M., Canetti, R.: Hmac: Keyed-hashing for message authen-
tication. Internet RFC 2104 (1998)

12. Morris, R., Thompson, K.: Password security: A case history. Communications of
the ACM 22(11), 594–597 (1979)

13. NIST: SP 800-132: Recommendation for password-based key derivation (2010)
14. NIST: FIPS PUB 180-4: Secure Hash Standard (Mar 2012), http://csrc.nist.

gov/publications/fips/fips180-4/fips-180-4.pdf

15. Ponemon Institute: The billion dollar lost laptop problem (2010),
http://newsroom.intel.com/servlet/JiveServlet/download/1544-16-3132/

The_Billion_Dollar_Lost_Laptop_Study.pdf

16. RSA Laboratories: Pkcs #5 v2.1: Password based cryptography standard (2012)
17. Schober, M.: Efficient password and key recovery using graphic cards. Diploma

Thesis, Ruhr-Universität Bochum (2010)
18. Visconti, A., Bossi, S., Ragab, H., Caló, A.: On the weaknesses of PBKDF2. In:

Proc. of the 14th International Conference on Cryptology and Network Security,
CANS 2015. Springer International Publishing, LNCS 9476 (2015)

http://daimi.au.dk/~jot2re/cuda/resources/report.pdf
http://daimi.au.dk/~jot2re/cuda/resources/report.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://clemens.endorphin.org/nmihde/nmihde-A4-ds.pdf
http://wiki.cryptsetup.googlecode.com/git/LUKS-standard/on-disk-format.pdf
http://wiki.cryptsetup.googlecode.com/git/LUKS-standard/on-disk-format.pdf
https://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://newsroom.intel.com/servlet/JiveServlet/download/1544-16-3132/The_Billion_Dollar_Lost_Laptop_Study.pdf
http://newsroom.intel.com/servlet/JiveServlet/download/1544-16-3132/The_Billion_Dollar_Lost_Laptop_Study.pdf

	What users should know about Full Disk Encryption based on LUKS
	Introduction
	Password management
	PBKDF2: A key derivation function

	Linux Unified Key Setup
	Master key recovery

	Analysis of a LUKS implementation
	Iteration counts: where and how
	Iteration counts and hash functions
	Iteration counts and power management
	Testing

	Discussion and conclusions
	Acknowledgment

