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Abstract

We consider the adjacency graphs of the linear feedback shift registers (LFSRs) with char-

acteristic polynomials of the form l(x)p(x), where l(x) is a polynomial of small degree and p(x)

is a primitive polynomial. It is shown that, their adjacency graphs are closely related to the

association graph of l(x) and the cyclotomic numbers over finite fields. By using this connec-

tion, we give a unified method to determine their adjacency graphs. As an application of this

method, we explicitly calculate the adjacency graphs of LFSRs with characteristic polynomials

of the form (1 +x+x3 +x4)p(x), and construct a large class of De Bruijn sequences from them.

Keywords: MSC(94A55), feedback shift register, adjacency graph, De Bruijn sequence.

1 Introduction

Feedback shift registers (FSRs) can be used to generate pseudo random sequences. In cryptograph,

they are the elementary component for designing stream ciphers [3,12]. The periods of the output

sequences of an n-stage FSR are no more than 2n. If this value is attained, we call the output

sequences De Bruijn sequences and the FSR maximum length FSR [2]. The state cycle in a

maximum length FSR is called a full cycle, fot it contains all the n-length binary tuples. De

Bruijn sequences have many favorable properties, such as long period, large linear span and good

randomness, and they have important applications in cryptography and modern communication

systems [4, 7]. It is well known that there are 22
n−1−n De Bruijn sequences of order n [2, 7]. Even

though their size is very large, we can construct only a very small fraction of them efficiently by

now [1,5–7,14,15,21].

A classical method to construct De Bruijn sequences (or maximum length FSRs) is to consider

an FSR producing several cycles which are then joined together to form a full cycle. Such a method
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is called the cycle joining method proposed by Golomb [8]. For the application of this method, we

need to know the distribution of the conjugate pairs in the cycles of the FSR, which is generally

difficult to analyze. The distribution of the conjugate pairs in the cycles of an FSR is defined to be

the adjacency graph of this FSR [11]. Until now, only some special linear feedback shift registers

(LFSRs) have been totally analyzed about their adjacency graphs. At the earliest, the maximum

length LFSRs (generating m-sequences) were analysed and used to construct De Bruijn sequences.

Then the pure circulating registers and pure summing registers were also used [5]. Recently, some

attentions have been paid to the LFSRs with characteristic polynomials (1+x)mp(x), (1+xm)p(x)

and p1(x)p2(x) · · · pk(x), where p(x) and pi(x), i = 1, 2, . . . , k, are primitive polynomial and m is a

small positive integer [13, 16–18, 20]. Their adjacency graphs were determined and a large class of

De Bruijn sequences were constructed from them.

It can be seen that, the characteristic polynomials of these FSRs whose adjacency graphs are

known by now, take the form of l(x)p(x), where l(x) is polynomial of small degree and p(x) is

a primitive polynomial (of large degree). We may call these characteristic polynomials primitive-

like polynomials, because they are obtained by multiplying a polynomial l(x) of small degree to a

primitive polynomial p(x). Then it is well-reasoned to ask that: does there exist a unified method

to deal with the adjacency graphs of the LFSRs with primitive-like characteristic polynomials,

and not just to analyse them one by one? We will give a affirmative answer to this question,

and present such a method in this paper. The solution to this question lies in the observation

that their adjacency graphs have a intrinsic connection with the association graph of the LFSR

with characteristic polynomial l(x) (see the definition in Section 3). Our result is that, in the

case of gcd(per(l(x)), per(p(x))) = 1, the adjacency graph of FSR(l(x)p(x)) can be determined

directly from the association graph of FSR(l(x)); otherwise, some cyclotomic numbers are needed

additionally. As an application of this method, we calculate the adjacency graphs of the LFSRs

with characteristic polynomials of the form (1 + x + x3 + x4)p(x) and construct a large class of

De Bruijn sequences from them. The properties of association graphs are also considered in this

paper, and a sufficient condition for their uniqueness is given. By this condition, we show that

some adjacency graphs are isomorphic.

The remainder of this paper is organized as follows. In Section 2, we introduce some necessary

preliminaries. In Section 3, the definition of association graphs of LFSRs is given. Section 4

considers the cycle structure of LFSRs with primitive-like characteristic polynomials. Section 5

gives a unified method to determine their adjacency graphs. Section 6 provides applications of the

unified method to the LFSRs with characteristic polynomials of the form (1 + x + x3 + x4)p(x),

and determines their adjacency graphs. In Section 7, a large number of De Bruijn sequences are

constructed from these LFSRs, and we make a conclusion on this paper in Section 8.
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2 Preliminaries

2.1 Feedback Shift Registers

Let F2 = {0, 1} be the binary finite field, and Fn2 be the nth-dimensional vector space over F2. An

n-variable Boolean function f(x0, x1, . . . , xn−1) is a function from Fn2 to F2.

An n-stage feedback shift register (FSR) consists of n binary storage cells and a feedback

function F regulated by a single clock. The characteristic function of this FSR is defined to be

f = F + xn. The FSR with characteristic function f is denoted by FSR(f). At every clock pulse,

the current state (s0, s1, . . . , sn−1) is updated by (s1, s2, . . . , sn−1, F (s0, s1, . . . , sn−1)) and the bit s0

is outputted. The output sequences of FSR(f), denoted by G(f), are the 2n sequences s = s0s1 . . .,

satisfying st+n = F (st, st+1, . . . , st+n−1), or equivalently f(st, st+1, . . . , st+n) = 0, for any t ≥ 0.

It is shown by Golomb [8] that all sequences in G(f) are periodic if and only if the characteristic

function f is nonsingular, i.e., of the form f = x0+f0(x1, . . . , xn−1)+xn. In the following discussion,

all characteristic functions are assumed to be nonsingular.

We use (s0s1 . . . sp−1) to denote the periodic sequence s = s0s1 . . . sp−1 . . . with period p. The

period of s is denoted by per(s). We define the left shift operator L on periodic sequences by

Li(s) = (sisi+1 . . . si−1), where the subscripts are taken modulo p. Two periodic sequences s1 and

s2 are called shift-equivalent if there exists an integer r such that s1 = Lrs2. The set G(f) are

partitioned into equivalent classes G(f) = [s1] ∪ [s2] ∪ · · · ∪ [sk] such that two sequences are in the

same equivalent class if and only if they are shift equivalent. Each equivalent class is called a cycle

of FSR(f), and the partition is called the cycle structure of FSR(f). A cycle [(s0, s1, . . . , sp−1)] can

also be represented using the state cycle form [S0,S1, . . . ,Sp−1], where Si = (si, si+1, . . . , si+n−1)

for 0 ≤ i ≤ p− 1, and the subscribes are taken modulo p. The state Si is just the state of the FSR

at the moment that the bit si is ready to be outputted.

An FSR is called a linear feedback shift register (LFSR) if its characteristic function f is

linear [22]. For a linear Boolean function f(x0, x1, . . . , xn) = a0x0 + a1x1 + · · · + anxn, we can

associate it with an univariate polynomial l(x) = a0 + a1x+ · · ·+ anx
n ∈ F2[x]. Most of the time,

we do not discriminate between linear Boolean functions and univariate polynomials. And for

convenience, we sometimes use FSR(l(x)) to denote the LFSR with characteristic function f(x).

For an n-stage FSR, the periods of its output sequences are no more than 2n. If this value is

attained, we call the sequences De Bruijn sequences, and call the FSR maximum length FSR. The

unique cycle in a maximum-length FSR is called full cycle. For an n-stage LFSR, the periods

of its output sequences are no more than 2n − 1. If this value is attained, we call the sequences

m-sequences, and call the FSR maximum length LFSR. It is known that, FSR(l(x)) is a maximum

length LFSR if and only if l(x) is primitive, that is, the period of l(x), denoted by per(l(x)), is

2n − 1.
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2.2 Adjacency Graphs

For a state S = (s0, s1, . . . , sn−1), its conjugate is defined to be the state Ŝ = (s0, s1, . . . , sn−1),

where s0 is the binary complement of s0. Two cycles C1 and C2 are said to be adjacent if there exists

a conjugate pair (S, Ŝ) such that the state S is on C1 while its conjugate Ŝ is on C2. Conjugate

pairs can be used to join cycles. For two cycles C1 and C2 that share a conjugate pair (S, Ŝ), we

can join the two cycles into one cycle by interchanging the successors of S and Ŝ. This is the basic

idea of the cycle joining method that proposed by Golomb. For the application of the cycle joining

method, we need to find out the location of conjugate pairs shared by cycles. This leads us to the

definition of adjacency graph.

Definition 1. [11,19] For an FSR, its adjacency graph is an undirected graph where the vertexes

correspond to the cycles in it, and there exists an edge labeled with an integer m > 0 between two

vertexes if and only if the two vertexes share m conjugate pairs.

For any FSR, its adjacency graph is a connected graph, that is, we can always join the cycles in

this FSR into a full cycle. This fact follows from the statement in [7]: C is a full cycle if and only

if the existence of state S on C also implies the existence of its conjugate Ŝ on C. Every maximal

spanning tree (see Figure 6) of an adjacency graph corresponds to a maximum length FSR, since

this represents a choice of adjacencies that repeatedly join two cycles into one ending with exactly

one cycle, i.e., a full cycle. Therefore, for a given FSR, the number of full cycles that we can get

from it by using the cycle joining method, is equal to the number of maximum spanning trees of

its adjacency graph.

Let C1 and C2 be two cycles in FSR(f), and (S, Ŝ) be a conjugate pair shared by the two

cycles. By interchanging the predecessors of the two states S and Ŝ the two cycles C1 and C2

are joined together. Since the cycle structure of FSR(f) is changed, we get a new FSR. The

characteristic function of the new FSR can be expressed in terms of the function f and the state

S. For convenience, we introduce a notation firstly. Let A be a set of states, in which there are

no conjugate pairs. We use I(A) to denote the Boolean function in variables x0, x1, . . . , xn−1,

which takes value 1 at the states in A and the states whose conjugate lies in A, and takes value

0 at the other points. Using this notation, the characteristic function of the new FSR is given by

f ′ = f + I(S).

2.3 Cyclotomic Numbers

Let F2n be the finite field of 2n elements, and α be a primitive element in F2n . The field F2n can

be expressed as F2n = {0, α0, α1, . . . , α2n−2}. Let d ≥ 1 be a divisor of 2n − 1. The cyclotomic

classes C0, C1, . . . , Cd−1 of F2n are defined by Ci = {αi+jd | 0 ≤ j ≤ 2n−1
d − 1} for 0 ≤ i ≤ d − 1.

For two integers l and m with 0 ≤ l,m ≤ d− 1, the cyclotomic number (l,m)d over F2n is defined

as the number of elements x ∈ Cl such that 1 + x ∈ Cm. It should be noted that, the cyclotomic

number (l,m)d is not a fixed number for given l,m, d and n, but affected by the primitive element
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α, that is, different primitive elements may give different cyclotomic numbers. We refer the reader

to [9, 17] for more details.

Define J = {0, 1, . . . , 2n − 2} and J∗ = J \ {0}. Let Z be a mapping from J∗ to itself such that

1 + αj = αZ(j). Then Z is a permutation of J∗. Similar to the cyclotomic numbers, the mapping

Z is also affected by the primitive element α. A connection between the cyclotomic number (l,m)d

and the mapping Z is that: (l,m)d = |{(j, Z(j)) | j ≡ l(modd), Z(j) ≡ m(modd), j ∈ J∗}|.
In the case that n is an even number, we have 3|2n−1. The cyclotomic numbers of order 3 over

F2n are fixed numbers (means that they are not affected by the primitive element α), and they are

given in the following lemma.

Lemma 1. [9,10,17] The cyclotomic numbers of order 3 over finite field F2n are given by (0, 0)3 =

A, (0, 1)3 = (1, 0)3 = (2, 2)3 = B, (0, 2)3 = (2, 0)3 = (1, 1)3 = C and (1, 2)3 = (2, 1)3 = D, where

A = 2n+(−2)
n
2 +1−8

9 , B = C = 2n+(−2)
n
2 −2

9 , and D = 2n+(−2)
n
2 +1+1

9 .

Let p(x) be a primitive polynomial of degree n, and Mn×n be the companion matrix of p(x).

By the linear algebra theory, we have p(M) = O, where O is the 0 × 0 zero matrix. Since p(x)

is a primitive polynomial of degree n over F2, the ring F2[M ] is isomorphic to the field F2n . This

isomorphism gives In+M j = MZ(j). Let s = (s0, s1, . . . , s2n−2) be an m-sequence in G(p(x)). Write

s in the state form: s = (S0,S1, . . . ,S2n−2), where Si = (si, si+1, . . . , si+n−1) for 0 ≤ i ≤ 2n−2, and

the subscribes are taken modulo 2n − 1. Then we have Si = S0M
i for 0 ≤ i ≤ 2n − 2, Remember

that In + M j = MZ(j), we get that S0(In + M j) = S0M
Z(j), which implies S0 + Sj = SZ(j).

Therefore, we get the equation s + Ljs = LZ(j)s.

3 The Association Graphs of LFSRs

In this section, we give the definition of association graphs of LFSRs. Some examples are presented

to illustrate the meaning of this definition. Let a = a0, a1, . . . , ai, . . . and b = b0, b1, . . . , bi, . . . be

two sequences, and c be an element in F2. The sum of the two sequences a + b and the scalar

product c ·a are defined to be a+b = a0+b0, a1+b1, . . . , ai+bi, . . ., and c ·a = ca0, ca1, . . . , cai, . . ..

Let l(x) ∈ F2[x] be a polynomial of degree m. Then there are 2m sequences in the set G(l(x)). It

is well known that, the set G(l(x)) is a vector space of dimension m over F2 when endowed with

the two operations + and · defined above.

Let u be a sequence in G(l(x)). Because < G(l(x)),+ > is a group, the mapping from G(l(x))

to itself:

γu : a 7→ u + a

is a bijection. We note that, the bijection γu is not necessarily preserve the shift equivalent property,

that is, for two shit equivalent sequences a and b, their images γu(a) and γu(b) may not be shift

equivalent. Therefore, two sequences in a same cycle of G(l(x)) may be mapped into different

cycles. This lead us to the following definition.
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Definition 2. Let u be a sequence in G(l(x)), [v] and [w] be two cycles (may be the same) in

G(l(x)). The association number of [v] and [w] with respect to u is defined by

Ru([v], [w]) =
∣∣∣{(i, j) | Liv + Ljw = u, 0≤i≤per(v)−10≤j≤per(w)−1

}∣∣∣ .
It is easy to see that, the association number of [v] and [w] is exactly the number of sequences

in [v] whose image under γu is located in the cycle [w]. In another word, Ru([v], [w]) = |{(a,b) |
a + b = u,a ∈ [v],b ∈ [w]}|. An example of γu, when l(x) = 1 + x + x3 + x4 and u = (000111),

is given, see Figure 1. The cycle structure of this LFSR is G(l(x)) = [(0)] ∪ [(000111)] ∪ [(001)] ∪
[(01)] ∪ [(011) ∪ [(1)]].

(0)

(000111)
(001110)
(011100)
(111000)
(110001)
(100011)

(001)
(010)
(100)

(01)
(10)

(011)
(110)
(101)

(1)

[(0)]

[(000111)]

[(001)]

[(01)]

[(011)]

[(1)]

Figure 1: The mapping γu on G(1 + x+ x3 + x4), where u = (000111)

According to Figure 1, the unique sequence in the cycle [(0)] is mapped into the cycle [(000111)],

therefore, Ru([(0)], [(000111)]) = 1. Two sequences in the cycle [(001)] are mapped into the cycle

[(000111)], and one sequence is mapped into the cycle [(01)], therefore, Ru([(001)], [(000111)]) = 2

and Ru([(001)], [(01)]) = 1. The other association numbers can be calculated similarly. We present

their values as follows: Ru([(1)], [(000111)]) = Ru([(01)], [(011)]) = 1 and Ru([(011)], [(000111)]) =

2. We can use a graph to characterise these relations of the cycles in G(l). It is obvious that, these

relations are influenced by the sequence u.

Definition 3. Let u be a sequence in G(l(x)). The association graph of FSR(l(x)) with respect to

u is an undirected graph, where the vertexes correspond to the cycles in G(l(x)), and there is an

edge labeled with Ru([v], [w]) between two vertices [v] and [w].

Example 1. Let l(x) = 1 + x + x3 + x4. The cycle structure of FSR(l(x)) is G(l(x)) = [(0)] ∪
[(000111)] ∪ [(001)] ∪ [(01)] ∪ [(011) ∪ [(1)]]. The association graph of FSR(l(x)) with respect to

u = (000111) is shown in Figure 2.

The property of association graphs will be discussed further in Section 6. It appears to us that,

there are no efficient methods to get the association graph for a given l(x). In this paper, we assume

that the association graph is calculated using the exhaustive search method, that is, O(2m) time is

needed to obtain the association graph, where m is the degree of l(x).
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[(0)] [(000111)] [(1)]

[(001)] [(01)] [(011)]

1 1

2 2

1 1

Figure 2: The association graph of FSR(1 + x+ x3 + x4) with respect to (000111)

4 The Cycle Structure of FSR(l(x)p(x))

In this section we determine the cycle structure of FSR(l(x)p(x)), where l(x) is a polynomial

and p(x) is a primitive polynomial. For a periodic sequence a, we use [a] to denote the cycle

[a] = {a, La, . . . , Lper(a)−1a}. The sum of two cycles [a] and [b] is defined to be [a] + [b] = {s + t |
s ∈ [a], t ∈ [b]}.

Lemma 2. Let u and s be two periodic sequences such that their minimal polynomials are co-prime.

Let d = gcd(per(u),per(s)). Then [u] + [s] = [u + s] ∪ [Lu + s] ∪ · · · ∪ [Ld−1u + s]. In particular,

when gcd(per(u), per(s)) = 1, we have [u] + [s] = [u + s].

Proof. We first show that, [Liu + s] ⊂ [u] + [s] for any 0 ≤ i ≤ d − 1. Let a be a sequence in

[Liu + s]. We can assume a = Lj(Liu + s) for some integer j. Then a = Li+ju + Ljs. Since

Li+ju ∈ [u] and Ljs ∈ [s], the sequence a belongs to [u] + [s].

In the following we show that, for any sequence a ∈ [u] + [s], it always belongs to some cycle

[Liu + s] for 0 ≤ i ≤ d− 1. Since a is a sequence in [u] + [s], we can assume a = Lju +Lks. Write

j − k = qd + r where 0 ≤ r ≤ d − 1. Because d = gcd(per(u),per(s)), there exists two integers x

and y such that xper(u) + yper(s) = d. Then qyper(s) ≡ qd(modper(u)), and a = Lju + Lks =

Lk(Lj−ku+ s) = Lk+qyper(s)(Lj−k−qyper(s)u+L−qyper(s)s) = Lk+qyper(s)(Lj−k−qyper(s)( mod per(u))u+

L−qyper(s)( mod per(s))s) = Lk+qyper(s)(Lj−k−qdu + s) = Lk+qyper(s)(Lru + s) ∈ [Lru + s].

By using Lemma 2, the cycle structure of FSR(l(x)p(x)) can be characterised by the cycle

structure of FSR(l(x)) and FSR(p(x)). Our discussions are divided into two cases depending on

whether gcd(per(l(x)),per(p(x))) = 1 or not.

Theorem 1. Let l(x) be a polynomial, and p(x) be a primitive polynomial such that p(x) - l(x).

Let G(l(x)) = [u]∪ [v]∪ · · · ∪ [w] be the cycle structure of FSR(l(x)), and G(p(x)) = [0]∪ [s] be the

cycle structure of FSR(p(x)), where s is a m-sequence in G(p(x)). Then we have,

1. In the case of gcd(per(l(x)), per(p(x))) = 1, the cycle structure of FSR(l(x)p(x)) is given by

G(l(x)p(x)) = [u] ∪ [v] ∪ · · · ∪ [w] ∪ [u + s] ∪ [v + s] ∪ · · · [w + s].
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2. In the case of gcd(per(l(x)),per(p(x))) 6= 1, the cycle structure of FSR(l(x)p(x)) is given by

G(l(x)p(x)) = [u]∪[v]∪· · ·∪[w]∪

(
du−1⋃
i=0

[Liu + s]

)
∪

(
dv−1⋃
i=0

[Liv + s]

)
∪· · ·∪

(
dw−1⋃
i=0

[Liw + s]

)
,

where du = gcd(per(u),per(s)), dv = gcd(per(v),per(s)), . . ., and dw = gcd(per(w),per(s)).

Proof. Since p(x) is irreducible and p(x) - l(x), the two polynomials l(x) and p(x) are co-prime.

By the theory of LFSRs, we have G(l(x)p(x)) = G(l(x)) + G(p(x)). Using the fact G(l(x)) =

[u] ∪ [v] ∪ · · · [w] and G(p(x)) = [0] ∪ [s], we get that G(l(x)p(x)) = ([u] ∪ [v] ∪ · · · ∪ [w]) +

([0] ∪ [s]) = (([u] ∪ [v] ∪ · · · ∪ [w]) + [0]) ∪ (([u] ∪ [v] ∪ · · · ∪ [w]) + [s]) = ([u] ∪ [v] ∪ · · · ∪ [w]) ∪
(([u] ∪ [v] ∪ · · · ∪ [w]) + [s]) = [u] ∪ [v] ∪ · · · ∪ [w] ∪ ([u] + [s]) ∪ ([v] + [s]) ∪ · · · ∪ ([w] + [s]).

If gcd(per(l(x)), per(p(x))) = 1, then for any two sequences a ∈ G(l(x)) and b ∈ G(p(x))

we have gcd(per(a), per(b)) = 1, and by Lemma 2, [a] + [b] = [a + b]. Therefore, G(l(x)p(x)) =

[u]∪[v]∪· · ·∪[w]∪([u]+[s])∪([v]+[s])∪· · ·∪([w]+[s]) = [u]∪[v]∪· · ·∪[w]∪[u+s]∪[v+s]∪· · ·∪[w+s].

If gcd(per(l(x)),per(p(x))) 6= 1, then it is not necessarily that gcd(per(a),per(b)) = 1 for any

two sequences a ∈ G(l(x)) and b ∈ G(p(x)). Assume gcd(per(a),per(b)) = d, then by Lemma

2, [a] + [b] =
⋃d−1
i=0 [Lia + b]. Using this fact, we get that G(l(x)p(x)) = [u] ∪ [v] ∪ · · · ∪ [w] ∪(⋃du−1

i=0 [Liu + s]
)
∪
(⋃dv−1

i=0 [Liv + s]
)
∪ · · · ∪

(⋃dw−1
i=0 [Liw + s]

)
.

5 The Adjacency Graph of FSR(l(x)p(x))

In this section, we consider the adjacency graph of FSR(l(x)p(x)), where l(x) is a polynomial and

p(x) is a primitive polynomial. We always assume p(x) - l(x). Let a be the sequence generated by

FSR(l(x)p(x)) with initial state (1, 0, . . . , 0). Since the two polynomials l(x) and p(x) are co-prime,

by the theory of LFSR, there is a unique pair (u ∈ G(l(x)), s ∈ G(p(x))) such that u + s = a.

The sequence u is called the representative of G(l(x)) determined by p(x). We should note that,

the representative of G(l(x)) relies on the choice of p(x). Different p(x) may result in different

representatives.

Suppose deg l(x) = m and deg p(x) = n. We can obtain the representative of G(l(x)) in time

O(2m+n), see Algorithm 1. In this algorithm, we use FSR(l(x),S) to denote the sequence generated

by FSR(l(x)) with initial state S, and U|k to denote the first k bits of the bit string U.

Once the representative of G(l(x)) is obtained, we can calculate the association graph of G(l(x))

with respect to its representative. By the discussion at the end of Section 3, this work can be done

in time O(2m). We assume that m is a small positive integer, for example, m < 30. Then an

ordinary computer can do the work. With the message of the association graph of G(l(x)), the

adjacency graph of G(l(x)p(x)) can be determined. Our discussions are divided into two cases,

the case of gcd(per(l(x)),per(p(x))) = 1 and the case of gcd(per(l(x)), per(p(x))) 6= 1. The former

case is relatively easy to tackle. For the latter case, some cycolotomic numbers are needed to fully

determine the adjacency graph.
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Algorithm 1 Generation of the representative of G(l(x)) determined by p(x)

Input: The two polynomials l(x) and p(x).

Output: The representative of G(l(x)) determined by p(x).

1: for S ∈ Fm2 do

2: T← FSR(l(x),S)|m+n

3: U← T + (1, 0, . . . , 0)

4: U0 ← U|n
5: if U = FSR(p(x),U0)|m+n then

6: u← FSR(l(x),S)

7: end if

8: end for

9: return u

5.1 In the case of gcd(per(l(x)), per(p(x))) = 1

In this subsection, we consider the adjacency graph of FSR(l(x)p(x)) in the case that per(l(x)) and

per(p(x)) are co-prime. The cycle structure of FSR(l(x)p(x)) has been discussed in Section 4. By

the result there, when per(l(x)) and per(p(x)) are co-prime, the cycles in G(l(x)p(x)) are of the

form [v] or [v + s], where v is a sequence in G(l(x)) and s is a m-sequence in G(p(x)).

Theorem 2. Let v and w be two sequences in G(l(x)), and p(x) be a primitive polynomial such

that gcd(per(l(x)),per(p(x))) = 1. Let u ∈ G(l(x)) be representative of G(l(x)) determined by p(x).

Then we can get the adjacency graph of FSR(l(x)p(x)) by using the following formula:

1. There are no conjugate pairs shared by [v] and [w];

2. The two cycles [v] and [w + s] share Ru(v,w) conjugate pairs;

3. The two cycles [v + s] and [w + s] share (2n − 2)Ru(v,w) conjugate pairs,

where n is the degree of p(x).

Proof. Suppose that the two cycles [v] and [w] share a conjugate pair. Then there exists an

(m + n)-length bit string (v0, v1, . . . , vm+n−1) such that, (v0, v1, . . . , vm+n−1) is a state on [v] and

(v0, v1, . . . , vm+n−1) is a state on [w], which implies that, the m-length bit string (v1, v2, . . . , vm) is

contained in both [v] and [w]. This is impossible, because the two cycles [v] and [w] are generated

by the m-stage LFSR, FSR(l(x)), and every m-length state can appear only once.

By the definition of cycle representative, there exist an sequence s′ ∈ G(p(x)) such that u+s′ =

a, where a is the sequence generated by FSR(l(x)p(x)) with initial state E = (1, 0, . . . , 0). Without

lose of generality, we can suppose s′ = s. Then the equation u + s = a holds. Write the two

sequences u and s in the state form: u = (U0,U1, . . . ,Uper(u)−1) and s = (S0,S1, . . . ,S2n−2),

where each state is of length deg l(x)p(x). Then u + s = a implies U0 + S0 = E.

For the proof of Item 2 of this theorem, we need to show that, there is an 1-to-1 correspondence

between the set {(i, j) | Liv + Ljw = u, 0 ≤ i ≤ per(v) − 1, 0 ≤ j ≤ per(w) − 1} and the set of

9



conjugate pairs shared by the two cycles [v] and [w]. Write the two cycles [v] and [w] in the state

cycle form: [v] = [V0,V1, . . . ,Vper(v)−1] and [w] = [W0,W1, . . . ,Wper(v)−1], where each state is

of length deg(l(x)p(x)).

Suppose there is a pair of integers (i, j) with 0 ≤ i ≤ per(v) − 1, 0 ≤ j ≤ per(w) − 1 such

that Liv + Ljw = u. Then we have Vi + Wj = U0. Substitute the state U0 by S0 + E, we get

that Vi + Wj = S0 + E, which implies that Vi = Wj + S0 + E. Therefore, (Vi,Wj + S0) is a

conjugate pair shared by the two cycles [v] and [w + s]. It is easy to see that, different pair (i, j)

gives different conjugata pair (Vi,Wj + S0) shared by the two cycles [v] and [w + s].

On the other hand, suppose there is a conjugate pair (X,Y) shared by the two cycles [v]

and [w + s]. We can assume X = Vi and Y = Wj + Sk for some integers 0 ≤ i ≤ per(v) −
1,≤ j ≤ per(w) − 1 and 0 ≤ k ≤ per(s) − 1. First, we show that k = 0. If k 6= 0, s-

ince (Vi,Wj + Sk) is a conjugate pair, we have that Vi + Wj + Sk = E. Substitute the s-

tate E by U0 + S0, we get that Vi + Wj + Sk = U0 + S0. By simple deformation and us-

ing the equation S0 + Sk = SZ(k) (this equation is valid because k 6= 0), we get Vi + Wj +

U0 = SZ(k). Let T be the next state operation corresponding to FSR(l(x)p(x)), that is, T :

(x0, x1, . . . , xdeg l(x)p(x)−1) 7→ (x1, . . . , xdeg l(x)p(x)−1, F (x0, x1, . . . , xdeg l(x)p(x)−1)), where F is the

feedback function of FSR(l(x)p(x)). Then we have T t (Vi + Wj + U0) = T t
(
SZ(k)

)
, that is,

T tVi + T tWj + T tU0 = T tSZ(k), which implies Vi+t + Wj+t + Ut = SZ(k)+t for any integer t.

Therefore, we have Liv + Ljw + u = LZ(k)s. However, this is impossible, because the sequence

Liv + Ljw + u belongs to G(l(x)) and the sequence LZ(k)s belongs to G(p(x)), and since the two

polynomial l(x) and p(x) are co-prime, the intersection of G(l(x)) and G(p(x)) is {0}. So we fin-

ished the proof of k = 0. We can assume X = Vi and Y = Wj + S0. Since (X,Y) is a conjugate

pair, we have Vi = Wj + S0 + E, which implies Vi + Wj = U0. Then T tVi + T tWj = T tU0 for

any integer t, and Liv + Ljw = u. So we have proved Item 2.

The proof of Item 3 is similar to that of Item 2. We need to show that, there is an (2n− 2)-to-1

surjection from the set of conjugate pairs shared by the two cycles [v + s] and [w + s] to the set

{(i, j) | Liv + Ljw = u, 0≤i≤per(v)−10≤j≤per(w)−1}.
Suppose there is a pair of integers (i, j) with 0 ≤ i ≤ per(v)− 1, 0 ≤ j ≤ per(w)− 1 such that

Liv + Ljw = u. Then we have Vi + Wj = U0. Substitute the state U0 by S0 + E, we get that

Vi + Wj = S0 + E, which implies that Vi = Wj + S0 + E. Add to each side of the equation the

state Sk, where 1 ≤ k ≤ 2n − 2. We get Vi + Sk = Wj + S0 + Sk + E = Wj + SZ(k) + E, which

implies that (Vi + Sk,Wj + SZ(k)) is a conjugate pair shared by the two cycles [v + s] and [w + s]

for any 1 ≤ k ≤ 2n − 2. Since for each such pair (i, j), there are at least 2n − 2 pair of conjugates

shared by the two cycles [v + s] and [w + s]. Totally, the two cycles share at least (2n− 2)Ru(v,w)

conjugate pairs.

Suppose there is a conjugate pair (X,Y) shared by the two cycles [v + s] and [w + s]. We can

assume X = Vi + Sk1 and Y = Wj + Sk2 for some integers 0 ≤ i ≤ per(v)− 1, 0 ≤ j ≤ per(w)− 1

and 0 ≤ k1, k2 ≤ per(s) − 1. First, we show that k2 = Z(k1). Since (Vi + Sk1 ,Wj + Sk2) is a

conjugate pair, we get that Vi+Sk1 = Wj +Sk2 +E, which implies that Vi+Wj +E = Sk1 +Sk2 .

If Sk1 + Sk2 = 0, then Vi = Wj + E, which is impossible (by Item 1). If Sk1 + Sk2 = Sk and k 6= 0,
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then Vi + Wj + E = Sk. Since E = S0 + U0, we get that Vi + Wj + U0 = Sk + S0 = SZ(k), which

implies that Liv +Ljw + u = LZ(k)s. But this is impossible, because the sequence Liv +Ljw + u

belongs to G(l(x)) and the sequence LZ(k)s belongs to G(p(x)), and the intersection of G(l(x)) and

G(p(x)) is {0}. Therefore, Sk1 +Sk2 = S0, that is, k2 = Z(k1). So we can assume X = Vi+Sk and

Y = Wj + SZ(k) for some integers 0 ≤ i ≤ per(v)− 1, 0 ≤ j ≤ per(w)− 1 and 0 ≤ k ≤ per(s)− 1.

Then we have the equation Vi + Sk = Wj + SZ(k) + E. Since SZ(k) = S0 + Sk, this implies that

Vi = Wj + S0 + E = Wj + U0. Therefore, Liv + Ljw = u. This completes the proof.

Remark 1. In Theorem 2, we did’t require that v and w are different sequences. When v = w,

by this theorem, there are no conjugate pairs in the cycle [v], and there are 1
2(2n − 2)Ru(v,v)

conjugate pairs in the cycle [v + s]. So this theorem considers all the adjacency relations of the

cycles in G(l(x)p(x)).

5.2 In the case of gcd(per(l(x)), per(p(x))) 6= 1

For the case that per(l(x)) and per(p(x)) are not co-prime, the cycles in G(l(x)p(x)) are of the

form [v] or [Liv + s], where v is a sequence in G(l(x)) and s is a m-sequence in G(p(x)).

Theorem 3. Let v and w be two sequences in G(l(x)), and p(x) be a primitive polynomial such

that gcd(per(l(x)),per(p(x))) = 1. Let u ∈ G(l(x)) and s ∈ G(p(x)) be two sequences such that

u + s is the sequence generated by G(l(x)p(x)) with initial state (1, 0, . . . , 0). Then we can get the

adjacency graph of FSR(l(x)p(x)) by using the following formula:

1. There are no conjugate pairs shared by [v] and [w];

2. The two cycles [v] and [Lbw + s] share∣∣∣{(i, j) | Liv + Ljw = u, j ≡ b(moddw), 0≤i≤per(v)−10≤j≤per(w)−1

}∣∣∣
conjugate pairs;

3. The two cycles [Lav + s] and [Lbw + s] share∣∣∣∣{(i, j, k) | Liv + Ljw = u, k≡i−a( mod dv)
Z(k)≡j−b( mod dw),

0≤i≤per(v)−1
0≤j≤per(w)−1
1≤k≤2n−2

}∣∣∣∣
conjugate pairs,

where n = deg p(x), dv = gcd(per(v), 2n − 1) and dw = gcd(per(w), 2n − 1).

Proof. It can be shown as in the proof of Theorem 2 that, there are no conjugate pairs shared by

the two cycles [v] and [w].

Now we consider the conjugate pairs shared by the two cycles [v] and [Lbw + s]. We have

to show that, there is an 1-to-1 correspondence between the set {(i, j) | Liv + Ljw = u, j ≡
b(moddw), 0≤i≤per(v)−10≤j≤per(w)−1} and the set of conjugate pairs shared by the two cycles [v] and [Lbw + s].

Write the four sequences u,v,w and s in the state form (each state is of length deg l(x)p(x)):

u = (U0,U1, . . . ,Uper(u)−1),v = (V0,V1, . . . ,Vper(v)−1),
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w = (W0,W1, . . . ,Wper(w)−1), s = (S0,S1, . . . ,S2n−2).

Then we have U0 + S0 = E, where E = (1, 0, . . . , 0). It is easy to see that, the states in the

cycle [Lbw + s] are exactly those Wk1 + Sk2 satisfying 0 ≤ k1 ≤ per(w), 0 ≤ k2 ≤ per(s) and

k1 − k2 ≡ b(moddw).

Suppose there exist a pair of integers (i, j) with 0 ≤ i ≤ per(v) − 1, 0 ≤ j ≤ per(w) − 1 such

that Liv +Ljw = u and j ≡ b(moddw). Then we have Vi + Wj = U0. Substitute U0 by S0 + E,

we get that Vi = Wj + S0 + E. Since j ≡ b(moddw), it can be verified that the state Wj + S0 is

on the cycle [Lbw + s]. Therefore, (Vi,Wj + S0) is a conjugate pair shared by the two cycles [v]

and [Lbw + s].

Suppose there is a conjugate pair (X,Y) shared by the two cycles [v] and [Lbw + s]. We can

assume that X = Vi and Y = Wj + Sk for some integers 0 ≤ i ≤ per(v)− 1, 0 ≤ j ≤ per(w)− 1

and 0 ≤ k ≤ 2n − 2, and the two integers j and k satisfy j − k ≡ b(moddw). As in the proof

of Item 2 of Theorem 2, we can show that k = 0. Then since (X,Y) is a conjugate pair, we get

the equation Vi = Wj + S0 + E. Substitute S0 + E by U0, we get that Vi = Wj + U0, which

implies Liv + Ljw = u. In this way, we get a pair of integers (i, j) satisfying: Liv + Ljw = u, j ≡
b(moddw), 0 ≤ i ≤ per(v)− 1, 0 ≤ j ≤ per(w)− 1.

In the following, we prove Item 3 of this theorem. We show that, there is a 1-to-1 correspondence

between the set |{(i, j, k) | Liv +Ljw = u, k≡i−a( mod dv)
Z(k)≡j−b( mod dw),

0≤i≤per(v)−1
0≤j≤per(w)−1
1≤k≤2n−2

}| and the set of conjugate

pairs shared by the two cycles [Lav + s] and [Lbw + s].

Suppose there is a triple of integers (i, j, k) with 0 ≤ i ≤ per(v) − 1, 0 ≤ j ≤ per(w) − 1

and 1 ≤ k ≤ 2n − 2 such that Liv + Ljw = u, k ≡ i − a(moddv) and Z(k) ≡ j − b(moddw).

Then we have Vi + Wj = U0. Substitute U0 by S0 + E, we get that Vi = Wj + S0 + E. Add

the state Sk to this equation, we get Vi + Sk = Wj + SZ(k) + E. Since k ≡ i − a(moddv) and

Z(k) ≡ j − b(moddw), it can be verified that the state Vi + Sk is on the cycle [Lav + s] and the

state Wj + SZ(k) is on the cycle [Lbw + s]. Therefore, (Vi + Sk,Wj + SZ(k)) is a conjugate pair

shared by the two cycles [Lav + s] and [Lbw + s].

Suppose there is a conjugate pair (X,Y) shared by the two cycles [Lav+s] and [Lbw+s]. We can

assume that X = Vi+Sk1 and Y = Wj+Sk2 for some integers 0 ≤ i ≤ per(v)−1, 0 ≤ j ≤ per(w)−1

and 0 ≤ k1, k2 ≤ 2n−2. Then as in the proof of Item 2 of Theorem 2, we can show that k2 = Z(k1).

Therefore, we can assume X = Vi + Sk and Y = Wj + SZ(k). Since (X,Y) is a conjugate pair, we

get the equation Vi + Sk = Wj + SZ(k) + E which is equivalent to Vi = Wj + S0 + E. Substitute

S0 + E by U0, we get that Vi = Wj + U0, which implies Liv + Ljw = u. Because Vi + Sk

is a state on the cycle [Lav + s] and Wj + SZ(k) is a state on the cycle [Lbw + s], the integer k

satisfies k ≡ i−a( mod dv) and Z(k) ≡ j−b( mod dw). In this way, we get a triple (i, j, k) satisfying:

Liv + Ljw = u, k ≡ i− a(moddv), Z(k) ≡ b− j(moddw).

Remark 2. In Theorem 3, we did’t require that v and w are different sequences. When v = w,

by this theorem, there are no conjugate pairs in the [v], and there are

1

2

∣∣∣{(i, j, k) | Liv + Ljv = u, k≡i−a( mod dv)
Z(k)≡j−a( mod dv)

, 0≤i,j≤per(v)−11≤k≤2n−2

}∣∣∣
12



conjugate pairs in the cycle [Lav + s]. So this theorem considers all the adjacency relations of the

cycles in G(l(x)p(x)).

To determine the adjacency graph of FSR(l(x)p(x)) in the case of gcd(per(l(x)),per(p(x))) 6= 1,

we have to count the number of solutions of the congruence equations in Theorem 3. In fact, the

number of solutions is equal to the sum of some cyclotomic numbers over finite field F2n . To explain

this, we need the following lemma.

Lemma 3. Let s be an m-sequence of period 2n− 1, and Z(·) be the mapping with respect to s (see

Section 2.3). Let d1 and d2 be two divisors of 2n − 1, a and b be two integers with 0 ≤ a ≤ d1 − 1

and 0 ≤ b ≤ d2 − 1. Denote d = lcm(d1, d2) and d′1 = d
d1
, d′2 = d

d2
. Then we have,

∣∣∣{k | k≡a( mod d1)
Z(k)≡b( mod d2)

, 1 ≤ k ≤ 2n − 2
}∣∣∣ =

d′1−1∑
x=0

d′2−1∑
y=0

(a+ xd1, b+ yd2)d ,

where (a+ xd1, b+ yd2)d is the cyclotomic number over field F2n with respect to s.

Proof. ∣∣∣{k | k≡a( mod d1)
Z(k)≡b( mod d2)

, 1 ≤ k ≤ 2n − 2
}∣∣∣

=

d′1−1∑
x=0

∣∣∣{k | k≡a+xd1( mod d)
Z(k)≡b( mod d2)

, 1 ≤ k ≤ 2n − 2
}∣∣∣

=

d′1−1∑
x=0

d′2−1∑
y=0

∣∣∣{k | k≡a+xd1( mod d)
Z(k)≡b+yd2( mod d), 1 ≤ k ≤ 2n − 2

}∣∣∣
=

d′1−1∑
x=0

d′2−1∑
y=0

(a+ xd1, b+ yd2)d .

By Lemma 3, the number of solutions of the congruence equations in Theorem 3 can be expressed

in terms of cyclotomic numbers over field F2n . The reader can verify that, the number of solution

of the congruence equations in Item 3 of Theorem 3 is,∣∣∣∣{(i, j, k) | Liv + Ljw = u, k≡i−a( mod dv)
Z(k)≡j−b( mod dw),

0≤i≤per(v)−1
0≤j≤per(w)−1
1≤k≤2n−2

}∣∣∣∣
=
∑
(i,j)

∣∣∣{k | k≡i−a( mod dv)
Z(k)≡j−b( mod dw), 1 ≤ k ≤ 2n − 2

}∣∣∣
=
∑
(i,j)

d′v−1∑
x=0

d′w−1∑
y=0

(i− a+ xdv, j − b+ ydw)d ,

(1)

Where d = lcm(dv, dw), d′v = d
dv
, d′w = d

dw
, and (i, j) runs over the set {(i, j) | Liv + Ljw = u, 0 ≤

i ≤ per(v) − 1, 0 ≤ j ≤ per(w) − 1}. We should note that, these cyclotomic numbers are with

respect to the sequence s.

13



6 Applications

The process of calculating the adjacency graph of FSR(l(x)p(x)) can be summarized by the following

three steps:

1. Find the representative of G(l(x)) determined by p(x) using Algorithm 1.

2. Calculate the association graph of FSR(l(x)) with respect to the representative of G(l(x)).

3. Determine the adjacency graph of FSR(l(x)) by Theorems 2 and 3.

(a) In the case of gcd(per(l(x)), per(p(x))) = 1, it can be determined directly.

(b) In the case of gcd(per(l(x)), per(p(x))) 6= 1, some cyclotomic numbers are needed.

Suppose that deg l(x) = m and deg p(x) = n. Then the total work can be done in time

O(2m + n). It seems that, for this method to work, we need to know the two polynomials l(x) and

p(x) beforehand, that is, the specific expressions of l(x) and p(x) are needed before the work be

startted. Nevertheless, we will show that this method can be applied to the situation that, only

the polynomials l(x) is given, and we will pay our attention to this situation. Firstly, we derive

some properties of the association graphs and the adjacency graphs.

6.1 Properties of the association graphs and the adjacency graphs

Usually, the representative of G(l(x)) relies on the choice of p(x). But, there are some sequences

in G(l(x)) which can never be the representative of G(l(x)), no matter which p(x) is considered.

Theorem 4. For any proper divisor l1(x) of l(x), The representative of G(l(x)) are not lie in

G(l1(x)), no matter which primitive polynomial p(x) is considered.

Proof. We just need to show that, the minimal polynomial of the representative of G(l(x)) is l(x).

By the definition, the representative of G(l(x)) is the sequence u ∈ G(l(x)) such that u + s = a,

where a is the sequence generated by FSR(l(x)p(x)) with the initial state (1, 0, . . . , 0). It is obvious

that, the minimal polynomial of a is l(x)p(x). Suppose the minimal polynomial of u is not l(x),

but a proper divisor of l(x). Since the minimal polynomial of s is p(x), the minimal polynomial of

the sum u + s would be a proper divisor of l(x)p(x), which is a contradiction.

Different representatives of G(l) often define different association graphs of G(l). However,

sometimes they define the same association graph.

Theorem 5. The association graph of FSR(l(x)) with respect to u is the same as that with respect

to any sequence in the cycle [u].
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Proof. For the proof of this theorem, we need to show that, Ru([v], [w]) = RLku([v], [w]) for any

integer k and any two cycles [v] and [w] in G(l(x)). This is indeed the case because Ru([v], [w]) =

|{(a,b) | a + b = u,a ∈ [v],b ∈ [w]}| = |{(Lka, Lkb) | Lka + Lkb = Lku, Lka ∈ Lk[v], Lkb ∈
Lk[w]}| = |{(Lka, Lkb) | Lka +Lkb = Lku, Lka ∈ [v], Lkb ∈ [w]}| = |{(a′,b′) | a′+ b′ = Lku,a′ ∈
[v],b′ ∈ [w]}| = RLku([v], [w]).

Theorem 6. Let l(x) be a polynomial such that, there is only one cycle in the set G(l(x)) \
∪l1(x)|l(x),l1(x)6=l(x)G(l1(x)). Let n be an integer satisfying gcd(per(l(x), 2n − 1)) = 1. Then the

adjacency graphs of FSR(l(x)p(x)) are isomorphic for all primitive polynomial p(x) of degree n.

Proof. The set G(l(x))\∪l1(x)|l(x),l1(x)6=l(x)G(l1(x)) equals to the set {a | m(a) 6= l(x),a ∈ G(l(x))},
where m(a) is the minimal polynomial of the sequence a. Suppose there is only one cycle, denoted

by [u], in this set. By Theorem 4, the representative of G(l(x)) lies in the cycle [u] when a primitive

polynomial p(x) is considered. Then by Theorem 5, the association graph of FSR(l(x)) determined

by its representative is unique, that is, it does not affected by the choice of p(x). At last, in the

case of gcd(per(l(x), 2n−1)) = 1, the adjacency graphs of FSR(l(x)p(x)) are totally determined by

the association graph of FSR(l(x)) by Theorem 2. Therefore, they are isomorphic for all primitive

polynomial p(x) of degree n.

6.2 The adjacency graph of FSR((1 + x+ x3 + x4)p(x))

In this subsection, we use the general method proposed in Section 5 to calculate the adjacency

graphs of LFSRs with characteristic polynomials of the form (1 + x+ x3 + x4)p(x), where p(x) is a

primitive polynomial of degree n. The adjacency graphs of these LFSRs have not been considered

before.

There are six cycles in G(1 + x + x3 + x4), and they are [(0)], [(000111)], [(001)], [(01)], [(011)]

and [(1)]. For convenience, we denote,

v1 = (0),v2 = (000111),v3 = (001),v4 = (01),v5 = (011),v6 = (1).

It can be verified that, the minimal polynomials of the sequences in [(0)]∪ [(001)]∪ [(01)]∪ [(011)]∪
[(1)] are all proper divisors of 1 + x + x3 + x4. Therefore, by Theorem 4, the representative of

G(1+x+x3 +x4) lies in the cycle [(000111)] (no matter which p(x) is considered). Then according

to Theorem 5, the association graph of FSR(1 + x + x3 + x4) with respect to its representative is

unique. The association graph has been given in Example 1 (see Figure 2).

Since the period of 1 +x+x3 +x4 is 6 and the period of p(x) is 2n− 1 which is an odd number,

there are only two possible values for gcd(per(1 + x + x3 + x4), per(p(x))), that is, 1 and 3. In

the case that n is odd, gcd(per(1 + x + x3 + x4), per(p(x))) = 1, and in the case that n is even,

gcd(per(1 + x + x3 + x4), per(p(x))) = 3. We let u be the representative of G(1 + x + x3 + x4)

determined by p(x) (by the above discussion, u belongs to the cycle [(000111)]), and s be the

sequence in G(p(x)) such that u + s = a, where a is the sequence generated by FSR(l(x)p(x)) with

initial state (1, 0, . . . , 0).
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In the case that n is odd, the cycle structure of FSR((1 + x+ x3 + x4)p(x)) is given by G((1 +

x + x3 + x4)p(x)) =
(
∪6i=1[vi]

)⋃ (
∪6i=1[vi + s]

)
. Its adjacency graph can be determined directly

according to Theorem 2, and we show it in Figure 3. We use a to denote the number 2n − 2. In

order to be more clearly, a dashed line is used when one of the two cycles is also a cycle in G(l(x)).

[s] [(0)] [(1)] [(1) + s]

[(000111) + s]

[(000111)]

[(01) + s]

[(01)]

[(001)]

[(001) + s]

[(011)]

[(011) + s]

a

1

2

1

2a

2

a

1

1 1 a

1

2

1

2a

2

a

1

Figure 3: The adjacency graph of FSR((1 + x+ x3 + x4)p(x)) when deg(p(x)) is odd

In the case that n is even, we have to know firstly which sequence in the cycle [(000111)]

is the representative of G(1 + x + x3 + x4) determined by p(x) (remember that when n is odd,

we don’t have to do that, because the adjacency graphs of FSR(l(x)p(x)) are isomorphic for al-

l p(x) of degree n by Theorem 6). Since there are six sequences in the cycle [(000111)], there

are six cases need to be considered. In the following, we assume that u = (000111) is the rep-

resentative of G(1 + x + x3 + x4) determined by p(x). The other cases can be handled similar-

ly. The cycle structure of FSR((1 + x + x3 + x4)p(x)) is given by G((1 + x + x3 + x4)p(x)) =(
∪6i=1[vi]

)⋃
(∪i=1,4,6[vi + s])

⋃(
∪i=2,3,5 ∪2j=0 [Ljvi + s]

)
.

The adjacency relations of the cycles in G((1 + x + x3 + x4)p(x)) can be determined by using

Theorem 3. We take the two cycles [L1v2 + s] = [(001110) + s] and [L2v3 + s] = [(100) + s] for

example to show how to calculate the number of conjugate pairs shared by them. The reader can

verify that, there are two pairs (i, j) with 0 ≤ i ≤ per(v2) − 1 and 0 ≤ j ≤ per(v3) − 1 such

that Liv2 + Ljv3 = u. The two pairs are (1, 0) and (5, 2), that is, we have L1v2 + L0v3 = u

and L5v2 + L2v3 = u. Then the number of conjugate pairs shared by the two cycles is given

by N([L1v2 + s], [L2v3 + s]) =
∑

(i,j)

∣∣∣{k | k≡i−1( mod 3)
Z(k)≡j−2( mod 3), 1 ≤ k ≤ 2n − 2

}∣∣∣ = (0, 1)3 + (1, 0)3 =

2B = 2
9

(
2n + (−2)

n
2 − 2

)
, (see Lemma 1). Similarly, we can calculate the conjugate pairs shared

by other cycles. The adjacency graph is shown in Figure 4. For simplicity, we print only the lines
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between the cycles in G((1 + x + x3 + x4)p(x)) \ G(1 + x + x3 + x4), and the numbers shared by

cycles are listed in Graph 1. The numbers A,B,C and D are from Lemma 1.

[s]

[(001) + s]

[(010) + s]

[(100) + s]

[(000111)s]

[(001110) + s]

[(011100) + s]

[(01) + s]

[(1) + s]

[(011) + s]

[(110) + s]

[(101) + s]

Figure 4: The adjacency graph of FSR((1 + x+ x3 + x4)p(x)) when deg(p(x)) is even

Table 1: The number of conjugate pairs shared by cycles in G((1+x+x3+x4)p(x)) when deg(p(x))

is even
[s] [(001) + s] [(010) + s] [(100) + s] [(1) + s] [(011) + s] [(110) + s] [(101) + s]

[(000111) + s] A+2C B+D 2D 2C A+2C 2C 2B 2D

[(001110) + s] B+C+D A+D 2C 2B B+C+D 2B A+D 2C

[(011100) + s] B+C+D 2C 2B A+D B+C+D A+D 2C 2B

[(01) + s] 0 B+C+D A+B+C B+C+D 0 B+C+D B+C+D A+B+C

7 Construction of De Bruijn sequences

It is straightforward to join the cycles in FSR((1+x+x3 +x4)p(x)) to form a full cycle by using its

adjacency graph given in Section 6. For simplicity, we only consider the case that n is odd, where

n = deg p(x). In this case, we have gcd(per(1 + x+ x3 + x4),per(p(x))) = 1. The adjacency graph

of this LFSR is given in Figure 3. Since we are interested in De Bruijn sequences of large period,

we assume n is a large integer.

There are 12 cycles in G((1 + x + x3 + x4)p(x)). The 12 cycles are divided into two classes

according to their length. The cycles in the first class are called short cycles since there are a small

number of states on them:

[(0)], [(000111)], [(001)], [(001)], [(01)], [(011)],

and the cycles in the second class are called long cycles:

[s], [(000111) + s], [(001) + s], [(001) + s], [(01) + s], [(011) + s].
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Since for any state on the short cycles its conjugate is located on the long cycles, it is easy to

join the short cycles into the long cycles, and in the following, we will pay our attention to the

conjugate pairs shared by long cycles. Regardless of the short cycles, the adjacency graph of

FSR((1 + x + x3 + x4)p(x)) can be simplified as follows, where a denotes the number 2n − 2 (see

Figure 5).

[s] [(1) + s]

[(000111) + s]

[(01) + s]

[(001) + s] [(011) + s]

a

2a

a

a

2a

a

Figure 5: The simplified adjacency graph of FSR((1 + x+ x3 + x4)p(x)) when deg(p(x)) is odd

To find out which conjugate pairs are shared by cycles (not just the number of conjugate pairs

shared by cycles), we have to know the representative of G(l(x)) determined by p(x). By using

Algorithm 1, the representative can be found in time O(2m + n). Since we suppose m is a small

positive integer, this can be done efficiently. By Theorem 4, the representative is located on the

cycle [(000111)]. In the following we assume that the representative is the sequence u = (000111).

We write the two sequences (000111) and s in the state form: (000111) = (U0,U1, . . . ,U5) and

s = (S0,S1, . . . ,S2n−2), each state is of length n + 4. Then we have U0 + S0 = (1, 0, . . . , 0). The

four sequences (1), (001), (01) and (011), are also written in the state form: (1) = (V0), (001) =

(W0,W1,W2), (01) = (X0,X1) and (011) = (Y0,Y1,Y2), each state is of length n + 4. By the

proof of Theorem 2, the conjugate pairs shared by these cycles can be explicitly given, see Table 2.

Table 2: The conjugate pairs shared by cycles in G((1 + x+ x3 + x4)p(x))

cycle pairs the set of conjugate pairs shared by cycles

< [s], [(000111) + s] > (Sj ,U0 + SZ(j)), 1 ≤ j ≤ 2n − 2

< [(1) + s], [(000111) + s] > (V0 + Sj ,U3 + SZ(j)), 1 ≤ j ≤ 2n − 2

< [(001) + s], [(000111) + s] > (W0 + Sj ,U1 + SZ(j)), (W2 + Sj ,U5 + SZ(j)), 1 ≤ j ≤ 2n − 2

< [(011) + s], [(000111) + s] > (Y0 + Sj ,U2 + SZ(j)), (Y1 + Sj ,U4 + SZ(j)), 1 ≤ j ≤ 2n − 2

< [(001) + s], [(01) + s] > (W1 + Sj ,X0 + SZ(j)), 1 ≤ j ≤ 2n − 2

< [(011) + s], [(01) + s] > (Y2 + Sj ,X1 + SZ(j)), 1 ≤ j ≤ 2n − 2

Theorem 7. Let f(x0, x1, . . . , xn+4) be the linear Boolean function corresponding to the polynomial

(1 + x+ x3 + x4)p(x). Choose a state from each short cycle randomly, and let A be the set of these

states. Define S = {Sj | 1 ≤ j ≤ 2n − 2}, Then the FSRs that take the following Boolean functions

as their characteristic functions are maximum length FSRs:
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1. g = f(x0, x1, . . . , xn+4) + I(Z1,Z2,Z3,Z4,Z5) + I(A),

2. g = f(x0, x1, . . . , xn+4) + I(Z1,Z2,Z3,Z4,Z6) + I(A),

3. g = f(x0, x1, . . . , xn+4) + I(Z1,Z2,Z3,Z5,Z6) + I(A),

4. g = f(x0, x1, . . . , xn+4) + I(Z1,Z2,Z4,Z5,Z6) + I(A),

where Z1 ∈ S, Z2 ∈ V0 + S, Z3 ∈ (Y0 + S) ∪ (Y1 + S), Z4 ∈ Y2 + S, Z5 ∈ W1 + S and

Z6 ∈ (W0 + S) ∪ (W2 + S) are chosen randomly.

Proof. Regardless of the short cycles, the adjacency graph of FSR(1 + x + x3 + x4)p(x) is shown

in Figure 5. The maximum spanning trees of this simplified graph are divided into four classes,

and we show them in Figure 6. For the class (A), we can choose Z1 ∈ S, Z2 ∈ V0 + S, Z3 ∈
(Y0 + S) ∪ (Y1 + S), Z4 ∈ Y2 + S and Z5 ∈ W1 + S randomly and use them to join the long

cycles into one cycle. By Table 2, the reader can verify that, they indeed can be used to join

the long cycles together. Then, we choose a state from each small cycles to form the set A,

and by these states the small cycles are joined into long cycles. Therefore, the FSRs that take

g = f(x0, x1, . . . , xn+4)+I(Z1,Z2,Z3,Z4,Z5)+I(A) as their characteristic functions are maximum

length FSRs. For the other classes (B), (C) and (D), the proof is similar.

A B C D

Figure 6: The maximum spanning trees in the simplified version of the adjacency graph of FSR((1+

x+ x3 + x4)p(x))

It is shown by Jansen et al. [14]: for any n ≥ 4, if we apply the cycle joining method to two

different n-stage LFSRs, the resulting maximum length FSRs are different. Using this fact, we can

count the number of De Bruijn sequences we have constructed in Theorem 7. The set A defined in

Theorem 7 has 1 ·6 ·3 ·3 ·2 ·3 = 324 choices, the five states Zi, 1 ≤ i ≤ 5 have a, a, 2a, a and a choices

respectively, and the Boolean function f has φ(2n−1)
n choices, where a = 2n−2 and φ(·) is the Euler’s

totient function. Therefore, there are 324 · a · a · 2a · a · a · φ(2
n−1)
n = 648a5φ(2n−1)

n = O(26n) Boolean

functions of type (1). Totally, there are 3888a5φ(2n−1)
n = O(26n) Boolean functions in Theorem 7.

At last, we note that, the time we need to get a Boolean function in Theorem 7 is O(2m + n).
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8 Conclusion

We presented a general method to calculate the adjacency graphs of LFSRs with primitive-like

characteristic polynomials. As an application of this method, we explicitly determined the adja-

cency graphs of LFSRs with characteristic polynomials of the form (1 + x + x3 + x4)p(x), where

p(x) is a primitive polynomial, and construct a large class of De Bruijn sequences from them.
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