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Abstract. Non-interactive arguments enable a prover to convince a verifier that a state-
ment is true. Recently there has been a lot of progress both in theory and practice on
constructing highly efficient non-interactive arguments with small size and low verifi-
cation complexity, so-called succinct non-interactive arguments (SNARGs) and succinct
non-interactive arguments of knowledge (SNARKs).
Many constructions of SNARGs rely on pairing-based cryptography. In these constructions
a proof consists of a number of group elements and the verification consists of checking
a number of pairing product equations. The question we address in this article is how
efficient pairing-based SNARGs can be.
Our first contribution is a pairing-based (preprocessing) SNARK for arithmetic circuit
satisfiability, which is an NP-complete language. In our SNARK we work with asymmetric
pairings for higher efficiency, a proof is only 3 group elements, and verification consists
of checking a single pairing product equations using 3 pairings in total. Our SNARK is
zero-knowledge and does not reveal anything about the witness the prover uses to make
the proof.
As our second contribution we answer an open question of Bitansky, Chiesa, Ishai, Os-
trovsky and Paneth (TCC 2013) by showing that 2-move linear interactive proofs cannot
have a linear decision procedure. It follows from this that SNARGs where the prover
and verifier use generic asymmetric bilinear group operations cannot consist of a single
group element. This gives the first lower bound for pairing-based SNARGs. It remains an
intriguing open problem whether this lower bound can be extended to rule out 2 group
element SNARGs, which would prove optimality of our 3 element construction.

Keywords: SNARKs, non-interactive zero-knowledge arguments, linear interactive proofs,
quadratic arithmetic programs, bilinear groups.

1 Introduction

Goldwasser, Micali and Rackoff [GMR89] introduced zero-knowledge proofs that enable
a prover to convince a verifier that a statement is true without revealing anything else.
They have three core properties:

Completeness: Given a statement and a witness, the prover can convince the verifier.
Soundness: A malicious prover cannot convince the verifier of a false statement.
Zero-knowledge: The proof does not reveal anything but the truth of the statement,

in particular it does not reveal the prover’s witness.
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Blum, Feldman and Micali [BFM88] extended the notion to non-interactive zero-knowledge
(NIZK) proofs in the common reference string model. NIZK proofs are useful in the
construction of non-interactive cryptographic schemes, e.g., digital signatures and CCA-
secure public key encryption.

The amount of communication is an important performance parameter for zero-
knowledge proofs. Kilian [Kil92] gave the first sublinear communication zero-knowledge
argument that sends fewer bits than the size of the statement to be proved. Micali [Mic00]
proposed sublinear size arguments by letting the prover in a communication efficient
argument compute the verifier’s challenges using a cryptographic function, and as re-
marked in Kilian [Kil95] this leads to sublinear size NIZK proofs when the interactive
argument is public coin and zero-knowledge.

Groth, Ostrovsky and Sahai [GOS12,GOS06,Gro06,GS12] introduced pairing-based
NIZK proofs, yielding the first linear size proofs based on standard assumptions. Groth [Gro10]
combined these techniques with ideas from interactive zero-knowledge arguments [Gro09]
to give the first constant size NIZK arguments. Lipmaa [Lip12] used an alternative con-
struction based on progression-free sets to reduce the size of the common reference
string.

Groth’s constant size NIZK argument is based on constructing a set of polyno-
mial equations and using pairings to efficiently verify these equations. Gennaro, Gentry,
Parno and Raykova [GGPR13] found an insightful construction of polynomial equations
based on Lagrange interpolation polynomials yielding a pairing-based NIZK argument
with a common reference string size proportional to the size of the statement and wit-
ness. They gave two types of polynomial equations: quadratic span programs for proving
boolean circuit satisfiability and quadratic arithmetic programs for proving arithmetic
circuit satisfiability. Lipmaa [Lip13] suggested more efficient quadratic span programs
using error correcting codes, and Danezis, Fournet, Groth and Kohlweiss [DFGK14]
refined quadratic span programs to square span programs that give NIZK arguments
consisting of 4 group elements for boolean circuit satisfiability.

Exciting work on implementation has followed the above theoretical advances
[PHGR13,BCG+13,BFR+13,BCTV14b,KPP+14,BBFR15,CTV15,WSR+15,CFH+15,SVdV16].
Most efficient implementations refine the quadratic arithmetic program approach of
Gennaro et al. [GGPR13] and combine it with a compiler producing a suitable quadratic
arithmetic program that is equivalent to the statement to be proven; libsnark [BCTV14b,BSCG+14]
also includes an NIZK argument based on [DFGK14].

One powerful motivation for building efficient non-interactive arguments is verifi-
able computation. A client can outsource a complicated computational task to a server
in the cloud and get back the results. To convince the client that the computation is
correct the server may include a non-interactive argument of correctness with the re-
sult. However, since the verifier does not have many computational resources this only
makes sense if the argument is compact and computationally light to verify, i.e., it is
a succinct non-interactive argument (SNARG) or a succinct non-interactive argument
of knowledge (SNARK). While pairing-based SNARGs are efficient for the verifier, the
computational overhead for the prover is still orders of magnitude too high to war-
rant use in outsourced computation [WB15,Wal15] and further efficiency improvements
are needed. In their current state, SNARKs that are zero-knowledge already have uses
when proving statements about private data though. Zero-knowledge SNARKs are for
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instance key ingredients in the virtual currency proposals Pinocchio coin [DFKP13] and
Zerocash [BCG+14].

In parallel with developments in pairing-based NIZK arguments there has been in-
teresting work on understanding SNARKs. Gentry and Wichs [GW11] showed that
SNARGs must necessarily rely on non-falsifiable assumptions, and Bitansky et al. [BCCT12]
proved designated verifier SNARKs exist if and only if extractable collision-resistant
hash functions exist. Of particular interest in terms of efficiency is a series of works
studying how SNARKs compose [Val08,BCCT13,BCTV14a]. They show among other
things that a preprocessing SNARK with a long common reference string can be used
to build a fully succinct SNARK with a short common reference string.

Bitansky et al. [BCI+13] give an abstract model of SNARKs that rely on linear en-
codings of field elements. Their information theoretic framework called linear interactive
proofs (LIPs) capture proof systems where the prover is restricted to using linear oper-
ations in computing her messages. They give a generic conversion of a 2-move LIP to
a publicly verifiable SNARK using pairing-based techniques or to a designated verifier
using additively homomorphic encryption techniques.

1.1 Our contribution

Succinct NIZK. We construct a NIZK argument for arithmetic circuit satisfiability
where a proof consists of only 3 group elements. In addition to being small, the proof
is also easy to verify. The verifier just needs to compute a number of exponentiations
proportional to the statement size and check a single pairing product equation, which
only has 3 pairings. Our construction can be instantiated with any type of pairings
including Type III pairings, which are the most efficient pairings.

The argument has perfect completeness and perfect zero-knowledge. For soundness
we take an aggressive stance and rely on a security proof in the generic bilinear group
model [Sho97,Nec94] in order to get optimal performance. This stance is partly justi-
fied by Gentry and Wichs [GW11] that rule out SNARGs based on standard falsifiable
assumptions. However, following Abe, Groth, Ohkubo and Tibouchi [AGOT14] we do
provide a hedge against cryptanalysis by proving our construction secure in the sym-
metric pairing setting. For optimal efficiency it makes sense to use our NIZK argument
in the asymmetric setting, however, by providing a security proof in the symmetric set-
ting we get additional security: even if cryptanalytic advances yield a hitherto unknown
efficiently computable isomorphism between the source groups this does not necessarily
lead to a break of our scheme. We therefore have a unified NIZK argument that can
be instantiated with any type of pairing, yielding both optimal efficiency and optimal
generic bilinear group resilience.

We give a performance comparison for boolean circuit satisfiability in Table 1 and
for arithmetic circuit satisfiability in Table 2 of the size of the common reference string
(CRS), the size of the proof, the prover’s computation, the verifier’s computation, and
the number of pairing product equations used to verify a proof. We perform better than
the state of the art on all efficiency parameters.

In both comparisons the number of wires exceeds the number of gates, m ≥ n, since
each gate has an output wire. We expect for typical cases that the statement size ` will
be small compared to m and n. In both tables, we have excluded the size of representing
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CRS size Proof size Prover comp. Verifier comp. PPE

[DFGK14] 2m + n− 2` G1 , m + n− ` G2 3 G1 , 1 G2 m + n− ` E1 ` M1 , 6 P 3
This work 3m + n G1 , m G2 2 G1 , 1 G2 n E1 ` M1 , 3 P 1

Table 1. Comparison for boolean circuit satisfiability with `-bit statement, m wires and n fan-in 2 logic
gates. Notation: G means group elements, M means multiplications, E means exponentiations and P
means pairings with subscripts indicating the relevant group. It is possible to get a CRS size of m+ 2n
elements in G1 and n elements in G2 but we have chosen to include some precomputed values in the
CRS to reduce the prover’s computation, see Sect. 3.2.

CRS size Proof size Prover comp. Verifier comp. PPE

[PHGR13] 7m + n− 2` G 8 G 7m + n− 2` E ` E , 11 P 5
This work m + 2n G 3 G m + 3n− ` E ` E , 3 P 1

[BCTV14a] 6m + n + ` G1 , m G2 7 G1 , 1 G2 6m + n− ` E1 , m E2 ` E1 , 12 P 5
This work m + 2n G1 , n G2 2 G1 , 1 G2 m + 3n− ` E1 , n E2 ` E1 , 3 P 1

Table 2. Comparison for arithmetic circuit satisfiability with `-element statement, m wires, n multipli-
cation gates. Notation: G means group elements, E means exponentiations and P means pairings. We
compare symmetric pairings in the first two rows and asymmetric pairings in the last two rows.

the relation for which we give proofs. In the boolean circuit satisfiability case, we are
considering arbitrary fan-in 2 logic gates. In the arithmetic circuit satisfiability case we
work with fan-in 2 multiplication gates where each input factor can be a weigthed sum
of other wires. We assume each multiplication gate input depends on a constant number
of wires; otherwise the cost of evaluating the relation itself may exceed the cost of the
subsequent proof generation.

We note that [PHGR13] uses symmetric bilinear groups where G1 = G2 and we are
therefore comparing with a symmetric bilinear group instantiation of our scheme, which
saves n elements in the common reference string. However, in the implementation of
their system, called Pinocchio, asymmetric pairings are used for better efficiency. The
switch to asymmetric pairings only requires minor modifications, see e.g. [BCTV14a] for
a specification of such a SNARK, which has been implemented in the libsnark library.

Size matters. While the reduction in proof size to 3 group elements and the reduction
in verification time is nice in itself, we would like to highlight that it is particularly
important when composing SNARKs. [BCCT13,BCTV14a] show that preprocessing
SNARKs with a long CRS can be composed to yield fully succinct SNARKs with a
short CRS.1 The transformations split the statement into smaller pieces, prove each
piece is correct by itself, and recursively construct proofs of knowledge of other proofs
that jointly show the pieces are correct and fit together. In the recursive construction
of proofs, it is extra beneficial when the proofs are small and easy to verify since the
resulting statements “there exists a proof satisfying the verification equation...” become
small themselves. So we gain both from the prover’s lower computation and from the

1 We remark that soundness against generic adversaries is not preserved under composition (an issue
that also appears in [Val08]), since the composition needs a concrete instantiation of the bilinear
groups when writing out the statements corresponding to verification of another SNARK. What we
are saying is that if our SNARK is knowledge sound in the standard model then we can use recursion
to get fully succinct SNARKs.



5

fact that the statements in the recursive composition are smaller since we have a more
efficient verification procedure for our SNARK. Chiesa and Virza [CV16] report a factor
4-5 speedup from using our SNARKs in the implementation of [BCTV14a].

Technique. All pairing-based SNARKs in the literature follow a common paradigm
where the prover computes a number of group elements using generic group operations
and the verifier checks the proof using a number of pairing product equations. Bitansky
et al. [BCI+13] formalize this paradigm through the definition of linear interactive proofs
(LIPs). A linear interactive proof works over a finite field and the prover’s and verifier’s
messages consist of vectors of field elements. It furthermore requires that the prover
computes her messages using only linear operations. Once we have an approriate 2-move
LIP, it can be compiled into a SNARK by executing the equations “in the exponent”
using pairing-based cryptography. One source of our efficiency gain is that we design
a LIP system for arithmetic circuits where the prover only sends 3 field elements. In
comparison, the quadratic arithmetic programs by [GGPR13,PHGR13] correspond to
LIPs where the prover sends 4 field elements.

A second source of efficiency gain compared to previous work is a more aggres-
sive compilation of the LIP. Bitansky et al. [BCI+13] propose a transformation in
the symmetric bilinear group setting, where each field element gets compiled into two
group elements. They then use a knowledge of exponent assumption to argue that
the prover knows the relevant field elements. A less conservative choice would be to
compile each field element into a single group element. Compiling with a single group
element per field element improves efficiency but we only prove security generic group
model [Sho97,BBG05] since we can no longer use the knowledge of exponent assumption.
It is also possible to make a choice between these two extremes, Parno et al. [PHGR13]
for instance have a LIP with 4 field elements, which gets compiled into 7 group elements.
To summarize, in this paper we have opted for maximal efficiency and compile each field
element in the LIP into a single group element and argue security in the generic group
model.

We prefer to work with asymmetric bilinear groups for their higher efficiency than
symmetric bilinear groups. This means that there is more to the story than the number of
field elements the prover sends in the LIP and the choice of how aggressive a compilation
we use. When working with asymmetric bilinear groups, a field element can appear as
an exponent in the first source group, the second source group, or both. Our LIP is
carefully designed such that each field element gets compiled into a single source group
element in order to minimize the proof size to 3 group elements in total.

Lower bounds. Working towards ever more efficient non-interactive arguments, it is
natural to ask what the minimal proof size is. We will show that pairing-based SNARGs
with a single group element proof cannot exist. This result relates to an open question
raised by Bitansky et al. [BCI+13], whether there are LIPs with a linear decision pro-
cedure for the verifier. Such a linear decision procedure would be quite useful; it could
for instance enable the construction of SNARGs based on ElGamal encryption.

We answer this open problem negatively by proving that LIPs with a linear decision
procedure do not exist. A consequence of this is that any pairing-based SNARG must
pair group elements from the proof together to make the decision procedure quadratic
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instead of linear. Working over asymmetric bilinear groups we must therefore have
elements in both source groups in order to do such a pairing. This rules out the existence
of 1 group element SNARGs, regardless of whether it is zero-knowledge or not, and
shows our NIZK argument has close to optimal proof size. It remains an intriguing open
problem to completely close the gap by either constructing a SNARG with exactly one
element from each source group G1 and G2, or alternatively rule out the existence of
such a SNARG.

2 Preliminaries

Given two functions f, g : N→ [0, 1] we write f(λ) ≈ g(λ) when |f(λ)− g(λ)| = λ−ω(1).
We say that f is negligible when f(λ) ≈ 0 and that f is overwhelming when f(λ) ≈ 1.
We will use λ to denote a security parameter, with the intuition that as λ grows we
expect stronger security.

We write y = A(x; r) when algorithm A on input x and randomness r, outputs y.
We write y ← A(x) for the process of picking randomness r at random and setting
y = A(x; r). We also write y ← S for sampling y uniformly at random from the set S.
We will assume it is possible to sample uniformly at random from sets such as Zp.

Following Abe and Fehr [AF07] we write (y; z) ← (A ‖ XA)(x) when A on input x
outputs y, and XA on the same input (including random coins) outputs z.

2.1 Bilinear groups

We will work over bilinear groups (p,G1,G2,GT , e, g, h) with the following properties:

– G1,G2,GT are groups of prime order p
– The pairing e : G1 ×G2 → GT is a bilinear map
– g is a generator for G1, h is a generator for G2, and e(g, h) is a generator for GT

– There are efficient algorithms for computing group operations, evaluating the bilinear
map, deciding membership of the groups, deciding equality of group elements and
sampling generators of the groups. We refer to these as the generic group operations.

There are many ways to set up bilinear groups both as symmetric bilinear groups
where G1 = G2 and as asymmetric bilinear groups where G1 6= G2. Galbraith, Paterson
and Smart [GPS08] classify bilinear groups as Type I where G1 = G2, Type II where
there is an efficiently computable non-trivial homomorphism Ψ : G2 → G1, and Type III
where no such efficiently computable homomorphism exists in either direction between
G1 and G2. Type III bilinear groups are the most efficient type of bilinear groups and
hence the most relevant for practical applications. We give lower bound for pairing-
based SNARGs in Type III bilinear groups. Our constructions on the other hand can
be instantiated in all 3 types of bilinear groups.

It will be useful to use a notation that represents group elements by their discrete
logarithms. We stress the discrete logarithms are hard to compute, this notation is just
convenient for representational purposes. We write [a]1 for ga, [b]2 for hb, and [c]T for
e(g, h)c. With this notation g = [1]1, h = [1]2 and e(g, h) = [1]T , while the neutral
elements are [0]1, [0]2 and [0]T . Working with the discrete logarithm representation of
group it is natural to use additive notation in all groups, so for instance [a]T + [b]T =
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[a+b]T . A vector of group elements will be represented as [a]i. Our notation allows us to
define natural operations using standard linear algebra notation, so [a]i + [b]i = [a+b]i
assuming a and b have the same dimension, and also assuming appropriate dimension
we define A[b]i = [Ab]i. Given two vectors of n group elements [a]1 and [b]2, we define
their dot product as [a]1 · [b]2 = [a · b]T , which can be efficiently computed using the
pairing e.

We say an algorithm is generic if it only uses generic group operations to create
and manipulate group elements. Shoup [Sho97] formalized the generic group model by
considering random injective encodings [·]i instead of real group elements. Generic group
operations are then handled through an oracle the algorithm has access to, e.g., it can
for instance on (add, [a]i, [b]i) return [a+b]i. Due to the randomness of the encoding, the
generic algorithm can only do meaningful operations through the generic group oracle.
One implication of this is that if it has input [a]1 and return elements [b], we can by
checking the addition queries it has made in G1 efficiently deduce a matrix M such that
b = Ma. The same holds in G2, while in GT there may also be elements computed from
the pairing operation, but we can still write any output element as an explicit quadratic
polynomial in the inputs.

2.2 Non-interactive zero-knowledge arguments of knowledge

Let R be a relation generator that given a security parameter λ in unary returns a poly-
nomial time decidable binary relation R. For pairs (φ,w) ∈ R we call φ the statement
and w the witness. We define Rλ to be the set of possible relations R the relation gen-
erator may output given 1λ. We will in the following for notational simplicity assume λ
can be deduced from the description of R. The relation generator may also output some
side information, an auxiliary input z, which will be given to the adversary. An efficient
prover publicly verifiable non-interactive argument for R is a quadruple of probabilistic
polynomial algorithms (Setup,Prove,Vfy,Sim) such that

(σ, τ)← Setup(R): The setup produces a common reference string σ and a simulation
trapdoor τ for the relation R.

π ← Prove(R, σ, φ, w): The prover algorithm takes as input a common reference string
σ and (φ,w) ∈ R and returns an argument π.

0/1← Vfy(R, σ, φ, π): The verification algorithm takes as input a common reference
string σ, a statement φ and an argument π and returns 0 (reject) or 1 (accept).

π ← Sim(R, τ, φ): The simulator takes as input a simulation trapdoor and statement φ
and returns an argument π.

Definition 1. We say (Setup,Prove,Vfy) is a non-interactive argument for R if it has
perfect completeness and computational soundness as defined below.

Definition 2. We say (Setup,Prove,Vfy,Sim) is a perfect non-interactive zero-knowledge
argument of knowledge for R if it has perfect completeness, perfect zero-knowledge and
computational knowledge soundness as defined below.

Perfect completeness. Completeness says that, given any true statement, an honest
prover should be able to convince an honest verifier. For all λ ∈ N, R ∈ Rλ, (φ,w) ∈ R

Pr
[
(σ, τ)← Setup(R);π ← Prove(R, σ, φ, w) : Vfy(R, σ, φ, π) = 1

]
= 1.
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Perfect zero-knowledge. An argument is zero-knowledge if it does not leak any
information besides the truth of the statement. We say (Setup,Prove,Vfy,Sim) is perfect
zero-knowledge if for all λ ∈ N, (R, z)← R(1λ), (φ,w) ∈ R and all adversaries A

Pr
[
(σ, τ)← Setup(R);π ← Prove(R, σ, φ, w) : A(R, z, σ, τ, π) = 1

]
= Pr

[
(σ, τ)← Setup(R);π ← Sim(R, τ, φ) : A(R, z, σ, τ, π) = 1

]
.

Computational soundness. We say (Setup,Prove,Vfy, Sim) is sound if it is not pos-
sible to prove a false statement, i.e., convince the verifier if no witness exists. Let LR
be the language consisting of statements for which there exist matching witnesses in R.
Formally, we require that for all non-uniform polynomial time adversaries A

Pr

[
(R, z)← R(1λ); (σ, τ)← Setup(R); (φ, π)← A(R, z, σ) :

φ /∈ LR and Vfy(R, σ, φ, π) = 1

]
≈ 0.

Computational knowledge soundness. Strengthening the notion of soundness, we
call (Setup,Prove,Vfy,Sim) an argument of knowledge if there is an extractor that can
compute a witness whenever the adversary produces a valid argument. The extractor
gets full access to the adversary’s state, including any random coins. Formally, we re-
quire that for all non-uniform polynomial time adversaries A there exists a non-uniform
polynomial time extractor XA such that

Pr

[
(R, z)← R(1λ); (σ, τ)← Setup(R); ((φ, π);w)← (A ‖ XA)(R, z, σ) :

(φ,w) /∈ R and Vfy(R, σ, φ, π) = 1

]
≈ 0.

Public verifiability and designated verifier proofs. We can naturally gener-
alize the definition of a non-interactive argument by splitting σ into two parts σP and
σV used by the prover and verifier respectively. We say the non-interactive argument
is publicly verifiable when σV can be deduced from σP . Otherwise we refer to it as a
designated verifier argument. For designated verifier arguments it is possible to relax
soundness and knowledge soundness such that the adversary only sees σP but not σV .

SNARGs and SNARKs. A non-interactive argument where the verifier runs in poly-
nomial time in λ + |φ| and the proof size is polynomial in λ is called a preprocessing
succinct non-interactive argument (SNARG) if it sound, and a preprocessing succinct
argument of knowledge (SNARK) if it is knowledge sound. If we also restrict the com-
mon reference string to be polynomial in λ we say the non-interactive argument is a
fully succinct SNARG or SNARK. Bitansky et al. [BCCT13] show that preprocessing
SNARKs can be composed to yield fully succinct SNARKs. The focus of this paper is
on preprocessing SNARKs, where the common reference string may be long.

Benign relation generators. Bitansky et al. [BCPR14] show that indistinguisha-
bility obfuscation implies that for every candidate SNARK there are auxiliary output
distributions that enable the adversary to create a valid proof without it being possi-
ble to extract the witness. Assuming also public coin differing input obfuscation and
other cryptographic assumptions, Boyle and Pass [BP15] strengthen this impossibility
to show that there is an auxiliary output distribution that defeats witness extraction
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for all candidate SNARKs. These counter examples, however, rely on specific auxiliary
input distributions. We will therefore in the following assume the relationship generator
is benign in the sense that the relation and the auxiliary input are distributed in such a
way that the SNARKs we construct can be knowledge sound.

2.3 Quadratic arithmetic programs

Consider an arithmetic circuit consisting of addition and multiplication gates over a
finite field F. We may designate some of the input/output wires as specifying a statement
and use the rest of the wires in the circuit to define a witness. This gives us a binary
relation R consisting of statement wires and witness wires that satisfy the arithmetic
circuit, i.e., make it consistent with the designated input/output wires.

Generalizing arithmetic circuits, we may be interested in relations described by
equations over a set of variables. Some of the variables correspond to the statement; the
remaining variables correspond to the witness. The relation consists of statements and
witnesses that satisfy all the equations. The equations will be over a0 = 1 and variables
a1, . . . , am ∈ F and be of the form∑

aiui,q ·
∑

aivi,q =
∑

aiwi,q,

where ui,q, vi,q, wi,q are constants in F specifying the qth equation.
We observe that addition and multiplication gates are special cases of such equations

so such systems of arithmetic constraints do indeed generalize arithmetic circuits. A
multiplication gate can for instance be described as ai · aj = ak (using ui = 1, vj = 1
and wk = 1 and setting the remaining constants for this gate to 0). Addition gates
are handled for free in the sums defining the equations, i.e., if ai + aj = ak and ak is
multiplied by a`, we may simply write (ai + aj) · a` and skip the calculation of ak.

Following Gennaro, Gentry, Parno and Raykova [GGPR13] we can reformulate the
set of arithmetic constraints as a quadratic arithmetic program assuming F is large
enough. Given n equations we pick arbitrary distinct r1, . . . , rn ∈ F and define t(x) =∏n
q=1(x−rq). Furthermore, let ui(x), vi(x), wi(x) be degree n−1 polynomials such that

ui(rq) = ui,q vi(rq) = vi,q wi(rq) = wi,q for i = 0, . . . ,m, q = 1, . . . , n.

We now have that a0 = 1 and the variables a1, . . . , am ∈ F satisfy the n equations if
and only if in each point r1, . . . , rq

m∑
i=0

aiui(rq) ·
m∑
i=0

aivi(rq) =
m∑
i=0

aiwi(rq).

Since t(X) is the lowest degree monomial with t(rq) = 0 in each point, we can reformu-
late this condition as

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) ≡
m∑
i=0

aiwi(X) mod t(X).

Formally, we will be working with quadratic arithmetic programs R that have the
following description

R = (F, aux, `, {ui(X), vi(X), wi(X)}mi=0, t(X)) ,
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where F describes a finite field, aux is some auxiliary information, 1 ≤ ` ≤ m,
ui(X), vi(X), wi(X), t(X) ∈ F[X] and ui(X), vi(X), wi(X) have strictly lower degree
than n, the degree of t(X). A quadratic arithmetic program with such a description
defines the following binary relation, where we define a0 = 1,

R =

(φ,w)

∣∣∣∣∣∣∣∣
φ = (a1, . . . , a`) ∈ F`
w = (a`+1, . . . , am) ∈ Fm−`∑m

i=0 aiui(X) ·
∑m

i=0 aivi(X) ≡
∑m

i=0 aiwi(X) mod t(X)

 .

We say R is a quadratic arithmetic program generator if it generates relations of the
form given above with fields of size larger than 2λ−1.

Relations can arise in many different ways in practice. It may be that the relationship
generator is deterministic or it may be that it is randomized. It may be that first the
field F is generated and then the rest of the relation is built on top of the field. Or it
may be that the polynomials are specified first and then a random field is chosen. To
get maximal flexibility we have chosen our definitions to be agnostic with respect to
the exact way the field and the relation is generated, the different options can all be
modelled by appropriate choices of relation generators.

Looking ahead, we will in our pairing-based NIZK arguments let the auxiliary infor-
mation aux specify a bilinear group. It may seem a bit surprising to make the choice of
bilinear group part of the relation generator but this provides a better model of settings
where the relation is built on top of an already existing bilinear group. Again, there is no
loss of generality in this choice, one can think of a traditional setting where the relation
is chosen first and then the bilinear group is chosen at random as the special case where
the relation generator works in two steps, first choosing the relation and then picking a
random bilinear group. Of course letting the relation generator pick the bilinear group
is another good reason that we need to assume it is benign; an appropriate choice of
bilinear group is essential for security.

2.4 Linear non-interactive proofs

Bitansky et al. [BCI+13] give a useful characterization of the information theoretic
underpinning of recent SNARK constructions that they call 2-move algebraic input-
oblivious linear interactive proofs. To clarify the connection to non-interactive argu-
ments that we defined in Section 2.2, we will rename this notion as non-interactive
linear proofs (NILP). NILPs are defined relative to a relation generator R, where we
assume the relations specify a finite field F, and work as follows.

(σ, τ )← Setup(R): The setup is a probabilistic polynomial time algorithm that returns
vectors σ ∈ Fm and τ ∈ Fn. We will for notational simplicity assume that σ always
contains 1 as an entry such that there is no distinction between affine and linear
functions of σ.

π ← Prove(R,σ, φ, w): The prover operates in two stages:
– First it runs Π ← ProofMatrix(R,φ,w), where ProofMatrix is a probabilistic

polynomial time algorithm that generates a matrix Π ∈ Fk×m.
– Then it computes the proof as π = Πσ.
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0/1← Vfy(R,σ, φ,π): The verifier runs in two stages:

– First it runs a deterministic polynomial time algorithm t← Test(R,φ) to get an
arithmetic circuit t : Fm+k → Fη corresponding to the evaluation of a vector of
multi-variate polynomials of total degree d.

– It then accepts the proof if and only if t(σ,π) = 0.

The degree d and the dimensions µ,m, n, k, η may be constants or polynomials in the
security parameter λ.

Definition 3 (Linear non-interactive proof). The tuple (Setup,Prove,Vfy) is a lin-
ear non-interactive proof for R if it has perfect completeness and statistical knowledge
soundness against affine prover strategies as defined below.

Statistical knowledge soundness against affine prover strategies. A NILP
has knowledge soundness against affine prover strategies if a witness can be extracted
from a successful proof matrix Π. More precisely, there is a polynomial time extractor
X such that for all adversaries A

Pr

[
(R, z)← R(1λ); (σ, τ )← Setup(R); (φ,Π)← A(R, z);w ← X (R,φ,Π) :

Π ∈ Fm×k ∧ Vfy(R,σ, φ,Πσ) = 0 ∧ (φ,w) /∈ R

]
≈ 0.

The notion of zero-knowledge from Section 2.2 also applies to NILPs and corresponds
to honest-verifier zero-knowledge for a 2-move LIP. Another potential extension is to
designated-verifier NILPs where the common reference string σ is split into two parts
σP used by the prover and σV used by the verifier.

2.5 Non-interactive arguments from linear non-interactive proofs.

NILPs are useful because they can be compiled into publicly verifiable non-interactive
arguments using pairings and designated verifier non-interactive arguments using a vari-
ant of Paillier encryption [BCI+13]. If we work in the pairing setting, the intuition is
that a NILP with verifier degree d = 2 can be executed “in the discrete logarithms”.
The common reference string contains encodings of field elements in σ. The prover com-
putes the proof as linear combinations of group elements in the common reference string.
The verifier checks the argument by verifying a number of pairing product equations
(equations formed by multiplying together the results of pairings), which corresponds
to checking quadratic equations in the encoded field elements. We will now formalize
this methodology.

When working with Type III pairings, executing the NILP in the discrete logarithms
requires that we specify for each element in which group the operations should take place.
We will therefore define a split NILP, which is a NILP where the common reference string
can be split into two parts σ = (σ1,σ2) and the prover’s proof can be split into two
parts π = (π1,π2). Each part of the proof is computed from the corresponding part of
the common reference string. Finally, when verifying the proof, we want the verifier’s
test to be a quadratic equation where each variable has degree 1. Writing it out, a split
NILP is a NILP of the following form:
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(σ, τ )← Setup(R): The setup algorithm generates vectors σ = (σ1,σ2) ∈ Fm1 × Fm2

and τ ∈ Fn. We will for notational simplicity assume σ1 and σ2 both contain 1 as
an entry such that there is no distinction between affine and linear functions of σ.

π ← Prove(R,σ, φ, w): The prover operates in two stages:
– First it runs Π ← ProofMatrix(R,φ,w), where we require ProofMatrix generates

a matrix of the form Π =

(
Π1 0
0 Π2

)
, where Π1 ∈ Fk1×m1 and Π2 ∈ Fk2×m2 .

– Then it computes π1 = Π1σ1 and π2 = Π2σ2 and returns π = (π1,π2).
0/1← Vfy(R,σ, φ,π): The verifier runs in two stages:

– First it runs t← Test(R,φ) to get an arithmetic circuit t : Fm1+k1+m2+k2 → Fη
corresponding to matrices T1, . . . , Tη ∈ F(m1+k1)×(m2+k2).

– It then accepts the proof if and only if for all matrices T1, . . . , Tη(
σ1

π2

)
· Ti
(
σ2

π2

)
= 0.

Intuitively, after compiling the split NILP we want to argue soundness by saying
a cheating prover that uses generic group operations cannot deviate from the NILP.
However, when the prover sees the common reference string, she may learn useful infor-
mation from it and choose her matrix Π in a way that depends on it. To counter this
type of adversary, we will define a disclosure-free common reference string as one where
the prover does not gain useful information that can help her choose a special matrix
Π.

Definition 4 (Disclosure-free NILP). We say a split NILP is disclosure-free if for
all adversaries A

Pr

[
(R, z)← R(1λ);T ← A(R, z); (σ1,σ2, τ ), (σ′1,σ

′
2, τ
′)← Setup(R) :

σ1 · Tσ2 = 0 if and only if σ′1 · Tσ′2 = 0

]
≈ 1.

The way to interpret the definition of a disclosure-free common reference string is that
the outcome of any test the adversary can run on σ1,σ2 can be predicted by running
it on an independently generated σ′1,σ

′
2.

We are now ready to describe a compiler that uses a split NILP (Setup,Prove,Vfy, Sim)
with disclosure-free common reference strings to give us a pairing-based non-interactive
argument (Setup′,Prove′,Vfy′, Sim′).

(σ, τ)← Setup′(R): Run (σ1,σ2, τ )← Setup(R). Return σ = ([σ1]1, [σ2]2) and τ = τ .
π ← Prove′(R, σ, φ, w): Generate (Π1, Π2)← ProofMatrix(R, x,w) and return π = ([π1]1, [π2]2)

computed as
[π1]1 = Π1[σ1]1 [π2]2 = Π2[σ2]2.

0/1← Vfy′(R, σ, φ, π): Generate (T1, . . . , Tη) ← Test(R,φ). Parse π = ([π1]1, [π2)]2 ∈
Gk1

1 ×Gk2
2 . Accept the proof if and only if for all T1, . . . , Tη[

σ1

π1

]
1

· Ti
[
σ2

π2

]
2

= [0]T .

π ← Sim′(R, τ, φ): Simulate (π1,π2)← Sim(R, τ , φ) and return π = ([π1]1, [π2]2).
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Lemma 1. The protocol given above is a non-interactive argument with perfect com-
pleteness and statistical knowledge soundness against generic adversaries that only do
a polynomial number of generic group operations. It is perfect zero-knowledge if the
underlying split NILP is perfect zero-knowledge.

Proof. Perfect completeness follows from the perfect completeness of the NILP and the
fact it is a split NILP, which allows the adversary to compute the two parts of the proof
[π1]1, [π2]2 using generic group operations in the relevant groups G1 and G2.

Perfect zero-knowledge follows from the perfect zero-knowledge property of the
NILP.

It remains to argue statistical soundness against generic adversaries. A generic ad-
versary can use the generic group operations to multiply elements in G1, G2 and GT ,
test membership of the groups, evaluate the pairing, and test whether elements are
equal.

We first argue that the disclosure-freeness implies that the adversary has negligi-
ble probability of learning non-trivial information about the common reference string.
Whenever an adversary tests whether an element computed using generic group op-
erations is 0, it can be written out as a pairing product equality test of the form
[σ1]1 · T [σ2]2 = [0]T , where the matrix T can be deduced from the generic group
operation queries the adversary has made. Instead of making these queries, we could
instead run a modified adversary that picks an alternative common reference string
(σ′1,σ

′
2, τ
′) and answers the queries herself by testing whether σ′1 · Tσ′2 = 0. By the

disclosure-freeness, the answers made this way are with overwhelming probability iden-
tical to what the adversary would see on the real common reference string, so we can
from now on assume the generic adversary does not make any zero tests on elements
involving the common reference string.

An adversary that does not make any zero-tests on the common reference string and
only uses generic group operations, is equivalent to an adversary that picks matrices
Π1, Π2 independently of [σ1]1, [σ2]2 and then computes the proofs as [π1]1 = Π1[σ1]
and [π2]2 = Π2[σ2]2. Taking discrete logarithms, this corresponds exactly to running
a split NILP knowledge soundness adversary to get matrices Π1, Π2 and proofs π1 =
Π1σ1,π2 = Π1σ2.

Taking discrete logarithms of the verification equations, we see that if the adversary
is successful in finding φ and a valid proof π1,π2, this corresponds to finding φ and
Π1, Π2 such that for the test matrices T1, . . . , Tη ← Test(R,φ)(

σ1

Π1σ1

)
· Ti
(
σ2

Π2σ2

)
= 0.

By the statistical soundness of the split NILP this has negligible probability of happening
unless knowledge of Π1, Π2 enables the extraction of a witness w such that (φ,w) ∈ R.

ut

The proof for Lemma 1 also holds if we use a split NILP that only has soundness

against split affine adversaries that are restricted to outputting a matrixΠ =

(
Π1 0
0 Π2

)
.

However, the split NILP we construct later will actually be secure against any choice of
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Π. The advantage of this is a hedge against cryptanalysis, even if the adversary finds
an efficiently computable isomorphism between G1 and G2 and even if it maps g to h,
we will still have security in the generic group model. Another advantage is that the
construction also works for symmetric bilinear groups with very minor changes.

3 Constructions of non-interactive arguments

We will construct a pairing-based NIZK argument for quadratic arithmetic programs
where proofs consist of only 3 group elements. We give the construction in two steps,
first we construct a NILP for quadratic arithmetic programs, and then we observe it is
also a split NILP and convert it to pairing-based NIZK argument using the compilation
technique we presented earlier.

3.1 Non-interactive linear proofs for quadratic arithmetic programs

We will now construct a NILP for quadratic arithmetic program generators that outputs
relations of the form

R = (F, aux, `, {ui(X), vi(X), wi(X)}mi=0, t(X)) .

The relation defines a language of statements (a1, . . . , a`) ∈ F` and witnesses (a`+1, . . . , am) ∈
Fm−` such that with a0 = 1

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) =

m∑
i=0

aiwi(X) + h(X)t(X),

for some degree n− 2 quotient polynomial h(X), where n is the degree of t(X).

(σ, τ )← Setup(R): Pick α, β, γ, δ, x← F∗. Set τ = (α, β, γ, δ, x) and

σ =

(
α, β, γ, δ,

{
xi
}n−1
i=0

,
{
βui(x)+αvi(x)+wi(x)

γ

}`
i=0

,
{
βui(x)+αvi(x)+wi(x)

δ

}m
i=`+1

,
{
xit(x)
δ

}n−2
i=0

)
.

π ← Prove(R,σ, a1, . . . , am): Pick r, s← F and compute a 3× (m+ 2n+ 4) matrix Π
such that π = Πσ = (A,B,C) where

A = α+
m∑
i=0

aiui(x) + rδ B = β +
m∑
i=0

aivi(x) + sδ

C =

∑m
i=`+1 ai (βui(x) + αvi(x) + wi(x)) + h(x)t(x)

δ
+As+ rB − rsδ.

0/1← Vfy(R,σ, a1, . . . , a`): Compute a quadratic multi-variate polynomial t such that
t(σ,π) = 0 corresponds to the test

A ·B = α · β +

∑`
i=0 ai (βui(x) + αvi(x) + wi(x))

γ
· γ + C · δ.

Accept the proof if the test passes.
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π ← Sim(R, τ , a1, . . . , a`): PickA,B ← F and compute C =
AB−αβ−

∑`
i=0 ai(βui(x)+αvi(x)+wi(x))

δ .
Return π = (A,B,C).

Before formally proving this is a NILP, let us give a little intuition behind the different
components. The role of α and β is to ensure A,B and C are consistent with each other
in the choice of a0, . . . , am. The product α ·β in the verification equation guarantees that
A and B involve non-trivial α and β components. This means the product A ·B involves
a linear dependence on α and β, and we will later prove that this linear dependence
can only be balanced out by C with a consistent choice of a0, . . . , am in all three of
A,B and C. The role of γ and δ is to make the two latter products of the verification
equation independent from the first product, by dividing the left factors with γ and
δ respectively. This prevents mixing and matching of elements intended for different
products in the verification equation. Finally, we use r and s to randomize the proof to
get zero-knowledge.

Theorem 1. The construction above yields a NILP with perfect completeness, perfect
zero-knowledge and statistical knowledge soundness against affine prover strategies.

Proof. Perfect completeness is straightforward to verify. Perfect zero-knowledge follows
from both real proofs and simulated proofs having uniformly random field elements
A,B. These elements uniquely determine C through the verification equation, so real
proofs and simulated proofs have identical probability distributions.

What remains is to demonstrate that for any affine prover strategy with non-
negligible success probability we can extract a witness. When using an affine prover
strategy we have

A = Aαα+Aββ +Aγγ +Aδδ +A(x) +
∑̀
i=0

Ai
βui(x) + αvi(x) + wi(x)

γ

+
m∑

i=`+1

Ai
βui(x) + αvi(x) + wi(x)

δ
+Ah(x)

t(x)

δ
,

for known field elements Aα, Aβ, Aγ , Aδ, Ai and polynomials A(x), Ah(x) of degrees n−1
and n− 2, respectively that correspond to the first row of the matrix Π. We can write
out B and C in a similar fashion from the second and third rows of Π.

We now view the verification equation as an equality of multi-variate Laurent poly-
nomials. By the Schwartz-Zippel lemma the prover has negligible success probability
unless the verification equation holds when viewing A,B and C as formal polynomials
in indeterminates α, β, γ, δ, x.

The terms with indeterminate α2 are AαBαα
2 = 0, which means Aα = 0 or Bα = 0.

Since AB = BA we can without loss of generality assume Bα = 0. The terms with
indeterminate αβ give us AαBβ +AβBα = AαBβ = 1. This means AB = (ABβ)(AαB)
so we can without loss of generality after rescaling assume Aα = Bβ = 1. The terms
with indeterminate β2 now give us AβBβ = Aβ = 0. We have now simplified A and B
constructed by the adversary to be of the form

A = α+Aγγ +Aδδ +A(x) + · · · B = β +Bγγ +Bδδ +B(x) + · · · .
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Next, let us consider the terms involving 1
δ2

. We have(
m∑

i=`+1

Ai (βui(x) + αvi(x) + wi(x)) +Ah(x)t(x)

)

·

(
m∑

i=`+1

Bi (βui(x) + αvi(x) + wi(x)) +Bh(x)t(x)

)
= 0,

showing either the left factor is 0 or the right factor is 0. By symmetry, let us without loss
of generality assume

∑m
i=`+1Ai (βui(x) + αvi(x) + wi(x))+t(x)At(x) = 0. The terms in

α
∑m

i=`+1Bi(βui(x)+αvi(x)+wi(x))+Bh(x)t(x)

δ = 0 now show us that also
∑m

i=`+1Bi (βui(x) + αvi(x) + wi(x))+
Bh(x)t(x) = 0.

The terms involving 1
γ2

give us

∑̀
i=0

Ai (βui(x) + αvi(x) + wi(x)) ·
∑̀
i=0

Bi (βui(x) + αvi(x) + wi(x)) = 0,

showing either the left factor is 0 or the right factor is 0. By symmetry, let us with-
out loss of generality assume

∑`
i=0Ai (βui(x) + αvi(x) + wi(x)) = 0. The terms in

α
∑m

i=0Bi(βui(x)+αvi(x)+wi(x))
γ = 0 now show us

∑`
i=0Bi (βui(x) + αvi(x) + wi(x)) = 0

as well.
The terms Aγβγ = 0 and Bγαγ = 0 show us that Aγ = 0 and Bγ = 0. We now have

A = α+A(x) +Aδδ B = β +B(x) +Bδδ.

The remaining terms in the verification equation that involve α give us αB(x) =∑`
i=0 aiαvi(x)+

∑m
i=`+1Ciαvi(x). The terms involving β give us βA(x) =

∑`
i=0 aiβui(x)+∑m

i=`+1Ciβui(x). Defining ai = Ci for i = `+ 1, . . . ,m we now have

A(x) =

m∑
i=0

aiui(x) B(x) =

m∑
i=0

aivi(x).

Finally, we look at the terms involving powers of x to get

m∑
i=0

aiui(x) ·
m∑
i=0

aivi(x) =
m∑
i=0

aiwi(x) + Ch(x)t(x).

This shows that (a`+1, . . . , am) = (C`+1, . . . , Cm) is a witness for the statement (a1, . . . , a`).
ut

2 field element NILPs. It is natural to ask whether the number of field elements the
prover sends in the NILP can be reduced further. The square span programs of Danezis
et al. [DFGK14] give rise to 2 field element NILPs for boolean circuit satisfiability. It is
also possible to get a 2-element NILP for arithmetic circuit satisfiability by rewriting the
circuit into one that only uses squaring gates, since each multiplication gate a ·b = c can
be rewritten as a (a+ b)2− (a− b)2 = 4c. When an arithmetic circuit only has squaring
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gates we get ui(x) = vi(x) for all i. By choosing r = s in the NILP, we now have
that B = A+ β −α, so the prover only needs to send two elements A and C to make a
convincing proof. Rewriting the arithmetic circuit to only use squaring gates may double
the number of gates and also requires some additional wires for the subtraction of the
squares, so the reduction of the size of the NILP comes at a significant computational
cost though.

3.2 NIZK arguments for quadratic arithmetic programs

We will now give a pairing-based NIZK argument for quadratic arithmetic programs.
We consider relation generators R that return relations of the form

R = (p,G1,G2,GT , e, g, h, `, {ui(X), vi(X), wi(X)}mi=0, t(X)) ,

with |p| = λ. The relation defines a field Zp and a language of statements (a1, . . . , a`) ∈
Z`p and witnesses (a`+1, . . . , am) ∈ Zm−`p such that with a0 = 1

m∑
i=0

aiui(X) ·
m∑
i=0

aivi(X) =

m∑
i=0

aiwi(X) + h(X)t(X),

for some degree n− 2 quotient polynomial h(X).

An important design feature of the NILP we gave above is that it is easily to make
it a split NILP. The proof elements A,B and C are only used once in the verification
equation and therefore it is easy to assign them to different sides of the bilinear test. By
splitting the common reference string in two parts that enable the computation of each
side of the proof we then get a split NILP. The resulting split NILP is also disclosure-
free and can therefore be compiled into a NIZK argument in the generic group model as
we did in Section 2.5. Since pairing-friendly elliptic curves usually have that the group
element representations are smaller in G1 than in G2 [GPS08] we choose to assign A
and C to the first source group and B to the second source group for maximal efficiency.
This gives us the following NIZK argument.

(σ, τ)← Setup(R): Pick α, β, γ, δ, x ← Z∗p. Define τ = (α, β, γ, δ, x) and compute σ =
([σ1]1, [σ2]2), where

σ1 =

α, β, δ, {xi}n−1i=0 ,
{
βui(x)+αvi(x)+wi(x)

γ

}`
i=0{

βui(x)+αvi(x)+wi(x)
δ

}m
i=`+1

,
{
xit(x)
δ

}n−2
i=0

 σ2 =
(
β, γ, δ, {xi}n−1i=0

)
.

π ← Prove(R, σ, a1, . . . , am): Pick r, s← Zp and compute π = ([A]1, [C]1, [B]2), where

A = α+

m∑
i=0

aiui(x) + rδ B = β +

m∑
i=0

aivi(x) + sδ

C =

∑m
i=`+1 ai(βui(x) + αvi(x) + wi(x)) + h(x)t(x)

δ
+As+Br − rsδ.
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0/1← Vfy(R, σ, a1, . . . , a`, π): Parse π = ([A]1, [C]1, [B]2) ∈ G2
1 ×G2. Accept the proof

if and only if

[A]1 · [B]2 = [α]1 · [β]2 +
∑̀
i=0

ai

[
βui(x) + αvi(x) + wi(x)

γ

]
1

· [γ]2 + [C]1 · [δ]2.

π ← Sim(R, τ, a1, . . . , a`): PickA,B ← Zp and compute a simulated proof π = ([A]1, [C]1, [B]2)
with

C =
AB − αβ −

∑`
i=0 ai (βui(x) + αvi(x) + wi(x))

δ
.

Theorem 2. The protocol given above is a non-interactive zero-knowledge argument
with perfect completeness and perfect zero-knowledge. It has statistical knowledge sound-
ness against adversaries that only use a polynomial number of generic bilinear group
operations.

Proof. It is easy to see that the non-interactive argument encodes a split NILP. The
only thing that remains in order to apply Lemma 1 is to prove that the common ref-
erence string is disclosure-free. We observe that the common reference strings σ1 and
σ2 contain multi-variate Laurent polynomials evaluated in elements in Z∗p. A test of the
form σ1 · Tσ2 can evaluate to 0 because the corresponding formal multi-variate Lau-
rent polynomial is zero, or because it is a non-zero Laurent polynomial that happens to
evaluate to 0 in the concrete choice of input variables. It follows from a straightforward
extension of the Schwartz-Zippel lemma that the latter case only occurs with negligible
probability since the negative and poitive total degrees are polynomially bounded in λ.
The remaining possibility is that the test corresponds to the zero polynomial formally
speaking, but in that case any other common reference string σ′1,σ

′
2 would also have

σ′1 · Tσ′2 = 0. ut

Symmetric bilinear groups. The non-interactive argument system also works in
symmetric bilinear groups where G1 = G2 and g = h. In this case, the common reference
string contains the union of the elements in [σ1]1 and [σ2]2 and the proof and verification
equation is computed the same way as described above.

Efficiency. The proof size is 2 elements in G1 and 1 element in G2. The common
reference string contains a description of the relation R, n elements in Zp, m + 2n + 3
elements in G1, and n+ 3 elements in G2.

The verifier does not need to know the entire common reference string, it suffices to
know

σV =

(
p,G1,G2,GT , e, [1]1,

{[
βui(x) + αvi(x) + wi(x)

γ

]
1

}`
i=0

, [1]2, [γ]2, [δ]2, [αβ]T

)
.

The verifier’s reference string only contains `+ 2 elements in G1, 3 elements in G2, and
1 element in GT .

The verification consists of checking that the proof consists of three appropriate
group elements and checking a single pairing product equation. The verifier computes `
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exponentiations in G1, a small number of group multiplications, and 3 pairings (assum-
ing [αβ]T = [α]1 · [β]2 is precomputed in the verifier’s reference string).

The prover has to compute the polynomial h(X). The prover can compute the
polynomial evaluations

m∑
i=0

aiui(rq) =
m∑
i=0

aiui,q

m∑
i=0

aivi(rq) =
m∑
i=0

aivi,q

m∑
i=0

aiwi(rq) =
m∑
i=0

aiwi,q

for q = 1, . . . , n. It depends on the relation how long time this computation takes; if it
arises from an arithmetic circuit where each multiplication gate connects to a constant
number of wires, the relation will be sparse and the computation will be linear in n. Since
the polynomials have degree n− 1 they are completely determined by these evaluation
points. If r1, . . . , rn are roots of unity for a suitable prime p she can compute h(X)
using standard Fast Fourier Transform techniques in O(n log n) operations in Zp. The
prover can also compute the coefficients of

∑m
i=0 aiui(X) and

∑m
i=0 aivi(X) using FFT

techniques. Having all the coefficients, the prover does m+ 3n− `+ 3 exponentiations
in G1 and n+ 1 exponentiations in G2.

Asymptotically the exponentiations are the dominant cost as the security parameter
grows. However, in practice the multiplications that go into the FFT computations may
be more costly for moderate security parameters and large statements. In that case,
it may be worth to use a larger common reference string that contains precomputed
[ui(x)]1, [vi(x)]1, [vi(x)]2 elements for i = 0, . . . ,m such that A and B can be constructed
directly instead of the prover having to compute the coefficients of

∑m
i=0 aiui(X) and∑m

i=0 aivi(X) and then do the exponentiations. In the case of boolean circuits we have
ai ∈ {0, 1} and the prover can with such precomputed elements just do m group multi-
plications for each when computing A and B. We have for this reason let the CRS be
longer in Table 1 to get a low computational cost for the prover.2

4 Lower bounds for non-interactive arguments

It is an intriguing question how efficient non-interactive arguments can be. We will now
give a lower bound showing that pairing-based non-interactive arguments must have at
least 2 group elements in the proofs. More precisely, we look at pairing-based arguments
where the common reference string contains a description of a bilinear group and a
number of group elements, the proof consists of a number of group elements computed
by the prover using generic group operations, and the verifier checks the proof using
generic bilinear group operations. We will show that for such pairing-based argument
systems, the proof needs to have elements from both G1 and G2 if the language includes
hard decisional problems as defined below.

Consider sampleable problems for a relation R, where there are two sampling algo-
rithms Yes and No. Yes samples statements and witnesses in the relation. No samples

2 Since the modified common reference string that gives faster prover computation can be computed
from the original common reference string, the security proof still applies and we get knowledge
soundness against generic adversaries. We note that if the non-interactive argument has knowledge
soundness in the standard model then the modified common reference string also gives knowledge
soundness in the standard model assuming we still give the original common reference string to the
extractor.
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statements outside the language LR defined by the relation. We are interested in re-
lations where it is hard to tell whether a statement φ has been sampled by Yes or
No.

Definition 5. We say the relation generator R has hard decisional problems if there
are two polynomial time algorithms Yes and No such that for (R, z) ← R(1λ) we have
Yes(R) → (φ,w) ∈ R and No(R) → φ /∈ LR with overwhelming probability, and for all
non-uniform polynomial time distinguishers A

Pr
[
(R, z)← R(1λ);φ0 ← No(R); (φ1, w1)← Yes(R); b← {0, 1} : A(R, z, φb) = b

]
≈ 1

2
.

If one-way functions exist, we can construct pseudorandom generators. A pseudorandom
generator can be used to generate a pseudorandom string, a Yes-instance, with the seed
being the witness. To get a No-instance we sample a uniform random string, which with
overwhelming probability is not pseudorandom. If the relation R is NP-complete, or just
expressive enough to capture pseudorandom generators, then it has a hard decisional
problem. In particular, when we are working with pairing-based arguments we must
assume at the very least that the discrete logarithm problem is hard and then relation
generators with hard decisional problems exist.

4.1 Linear interactive proofs cannot have linear decision procedures

We will now prove that NILPs cannot have a degree 1 verifier. This answers an open
question raised by Bitansky et al. [BCI+13]. The result holds even if we consider des-
ignated verifier NILPs that get input σV not available to the prover, and instead of
knowledge soundness we only consider the weaker notion of soundness that we now
define.

Definition 6 (Statistical soundness against affine prover strategies). We say
a LIP is sound against affine prover strategies if for all adversaries A

Pr

[
(R, z)← R(1λ); (σP ,σV , τ )← Setup(R); (φ,Π)← A(R, z)

π = ΠσP ; t← Test(R,φ, σV ) : φ /∈ LR ∧ t(π) = 0

]
≈ 0.

Theorem 3. There are no NILPs with verifier degree 1 for relation generators with
hard decisional problems.

Proof. NILPs of degree 1 by definition have a decision procedure producing an arith-
metic circuit t : Fk → Fη evaluating polynomials of degree 1 and testing whether
t(π) = 0. Since the polynomials have degree 1 it is possible to efficiently compute a
matrix A ∈ Fη×k and a vector b ∈ Fη such that the test corresponds to checking Aπ = b.

Let us now construct an algorithm A that given R and φ has a good chance of
determining whether φ ∈ LR or φ /∈ LR. It is crucial here that in our definition of
NILPs the prover and soundness adversary choose the proof matrix Π independently of
the setup σP and σV . The idea is to run an honest verifier repeatedly to create many
common reference strings and verifications. When φ ∈ LR the same proof matrix Π will
give valid proofs for all honest runs of the verifier. On the other hand, when φ /∈ LR
soundness makes it unlikely that the same Π can pass many tests.
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We now give the details. First, A(R,φ) runs the setup N = mk log |F | times to
get (σ1,P ,σ1,V ), . . . , (σN,P ,σN,V ). Then for each of them it creates the verifier’s tests
Ai ∈ Fη×k and bi ∈ Fη for the statement φ. By completeness, if we had a witness for
φ we could compute a proof matrix Π such that for all N tests AiΠσi,P = bi. The
algorithm A does not know a witness for φ ∈ LR, but it can solve the set of linear
equations to see whether such a Π exists. If it does, it outputs 1 to indicate φ ∈ LR and
otherwise it outputs 0 to indicate φ /∈ LR.

Let us now analyze the success probability of the decision algorithm A. On input
φ ∈ LR the completeness of the NILP means that such a Π exists and since the system
of equations is linear it can be efficiently solved. The decision algorithm will therefore
output 1 when φ ∈ LR. On input φ /∈ LR the soundness of the NILP means that any
choice of Π has low probability of passing the verification. The chance that it passes all
N = mk log |F | verifications is therefore upper bounded by negl(λ)mk log |F |. There are
|F |mk possible choices of Π, so there is negligible probability that any Π exists that will
pass all tests. The decision algorithm therefore outputs 0 with overwhelming probability
when φ /∈ LR. ut

The proof of the Theorem 3 also holds for split NILPs and if we restrict the soundness
adversary to produce split matrices Π1, Π2; this is just an extra restriction on the proof
matrices the prover and adversary can produce. In Sect. 2.5 we constructed a pairing-
based SNARK from disclosure-free split NILPs. The disclosure-freeness captured that
a generic soundness adversary cannot learn interesting information about the common
reference string in a pairing setting. All it can do is therefore to choose a statement
φ /∈ LR and a proof matrix Π independently of σ and hope they pass the verification.
Since a single element proof would correspond to a linear decision procedure in the
Type III pairing setting, we get the following corollary:

Corollary 1. A relation generator with pairing-based SNARKs in the Type III setting
constructed from disclosure-free split NILPs as described in Sect. 2.5 must have at least
two elements in the proofs for the languages to be non-trivial.

4.2 Lower bound for the size of generic pairing-based non-interactive
arguments

We will now generalize the statement that a pairing-based non-interactive argument over
Type III groups must have elements in both G1 and G2 by not requiring the common
reference string to be disclosure-free. The intuition behind the argument is still the same
though: if we have a unilateral argument with only elements in G1 or only elements in
G2, then the verification equations become linear and it becomes possible to violate
soundness. For generality, we show this holds even if the common reference string and
proof contain elements in GT . This results implies a lower bound of at least 2 group
elements in a pairing-based non-interactive argument.

We will consider pairing-based argument systems (Setup,Prove,Vfy), where the com-
mon reference string and proofs consist of group elements computed using generic group
operations and the verifier uses generic bilinear group operations to test the proof. We
restrict the verifier to test the validity of the proof by creating a number of pairing
product equations and accepting when they all holds. All known pairing-based SNARKs
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satisfy this restriction. The restriction rules out violations of the intention behind saying
the argument is “pairing based”. For instance, if the common reference string and the
proof can be expressed as group elements raised to bits, (G0, G1, . . . , G1, G0), then we
could imagine the prover would read of the bit-string in the common reference string,
use this to create a non-pairing based SNARK, encode it as bits sent to the verifier,
and the verifier would decode the bits in the proof and check it. Clearly this is just a
very cumbersome way to encode a different type of SNARK and cannot be sadi to be
pairing-based.

Let us be explicit about what we mean by a pairing-based non-interactive argument
as described above and the consequences of using generic group operations.

(σ, τ)← Setup(R): The relation contains a bilinear group (p,G1,G2,GT , e,G,H) and
the common reference string contains group elements in G1,G2 and GT , i.e., σ =
([σ1]1, [σ2]2, [σT ]T ).

oup elements G,Gb, where b is a bit. The prover can easily recover the bit b by
guessing it and verifying the guess with generic group operations.

π ← Prove(R, σ, φ, w): The prover uses generic group operations to construct the proof.
This means that she picks matrices Π1, Π2 and ΠT and computes the proof by
setting3

π = (Π1[σ1]1, Π2[σ2]2, ΠT [σT ]T ).

Note that we do not assume the common reference string is disclosure-free, so it is
possible the matrices Π1, Π2, ΠT are related to σ1,σ2,σT .

0/1← Vfy(R, σ, φ, π): The verifier works in two steps. First, it generates matrices and
vectors {Ti, ti}ηi=1. It chooses these matrices and vectors independently of the proof,
but may use knowledge of the statement and the common reference string. Then it
accepts if and only if all pairing product equations of the form

[σ>1 ,π
>
1 ]1 · Ti

[
σ2

π2

]
= t ·

[
σT
πT

]
T

hold.

Theorem 4. A pairing-based non-interactive argument with generic group algorithms
as described above cannot exist for relation generators with hard decisional problems
unless the proofs have elements both in G1 and G2.

Proof. Let us for contradition assume we have a pairing-based non-interactive argu-
ment of the form described above where the proofs have no elements in G1. The case
where the proof has no elements in G2 is similar. This means the proofs are of the form
[Π2σ2]2, [ΠTσT ]T , where Π2, ΠT are matrices chosen by the generic prover. The matri-
ces and vectors for the test of a proof can then be rewritten as (A1, B1, c1,d1, . . . , Aη, Bη, cη,dη),
for which the verifier checks

[σ1]1 ·Ai[σ2]2 + [σ1]1 ·BiΠ2[σ2]2 = ci · [σT ]T + di ·ΠT [σT ]T .

3 The prover can also include pairings of elements in G1 and GT in the proof but we can without loss of
generality assume all possible pairwise pairings of elements in [σ1]1 and [σ2]2 are included in [σT ]T .
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We observe that the verification equations correspond to a system of linear equations
in Π2 and ΠT .

We will use such a pairing-based argument system to design an algorithm A(R,φ)
that gets a statement φ as input that is either generated as a Yes-instance or a No-
instance and decides which case it is. The algorithm works in two stages: first it generates
a lot of honest proofs for Yes-instances chosen by itself, and then it checks exloits the
linearity of the verification equations to check if the current instance φ can have a proof
similar to the other Yes-instances. If φ is a Yes-instance it can have such a structure,
but if φ is a No-instance soundness says it cannot.

For the first stage, the algorithm samples many Yes-instances (φj , wj)← Yes(R). It
then generates a common reference string [σ1]1, [σ2]2, [σT ]T and creates proof matrices
Πj,2, Πj,T and verification tests (Aj,1, Bj,1, cj,1,dj,1, . . . , Aj,η, Bj,η, cj,η,dj,η) for all state-
ments. Let V be the vector space generated by (Aj,1, Bj,1Πj,2, cj,1,d

>
j,1ΠT , . . . , Aj,η, Bj,ηΠj,2, cj,η,d

>
j,ηΠj,T ).

The algorithm keeps sampling until λ Yes-instances φj in a row give vectors already in
V . The vector space has polynomial dimension, so this process terminates in polynomial
time. Chernoff-bounds then tell us that with at least 50% probability the Yes-instance
φ also gives rise to a vector in V . Of course, even if φ is a Yes-instance, the algorithm
does not know the corresponding witness though.

The algorithm now proceeds to the second phase. Given φ it creates the test (A1, B1, c1,d1, . . . , Aη, Bη, cη,dη).
Then it tries to solve forΠ2, ΠT such that (A1, B1Π2, c1,d

>
1 ΠT , . . . , Aη, BηΠ2, cη,d

>
η ΠT )

belongs to the vector space V . This is a system of linear equations, so it can be efficiently
solved. If the algorithm manages to solve for Π2, ΠT it returns 1, otherwise it returns
0.

Let us now analyze the success probability of the algorithm. If φ is sampled as a
Yes-instance the algorithm has least 50% chance of finding Π2, ΠT giving rise to a vector
in V . On the other hand, if φ is sampled as a No-instance, soundness implies that there
is negligible probability of finding such a Π2, ΠT . We note that soundness holds because
the algorithm after generating the setup [σ1]1, [σ2]2, [σT ]T honestly runs the generic
prover and verifier several times, but never uses special knowledge about the underlying
discrete logarithms σ1,σ2,σT except what an honest prover and verifier might learn
with generic algorithms. ut

Corollary 2. A pairing-based non-interactive argument with generic group algorithms
as described must have at least two group elements in the proof.
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