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Abstract. In this work, we analyze all existing RSA-CRT countermeasures against the Bellcore at-
tack that use binary self-secure exponentiation algorithms. We test their security against a powerful
adversary by simulating fault injections in a fault model that includes random, zeroing, and skipping
faults at all possible fault locations. We find that most of the countermeasures are vulnerable and do
not provide sufficient security against all attacks in this fault model. After investigating how additional
measures can be included to counter all possible fault injections, we present three countermeasures
which prevent both power analysis and many kinds of fault attacks.

Keywords: Bellcore attack, RSA-CRT, modular exponentiation, power analysis

1 Introduction

In a fault attack, an adversary is able to induce errors into the computation of a cryptographic algorithm
and thereby to gain information about the secret key or other secret information used in the algorithm. The
first fault attackwas published in 1997 [5]. It targets an RSA implementation using the Chinese remainder
theorem, RSA-CRT, and is since known as the Bellcore attack. The Bellcore attack aroused great interest
and led to many publications about fault attacks on RSA-CRTand ways to prevent them, e.g., [2}/7{10[/12[23].
Countermeasures to prevent the Bellcore attack can be categorized into two families: the first one relies on a
modification of the RSA modulus and the second one uses self-secure exponentiation. The countermeasures
in the first family were recently analyzed [22], and a formal proof of their (in)security was provided.

We complement the work of [22] by comprehensively analyzing the countermeasures in the second family,
i.e., those based on self-secure exponentiation. These countermeasures use specific algorithms that include
redundancy within the exponentiations. The first such method is based on the Montgomery ladder |10]. This
was adapted to the right-to-left version of the square-and-multiply-always algorithm [6,|7] and to double
exponentiation [19}/23]. We test the security of these methods using an automated testing framework. We use
the same fault model as in [22], but extend it to meet the particularities of self-secure exponentiation algo-
rithms. We reveal that the countermeasures have certain vulnerabilities in this extended fault model. Based
on these findings, we improve the countermeasures and present three self-secure exponentiation methods
that are secure against fault injections, safe-error attacks, and power analyses. We note that non-algorithmic
level countermeasures are not in the scope of this paper.

Our Contribution: In this paper, we test the security of the self-secure exponentiation countermeasures
against the Bellcore attack by simulating random, zeroing, and skipping faults at all possible fault lo-
cations (Section . Thereafter, we propose secure countermeasures, step-by-step achieving protection
against all fault injections and resistance to power analysis and safe-error attacks. We present one coun-
termeasure for each of the exponentiation algorithms used as self-secure exponentiation: the Montgomery
ladder, the square-and-multiply-always algorithm, and the double exponentiation method. Despite the nat-
ural overhead caused by the included measures against all the considered attack types, our algorithms
remain highly efficient (Section .

* Please cite the conference version of this work published at COSADE’16 [16].



2 Background

We describe the Bellcore attack and detail physical attacks that we target in this work. Finally, we describe
the most frequently used regular exponentiations.

2.1 The Bellcore Attack on RSA-CRT

We use the standard notation for the RSAencryption and signature scheme [24]: M denotes the message,
N = pq the public modulus with secret primes p and ¢, ¢(N) = (p — 1)(¢ — 1). The public exponent e with
ged(e, o(N)) = 1 is chosen along with the secret exponent d, where e-d =1 mod ¢(N). The signature is
calculated S = M? mod N, and S¢ = (M%) = M mod N. The calculation can be speeded up by a factor
of four using the RSA-CRT implementation [21]. Two smaller exponentiations S, = M% mod p and S, =
M4a mod q are performed with exponents d, = d mod (p — 1), d; = d mod (q — 1), and recombined with the
method S = CRT(S,, S,) = ((Sp — Sy)i, mod p)g + Sy, where i, = ¢! mod p. The public key of RSA-CRT
is (e, N) and the private key includes p, ¢, d,, d, and i,.

A fault attack is a physical attack where the attacker is able to induce faults into the execution of the
algorithm. The first attack on RSA-CRT was proposed by Bellcore researchers [5]. The fault is induced into
the calculation of strictly one of the intermediate signatures, resulting in 3’; (or 3;) If 3’; (or 3;) is used
during recombination, a faulty signature S is returned. With high probability ¢ (or p) can be deduced as
ged(S — S, N) 5] or as ged(5¢ — M mod N, N) [12).

During the discussion of fault attacks, the precise description of the fault model is essential: it includes
the assumptions on the adversary’s abilities. The Bellcore attack targeting an unprotected implementation
uses one fault injection and loose assumptions in the fault model, i.e., a very weak attacker. The attacker
is only assumed to alter an intermediate signature, which can be achieved by an arbitrary modification of
any variable throughout the exponentiation, i.e., affecting any bit or any byte results in a successful attack.
Thus, the Bellcore attack represents a threat that has to be taken into consideration when designing secure
cryptosystems using RSA-CRT.

2.2 Safe-Error Attacks

Classical fault attacks exploit the corrupted result or the difference between a correct and faulty results.
However, it was noted in [27] that secret information may leak depending on if a fault has effect on the result
of the computation or not. The techniques that exploit such behavior are called safe-error (SE) attacks.

Computational safe-error attacks (C-SE) [28] target dummy operationswhich were introduced in order
to achieve regularity. If the result remains error-free although a fault was inducedinto the computation, it
affects a dummy operation and thus, information about the secret key can be revealed.

Memory safe-error attacks (M-SE) [27] assume a more powerful attacker. Knowing how the internal
variables are processed in the memory throughout a certain step of the algorithm, one may be able to derive
the secret key. For examples and details on such attacks, the reader is referred to [27]. Memory safe-error
attacks are prevented by randomizing the targeted variables.

2.3 Power Analysis Methods

Simple power analysis (SPA) is a side channel attack based on information about the power consumption of
a single execution of the algorithm. If the execution depends on the value of the secret key, the adversary is
able to obtain information by analyzing the power trace. Classical binary modular exponentiation algorithms
are vulnerable to SPA, since the power consumption of squaring operations and multiplications can be
differentiated [1}/18]. In case of the RSA signature scheme, an SPA reveals the secret exponent d and when
the CRT implementation is used, it targets the values d,, and d,.

Differential power analysis (DPA) is a natural extension of SPAand was introduced in |17]. When perform-
ing a DPA, an attacker collects several power trace measurements of the executions of the same algorithm and
uses statistical methods to reveal the secret key. Prevention generally requires randomization of variables.



Algorithm 1 SPA-resistant modular exponentiation methods

(1a) Square-and-multiply-always [8] (1b) Montgomery ladder [14]
input: M #0,d = (dp-1,...,do)2, input: M #0,d= (dp—1,...,do)2, @
output: M? mod z output: M? mod z

1: Ro:=1,R1 :=1,Ry:=M 1: Ro:=1,Ri =M

2: fori=0ton—1do 2: fori=n—1to0do

3: R;i = RE' R mod z 3: RdT = RdT- - Rq;, mod x

4: Ry = R% mod x 4: Ry, := Rfli mod x

5: end for 5: end for

6: return Ry 6: return Ry

2.4 Algorithms for Regular Exponentiation

Classical modular exponentiation algorithms are vulnerable to SPA, since the power consumption of the
different operations can be differentiated [18]. To prevent SPA, regularity of the modular exponentiation
algorithms is required. It means that the same operations are performed independently from the value
of the exponent. Below, we recapitulate the two most widely used methods. We consider binary modular
exponentiation algorithms and therefore 2"-ary methods such as sliding window exponentiation are out of
scope of this paper.

Square-and-Multiply-Always: The right-to-left exponentiation algorithm was modified in [§] to the
square-and-multiply-always method, shown in Alg. By introducing dummy operations in register R
(line 7 one squaring and one multiplication is performed at each iteration, and the algorithm has a regular
power consumption trace.

Montgomery Ladder: The powering ladder was proposed to speed up scalar multiplication [20]. The
correctness of the binary modular exponentiation algorithm based on the Montgomery ladder, as presented
in Alg. is discussed in [14]. The algorithm is regular without including dummy operations and is resistant
to safe-error attacksas well [14].

3 Countermeasures Against the Bellcore Attack

To counter the Bellcore attack, straightforward countermeasures aim to verify the integrity of the computa-
tion before returning the result, e.g., by repeating the computation and comparing the results. Due to the
inefficiency of such measures, several improved countermeasures appeared starting from 1999.

3.1 Two Families of Countermeasures

The advanced countermeasures were divided into two families according to the difference in their nature [22]:
Shamir’s family and Giraud’s family. We refer to the latter as self-secure exponentiation countermeasures.

Shamir’s family consists of the countermeasures that prevent the Bellcore attack by multiplicatively
extending the modulus z with a random number s. They rely on the fact that an invariant, inherited from
the calculations modulo the extended modulus, i.e., modulo z - s, must hold modulo s. Shamir’s algorithm
from [25] motivated researchers to develop such countermeasures, e.g., [2,/13.[22].

The idea of self-secure exponentiation countermeasures was proposed in [10]. If the exponentia-
tion algorithm returns more than one power of a given input and keeps a coherence between its registers
throughout the exponentiation, an invariant can be formulated that must hold at the end of the algorithm.
However, it is claimed to be lost if a fault injection takes place.

3.2 Self-Secure Exponentiation Countermeasures

In this section, we recapitulate the main idea of the existing self-secure exponentiation countermeasures. The
algorithms, in the same form as they were proposed, are provided in Appendix [A]in Alg.



Table 1: Self-secure exponentiation countermeasures. CRT, check, inv., reg., mult., and sq. denote the num-
ber of CRT recombinations, checking procedures, inversions, additional large registers, multiplications, and
squaring operations respectively, in terms of the bit-length n of the exponent. PA and SE denote the resis-
tance against power analysis and safe-error attacks. v' means that there are included countermeasures, x
refers to the lack of them.

Countermeasure Efficiency criteria Physical attacks
Author(s) Ref. CRT [Check| Inv. [[ Reg. | Mult. [ Sq. PA SE
Ref. | Alg. Total Per exp. SPA | DPA | DPA | C-SE | M-SE
Giraud [ T Pl 2 [ 4 [ 0 3 n n | Tx [ v v Vv
Fumaroli, Vigilant 9] 6 2 4 |2 4 n+3 2n v v X v v
" Boscheretal’07 || (7] [ [ 3] 5| 0o [[ 4| n | n |l v ][ x| x| Vv ] x_
Boscher et al.’09 6] | [7 3 5 |19 || 4 n+2 n v | v X v |V
" Rivan [ R3] R Tl 2 [ 0o [ 2| ~16m || x | x| x| v | x
Rivain (SCA) 23] | 9 1 2 0 3 | ~1.65m | 0 v x| v | v
Le et al. (19] 1 2 0 3 | ~06™T | n X X X v X

The first countermeasure was proposed by Giraud [10]. It exploits the fact that while using the Mont-
gomery ladder, the temporary registers Ry and R; are of the form (M*~! mod 2, M* mod z) for some integer
k after each iteration of Alg. After two exponentiations that result in the pairs (S, = M 4»=1 mod p,
S, = M% mod p) and (Sy = M9t mod ¢, S, = M% mod ¢), and two recombinations S’ = CRT(S,,S;) =
M9t mod pq and S = CRT(S,,S,) = S¢ mod pq, the invariant M - S’ = S mod pg holds. Giraud claims
that in case of a fault attack within the exponentiation, the coherence is lost for S, (or S,,57) and
thus for S and S’. Despite its advantages, the Montgomery ladder exponentiation remains vulnerable to
DPA [17] (DPA®*P). Fumaroli and Vigilant blinded the base element with a small random number 7 [9],
using one more register R in the exponentiation. Besides being more memory-costly, this method was proven
to be insecure against fault attacks [15], due to the lack of coherence between Ry and the other registers.
Moreover, it remains vulnerable to the DPA attack on the CRT recombination from [26] (DPACRT).

The square-and-multiply-always algorithm (Alg. , uses dummy operations to prevent SPA. Boscher
et al. in 2007 proposed a self-secure exponentiation countermeasure based on this algorithm [7]. In the end
of the execution, Ry holds the value M? mod x, Ry holds M2" =41 mod z, while Ry only depends on the
binary length n of the exponent, and equals to M?" mod x. Thus, the coherence M - Ry - Ry = Ry mod z is
kept throughout the algorithm. Boscher et al. in 2009 [6], modified the method in order to achieve resistance
against DPA on the exponentiation without significant overhead. 2*-ary versions of the algorithm, omitted
in this paper, were proposed in [3}11].

Rivain proposed a solution that uses double exponentiation [23|. Such a method receives the base M, two
exponents dy, ds, the modulus z, and outputs both M% mod z and M% mod x. It makes use of a double
addition chain for the pair (dy, d2), by means of which the two modular exponentiations are performed at once,
using altogether 1.65n operations on average, where the amount of squaring operation and multiplication
depends on the bits in the chain. We assume this chain to be precomputed. Le et al. presented a double
exponentiation algorithm, that does not rely on precomputation [19]. The binary exponentiation works as
two parallel executions of the right-to-left exponentiation and uses register Ry for calculations with d; and
register R; for calculations with do. M?" mod x is computed only once and is stored in Rs.

Table [I] summarizes the different properties of the self-secure exponentiation countermeasures. We con-
sider the security and efficiency of the methods, since measures against physical attacks imply overhead.
When discussing efficiency, we describe the following relevant properties to achieve low time and memory
consumption: number of registers containing large values that are used additionally to the input registers
(M,d,x) during the exponentiation, number of multiplications, squaring operations and inversions using
large registers. We summarize if they include protection against physical attacks such as power analysis on
the exponentiation and the CRT recombination and safe-error attacks.



Table 2: Results of our fault injection tests on the exponentiation algorithms, assuming that the checking
procedures are protected We note that we rely on the original fault models of the countermeasures from
column Ref., recapitulated in Appendix[A] v denotes that our tests did not reveal any vulnerability against
the fault type, M and d;, dy denote the vulnerability of the message and the exponents in the exponentiation
algorithm, respectively. When considering skipping faults, we indicate which lines are skipped together to
achieve a successful attack. The register numbering R;, ¢ € {0,1,2} and the lines are according to the
algorithms in column Alg.

Countermeasure Fault injection attacks
Author(s) Ref. Alg. Random Zeroing Skipping
Fault number - 1 1 ‘ 2 1 2
Giraud [10] 5 v M, Ro, R: v 405
Fumaroli, Vigilant 19 6] Ry M, Ro, R1, R 1) 1 @l or 2~@)
" Bassheretalior T @ TR T T 1T T @R
Boscher et al.’09 16] v v v v @Iﬁl
77777 Rivam || R3] [ B (| ™M | v [ v | v [ v
Rivain (SCA) (23] 9| M v v v v
Le et al. [19] M v dy,ds v v

4 Security of Self-Secure Exponentiation Methods

The security of self-secure exponentiation countermeasures relies mainly on the exponentiation algorithms.
Each method has an invariant that holds throughout its execution, which is claimed to be lost in case a
fault is injected. Accordingly, the modular exponentiation methods have to be tested against fault attacks.
In this section, we recapitulate the fault model that we adopt, briefly describe our methodology and discuss
our results.

4.1 Simulating Fault Injections Against Self-Secure Exponentiation Countermeasures

The designers of the countermeasures provide either formal and informal explanations for their security
assumptions and their fault models differ from each other. To the best of our knowledge, we are the first to
simulate all possible fault injections in a common fault model.

Fault Model: We adopt the generic fault model of [22]. Therefore, we simulate three types of fault
injections: random and zeroing faults in case of which the affected variable is changed to a random value and
null, respectively, and skipping faults which cause instruction skips, i.e., jumps over some lines of the pseu-
docode. We take the following fault types into consideration: faults on local variables, on input parameters,
and on conditional tests. An adversary is able to target any variable, but cannot specify the bits his fault
affects. When inducing a random fault, he does not know its concrete value. Since refined methods appear
for performing instruction skips in practice (e.g. |4]), we consider it as a possible threat when discussing
physical attacks. The injection of skipping faults was observed as practical in [22|, but was covered by means
of random and zeroing faults. This does not hold for self-secure exponentiation. When considering skipping
faults, we count the number of lines that have to be skipped in the pseudocode. In the Montgomery ladder
shown in Alg. [1b] the pair (Rg, R1) is of the form (M*~! mod x, M* mod z) at each iteration, which coher-
ence is assumed to be lost in case of a fault injection. However, an adversary might skip two consecutive
lines at any iteration of the loop. The invariant holds for the corrupted RO and R1 and thus, the fault
is not detected.

Our Framework: In case of self-secure exponentiation countermeasures, the underlying exponentiation
algorithm has to be tested and checked that the invariant is lost if a fault is injected. When simulating the
attacks, we needed features that the tool used for the analysis of Shamir’s family lacked [22]: redefinition
of variables and support for loops. Therefore, we created our own framework in Java. A manual step of our
method was identifying the possible fault injection locations within the exponentiation algorithms. After this



manual step, the simulation of multiple fault injections in all possible combination of fault locations was fully
automated, for all the three fault types. A simulation results in a successful Bellcore attack if a corrupted
signature is returned. For more details on our simulation framework, the reader is referred to Appendix [B]

4.2 Simulation Results

The results of our fault injection simulations are shown in Table [2| While performing the tests with multiple
faults, we considered protected checking procedures, since skipping or zeroing any of the checks would enable
a successful Bellcore attack. When considering faults on the checking procedures, a method can be protected
against n fault injections by repeating each check n times.

Random Faults: If a countermeasure is protected against one random fault injection, it cannot be
broken with more than one random faults either. This is due to the fact that a random fault cannot induce
a verification skip [22]. Our results confirm that in case of the algorithms that use the Montgomery ladder
or the square-and-multiply-always algorithm, the intermediate secret exponent and the loop counter have to
be protected against random faults. [7,9,/10] use the checksum of the exponent to verify its integrity and
thwart the attack. It was revealed in |15], that the introduction of register Ro in Fumaroli and Vigilant’s
countermeasure |9] made it vulnerable to any random fault on Ry at any iteration of the algorithm. This
is due to the fact that R, is calculated independently of the other two registers, which are multiplied with
its final value. In case of the countermeasures using double exponentiation, a possible random fault is the
corruption of the intermediate message M, resulting in M. Rivain identified this vulnerability and suggested
to compute a cyclic redundancy code [23].

Zeroing Faults: Without a specific checking procedure against zeroing faults, the exponentiation al-
gorithms (Section are vulnerable. According to [10], it is unlikely to be able to zero a large buffer in
practice. However, as [7,[22], we take zeroing faults into consideration but note that their injection is very
difficult to achieve in practice. In case of the methods that use the Montgomery ladder and the square-and-
multiply-always exponentiation, if the message M in the beginning of the algorithms is zeroed, zeroes are
returned. The same holds for any of the registers Rg, R; in the method using the Montgomery ladder and
for Rg in Fumaroli and Vigilant’s and Boscher et al.’s methods. Then, the checking procedure holds even
though the recombination is computed with only one of the intermediate signatures. Giraud considered this
vulnerability impossible, while Boscher et al. included checks against it. The two countermeasures that use
double exponentiation are not vulnerable to a single zeroing fault. In the case of Rivain’s method [23], the
exponent is given by the addition chain, which we assume to be protected. For the algorithm by Le et al. [19],
two zeroing faults on the exponents d;,ds are necessary to conduct a Bellcore attack. If any other values
are zeroed, the coherence check does not hold and the fault is detected.

Skipping Faults: Our simulations show that only the method by Fumaroli and Vigilant [9)] is vulnerable
to the instruction skip of one line, the calculation of register Ry, which has a similar effect as the random fault
on Ry. When two lines are skipped together, both regular, SPA-resistant algorithms, i.e., the Montgomery
ladder and the square-and-multiply-always methods are vulnerable. By skipping two consecutive lines
within the loop, they preserve the coherence between the variables even though the results are corrupted.
Even if the loop counter i is protected, skipping faults result in successful Bellcore attacks.

5 PA-SE-FA-Resistant Self-Secure Exponentiation Countermeasures

We propose a secure countermeasure for each of the exponentiation algorithms that are used for constructing
self-secure exponentiation methods: Section[5.1] presents the method with the Montgomery ladder, Section[5.2
describes the one with the square-and-multiply-always algorithm and Section [5.3| shows the countermeasure
that uses double exponentiation. We claim that our proposed countermeasures are secure against power
analysis (PA), safe-error (SE) attacks, and fault attacks (FA) and remain highly efficient. For the verification
of the resistance against fault injection attacks, we applied our framework from Section |4.1| on the proposed
algorithms. We discuss the implied overhead by the introduced protection against physical attacks. FA]
denotes fault attacks of type j (r, z, s denote random, zeroing and skipping faults, resp.), against variable(s) i.



Algorithm 2 PA-SE-FA method with the Montgomery ladder

(2a) MoNExP(M, d, x, 7, Tinv, S) (2b) RSA-CRT
input: M,d=(dn_1,...,do)a, input: M #0,p,q,dp,dg,iq, D =p S qP dp & dgq D 1q
T, Ty Tinv, S output: M? mod pq or error
output: (r*" - M? mgd sz, 1: Pick k-bit random prime s, s.t. ps{ M,qgst M > FA @ m), FAY [
r2" - M mod sz, rZ,, mod sx) . Pi i * s
> Tinv 2: Pick random integer r € Zp ARy> FA
l:z:=s-z > FA, FA;’JZ 3: riny := 7! mod pgs > FAR27 FA?@
20 Ro:=r 4: (Sp,Sp,Rp) :=MONEXP(M mod sp,dp,p,7, inv,5)
Z: Ri=r-M msd z 5: (Sq,54,Rq) := MONEXP(M mod sq,dq,q,,Tinv,S)
+ 12 = T mod & 6: if Sp - S, = 0 then > FA% Ry Ry Ry
5: for ¢ from n — 1 to 0 do 7. return error
6: Ry = Ry - Ru, mod x 8: end if
. — P2
T Ra; = }gdi mod z 9: S := CRTblinded(Sp, Sq) > DPAcrr
8: Rﬁg =Ry mod z 10: S := CRTpiindea(S,, S5) > DPAGRT
9: end for 11: R := CRTbiinded(Ryp, Ry) > FA,, FAT)
10: return (Ro, R1, R2) 12: §:= R-S mod pq > FA%L,, FA
13: if M-S # R- S’ mod pq then
14: return error
15: end if
16: Sps = (S, mod s)% ™04 =1 1od s
17: Sys = (Sy mod s)% ™4 =D mod s
18: if Sps # S¢s then
19: return error > FA, FAL 7
20: end if
21: if p@qgdd, Bdy Dig # D then
22: return error > F o, Zq dpdg
23: end if
24: return S

5.1 Countermeasure using the Montgomery Ladder

Fumaroli and Vigilant’s countermeasure [9] (Alg. [6)) which aimed to improve Giraud’s method [10] (Alg.
was proven to be vulnerable to random fault attacks [15]. Alg. [2| presents our secure method with the
Montgomery ladder.

To prevent fault attacks on register Ro ( FAR , FAS we return the blinded registers Ry and R; and
perform the multiplication with the inverse contained in % This multiplication happens modulo pq, after
the blinded CRT recombinations of all the three registers in lines PHII] in Alg. 2B

To achieve prevention against skipping faults (FA 7) ), we include a check for verifying the integrity of
the exponentiations. Since the coherence in the regular exponentiation algorithms is not lost when skipping
faults are injected, we create a hybrid countermeasure with a technique used in Shamir’s family by Aumiiller
et al. [2]. We conclude the necessity of the modulus extension to prevent skipping faults and multiply the
modulus with a k-bit random prime s. S, and S, are calculated modulo p - s and ¢ - s, respectively, and the
signature is recombined to S = M? mod pq using the blinded recombination from [10]:

S = CRTblinded (Sp, ) = (((Sp — S4) mod sp) - i, mod sp) - ¢ + .S, mod pg. (1)

To verify that no instruction was skipped, two small exponentiations modulo the k-bit number s with the k-bit
exponents are performed as in lines[T6HIT If a sklpplng fault occurs and the value of S, or S, is corrupted, the
check in line u does not hold with probability 27%. Besides protecting against sklppmg faults this measure
detects faults on the exponent and loop counter i (FA4?) of the exponentiation algorithm, without an
additional large register. If the small exponentiations are calculated using the Montgomery ladder (Alg. 7



Algorithm 3 PA-SE-FA method with the square-and-multiply-always exp.

(3a) SQEXP(M,d,z, 7, Tiny, 5) (3b) RSA-CRT
input: M ,d=(dn—-1,...,do)2, input: M #0,p,q,dp,dq,iq,
Xy, TyTinv, S D:p®q@dp@dq@lq
output: (r- M? mod sz, output: M? mod pq or error
Piny - M2 7471 mod sz, M?" mod sx) 1: Pick k-bit random prime s s.t. ps{ M, qgst M > FA7 FAS
1:z:=s-2 > FA, FAZ’; 2: Pick random integer 1 € Zp > FAR,, FA
2: Rop:=r 3: Pinv i= 7! mod pqs
3: R = Tinv 4: (8p,S,,Tp) :=SQEXP(M mod sp, dp,p, 7, Tinv, S)
4 Ry :=M 5: (S¢,54,T4) :=SQEXP(M mod sq,dq,q, 7\ Tinv, )
5: for i from 0 ton — 1 do 6: if S, - S, =0 then > FA% g,
6: Rg = Rz - Rz mod z 7 return error
7 Rs := R3 mod z 8: end if
8: end for 9: S := CRTblindea(Sp, Sq)
9: return (Ro, Rl, Rz) 10: S/ = CRTblindCd(S;” S(II)
11: T := CRTbiindea(Tp, Ty)
12: if M - S-S’ # T mod pq then
13: return error
14: end if
15: Sps = (rinvSp mod s)d‘? mod (s—1) 115 5
16: Sgs = (PinySq mod s)% m°d =1 164 g
17: if Sps # S¢s then
18: return error > FA, FA;’;
19: end if
20: if p@qg®dy ®dg®iq # D then
21: return error > FA;,qz,iq,dp,dq
22: end if
23: return ri,, - S mod pg

then besides the k-bit message, exponent, and modulus, two k-bit registers, k£ multiplications and squarings
are used. However, a checksum as an input has to be included to detect the corruption of p, g, 4, d, or d, in

Alg. PBin line

We note that the blinded CRT recombination recapitulated in Eq. [I] also prevents the DPA attack on
the CRT recombination (DPAcrr) from [26].

To avoid zeroing faults (FAi/LRO’RLPQ), we check that none of the values returned by the exponenti-
ation is zero. We perform this before the CRT recombinations in Alg. by verifying S, - S; # 0 in line @
In order to make sure that this check does not violate the correctness of the algorithm when the message is
a multiple of ps or ¢s, we choose s such that pst M and gs{ M.

Alg. 2| presents the algorithm that is based on the Montgomery ladder and is protected against power
analysis (PA), safe-error (SE), and fault attacks (FA). For eliminating the revealed vulnerabilities against
fault injection attacks, we included an additional CRT recombination, transformed two small inversions to
one of doubled size, included one large input register D, two times k& multiplications and k squaring operations
on k-bit registers, where k is the security parameter that defines the probability of undetected skipping faults
as 27%. We note that since modular inversion and prime generation imply significant costs, lines can
be precomputed (without the assumption ps t M,gs { M) and s,r and 7i,, can be provided as inputs to

Alg.



5.2 Countermeasure using the Square-and-Multiply-Always Exp.

Boscher et al. described a square-and-multiply always algorithm that is resistant to SPA, DPA, and
SE [6] (Alg.[7). The algorithm includes a technique against the exponent modification, and the check Ry # 0
in the end of the exponentiation to detect zeroing faults (FA3;gr,) [7]. Instead of this check in both
exponentiations, we suggest to verify S, - S, # 0 in Alg. [3b| as in Alg.

Against skipping faults (FA) we suggest the same measure as in Alg. [2f blinding the modulus and
performing two small exponentiations in the RSA-CRT algorithm. For retrieving the signature, the CRT
recombination in Eq. [1] is used. Though not mentioned in [6], the random value r in Alg. should not
be too small to avoid the following SPA during the computation of Alg. if an adversary is allowed to
input the message M = 1, the value of register Ry remains 1 for the whole computation. Therefore, the
multiplication in line [6] would only depend on the bits of the secret exponent d, multiplied either with a
small number (r) or with a large number (riny). This could result in differences in the power consumption
trace and therefore we chose r to be an at least (n + k)-bit integer, where n is the bitlength of p and of g,
since it is used for operations of that size in Alg [3al

Our PA-SE-FA-resistant algorithm with the square-and-multiply-always exponentiation is depicted in
Alg. [3l To eliminate the identified vulnerabilities, we included one large input register D along with two
times k multiplications and k squaring operations on k-bit registers, in a similar manner as in Alg.

5.3 Countermeasure using Double Exponentiation

Rivain proposed the first countermeasure that uses double exponentiation [23] (Alg. [8). He included
modifications by means of which it becomes SPA-DPA-SE-resistant, still requiring the precomputation of
the addition chain (Alg. E[) Our aim is to consider measures in the insecure but more efficient algorithm by
Le et al. [19] (Alg. 7 which does not include precomputation but ignores protection against PA and SE.

Firstly, we transform the algorithm to become resistant to SPA. We use two additional registers with
dummy operations in order to achieve regularity. Thus, the algorithm requires the use of altogether 5 registers:
Ro,1) and R 1) belonging to exponent di, R 2) and R(; 2) belonging to exponent dz, and Ry used as before.
Since for every bit of the exponents the same operations have to performed, this results in altogether 2n
multiplications and n squaring operations.

Algorithm 4 PA-SE-FA method with double exponentiation

(4a) DOUBLEEXP(M, d;,d2, x, s) (4b) RSA-CRT

input: M # 0,d1 = (di,n-1,-.-,d1,0)2, input: M,p,q,dp,dq,iq

do = (dayn—1,...,d2,0)2,2,5 output: M? mod pq or error

output: (Mdl mod zs, M* mod xs) 1: Pick small r1,70 € Z ro > 11 + 2
1: x:=s-x > DPAcrr | 2: Pick k-bit random prime s
2: Ry =1 > SPA | 3: (Sp,cp) = > DPA, M-SE, FA},, FAT,, 4,)
3: Ry =1 > SPA DOUBLEEXP(M mod p,dp+ri(p — 1),r2(p — 1) — dp—1,p, 5)
4: Ry =1 > SPA | 4: (Sq,¢q) i= > DPA, M-SE, FA)y, FAT,, 4,)
5: R =1 > SPA DoUBLEEXP(M mod ¢, dg+71(q — 1),r2(q — 1) — dq—1, g, s)
6: Ry :=M 5. 5 := CRTblinded(Sp, Sq) > DPAcRrT
7: fori=0ton—1do >SPA| 6. if M-S-c, # 1 modp then
8: R(m,n = R(m,l) - Ry mod 7: return error > FAY,, FA?dl,@)
9: R, 72 = R, Re mod x 8: end if
10: Ry := R3 mod 9: if M-S -cq; #1mod q then
11: end for 10: rt?turn error > FAN, FATy, 40
12: if R(O,I)R(l,l) $_é R(O’Q)R(ljg) mod X then 11: end lf
13: return error > C SE | 12: return S mod pq
14: end if
15: return (R,1), R(0,2))
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Table 3: Comparison of our PA-SE-FA self-secure exponentiation countermeasures with previous methods.
The notation is consistent with that of Table |[1| and Table [2| k-bit denoting the included k-bit operations
(squaring and multiplication). We highlight with bold checkmarks (¢) those vulnerabilities that we elim-
inated in our secure countermeasures and we bold the additional resources needed to be used in order to
achieve security against all the considered attacks. When precomputation is allowed, Rivain’s SPA-DPA-
resistant method [23] with a check against the message corruption is the most efficient algorithmic counter-
measure, while our proposed solution using the square-and-multiply-always algorithm performs best without
precomputation.

Introducing regularity against SPA includes dummy operations. The values of registers R(; 1) and R 2)
are unused and thus all the multiplications that assign values to them are dummy operations. To avoid
computational safe-error attacks (C-SE) on these operations, in the end of the exponentiation we
include the check whether R 1) R(1,1) = Ro,2) - B(1,2) mod x. Since both the products corresponding to
the two exponents are M2 ~! mod x, this holds if the values are not corrupted. With this, we verify the
correctness of the dummy values.

To achieve resistance against differential power analysis on the exponentiation (DPAexp) and mem-
ory safe-error attacks (M-SE), we include the exponent blinding method of Rivain in the RSA-CRT
algorithm [23]. Against DPA on the CRT recombination (DPAcgrr), we apply the blinded CRT recombi-
nation method with extended modulus from [10]. For the description of the choice of r; and ry and the
correctness of the blinding method, the reader is referred tothe original papers [10}23].

To detect any randomizing fault on the message M (FA},), we include its value in the coherence checks
as it was seen in case of the countermeasures from [6}/7,/9,10]. We decrease the value of the exponents used
for the calculation of ¢, and ¢, by one, and thereafter multiply the results with M, during the verification in
1inesﬂand of Alg. For instance, if S, and ¢, are calculated by means of a corrupted M , the verification
M - M»+ri9(®) . jfr2e(®)=do=1 = | mod p does not hold with high probability. With this, the zeroing faults
on exponents d; and dz (FA{y, 4,)) are also thwarted, the algorithm returns (1,1) in case of two null
exponents, and the modified check does not hold anymore.

Our PA-SE-FA-resistant countermeasure using double exponentiation is depicted in Alg. [l Though the
modified countermeasure is less memory-efficient than Le et al.’s algorithm, we note its advantage when
protection against physical attacksis considered.

6 Conclusion

In this paper, we analyzed the existing self-secure exponentiation countermeasures against the Bellcore attack
on RSA-CRT. Using our framework, we simulated all possible fault injections considering random and zeroing
faults as well as instruction skips on the lines of pseudocode. We found that the countermeasures using regular
exponentiation algorithms, such as the Montgomery ladder and the square-and-multiply-always algorithm,
lacked protection against skipping faults. The algorithm using double exponentiation without precomputation
lacked protection against power analyses and safe-error attacks.

10



We presented three countermeasures, one for each exponentiation algorithm used for designing self-
secure exponentiation countermeasures. All the three methods are based on regular algorithms to prevent
simple power analysis (SPA), include randomization to be resistant to differential power analysis (DPA)
and memory safe-error (M-SE) attacks, and eliminate dummy operations which could be exploited by
computational safe-error (C-SE) attacks. Measures are included against all considered fault injection attacks
(FA) as well. To prevent skipping faults, we included additional checks into two of our methods, inspired by a
countermeasure in Shamir’s family, resulting in hybrid methods. We included prevention against fault attacks
on the previously vulnerable register in the countermeasure that uses the Montgomery ladder. Our proposed
solution that uses double exponentiation includes protection against power analyses and safe-error attacks
in the algorithm where it was not considered. We note that the vulnerability of the message corruption and
of the DPA on the CRT recombination in Rivain’s SPA-resistant method can be eliminated in a similar
algorithmic manner as in Section [5.3] gaining another, the most efficient secure software countermeasure
when precomputation is allowed. When precomputation is not allowed, our proposed solution using the
square-and-multiply-always algorithm is the most efficient algorithmic countermeasure.

We verified that we eliminated the previous vulnerabilities of the methods without introducing new ones
by applying our simulation framework on the pseudocode of the improved algorithms. Table [3| summarizes
our results and shows that besides Rivain’s double exponentiation method, our algorithms are the only secure
self-secure exponentiation countermeasures in the generic fault model that we adopted from [22]. Despite
the trade-off between security and efficiency, our methods remain highly efficient.
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A Self-Secure Exponentiation Countermeasures

Algorithm 5 Giraud’s countermeasure |10]

PA attack model: SPA, chosen message SPA from |29].

Fault model: Random faults on variables and input parameters. Zeroing attacks, disruption of checking
are regarded as impossible in practice. For the integrity check of d, i, we assume that an additional register

is used in Table [11

(5a) Modular exp.: GIREXp(M,d, z,r)
input: M,d = (dp—1,...,do)2 odd, z, r
output: (M9 ! modr -z, M* mod r - x)
Ty =TT
Ro:=M, Ry := R% mod z,
: for ¢ fromn — 2 to 1 do
RI = Rd7~ R4, mod z,
R, = Ri mod
end for
R1 := R1 - Rp mod z,
Ry = Rg mod z,
if i or d disturbed then
return error
: end if
: return (Ro, R1)

— =

—_
\V]

(5b) Giraud’s RSA-CRT

inI)Ut: M7 p:q, dp, dQ7 iq

output: M? mod pq or error

Pick k-bit random prime r

(Sp,Sp) :=GIREXP(M mod p,dp,p,r)
(55,5¢) :=GIRExP(M mod g¢,dq,q,r)
S := CRTblinded (Sp, Sq)

S’ := CRTblinded (Sp, S5)

S =M -8 mod (p-q)

. if §' # S then return error

end if

if p, q or i4 disturbed then
return error
: end if

: return S

— =
»—AQ@

—_
[\v]

Algorithm 6 Fumaroli and Vigilant’s countermeasure [9]
Attack model: SPA, DPA, against which blinding is included.

Fault model: That of Giraud’s [10].

(6a) Modular exp.: FUMVIGEXP(M, d, )

input: M #0,d = (dp—1,...,do)2, ©
output: (M9 mod z, M*** mod x)

Pick k-bit random prime r
Ro:=7, Ry :=rM mod x
Rs :=7r ! mod z, D:=0

for i from n — 1 to 0 do
Rdfi:: Rdﬁ'Rdi mod z
Rg, = Rﬁi mod x
Ry = R% mod x
D :=D+d;,
D:=D-2
: end for
: D:=D/2
R =Ry DDd
: return (R; - Rgp mod z, Ry - Ry mod z)

— ==
N = O ©

—
w

(6b) Fumaroli and Vigilant’s RSA-CRT

input: M # 0,p,q,dp,dq, g
output: M? mod pq or error
(Sp,Sp) :=FUuMVIGEXP(M mod p,d,,p)
(S¢,Sq) :==FuMVICExP(M mod g¢,dq.q)
S := CRT(Sp, Sq)
S":= CRT(S,, S)
if S-M modp-q# S then
return error
end if

if p, q or i4 disturbed then
return error

: end if

: return S

_ =
—
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Algorithm 7 Boscher et al’s countermeasure 2007 [7], modifications 2009 [6]
Attack model: Regularity against SPA, blinding against DPA.
Fault model: One fault per execution |7], on local variables, input parameters.

(7a) Modular exp: BosExp(M,d,z,rrinv) (7b) Boscher et al.’s RSA-CRT
input: M,d = (dp—1,...,do)2,Z,r  iny input: M #0,p,q,dp,dq,iq
output: (r- M? mod =, output: M? mod pq or error
Tiny - M?* " mod #, M*" mod z) 1: Pick a k-bit random integer r
1: Ro:=1-r 2: Tiny :=r ! mod pq
2 et : L Tiny 3: (Sp, Sy, Tp) := BoSExXP(M mod p, dp, D, T, Tinv)
Z' gZ ‘:(]M 4: (84,55, Ty) := BosExp(M mod q,dq, ¢, T, Tinv)
o 5: S := CRT(Sp, Sq)
5: for i from 0 ton — 1 do 6: S := CRT(S,,S%)
6: Ry := Rz Rymodz 7: T := CRT(T,, T,)
7 Ry := R3mod z . ,
9 D:=D/2 10: end if
10: end for )
11: t inv”
11: if (D #d) or (Rz = 0) then return riny-5 mod pq
12: return error
13: end if
14: return (]%07 Ry, Rz)

Algorithm 8 Rivain’s countermeasure (23]
The addition chain is precomputed with CHAINCOMPUTE(d1,ds) from [23] and stored in memory or is
computed on-the-fly.

(8a) Double exp.: RIVEXP(M,w(d1,d2),z) (8b) Rivain’s RSA-CRT
input: M, w(di,d2) n-bits chain, di < d2, x input: M,p,q,dp,dg,1iq4
output: (M"l1 mod z, M9 mod x) output: M? mod pq or error
1: Rop:=1,Ri:=M,y:=1,i:=1 1: wp := CHAINCOMPUTE(dp, 2(p — 1) — dp)
9 fori=11ton do 2: (Sp, ¢p) := RIVEXP(M mod p, wy, p)
3: if (w; =0) then 3: wq := CHAINCOMPUTE(dg,2(q — 1) — dq)
4: Ry := R2 mod z 4: (Sq,¢q) := RIVEXP(M mod q,wq, q)
o =141 5: S := CRT(Sy, S4)
6: if (w; =1) then . if b
7. R,:=R, M modz 6: if S-cp # 1 mod p then
. . 7 return error
8: end if -
. 8: end if
9: else
10: Ryg1 := Ryg1 - Ry mod z 9: if S ¢4, # 1 mod ¢q then
11: yi=7d1 10: return error
12: end if 11: end if
13: end for 12: return S
14: return (Ryg1, Ry)
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Algorithm 9 Rivain’s PA-resistant countermeasure [23]

Attack model: Regular SECRIVEXP and CHAINCOM against SPA, blinding against DPA. This blinding

method can only be used if the double addition chain is computed on-the-fly.

Fault model: M is assumed to be protected, transient faults, i.e., faults whose effect lasts for one compu-

tation, are considered.

(9a) Double exp:SECRIVExP(M w(d1,d2),x)
input: M # 0, w(di,d2) n-bits, d1 < da, z
output: (M mod z, M mod x)
R,0) =1, Rp,1) := M,
R(l,O) =M
yi=1Lp:=11:=0
while i < n do
ti=w; A
Vi=Wir1 A [

Rioqet) =

Rioyen) - Biuo1),yap mod
8: w=tVvael)

9: vyi=7Dt
100 di=itptpntel)
11: end while

12: return (Ryg1, Ry)

(9b) RSA-CRT
iHPUt: M7p7 q, dpvdqaiq
output: M9 mod pq or error

Pick small r1,ro € Zre > 171 +2
wp = CHAINCOM(dp+r1(p — 1),r2(p — 1) — dp)

(Sp, cp) := SECRIVEXP(M mod p, wy, p)
wq = CHAINCOM(dgq+r1(q — 1),r2(q — 1) — dg)
(Sq, ¢q) == SECRIVEXP(M mod ¢, wq, q)

S := CRT(S,, S,)

if S-cp # 1 modp then
return error

end if

: if S ¢q # 1 mod q then

return error

: end if

: return S mod pg

©

[ S ST
w N~ o

Algorithm 10 Le et al.’s binary countermeasure [19]
Attack model: No side-channel attacks are discussed in [19].

Fault model: Same as that of Rivain [23].

(10a) Double exp.: LEEXP(M, d1, d2, x)

input: M #0,d1 = (di,n-1,...,d1,0)2
d2 = (dgyn_l, ceey d2,0)27 x
output: (M% mod z, M2 mod x)

1: Ro:=1, Ri:=1, Re :=M
2: fori=0ton—1do

3: if dl,i =1 then

4: Ro = Ro . R2 mod x
5: end if

6: if dg’i =1 then

7 Ri:=Ri-Rosmodzx
8: end if

9: Ry := R3mod z

10: end for

11: return (Ro,Rl)

(10b) Rivain’s RSA-CRT

input: M #0,p,q,dp,dq, g

output: M? mod pq or error

(Sp, cp) := LEEXP(M mod p,dy,2(p — 1) — dp, p)
(Sq, ¢q) == LEEXP(M mod q,dq,2(q — 1) — dg, q)
S := CRT(Sp, Sq)

if S-cp # 1 mod p then

return error

end if

if S-cq #1mod ¢q then
return error
end if

: return S

—
o
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B Our Fault Injection Framework

In Section we briefly describe our fault injection framework, by means of which we simulate all possible
combinations of faults in our fault model. Firstly, we implemented the countermeasures and identified the
possible fault injection locations within the exponentiation algorithms for the three considered types of faults,
i.e., random, zeroing and skipping faults. This phase was a manual phase of our method. In order to simulate
fault injections with a given number of faults, we perform an operation at each fault location, that injects a
fault in case the location is marked, and has no effect otherwise. These operations are summarized in Table[d]

Fault type ‘ Operation ‘ Fault injection fault No effect fault
Random Addition (var + fault) random r 0
Zeroing Multiplication (var * fault) 0 1
Skipping Conditional if (fault = 0) then line 1 0

Table 4: Operations used in our framework for simulating fault injections. Random and zeroing faults are
simulated on variables (var), while skipping faults are simulated on lines of the pseudocode (1line). The
value of the fault (fault) used in our experiments is given for the simulation of fault injection as well as for
the injection with no effect.

In order to simulate a series of fault injections with a given number of faults, we generate arrays for testing
the countermeasures. We denote the number of possible fault locations for an exponentiation algorithm with
L and the number of faults we inject by k. This means that for a given fault type, we need an array with L—k
fault values with no effect and k values for fault injection simulation. We generate simple permutations and
simulate all the possible fault injections.

Finally, the correct result of the RSA-CRT algorithm is compared with the result after the simulated
attack. The Bellcore attack is successful, if the simulation result is corrupted, i.e., not equal to the correct
result, but one of the two intermediate signatures S, or S is correct and thus it is equal to the correct result
modulo p or q.
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