
Process Table Covert Channels:
Exploitation and Countermeasures

Jean-Michel Cioranesco1, Houda Ferradi2,
Rémi Géraud2, and David Naccache2

1 Rambus France, 54 Avenue Hoche, 75008 Paris, France
jcioranesco@rambus.com

2 École normale supérieure, Équipe de cryptographie,
45 rue d’Ulm, f-75230 Paris cedex 05, France

given_name.family_name@ens.fr

Abstract. How to securely run untrusted software? A typical answer
is to try to isolate the actual effects this software might have. Such
counter-measures can take the form of memory segmentation, sandboxing
or virtualisation. Besides controlling potential damage this software might
do, such methods try to prevent programs from peering into other running
programs’ operation and memory.
As programs, no matter how many layers of indirection in place, are
really being run, they consume resources. Should this resource usage be
precisely monitored, malicious programs might be able to communicate
in spite of software protections.
We demonstrate the existence of such a covert channel bypassing isolations
techniques and IPC policies. This covert channel that works over all major
consumer OSes (Windows, Linux, MacOS) and relies on exploitation of
the process table. We measure the bandwidth of this channel and suggest
countermeasures.

1 Introduction

A process table is a data structure in RAM holding information about the
processes currently handled by an operating system. This information is
generally considered harmless and visible to all processes and to all users,
with only minor exceptions, on a vanilla system3. However, as pointed out
by Qian et al. [13]:

“Even though OS statistics are aggregated and seemingly harmless,
they can leak critical internal network/system state through unex-
pected interactions from the on-device malware and the off-path
attacker”

3 Somes patches, such as grsecurity for Linux, may restrict the visibility of the process
table. However, grsec’s default configuration doesn’t affect our discussion.



Indeed, several papers [5, 13, 17] used data from the procfs on Linux
systems to compromise network or software security. Namely, [17] could
recover user’s keystrokes based on registry information, and [5,13] accessed
other programs’ memory to mount a network attack. In all such cases,
attacks relied on additional information about the target process (such
as instruction pointers or register values) which were publicly available.
Following these attacks the procfs default access right policy was changed
in recent Linux versions.

This paper describes and analyzes a new covert channel exploiting the
process table that can be used reliably and stealthily to bypass process
isolation mechanisms, thereby allowing inter-process communication on all
major operating systems. Malicious programs exploiting this strategy do
not need any specific permissions from the underlying operating system.
Contrary to earlier attacks, we do not assume any additional information
(registry values etc.) to be available.

Prior Work. Whilst, to the best of the authors’ knowledge, the problem
of covert channel communication through process IDs (PIDs) was not
formally addressed so far, the intuition that such channels exist must have
been floating around, since most modern OSes currently randomize their
process IDs. Interestingly, as we will later show, randomization makes our
attacks easier.

Most known attacks on the process table exploited public information
such as registry values [5,13,17]. Such information can be used directly or
indirectly to recover sensitive data such as keys or keystrokes.

A long-standing bug of the BSD procfs became widely known in 1997
and relied on the possibility to write in the procfs, due to incorrect access
right management. In that scenario, an unprivileged process A forks off a
process B. Now A opens /proc/pid-of-B/mem, and B executes a setuid
binary. Though B now has a different euid than A, A is still able to control
B’s memory via /proc/pid-of-B/mem descriptor. Therefore A can change
B’s flow of execution in an arbitrary way.

Besides these design flaws, many implementation mistakes led to a
wealth of practical and powerful exploits against BSD’s procfs in the
early 2000’s [2, 11,12,16].

There is also trace of an old Denial-of-Service remote attack dubbed
the “process table attack” [1,7]. According to [10, p. 93] this attack was
developed by the MIT Lincoln Labs for DARPA to be used as part of
intrusion detection systems. Their approach relies on the hypothesis that
the only limit to how many TCP connections are handled is the number



of processes that the server can fork. This is by no means still the case on
modern systems, rendering this attack completely inoperant. Note that
instead of causing a DoS, the same approach could be used as a covert
channel [3, p. 109].

2 Preliminaries

2.1 Covert Channels

Covert channels were introduced in [8], and subsequently analyzed in
[4,9,14]. They are communication channels that enable communication
between processes, which are not supposed to interact as per the computer’s
access control policy. We stress that the notion of covert channels is distinct
from that of (legitimate) communication channels that are subjected to
access controls. Covert channels are also distinct from side channels, which
enable an attacker to gather information about an entity without this
entity’s collaboration.

Detecting covert channels is unfortunately generally hard, although
general methodologies for doing so exist (e.g. [6]). Indeed, such channels
may have devastating effects. Modern platforms implement a variety of
security features meant to isolate processes and thus prevent programs
from communicating, unless authorized by the security policy.

When modern counter-measures are not available, e.g. on mobile plat-
forms, protecting against covert channels is very challenging. To further
complicate things, many stake-holders take part in the development of
mobile software and hardware (e.g. OEM handset manufacturers, telecom-
munication providers or carriers, application developers, and the device
owner). For lack of better solutions, trusted execution environments (TEE)
such as TrustZone emerged. These TEEs rely on hardware security re-
sources present in the mobile platform which are not necessarily accessible
to application developers and end-users.

2.2 Process IDs, Process Table, and Forking

Processes running on top of an OS are given a unique identifier called
process ID, or PID. The PID enables the OS to monitor which programs
are running, manage their permissions, perform maintenance tasks, and
control inter-process communication.

Historically, PIDs were allocated in sequence: Starting at 0 and incre-
mented until a system-specific maximum value, skipping over PIDs that
belong to running programs. On some systems such as MPE/iX the lowest



available PID is used, in an effort to minimize the number of process
information kernel pages in memory. Every process knows its own PID4.

Complex applications also leverage process IDs. One typical example
is forking: A process creates a copy of itself, which now runs alongside its
parent. The PID of a parent process is known to the child process5, while
the child’s PID — different from that of the parent — is returned to the
parent. The parent may, for example, wait for the child to terminate6, or
terminate the child process. Between the moment a child process dies, and
its parent reaps its return value, the child process is in a special zombie
state7.

Fork is the primary method of process creation on Unix-like operating
systems, and is available since the very first version of Unix [15]. For
DOS/Windows systems lacking fork support, the almost equivalent spawn
functionality was supplied as a replacement for the fork-exec combination.

On Unix-like systems, information about all currently running processes
(including memory layout, current execution point, open file descriptors) is
stored in a structure called the process table. Whenever a process forks to
create a child, the entire process table entry is duplicated, which includes
the open file entries and the their file pointers — this is in particular how
two processes, the parent and the child, can share an open file.

By default on Unix-like systems, the complete process table is public
and accessible as a file through the procfs. Alternatively, non-root users
can execute the ps -efl command to access the detailed table. On
Microsoft Windows platforms (XP and above) the list is accessible through
the EnumProcesses API8.

For the sake of simplicity we used Python 3.4 with the psutil library
to abstract these implementation details away. We thus have a wrapper
function ps that works on all major platforms and provides us with process
information.

4 For instance using the getpid() system call on Unix-like OSes, or
GetCurrentProcessId() on Windows platforms

5 For instance using a getppid() system call on Unixes.
6 For instance using the waitpid() function on Unixes.
7 See the Unix System V Manual entry: http://www-cdf.fnal.gov/offline/UNIX_
Concepts/concepts.zombies.txt.

8 See https://msdn.microsoft.com/en-us/library/windows/desktop/ms682623(v=vs.
85).aspx.

http://www-cdf.fnal.gov/offline/UNIX_Concepts/concepts.zombies.txt
http://www-cdf.fnal.gov/offline/UNIX_Concepts/concepts.zombies.txt
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682623(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682623(v=vs.85).aspx


3 Overview of the attack

3.1 Assumptions

We consider two programs A and B, and for the sake of clarity consider
that A wants to send information to B. We assume that the operating
system can freely implement any process isolation technique of its choosing,
while allowing the following minimalistic assumptions:

1. A can fork9;
2. B can see A and its forks in the process table.

Even though there are restrictions on the number of forks that a process
can launch, this limit is usually larger than one. In this work we only
require the ability to launch one fork at a time. Forking at least once
is nearly always possible. The second assumption is not unreasonable,
as most systems expose all processes, including those launched by other
(potentially priviledged) users and the kernel. Furthermore, tools such
as unhide10 try to detect hidden processes by comparing the outputs of
different programs and looking for inconsistencies. Similar techniques could
be implemented by B even if the OS tries to restrict process visibility.

The idea here is to exploit the fact that PIDs are public to construct
a covert channel.

3.2 Naive approach

First, assume that no processes other than A and B are being run. When
A forks, the sum of all visible PIDs increases. When that forked process
dies, the PIDs’ sum decreases. B queries the process table repeatedly and
monitors the differences between successive sums – which are interpreted
as 0s or 1s.

Now what happens to this approach when we remove the assumption
that no other processes are running? New processes are launched by
the OS and by users. Old processes die. This may cause process table
modifications at any time.

Consequently, the aforementioned naive approach doesn’t work any-
more.

9 Or, equivalently, A can launch at least a process and later kill it.
10 See http://www.unhide-forensics.info/.

http://www.unhide-forensics.info/


3.3 Handling noise
It might happen that when new processes are created, their PIDs are
predictable – oftentimes the smallest available one. To some extent, this
information could be used to deal with noise. However, such an approach
would fail if processes are removed from the process table (and new ones
start reusing the freed spots), and therefore wouldn’t be reliable over time.
Here we make no assumptions on the PIDs’ distribution, and assume for
the sake of simplicity that PIDs are distributed uniformly.

Let p be a prime number. If x and y are distributed uniformly modulo
p, then x+ y is also distributed uniformly modulo p. We make use of this
fact in the following way: when a process is created or deleted, the sum of
the PIDs modulo p changes to a value S which is, by the previous remark,
chosen uniformly at random modulo p.

Let T be a target value, consider the following algorithm.
1. Let f ← 0.
2. If S = T go to 1.
3. If S 6= T and f = 0, the main process A creates a fork11 A′.
4. If S 6= T and f = 1, the process A′ kills itself.
Note that, assuming that there is no noise, this succeeds in setting S = T
in expected p iterations. In other terms, if there is no external process
creation or deletion during p iterations, S is set to the target value T .

The strategy consists in running this algorithm continuously. Whenever
there is a change in the process table, forks are created or deleted until
the desired target sum is reached.

Note that, in the absence of noise, and if the OS attributes PIDs deter-
ministically, then this algorithm may fail, as it could be stuck oscillating
between two incorrect S values.

3.4 Channel capacity
Assume that external process creation or deletion happens on average
every ∆ time units (one could consider a Poisson distribution for instance).
If it takes a time tS for A to query S and tf to fork (or kill a fork), then it
takes an expected time p(tS + tf ) to reach the target value. Therefore this
algorithm sends b∆/p(tS + tf )c/∆ elements of Zp per elementary time
unit. Hence, channel capacity is:

C(p) = b∆/p(tS + tf )c log2 p

∆
bit/s

11 It is assumed that the forked process knows that f = 0. This value could be sent as
command line argument for instance.



Note that ∆ should be large enough, namely ∆ > p(tS + tf ), for the
channel to allow sending data at all. C(p) is maximal for p = 2, which
incidentally makes implementation easier.

If one wishes to send data faster, error-correcting codes (such as LPDC)
may be used to thwart the effect of noise and make communication reliable
at higher rates.

4 Experimental setup

A proof-of-concept was implementated in Python 3.4, using the psutil
library. Code was tested on a Linux server (Debian Jessie) and Microsoft
Windows 7 and 8, for both 32-bit and 64-bit architectures, with similar
results. All test machines were active web servers running Apache or
Microsoft IIS in their latest versions as we are writing these lines.

The proof-of-concept consists in two programs, a sender and a receiver,
that may be granted different permissions and be launched by different
users. The implementation follows straightforwardly Section 3. The test
consisted in sending a given sequence of bits from the sender to the receiver.
The observed sequence on a busy server is illustrated on Figure 1, where
the target sequence was “010101...”.

Fig. 1. Use of the PID covert channel on Windows 7 demonstrating how the message
010101... can be sent.



5 Countermeasures

A number of solutions can be implemented at various levels to counter
the attacks described in this paper. A prerequisite is the precise definition
of the attack model. If we assume that the receiver and the sender use
a known transmission process whose parameters are potentially known
(for instance a key k shared between the sender and the receiver) then we
can imagine ad hoc countermeasures targeting the specific transmission
process and/or k. If, on the other hand the communication process is
unknown then a number of generic countermeasures can be devised to try
and prevent unauthorized transmission in general.

Because an important number of information leakage methods can
be imagined and designed, this section will only deal with generic coun-
termeasures. Note that we do not claim that any of the generic methods
below will have a guaranteed effect on all PID-based covert channels.

5.1 Restricting process visibility

A most natural approach is simply to make PID information invisible
to processes. At first glance, restricting (even partially) process visibility
solves the issue, as two mutually invisible processes cannot communicate
as described in this paper. To some extent, this is the kind of strategy
employed by security patches such as grsec for Linux.

However, such a policy has limits. Indeed, there are processes that
need to communicate and IPC was precisely designed to enable that. The
goal is not to prevent any process from communicating with any other
process, but to allow so if and only if such communication is permitted
by the OS’s security policy. It is sensible to try and hide kernel-related
and other sensitive processes from untrusted programs, however it is not
a good idea to isolate all processes from one another.

This policy restriction has the disadvantage of grandly reducing system
functionally. Furthermore this counter-measure is vulnerable to transi-
tive attacks, whereby a process acts as a relay between two mutually
invisible programs. In some instances, processes may bypass the process
table altogether, for instance by attempting to directly contact random
PIDs. Depending on the answer, it is possible to guess that a process
is running with that PID, even though it cannot be seen in the process
table. Alternatively, it is possible to run legitimate commands (e.g. lsof)
which have a different view of the process table. By using such commands,
processes can gather information otherwise denied to them.



5.2 Zombies, timing and decoys

The most evident idea is similar to the adding of random delays in
timing attacks or to the adding of random power consumption to prevent
power attacks. Here the operating system can randomly launch and stop
processes to prevent B from properly decoding the information coming
from A. Note that the OS does not need to launch real processes, only
zombies i.e. PIDs present in the table that do not correspond to actual
processes. Alternatively, the OS may simply add random PIDs (decoys)
when replying to a query about the process table.

To be efficient, this countermeasure needs to generate a sequence of
process starts and interrupts in a way that effectively prevents information
decoding by B. To illustrate our purpose, assume that B’s processes are
very rarely killed, and that the OS launches and kills PIDs at a very high
pace. After a sufficiently long observation time, B may infer the processes
belonging to A. As this is done A may start communicating information
to B by progressively killing the processes it controls. This illustrates the
need to have the OS generate and kill PIDs in a way indistinguishable from
A. Because we do not know a priori the communication conventions used
for this covert channel, this countermeasure can only rely on empirical
estimates of normal program behaviour.

If the time between launched processes is used to send information,
the OS can randomly delay the removal of PIDs from the list to prevent
communication based on PID presence time.

A number of generic approaches, inspired by fraud detection, can also
be imagined. The idea here consists in limiting system performance to
reduce the attacker’s degree of freedom. For instance, limiting the number
of offspring processes launchable per unit of time by a process is also likely
to have an effect on the attack as it would naturally reduce information rate.
Note that this restriction should only apply to processes whose launcher
requires a PID to appear publicly. Fraud-detection countermeasures consist
in monitoring the frequency at which the PID-list is read by each process
and detect processes whose behaviour may betray the reading of a covert
channel.

5.3 Virtual PIDs

By modifying the way in which the OS manages PIDs, other countermea-
sures can be imagined. A possible way to implement such a protection
consists in having a private PID list per process. Here, process U sees the
PID of process V as f(s, U, V ) where s is an OS secret known to processes



U and V . This allows U to solicit V without sharing PID information
visible by both U and V . This may reduce the available information trans-
mission channels to global information such as the PID-list’s cardinality
(number of processes), the time separating the appearing of new PIDs in
the list etc.

A variant works as follows:

– Each time a process U queries the process table, U is given a random
list of PIDs.

– When U requests an IPC with some process V , then upon the OS’s
IPC approval, the PIDs of V and U as seen by each other do not
change anymore.

This still provides IPC functionality while preventing process table abuse.

5.4 Formal proofs

To tackle the problem in general, a formal model should be defined, so
that one can attempt to come up with proofs of isolation. For instance, a
process may be modelled as the data of a process birth time, a process
death time and a value assigned by the OS. The birth and death times
are controlled by the sender and the analyst’s goal is to determine the
channel capacity in the presence of generic countermeasures.

To the best of our knowledge, such models have not been developed
so far.

References

1. DARPA: DARPA Intrusion Detection Evaluation (2000), https://www.ll.mit.edu/
ideval/docs/attackDB.html

2. Etelavuori, E.: Exploiting Kernel Buffer Overflows FreeBSD Style: Defeating secu-
rity levels and breaking out of jail(2), http://ftp.ntua.gr/mirror/technotronic/
newfiles/freebsd-procfs.txt

3. Gligor, V.D.: A guide to understanding covert channel analysis of trusted systems.
The Center (1994)

4. Huskamp, J.C.: Covert communication channels in timesharing systems. Ph.D.
thesis, University of California (1978), Technical Report UCB-CS-78- 02

5. Jana, S., Shmatikov, V.: Memento: Learning secrets from process footprints. In:
Security and Privacy (SP), 2012 IEEE Symposium on. pp. 143–157. IEEE (2012)

6. Kemmerer, R.A.: Shared resource matrix methodology: An approach to identifying
storage and timing channels. ACM Transactions on Computer Systems (TOCS)
1(3), 256–277 (1983)

7. Kendall, K.R.: A Database of Computer Attacks for the Evaluation of Intrusion
Detection Systems (1999), MIT Master’s Thesis. Available at https://www.ll.mit.
edu/ideval/files/kkendall_thesis.pdf

https://www.ll.mit.edu/ideval/docs/attackDB.html
https://www.ll.mit.edu/ideval/docs/attackDB.html
http://ftp.ntua.gr/mirror/technotronic/newfiles/freebsd-procfs.txt
http://ftp.ntua.gr/mirror/technotronic/newfiles/freebsd-procfs.txt
https://www.ll.mit.edu/ideval/files/kkendall_thesis.pdf
https://www.ll.mit.edu/ideval/files/kkendall_thesis.pdf


8. Lampson, B.W.: A note on the confinement problem. Communications of the ACM
16(10), 613–615 (1973)

9. Lipner, S.B.: A comment on the confinement problem. In: ACM SIGOPS Operating
Systems Review. vol. 9, pp. 192–196. ACM (1975)

10. Marchette, D.J.: Computer intrusion detection and network monitoring: a statistical
viewpoint. Springer Science & Business Media (2001)

11. Nash, A., Newsham, T.: A bug in the procfs filesystem code allows people to
modify the (priviliged) init process and reduce the system securelevel. (1997),
http://insecure.org/sploits/BSD.procfs.securelevel.subversion.html

12. memory disclosure in procfs, K., linprocfs: (2004), https://www.freebsd.org/
security/advisories/FreeBSD-SA-04:17.procfs.asc

13. Qian, Z., Mao, Z.M., Xie, Y.: Collaborative TCP sequence number inference attack:
how to crack sequence number under a second. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security. pp. 593–604. ACM (2012)

14. Schaefer, M., Gold, B., Linde, R., Scheid, J.: Program confinement in KVM/370.
In: Proceedings of the 1977 annual conference. pp. 404–410. ACM (1977)

15. Thompson, K., Ritchie, D.: Sys fork (ii)
16. Thorpe, J., Hannum, C., Jones, C., van der Linden, F.: NetBSD Security Ad-

visory 2000-001: procfs security hole (2000), ftp://ftp.netbsd.org/pub/NetBSD/
misc/security/advisories/NetBSD-SA2000-001.txt.asc

17. Zhang, K., Wang, X.: Peeping tom in the neighborhood: Keystroke eavesdropping
on multi-user systems. In: Proceedings of the 18th Conference on USENIX Security
Symposium. pp. 17–32. SSYM’09, USENIX Association, Berkeley, CA, USA (2009)

http://insecure.org/sploits/BSD.procfs.securelevel.subversion.html
https://www.freebsd.org/security/advisories/FreeBSD-SA-04:17.procfs.asc
https://www.freebsd.org/security/advisories/FreeBSD-SA-04:17.procfs.asc
ftp://ftp.netbsd.org/pub/NetBSD/misc/security/advisories/NetBSD-SA2000-001.txt.asc
ftp://ftp.netbsd.org/pub/NetBSD/misc/security/advisories/NetBSD-SA2000-001.txt.asc

	Process Table Covert Channels:Exploitation and Countermeasures

