
An Improvement of Both Security and Reliability
for Keccak Implementations on Smart Card

Pei Luo1, Liwei Zhang2, Yunsi Fei1, and A. Adam Ding2

1 Department of Electrical and Computer Engineering, Northeastern University, Boston, MA
02115

silenceluo@coe.neu.edu, yfei@ece.neu.edu
2 Department of Mathematics, Northeastern University, Boston, MA 02115

mathliwei@gmail.com, A.ding@neu.edu

Abstract. As the new SHA-3 standard, the security and reliability of Keccak
have attracted a lot of attentions. Previous works already show that both soft-
ware and hardware implementations of Keccak have strong side-channel power
(electromagnetic) leakages, and these leakages can be easily used by attackers
to recover secret key bits. Meanwhile, Keccak is vulnerable to random errors
and injected faults, which will cause errors in the computation results. In this
paper, we introduce a scheme based on the round rotation invariance property
of Keccak to reduce the side-channel leakages while improve its reliability. The
proposed scheme is resource friendly. Side-channel analysis results show that
this method can efficiently reduce the side-channel leakages of Keccak imple-
mentations. Meanwhile, fault injection simulation results show that the proposed
scheme can effectively improve the reliability of Keccak implementation, with
error coverage almost 100%.

1 Introduction

Keccak will be widely used in cryptographic systems because it has been selected as the
new SHA-3 standard recently. Keccak is a function family and can be easily used for
regular hashing, salted hashing, stream encryption, pseudo-random sequence generator,
thus it will be widely used in different kinds of cryptographic applications [1]. Effec-
tive methods are required to protect Keccak implementations against different kinds of
attacks. In this paper, we focus on the protection of Keccak implementations on smart
card platform against both side-channel power (electromagnetic) attacks and fault at-
tacks.

Previous papers introduce different kinds of side-channel attack methods to conquer
MAC-Keccak, both software [2,3] and hardware systems [4,5]. These attacks focus on
either θ step [2,3,5] or the first round output [4], and the results show that attackers can
efficiently recover key bits using the side-channel leakages of Keccak operations with
very small number of power traces. Meanwhile, Keccak is vulnerable to random errors
and injected faults when used for hashing and encryption.

Previous works protect Keccak against side-channel analysis and fault attacks sep-
arately. To protect Keccak against side-channel analysis, the designers proposed to

1

2 Pei Luo et al.

hide the leakages using secret sharing in [6]. This method introduces random num-
bers to mask the secret key bits and can effectively protect the systems against side-
channel analysis. The deficiency of this method is that it has very high resource con-
sumption overhead. For software implementations, two-share masking will cause two
times resource consumption, while three times resource consumption will be introduced
for hardware implementations with three-share masking. Besides secret sharing, some
other methods such as random shuffling can reduce the leakages significantly while
much lower resource overhead will be introduced [7,8]. While these methods can pro-
tect Keccak against side-channel analysis, they are still vulnerable to random errors and
fault injection attacks. To protect Keccak against fault injection attacks, the authors in
[9] proposed to protect Keccak on FPGAs using the round rotation invariance prop-
erty. Other commonly used error detection schemes such as double redundancy, parity
checking are also suitable for Keccak protection. The problem of these countermeasures
is that they still have strong side-channel leakages and thus vulnerable to side-channel
analysis attacks.

A simple method to solve this problem is to combine two different protection meth-
ods together directly, but the corresponding resource overhead will be very high. In this
paper, we propose to use round rotation invariance property of Keccak sponge function
to protect Keccak implementations on smart card platform against both side-channel
attacks and fault attacks. The advantage of this scheme is that it can protect Keccak
against both fault attacks and side-channel attacks, thus it will have much lower re-
source overhead than combining two protection methods together directly. Meanwhile,
this scheme requires only minor modification of Keccak sponge function, thus it can be
used together with with other protection schemes for even higher security and reliability
level.

In this paper, we focus on the implementations for resource restricted platform,
smart card, and test our scheme based on the implementation of AVR-Crypto-Lib [10].
Meanwhile, we run fault injection simulation at algorithm level for accurate error cov-
erage results, which show that the proposed scheme can significantly reduce the side-
channel leakages of Keccak implementations and improve its reliability against random
errors and injected faults.

The rest of this paper is organized as follows. In Section 2, the preliminaries of
Keccak which are needed in this paper will be introduced. In Section 3, the proposed
scheme will be introduced, then attacks and simulation results will be given in Section
4. In the end, we will conclude this paper in Section 5.

2 Preliminaries of Keccak

Keccak is a hash function family based on the Sponge construction, as shown in Fig. 1
[11,12]. Keccak has two phases: 1) absorbing and 2) squeezing. In the absorbing phase,
the message is broken into blocks (each block size is r bits, where r is the bit rate),
which are absorbed iteratively by the permutation function f . Each f function works
on a state at a fixed length b = r + c (c is called capacity). In the squeezing phase,
outputs are squeezed also by f functions and the length of the output is configurable (a
multiple of r bits).

Title Suppressed Due to Excessive Length 3

f f f f f f
r

c

0P 1P 2P 3P 0z 1z 2z

Fig. 1: The sponge construction

All of the 1600-bit states are organized in a 3-D array, as shown in Fig. 2. Each
bit is addressed with three coordinates, written as S(x, y, z), x, y ∈ {0, 1, ..., 4}, z ∈
{0, 1, ..., 63}. 2-D entities, plane, sheet and slice, and 1-D entities, lane, column and
row, are also defined in Keccak and shown in Fig. 2.

The state S is composed of 25 lanes, denoted as:

S = {Li,j}, i, j ∈ {0, 1, 2, 3, 4}, (1)

and each lane Li,j contains 64 bits for Keccak-1600.

0 1 2 3 4 5 6

 …

 63

4

3

2

1

0

y

z

0 1 2 3 4 x

Fig. 2: Terminology used in Keccak

Notations: We note here that in this paper, we use this 3-D array method to denote
the Keccak state and intermediate states. We use coordinates x, y and z to locate each
bit, in which x, y ∈ {0, 1, ..., 4}, and z ∈ {0, 1, ..., 63}, we also define X = [0 : 4],
Y = [0 : 4] and Z = [0 : 63] to stand for the positions in each row, column and lane.
Be aware that coordinates x,X and y, Y are modular 5 while z, Z are modular 64.

The f permutation function of Keccak-1600 consists of 24 rounds of operations,
where each round has five sequential steps:

Ri+1 = ι ◦ χ ◦ π ◦ ρ ◦ θ(Ri), i ∈ {0, 1, · · · , 23} (2)

in which R0 is the initial input. Details of each step are described below:
− θ is a linear operation which involves 11 input bits and outputs a single bit.

Each output state bit is the XOR between the input state bit and two intermediate bits

4 Pei Luo et al.

produced by its two neighbor columns. The operation is given as follows:

S′(x, y, z) = S(x, y, z)⊕ (⊕4
i=0S(x− 1, i, z))

⊕ (⊕4
i=0S(x+ 1, i, z − 1)). (3)

− ρ is a permutation over the bits of the state along z-axis (in lanes).
− π is a permutation over the bits of the state within slices, only the center bit

(x = 0, y = 0) of the slice does not move. All other bits are permuted to other positions
depending on their original coordinate.
− χ is a non-linear step that contains mixed binary operations. Every bit of the

output state is the result of an XOR between the corresponding input state bit and its
two neighboring bits along the x-axis (in a row):

S′(x, y, z) = S(x, y, z)⊕ (S(x+ 1, y, z) · S(x+ 2, y, z)). (4)

− ι is a binary XOR with a round constant which is publicly known.
Further details of Keccak and Sponge construction can be found in [11,12,13].

3 Round Rotation Invariance Based Scheme

Previous papers proposed to used the structures of crypto algorithm for security and
reliability enhancement. For example, in [14,15], the authors propose to use the invari-
ance of AES for error detection. Such schemes make use of the structures of crypto
algorithms for protections, thus they are usually efficient and effective. In this section,
we introduce the round rotation invariance property of Keccak sponge function, and
how to use it for both side-channel leakage reduction and fault detection on smart card
platform.

3.1 Invariance of Keccak Permutation Function

Keccak reference manual explained that the mapping ι is added to disrupt the symmetry
of Keccak operations (translation-invariant in the z direction), thus to avoid slide attacks
[12]. Operations other than ι are translation-invariant in the z direction, which means
the input can be rotated in z direction and then rotated back with the result unchanged:

g(in) = ROT−1(g(ROT (in, α)), α). (5)

In (5), ROT stands for the round rotation at z direction and α is a random number
(0 ≤ α ≤ 63), g stands for Keccak operations θ, ρ, π, and χ. While (5) holds for
other four operations, it it not true for ι operation, because ι involves constant numbers
ιc = {ιc[0], ιc[1], · · · , ιc[23]} besides the input in for each round. Thus we can rotate
ιc also α bits for operation invariance:

ι(in, ιc) = ROT−1(ι(ROT (in, α), ROT (ιc, α)), α). (6)

Title Suppressed Due to Excessive Length 5

Which means that we can denote Keccak sponge function over the first round input S0

and ιc as following:

f(in, ιc) = ROT−1(f(ROT (in, α), ROT (ιc, α)), α). (7)

In this paper, we can also denote the right side of (7) as f ′(in, α). It means the
modified Keccak function has in and α as input, and round rotates each lane of in
and ιc α bits for Keccak operations, and rotate the final results back with the result
unchanged. We give the details as follows.

For the first round input S0 = {Li,j}, i, j ∈ {0, 1, 2, 3, 4}, rotate each lane Li,j α
bits at z direction:

L′i,j = ROT (Li,j , α), i, j ∈ {0, 1, 2, 3, 4}, 0 ≤ α ≤ 63. (8)

Denote the new input composed of these rotated lanes as S′0:

S′0 = {L′i,j}, i, j ∈ {0, 1, 2, 3, 4}. (9)

We use ι′c to stand for the rotated ιc (the set of 24 constant numbers for ι operations
in 24 rounds):

ι′c[i] = ROT (ιc[i], α), i ∈ {0, 1, · · · , 23}. (10)

The Keccak operation results (S24 and S′24) based on these two input (S0, ιc and
S′0, ι

′
c) are as following: {

S24 = f(S0, ιc) = f ′(S0, 0)
S′24 = f(S′0, ι

′
c) = f ′(S0, α)

. (11)

Then the following equation holds:

S24 =ROT−1(S′24, α), (12)

which means that Keccak result over the rotated input lanes and ιc constant numbers can
be rotated back to get the original result [9]. In the following section, we will demon-
strate how to use this round rotation invariance property to reduce the side-channel
leakages while increase reliability of Keccak implementations on smart card platform.

3.2 Invariance-Based Protection Scheme

The invariance property of Keccak permutation function can be used for side-channel
leakage reduction because it can distribute leakages from one point to multiple points.
Meanwhile, this property can also be used for fault detection by comparing the results of
two rotated Keccak implementations with different α. We devise the structure in Fig. 3
for Keccak implementation on smart card for both side-channel leakages reduction and
reliability enhancement.

It works like this, when the Keccak implementation receives the input message in,
it starts working by generating one random number α1, and use this random number for
the rotated Keccak computation shown in Section 3.1. Then another random number α2

will be generated and used for rotated Keccak to generate O2. The output O1 and O2

are compared for fault detection.

6 Pei Luo et al.

Start

Wait for input

Generate Generate

Alarm Process

1 2

),(' 11 infO),(' 22 infO

21 ?OO

Y

N

Fig. 3: The proposed invariance-based protection scheme

How it reduces side-channel leakages For Keccak implementations on smart card, if
we randomly rotate each input lanes before Keccak operations, the leakage of one key
bit will be distributed from one time point to multiple time points. We assume 64 bits
in one lane (L[0 : 63]) are rotated by α bits (α ≥ 1) at z direction, and the rotated lane
bits are {L[64 − α : 63] L[0 : 63 − α]}. For 8-bit architectures (either microprocessor
or FPGA), only 8 bits in each lane will be processed in one clock cycle. Take eight key
bits at position L[0 : 7] as example, after round rotation, these bits will be shifted α bits
along z axis to be L[α : α + 7] (α + 7 is modular 64). Then the leakages of L[0 : 7]
will be distributed from one clock cycle to multiple clock cycles. Thus the leakages of
these bits will be significantly reduced.

For differential power analysis (DPA), one bit may be moved into eight different
bytes. For correlation power analysis (CPA), previous papers always attack eight bits in
one lane together for higher signal-to-noise ratio (SNR). Thus:

– If α is a time of eight, these eight bits are still in one byte, the leakage of these eight
key bits are distributed from one time point to another time point.

– If α is not a time of eight, these eight bits are distributed into two adjacent bytes,
and leakages of other key bits in the same bytes will be working like noise and help
to further reduce their leakages.

To evaluate the resilience of proposed scheme against side-channel analysis, we
implement original Keccak and Keccak with the proposed scheme on a SASEBO-W
board, which is designed specifically for side-channel evaluations [16]. Keccak has been
implemented in 64-bit, 32-bit, 16-bit and 8-bit structures, examples are source code
provided Keccak official site [17]. For compact platforms such as 8-bit smart cards,
example implementations are like [18] (compact IC design) and AVR-Crypto-Lib [10]
(for smart card software design). In this paper, we refer to AVR-Crypto-Lib [10] for
implementation, and run side-channel analysis and fault injection on it.

Title Suppressed Due to Excessive Length 7

How it improves the reliability For error detection methods like duplication or redun-
dancy, they are incapable of detecting those faults that cause the same errors in both
copies [14]. For such redundancy based schemes, attackers who have the ability to in-
ject the same faults at the same positions of both copies will be able to bypass the error
detection modules. But for the proposed scheme in Fig. 3, the positions of message
bytes will be different for different random number α. Thus it will be impossible for
attacker to inject faults at the same positions if he has no knowledge of two random
numbers α0 and α1. To evaluate the error detection coverage of the proposed scheme,
we run fault injection simulation at algorithm level, and details and results will be given
in Section 4.

3.3 Advantages of the Proposed Scheme

As discussed in previous sections, the proposed scheme can significantly reduce side-
channel leakages of Keccak, and also improve reliability of the Keccak implementations
on smart card platform. Comparing with combining two different countermeasures to-
gether directly, the proposed scheme is resource friendly. This scheme has the following
advantages:

– Comparing with countermeasures like secret sharing, the proposed scheme is easy
to implement. The proposed scheme mainly operates on the input message lanes,
and only needs to change the ιc table for different random rotation number α, the
sponge function needs no extra modifications.

– It can be easily combined with other countermeasures. The proposed scheme does
not change the operations of sponge function, it can be easily combined with other
countermeasures such as secret sharing, random permutation and random delay to
improve the side-channel security. Error detection methods such as parity checking
can be directly added on the proposed scheme to improve the error coverage for
higher reliability.

– It is resource friendly and can be efficiently implemented on resource restricted ap-
plications. The proposed scheme is resistant to both fault attacks and side-channel
attacks at the same time. Comparing with combining two different schemes to-
gether, the proposed scheme is resource efficient.

4 Side-Channel Power Analysis and Fault Injection Simulation of
the Proposed Scheme

In this section, we attack the original Keccak implementation and the implementation
protected with the proposed scheme. For power analysis, we use a LeCroy WaveRunner
640Zi oscilloscope to sample all power traces of the implementations on SASEBO-W
board, and we use CPA attack as an example to demonstrate the results. Meanwhile, we
simulate the error detection by injecting fault at algorithm level.

8 Pei Luo et al.

1 2 3 4 5 6

x 10
5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time points

C
or

re
la

tio
n

(a) Unprotected implementation: correlation(HW(θ
1
(0, [0:7])), power)

1 2 3 4 5 6

x 10
5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time points

C
or

re
la

tio
n

(d) Proposed implementation: correlation(HW(θ
1
(0, [0:7])), power)

20 40 60 80 100 120 140 160 180 200
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) Unprotected implementation: correlations for key guesses of attacking θ
1
(0, [0:7])

C
or

re
la

tio
n

Number of traces
100 200 300 400 500 600 700 800 900 1000

−0.5

0

0.5

(e) Proposed implementation: correlations for key guesses of attacking θ
1
(0, [0:7])

C
or

re
la

tio
n

Number of traces

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(c) Unprotected implementation: success rate of attacking θ
1
(0, 0:7)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

Number of traces

S
uc

ce
ss

 r
at

e

(f) Proposed implementation: success rate of attacking θ
1
(0, 0:7)

Fig. 4: Side-channel power analysis results: the left side are the results of attacking the
original implementation, the right side are the results of attacking the implementation
protected with the proposed scheme.

Title Suppressed Due to Excessive Length 9

4.1 Side-Channel Analysis Results of Protected and Unprotected
Implementations

For the original implementation, we sample 500 traces and use CPA to attack the first
step of θ operation, the same as [2,3,5]. We attack eight bits each time for higher SNR,
and use the result for the first eight bits of the first θ1 lane (θ1(0, [0 : 7])) in this paper.
The correlation between the power consumption and HW (θ1(0, [0 : 7])) is shown in
Fig. 4(a). Fig. 4(a) shows that the correlation is reaching 0.7 (or negative -0.7), which
is very strong for cryptographic systems. This strong leakage can be easily used by
attacker to retrieve key bits information.

Fig. 4(b) shows the correlation between different key assumptions and power con-
sumption. The blackened trace is for the correct key and the gray traces are for false
keys. It shows that the correlation between the correct key guess will stand out of the
key guesses very quickly. Fig. 4(c) shows the success rate of CPA attacks. The attack-
ers only need about 200 traces to recover the key bits with success rate 100%. Thus,
without protection, the Keccak implementations on smart card are vulnerable to side-
channel attacks, and a very small number of power traces are enough to successfully
extract all the key bits.

For the proposed scheme, the leakages at one point are distributed to multiple points,
and we anticipate that the proposed scheme can improve the side-channel security of
Keccak implementations. For the proposed implementation, we sample 5,000 traces
and run CPA on them, and show the correlation result in Fig. 4(d). It shows that for
the implementation protected with the proposed countermeasure, the leakage decreases
significantly. Comparing with the leakage of the original implementation, the correla-
tion of the proposed scheme is much smaller, almost covered by noise in the system.
Thus it’s anticipated that the protected implementation will be much more difficult to
conquer than the original implementation.

Fig. 4(e) shows the correlation between different key assumptions and power con-
sumption. It shows that the right key’s correlation is significantly reduced and it stands
out of the key guesses very slowly. For the original implementation shown in Fig. 4(c),
it only needs more than 100 traces for the correct key guess to stand out of the wrong
key guesses. For the implementation protected with the proposed scheme, the leakages
are reduced significantly and it needs many more traces for the right key to stand out of
the wrong key guesses. Success rate result in Fig. 4(f) shows that attackers need about
4,000 traces to recover the key bits for this implementation, 20 times more than the
original implementations.

Above results show that the proposed scheme can effectively protect Keccak im-
plementation against side-channel analysis. Keccak implementation with the proposed
countermeasure is much more difficult to conquer than the original implementation.
Besides the reduction of side-channel leakages, the round rotation invariance of Kec-
cak can also be used to protect Keccak against random errors and injected faults, and
simulation results will be given in Section 4.2.

4.2 Fault Injection Simulation Result

In this paper, we do not differentiate faults and errors, which means that we only care
about faults which generate errors at the output. We simulate fault injection and get the

10 Pei Luo et al.

error coverage of the proposed scheme at algorithm level. In this paper, we assume two
attacker models, the weak attacker model and strong attacker model:

– Weak attacker model: the attackers can precisely inject faults at a given clock cycle,
but have no control of the injected faults.

– Strong attacker model: the attackers can precisely inject faults at a given clock
cycle, and have fully control of the injected faults.

For fault injection simulation, we target at four implementations, (a) the implemen-
tation protected with our proposed scheme, (c) the implementation protected with secret
sharing, (c) the implementation protected with double copy redundancy and (d) imple-
mentation with parity checking error detection.

For both attacker models, we assume the attacker can distort one byte at a specific
clock cycle, and he can inject either single or multiple byte faults into the system. For
single byte fault model simulation, we randomly inject random faults (0-255) into one
random byte of the input (200 bytes) of both copies. If the results of these two copies
are equal while different from the original result, we think the injected errors are not
detected. For multiple bytes fault injection, we inject random faults into from one to
five bytes of both copies. Besides the fault positions and faults injected, the number of
faults are also randomly generated.

For each implementation, we run the fault injection simulation for ~2 ∗ 108 times
for both single fault and multiple faults models. Simulation results show that for single
fault model, the proposed scheme can detect 99.998% of the injected faults. For multiple
faults model, the proposed scheme can detect 99.999975% of the injected faults. Thus
the proposed scheme has a very high fault coverage for Keccak implementations on
smart card platform. We summarize the single byte fault injection results of different
protection schemes in Table 1.

Table 1: Comparison of countermeasures
Leakage Error coverage

ReductionI WeakII StrongIII

Proposed scheme 85% 99.998% 99.868%
Secret sharing 100% 0% 0%

Double redundancy 0% 99.602% 0%
Parity checking 0% 99.606% 0%
I First order side-channel leakage reduction, the ratio

of correlation;
II Weak fault injection model, attackers can inject

faults into the same byte, but cannot control the in-
jected fault values;

III Strong fault injection model, attackers have fully
control of the fault injection positions and values.

From the fault injection simulation result, we can see that the proposed scheme can
efficiently protect different applications of Keccak function, such as integrity checking,

Title Suppressed Due to Excessive Length 11

hashing, stream encryption, etc. While advanced attacker can bypass some simple error
detection methods, it will be almost impossible for him to bypass the error detection
module in the proposed implementation without know ledges of the random numbers
α1 and α2.

For double copy redundancy and parity checking, although they can detect most of
the injected faults under weak attacker model, they will be easily bypassed by attackers
under strong attacker model. What’s more, such simple error detection schemes have
no resilience to side-channel power analysis at all. Theoretically, secret sharing scheme
can delete all the side-channel power leakages, but it has no effect against fault injection
attacks. Thus, comparing with secret sharing, the advantage of the proposed scheme is
that it can also improve the reliability of Keccak implementations.

5 conclusion

We present a method to reduce the side-channel leakages and improve the reliability
of Keccak implementations simultaneously on smart card platforms. This method is
easy to implement and can be effciently applied to both hardware and software Keccak
implementations on source restricted platform. The proposed scheme only introduces
minor modifications of the original algorithm so it can be combined easily with other
countermeasures. Real attack results show that the proposed scheme can efficiently re-
duce the side-channel leakages of Keccak implementations, while it can detect almost
100% of the random errors and injected fault. Futher work will be different countermea-
sures of Keccak against side-channel analysis and fault attacks, on different platforms.

References

[1] G. Bertoni, J. Daemen, M. Peeters, and G. Assche, “Permutation-based encryp-
tion, authentication and authenticated encryption,” Directions in Authenticated
Ciphers, 2012.

[2] M. Taha and P. Schaumont, “Side-channel analysis of MAC-Keccak,” in IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), June
2013, pp. 125–130.

[3] M. Taha and P. Schaumont, “Differential power analysis of MAC-Keccak at any
key-length,” in Int. WkShp on Security, Nov. 2013, pp. 68–82.

[4] P. Luo, Y. Fei, X. Fang, A. A. Ding, D. R. Kaeli, and M. Leeser, “Side-channel
analysis of MAC-Keccak hardware implementations,” in Proceedings of the
Fourth Workshop on Hardware and Architectural Support for Security and Pri-
vacy, ser. HASP ’15, 2015, pp. 1:1–1:8.

[5] P. Luo, Y. Fei, X. Fang, A. Ding, M. Leeser, and D. Kaeli, “Power analysis attack
on hardware implementation of MAC-Keccak on FPGAs,” in ReConFigurable
Computing and FPGAs (ReConFig), 2014 International Conference on, Dec 2014,
pp. 1–7.

[6] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Building power analysis
resistant implementations of Keccak,” in Second SHA-3 candidate conference, vol.
142. Citeseer, 2010.

12 Pei Luo et al.

[7] T. Gneysu and A. Moradi, “Generic side-channel countermeasures for reconfig-
urable devices,” in Cryptographic Hardware and Embedded Systems CHES 2011,
2011, vol. 6917, pp. 33–48.

[8] P. Luo, L. Zhang, Y. Fei, and A. Ding, “Towards secure cryptographic software im-
plementation against side-channel power analysis attacks,” in Application-specific
Systems, Architectures and Processors (ASAP), 2015 IEEE 26th International
Conference on, July 2015, pp. 144–148.

[9] S. Bayat-Sarmadi, M. Mozaffari-Kermani, and A. Reyhani-Masoleh, “Efficient
and concurrent reliable realization of the secure cryptographic SHA-3 algorithm,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, vol. 33, no. 7, pp. 1105–1109, July 2014.

[10] AVR-Crypto-Lib, 2015 (accessed Oct 5, 2015). [Online]. Available: http:
//avrcryptolib.das-labor.org/

[11] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak sponge function
family main document,” Submission to NIST (Round 2), 2009.

[12] G. Bertoni, J. Daemen, M. Peeters, and G. Assche, “The Keccak reference,” Sub-
mission to NIST (Round 3), January, 2011.

[13] N. F. Pub, “DRAFT FIPS PUB 202: SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions,” Federal Information Processing Standards
Publication, 2014.

[14] X. Guo and R. Karri, “Recomputing with permuted operands: A concurrent error
detection approach,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 32, no. 10, pp. 1595–1608, Oct 2013.

[15] X. Guo and R. Karri, “Invariance-based concurrent error detection for Advanced
Encryption Standard,” in Proceedings of the 49th Annual Design Automation Con-
ference, ser. DAC ’12, 2012, pp. 573–578.

[16] T. Katashita, Y. Hori, H. Sakane, and A. Satoh, “Side-channel attack standard
evaluation board SASEBO-W for smartcard testing,” Power, vol. 3, p. 400, 2012.

[17] Reference and optimized code in C, 2015 (accessed Oct 5, 2015). [Online].
Available: http://keccak.noekeon.org/KeccakReferenceAndOptimized-3.2.zip

[18] P. Pessl and M. Hutter, “Pushing the limits of SHA-3 hardware implementations to
fit on RFID,” in Cryptographic Hardware and Embedded Systems - CHES 2013,
2013, vol. 8086, pp. 126–141.

http://avrcryptolib.das-labor.org/
http://avrcryptolib.das-labor.org/
http://keccak.noekeon.org/KeccakReferenceAndOptimized-3.2.zip

	An Improvement of Both Security and Reliability for Keccak Implementations on Smart Card
	Introduction
	Preliminaries of Keccak
	Round Rotation Invariance Based Scheme
	Invariance of Keccak Permutation Function
	Invariance-Based Protection Scheme
	How it reduces side-channel leakages
	How it improves the reliability

	Advantages of the Proposed Scheme

	Side-Channel Power Analysis and Fault Injection Simulation of the Proposed Scheme
	Side-Channel Analysis Results of Protected and Unprotected Implementations
	Fault Injection Simulation Result

	conclusion

