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Abstract. Password-protected secret sharing (PPSS) schemes allow a user to publicly share its high-
entropy secret across different servers and to later recover it by interacting with some of these servers
using only his password without requiring any authenticated data. In particular, this secret will remain
safe as long as not too many servers get corrupted. However, servers are not always reliable and the
communication can be altered. To address this issue, a robust PPSS should additionally guarantee that a
user can recover his secret as long as enough servers provide correct answers, and these are received without
alteration. In this paper, we propose new robust PPSS schemes which are significantly more efficient than
the existing ones. Our contributions are two-fold: First, we propose a generic technique to build a Robust
Gap Threshold Secret Sharing Scheme (RGTSSS) from some threshold secret sharing schemes. In the PPSS
construction, this allows us to drop the verifiable property of Oblivious Pseudorandom Functions (OPRF);
Then, we use this new approach to design two new robust PPSS schemes that are quite efficient, from
two OPRFs. They are proven in the random-oracle model, just because our RGTSSS construction requires
random non-malleable fingerprints, which is provided by an ideal hash function.

Keywords: Password-Protected Secret Sharing, Robust Gap Threshold Secret Sharing Scheme, Oblivious
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1 Introduction

Nowadays, cloud storage is quite popular with zettabytes of data spread all over the world. Even if
providers give some backup guarantees, they cannot always prevent compromises, and so the data
are subject to leakage, with possibly huge consequences if the data are sensitive (financial, economic,
medical, etc). Clearly, the provider can encrypt the data before storing them, but this is not an end-
to-end protection for the user: the provider itself has access to the data. For better security, the user
should encrypt the data before sending them to the cloud. But this leads to a key management issue:
Users have to remember their secret keys!

Humans cannot remember large secret keys, but just low-entropy passwords (and not too many).
Such a password is definitely not enough to deterministically derive a symmetric encryption key, since
a simple offline dictionary attack would allow the recovery. On the other hand, there are techniques
using passwords that are not vulnerable to such offline dictionary attacks, like password authenticated
key exchange (PAKE) [BM92]. For these PAKE protocols, the best attacks require the adversary to
be online, and to make the exhaustive search by interacting with the honest parties, hence the idea
to combine PAKE with secret sharing, in order to achieve the best of the two worlds. This allows the
recovery of a high-entropy symmetric key by interacting with several servers while just using a low-
entropy password [FK00,Jab01], without relying on any authenticated data, where the best attacks
are online dictionary attacks.

Password-Protected Secret Sharing. A (t, n)-password-protected secret sharing (PPSS) is a proto-
col that allows a user to reconstruct a high-entropy secret from a single (human-memorable) password,
by communicating with at least t+ 1 honest servers (among n possible ones).

This framework formalized in [BJSL11] first defines a secure initialization phase where the secret
is processed together with the password, and some server information, in order to distribute the
secret among n independent servers. Only public information (to enable the later reconstruction) is
eventually stored on each server. We however stress that this public information does not have to be
authentic for the later security. Then, during the reconstruction phase, the user can recover his secret
by interacting with any subset of t+1 honest servers using just his password. If the public information
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has been altered, the knowledge of the password will be enough to detect it. However, in [BJSL11]
they prove their scheme secure in the random-oracle model assuming an additional PKI. Whereas
this assumption of a safe PKI makes sense during the initialization phase, which can be run in a safe
environment, it is not reasonable to make this assumption for the reconstruction phase, which will be
executed many times on various weak devices.

A PPSS protocol satisfies the following properties: (i) the user can retrieve the data by executing
the reconstruction protocol with the same password as the one used in the initialization phase and it is
guaranteed to succeed as long as at least t+1 honest servers are available. (ii) An attacker who controls
up to t servers cannot learn any information about the secret other than doing an online dictionary
attack with another server. Two additional properties have been defined: Soundness and Robustness.
The first guarantees that even if the adversary compromises all the servers, and provides consistent
but fake public information, it cannot make the user reconstruct and accept a secret different from
the one originally stored by the user. On the other hand, robustness guarantees the recovery of the
secret as long as the user communicates without disruptions with at least t+ 1 honest servers.

We stress that the adversary can control all the communication network by blocking, delaying,
altering, or duplicating any flow. As such, no server is trusted, and no PKI is assumed either, since
the only authenticated data we allow is a short password that the user can remember.

Contributions. Our PPSS protocol follows the methodology from [JKK14]: it is based on the use of
pseudorandom functions (PRFs) evaluated on the password to mask the shares of the secret. These
evaluations are performed, in an oblivious way, with servers that own the PRF keys, hence the so-called
oblivious pseudorandom functions (OPRFs).

Our main contribution is the efficient realization of the robustness in only one round of commu-
nication with each server, possibly in a concurrent way. We also avoid any complex zero-knowledge
proof. This comes from the fact that we do not need to distinguish between correct and incorrect
shares at each individual evaluation with a server as in [JKK14]. Compared to the later solution with
ZK proofs given in [JKKX16], our scheme needs only a single global check at the very end, during the
secret reconstruction, which significantly reduces the communication costs.

Actually, we propose a new efficient method to convert some Secret Sharing Schemes into (t`, tr, n)-
Robust Gap Threshold Secret Sharing Schemes (RGTSSS) that guarantees to efficiently identify the
correct values (and reconstruct the secret) if at least tr shares are correct. However, if at most t` − 1
shares are correct, the protocol leaks no information about which shares are correct. Our construction is
more general and with similar efficiency than using error-correcting code such as Reed-Solomon [RS60].
Such a (t`, tr, n)-RGTSSS allows constructing a sound and robust PPSS scheme: If the number of
correct servers’ answers is above the threshold tr, the user can efficiently identify the valid ones and
reconstruct the secret. If the number of answers is strictly below another threshold t`, no information
about the secret is leaked. It is indeed important that not too few correct shares can be detected as
correct as this could result in offline dictionary attacks. For instance, in the case where shares could be
individually checked, a dishonest server could easily mount an offline dictionary attack. With our new
primitive, even t`− 1 corrupted servers cannot perform an offline dictionary attack as they would still
need to interact with at least one additional server. The main difference to [JKK14] is in the way to
achieve robustness: We ask a bit more from the secret sharing scheme, but much less from the OPRF,
allowing more efficient constructions for the latter, which highly improves on the global efficiency.

While similar to [JKKX16] in terms of server interaction efficiency for the PRF evaluation, our
technique takes advantage of the RGTSSS to optimize the secret reconstruction. The scheme proposed
by [JKKX16] has one significant drawback: the client is supposed to specify the exact set of servers
involved in the secret recovery from the beginning, which may lead to frequent failures as the servers
may misbehave. Moreover, in case of such a failure, the user is unable to detect the cheating servers.
To overcome this drawback when a large number of servers are involved in the protocol, our approach
makes use of the robustness feature of the secret sharing scheme to ensure the recovery of the secret
and the detection of dishonest servers.
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We propose two efficient OPRF constructions: The first one is based on the One-More Gap Diffie-
Hellman assumption and its efficiency is quite similar to the one in [JKKX16]. Secondly, we introduce
a new oblivious evaluation of the Naor-Reingold PRF [NR97], based on the sole DDH assumption.

For this new construction, we compare very favorably to other oblivious evaluations of the Naor-
Reingold PRF: our protocol simply uses ElGamal encryption [ElG85] in prime order groups with
simple zero-knowledge proofs, whereas for example the scheme in [JKK14] has to work in composite
order groups with Paillier encryption [Pai99] and more complex zero-knowledge proofs.

By combining these building bricks, we eventually reach efficient PPSS schemes that satisfy Sound-
ness and Robustness properties. The two proposed solutions are eventually proven in the Random-
Oracle Model (ROM) [BR93], as our RGTSSS construction requires random non-malleable fingerprints.
This can be achieved by using a hash function that is modeled as a random oracle [BR93].

Related Work. A threshold secret sharing scheme allows a user to distribute a secret among different
participants preventing a sole party breaking the security or obstructing the reconstruction. This idea
was introduced by Shamir [Sha79] and Blakey [Bla79]. This concept was later generalized by using
two thresholds, a upper and a lower one to set the size of the sets to reconstruct and to preserve
privacy respectively. In Shamir’s secret sharing scheme, the privacy threshold is defined as t and the
reconstruction threshold as t + 1. When this gap is higher, then the secret sharing scheme is called
ramp scheme. Ramp schemes to achieve a robust secret sharing scheme have been extensively studied,
we refer the reader to [Che15] and [BPRW15]. While this is well-known that the Shamir secret sharing
scheme can be made robust using Reed-Solomon error correcting codes, our approach is more general
with similar efficiency.

The first formal definition of Password Protected Secret Sharing was introduced by Bagherzandi
et al. [BJSL11]. They proved their scheme secure in the random-oracle model assuming an additional
PKI. Moreover, if an adversary is able to obtain the keypair of one server, the adversary can perform an
offline attack. Later, Camenisch et al. [CLN12] introduce a protocol of password-authenticated secret
sharing that also assumes a PKI and only two servers. Both protocols contradict the requirement
to be password-only, since they assume additional authenticated data. Whereas this assumption of a
safe PKI makes sense during the initialization phase, which can be run in a safe environment, it is
not reasonable to make this assumption for the reconstruction phase, which will be executed many
times on various weak devices. Later, Camenisch et al. [CLLN14] introduce a (t, n)-PPSS (called
TPASS, for Threshold Password-Authenticated Secret Sharing) in the Universal Composability (UC)
framework [Can01] that is password-only during the reconstruction phase. However, in this protocol
all servers jointly validate if the password matches or not. Yi et al. [YHCL15] propose a more efficient
TPASS based on distributing the password, a secret and a digest of the secret. Nevertheless, in the
recovering protocol, at least t servers execute a broadcasting protocol to generate and return the
ElGamal encryptions of both the secret and the digest. Then the users verify it matches.

Camenisch et al. [CLN15] present a very lightweight protocol with a similar construction to our
work, yet with differences. Since this protocol does not rely on robust secret sharing scheme nor zero-
knowledge, it is not possible to identify which shares are valid. Then, if in the end the validation fails,
the protocol must restart with a different set of servers contradicting the requirement of robustness
and leading to a possible Denial-of-Service (DoS) attack.

Jarecki et al. [JKK14] have been the first to design a PPSS scheme that is both password-only
during the reconstruction phase and robust, to avoid easy DoS attacks. It makes use of a Verifi-
able Oblivious Pseudorandom Function (VOPRF) that assures robustness by providing computation
guarantees from the servers: the user actually knows which server has tried to cheat, or which com-
munication links have been altered. Recently, the work [JKKX16] improves the performance of this
password-only PPSS on the cost of dropping the robustness property. Their protocol is relaxing the
verifiable property of the OPRF, giving up the ability to discard incorrect computations during inter-
actions with servers. This can be a good alternative for a small number n of servers, the only setting
that allows checking in a reasonable time different subsets of servers until finding a non-corrupted one.
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2 Security Model

In order to analyze the security of PPSS protocols, we first provide a formal description of the security
model. This is a game-based security definition, in the same vein as [BR94,BR95] for key distribution
schemes and [BPR00] for password-authenticated key exchange. It adapts the PPSS definition from
[BJSL11] and the security model from [JKK14]. We define security in terms of a key derivation mech-
anism or indistinguishability of the actual secret from a random one, as in [JKK14], since our goal
is to later use the secret as a symmetric key. In particular, we do not want to rely on a PKI or any
authenticated public values, hence our model description is similar to security models for PAKE.

2.1 Password-Protected Secret Sharing

Participants and Parameters. We assume a fixed set of participants involved in the protocol, each
of which is either a user or a server. The set of all participants is the union of the nonempty disjoint
and finite sets, User ∪ Server.

Each user U ∈ User holds two threshold values t` and tr, where tr is the number of shares required
to recover the secret and t` is the number of shares that start leaking some information about the
secret, as well as some password pw chosen independently and uniformly from a dictionary D of
cardinality #D.

Each server S ∈ Server holds a secret key sk, and possibly an associated public key pk. However
we stress that even if there is a public key pk, authenticity cannot be assumed a priori during the
reconstruction phase since users will just have to remember their passwords and nothing else that
would be required to authenticate additional data.

Initialization. The goal of the user U is to generate a key K so that he later can recover it with the
help of tr servers among n available servers, just using his password. He thus runs an initialization
protocol with n servers, using their public keys, his password and some random coins. He ends up
with a random key K and some additional information PInfo: nobody else than U has any information
about K, however PInfo can be made public.

Secret Reconstruction. While the initialization phase assumes that all the servers are honest,
the public keys are authentic, and the data are not modified during the communication, for the
reconstruction phase, the adversary controls the network and can forward, alter, delay, replay, or delete
any message. The adversary can also provide fake public data: nothing is authenticated anymore!

Anyway, just using his password, the user U should be able to recover K, with the help of the
servers, in a verifiable/robust way, even if some information in PInfo is not guaranteed to be correct.

Each participant (either user or server) can run several executions of the protocol, possibly con-
currently, we thus denote an instance i of player P as P i. Each instance may be activated once only:
the adversary is given oracle accesses to interact with all the user’s and server’s instances that are
stateful interactive polynomial-time Turing machines.

2.2 The adversarial model

During the reconstruction phase, the adversary is given total control of the network. It is thus given
access to the following oracles:

– Execute(U i, {Sjkk }): This query models a passive attack. This makes an instance U i to interact

with several instances of servers {Sjkk } as they would do during the reconstruction protocol. The
adversary gets the entire transcript;

– Send(P i,m): This query models an active attack. This sends a message m to the instance P i. A
specific message Startjk to a user’s instance U i makes it initiate a communication with the server’s

instance Sjk.
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The security goal is to guarantee the privacy of the secret key K reconstructed by the user. This is
usually modeled by an indistinguishability game, with access to a Test-query, where b is a global secret
random bit:

– Test(U i): This query characterizes the indistinguishability of the key K computed by instance
U i. If this instance has not yet completed the reconstruction, the answer is undefined; if the
reconstruction failed, the answer is ⊥; otherwise, the answer is either the real reconstructed value
if b = 1 or a random one (always the same for user U , but independent of the real one) if b = 0.

The adversary eventually outputs its guess b′ for the bit b. One can note that in the random case
(b = 0), which models the ideal executions, a user U always terminates with the same key, or fails.
This means that the adversary should not be able to make him accept a different key.

In addition to control the network and the communications, the adversary can corrupt servers, and
get back their secret keys, due to, e.g., a poorly-administered server, compromise of a host computer,
or cryptanalysis. This is modeled by the Corrupt-query:

– Corrupt(Sk): This outputs the secret key skk of the server Sk.

2.3 Semantic Security

Definition. Once the initialization phase is completed for many users, with random passwords uni-
formly and independently drawn from a dictionary D, the security game models the indistinguishably
of the secret keys, a.k.a. semantic security, the adversary can ask as many oracle queries (Execute,
Send, Test, and Corrupt), as it wants, in any order it wants, in order to guess the bit b: it outputs its
guess b′. We measure the quality of an adversary A by its advantage

Adv(A) = Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0] = 2× Pr[b′ = b]− 1.

Trivial Attacks. Two kinds of “on-line dictionary attacks” are unavoidable:

– if the adversary guesses the correct password, it will be able to reconstruct the actual secret K
after qc corruption queries and tr − qc interactions with honest servers. Even after just t` − qc
interactions, it may come up with t` shares, which may leak some information about the actual
secret key: it thereafter asks for an Execute-query, and tests the instance involved in this session, to
distinguish the real case from the random case. Its success probability is however upper-bounded
by qs/(t` − qc)× 1/#D, where qs is the number of server instances involved during the attack, qc
the number of Corrupt-queries, and #D the size of the password dictionary.

– whereas the initialization phase was assumed to be done with authentic server public keys, for the
reconstruction phase, the adversary can send totally fake public keys in PInfo that it generated
itself from a randomly chosen password pw. It thus also knows the secret keys and can simulate
the view of the user by emulating all the servers. If the password guess was correct, the user
should successfully terminate, whereas a wrong guess would lead to inconsistent information. Its
success probability is therefore upper-bounded by qu/#D, where qu is the number of user instances
involved in the attack.

2.4 Secure PPSS

As a consequence, we will say a (tr, n)-PPSS scheme is (t`, ε, t)-secure if for any adversary A, running
within time t, asking at most qc < t` Corrupt-queries and invoking at most qu user instances and qs
server instances,

Adv(A) ≤ 1

#D
×
(

qs
t` − qc

+ qu

)
+ ε.

In [JKK14], they proposed such a protocol that achieves the optimal t`-security, for t` = tr, but at the
cost of verifiable oblivious pseudorandom functions. Our goal is to build much more efficient protocols,
possibly with a larger gap between t` and tr.
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Correctness. To be viable, a password-protected secret sharing must guarantee that at least tr honest
servers should allow the user that plays with his password pw to recover his secret K.

Soundness. As guaranteed by our security model, when a user terminates with a key K ′, this is the
correct key K in almost all the cases, unless the adversary guesses the password. More precisely, when
playing with the correct password pw, the user should end up with K ′ ∈ {K,⊥}:

Pr[K ′ 6∈ {⊥,K}] ≤ 1

#D
×
(

qs
t` − qc

+ qu

)
+ ε.

Robustness. While one cannot avoid Denial-of-Service (DoS) attacks, since the adversary can sim-
ply block any communication, an important property, already required by [JKK14], is the so-called
robustness: even if the adversary alters many messages, as soon as tr communications with servers are
unmodified the user can efficiently recover its secret.

The general issue with robustness is that when the user has interacted with n servers but only tr
shares are valid, the cost of trying all the tr-subsets is exponential! In [JKK14], they addressed this
issue by making some inner protocols secure against malicious servers, with additional zero-knowledge
proofs of honest behavior, but this is at a high communication cost. Our goal is to provide this property
at a much lower cost.

3 High-Level Description

We review the well-known computational assumptions and the classical building blocks in the Ap-
pendices A and B respectively. Our general construction follows the one from [JKK14], with first an
initialization phase and then a reconstruction phase.

Each server Si owns a key-pair (ski, pki) that defines a PRF Fi, with public parameters defined by
pki and a secret key defined by ski. For a password pw ∈ D, the user asks for an oblivious evaluation of
πi = Fi(pw) to n servers, where Π = (pki)i is the tuple of the public keys of the involved servers. The
secret key K is then split into shares (s1, . . . , sn) and some extra public information PInfo, specific to
the user, is derived from it and distributed to all servers. This information allows the user to later
recover his secret, in a robust way.

We stress that, during this initialization phase, (pki)i are all the true public keys, and (πi)i are the
correct evaluations of the PRFs. However, during the reconstruction phase, the values provided by
the servers are sent through an insecure channel and they might be altered by the adversary: the user
interacts with at least tr servers, that provide him PInfo, and help him to compute each πi = Fi(pw) in
an oblivious way. We assume that the user received the same value PInfo from at least tr servers, and
then the user keeps the majority value. Using PInfo and enough evaluations πi, the user can extract
enough shares among (s1, . . . , sn) and reconstruct a value K. He can then verify whether this is the
expected secret key, from the majority PInfo which is however not considered authentic. We can note
that there are two crucial tools for this generic construction:

– a pseudorandom function F that can be evaluated in an oblivious way: the server input is the
secret key sk and the user input is the password pw, and the user only gets the output Fsk(pw),
but none of the players learn any additional information about the other player’s input;

– a (t`, tr, n)-threshold secret sharing scheme that allows to share a secret among n players so that
any subset of tr shares allows efficient reconstruction of the secret, while t`− 1 shares do not leak
any information.

An additional non-malleable commitment scheme [DIO98] will provide the soundness, by limiting the
ability for an adversary to present a modified PInfo, whereas it controls all the communications.

However, in order to achieve the robustness to the PPSS protocol, we need to make sure that when
tr communications with the servers are unmodified, the user can reconstruct the secret: either one
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can detect alterations of the communications during the oblivious evaluations of the PRF, which is
the approach followed by [JKK14] with Verifiable Oblivious PRFs (VOPRFs), or one can efficiently
reconstruct a secret from any set of shares that contains at least tr valid shares, which is our approach
with Robust Gap Threshold Secret Sharing Scheme.

4 A Robust Gap Threshold Secret Sharing Scheme

Our technique can generically apply to most threshold secret sharing schemes, with two algorithms
ShareGen and Reconstruct that respectively share a secret into n parts and reconstruct it from tr shares
(while no information leaks from tr − 1 shares, which look independent random elements). One can
for example use the classical Shamir’s secret sharing scheme [Sha79] to which we will add this new
robustness feature, at the cost of having a threshold gap secret sharing scheme that is enough to get
a robust PPSS scheme (for details about secret sharing schemes see the Appendix D).

4.1 Intuition

The valid shares are denoted (s1, . . . , sn) and the fingerprints of these shares (σ1, . . . , σn). At the same
time of the share distribution, the product S of all fingerprints modulo an integer N is published.
In order to reconstruct the secret, having received m candidate shares, one computes its fingerprints
(τ1, . . . , τm) and the product of them T =

∏
τi. The ratio T /S mod N will cancel out the fingerprints

of all the correct share values leading to the ratio T ′/S ′ mod N , where S ′ is the product of the
fingerprints of the valid shares that the receiver does not have in the list of candidates and T ′ the
product of the fingerprints of the candidates that are invalid. From S ′, one could easily check for every
candidate, whether it is in this product or not, and therefore identify which candidate is correct or
not.

Of course, S ′ has to be computed with good precision to allow the last verification, but not too
much in order to avoid individual checks or any unnecessary leakage of information. The computations
are thus performed modulo N , for a well-chosen value.

4.2 Description

We now explain how one can detect the valid shares when the fingerprints are either correct or random.

Initialization. We assume we have a set of n initial values (s1, . . . , sn), and their k-bit string finger-
prints (σ1, . . . , σn). As fingerprint function we use a hash function F : {0, 1}∗ → {0, 1}k modeled as a
random oracle.

In the following, we will be given a set of m candidate shares, whose fingerprints are (τ1, . . . , τm):
these fingerprints are either correct (the same as in the list (σ1, . . . , σn) or random for incorrect
candidate shares). From this set of candidate shares, if at least tr are correct, we want to efficiently
identify the correct values (to recover the secret in a threshold secret sharing scheme, hence the r-
subscript in tr). However, if at most t` − 1 are correct, the protocol should not leak any information
about which candidates are valid and which are not (hence the `-subscript in t`, the number of shares
that start leaking information).

From the initial set (σ1, . . . , σn) of size n and the threshold tr, one chooses a prime number N
such that 22k(n−tr)+1 < N ≤ 22k(n−tr)+2, computes the product S =

∏n
i=1 σi mod N , and publishes

SSInfo = (S, N).

Reconstruction. Given the SSInfo = (S, N) and fingerprints (τ1, . . . , τm) of the m ≤ n candidates,
which are either correct (at least tr of them) or random (all the other ones), one computes the ratio
γ =

∏m
i=1 τi/S mod N , which can be written as γ = T ′/S ′ mod N , where T ′ is the product of the

fingerprints of the invalid candidates and S ′ the product of the fingerprints of the values that are not
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in the list of the candidates, both over the integers. Then, we know that T ′ < 2k(m−tr) ≤ 2k(n−tr) and
S ′ < 2k(n−tr).

Unfortunately, using the following result from [FSW03], we can only recover the irreducible fraction
T ′′/S ′′ of γ, where all the small common factors of T ′/S ′ were canceled out, with T ′′ ≤ T ′ < 2k(n−tr)

and S ′′ ≤ S ′ < 2k(n−tr), under appropriate conditions.

Theorem 1. (Numerical Rational Number Reconstruction) Let z = x
y mod N such that −X ≤ x ≤ X

and 0 < y ≤ Y . If N is relatively prime to y and 2XY < N then the solution is unique and it is
possible to recover x and y efficiently by using two-dimensional lattice theory.

ConsideringX = 2k(n−tr)−1 and Y = 2k(n−tr)−1, we indeed have 2XY ≤ 2(2k(n−tr)−1)(2k(n−tr)−1) <
N and X > 0, Y > 0, hence we can efficiently recover T ′′ and S ′′ from γ. Now, if τi is the fingerprint
of a valid share, it should be canceled out in T ′, but there might still be some small factors in common
between τi and T ′′ (we assume that the size of the common part is less than half of the size of τi). On
the other hand, if τi is the fingerprint of a random invalid share, it should not be completely canceled
out in T ′. However, there is still a chance that some small factors have been canceled out, leading to
T ′′ in the irreducible form (we assume that less than half of it cancels). Hence, our decision algorithm
is the following one: we denote ti the bit size of | gcd(T ′′, τi)|; if ti ≥ k/2, this is an invalid share,
otherwise this is a valid share.

In Figure 1, we present experimental results that validate this decision algorithm for 128-bit fin-
gerprints. It clearly shows that for a valid τi, ti is a small number (half of them equal to 1) and for an
invalid τi, ti is a large number (44% of them is equal to 2k). We have computed 221 times the value of
gcd(T ′′, τi) and in case of Figure 1a, the highest bit size of ti is 35 (much less than 64). On the other
hand, in Figure 1b the least value is 96 (much more than 64). A more fine analysis can be found in
the Appendix D.

Information Leakage. On the opposite, we would like to evaluate the information leaked by S when
there are at most t` − 1 valid values. More precisely, given S, is it possible to distinguish t` − 1 valid
values for the shares from t` − 1 random values? We focus on a tr-threshold secret sharing scheme,
for a k-bit secret and k-bit shares. Then, the entropy of the tuple (σ1, . . . , σn) is k(tr − 1). Since S
reveals the product of the k-bit fingerprints modulo N , with N < 22k(n−tr)+2, the remaining entropy
on the shares is at least k(tr − 1) − 2k(n − tr) − 2 = k(3tr − 2n − 1) − 2. If this is greater than
k(t` − 1), no one can distinguish t` − 1 random values from t` − 1 correct values for the shares: we
thus need k(3tr − 2n − 1) − 2 ≥ k(t` − 1). When k > 2, this essentially means t` ≤ 3tr − 2n: by
choosing t` = 3tr − 2n, we are safe. For example, one can take tr = d3n/4e and t` = bn/4c. And the
same argument, with 2k-bit secret and shares but still k-bit fingerprints, leads to tr = d2n/3e and
t` = bn/3c, which makes sense for a 256-bit secret key and 128-bit fingerprints.

(a) gcd(T ′′, τi)-bitlength for valid τi.
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(b) gcd(T ′′, τi)-bitlength for invalid τi.
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Fig. 1: Length in bits of gcd(T ′′, τi) for a fingerprint of size 128-bits and 32 shares
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5 Our Password-Protected Secret Sharing Protocols

Thanks to our new (t`, tr, n)-RGTSSS, we do not need to use a VOPRF, as in [JKK14], which is at the
cost of complex zero-knowledge proofs. We can now describe our general structure of PPSS protocol,
using an OPRF as black-box. We thereafter provide two instantiations, with two appropriate OPRFs,
in the same vein as the ones proposed in [JKK14], using similar computational assumptions (see the
Appendix B):

– the first OPRF relies on the CDH evaluation, similar to the protocol 2HashDH, but without
NIZKs. The PPSS construction is then quite similar to [JKKX16].

– the second OPRF is an oblivious evaluation of the Naor-Reingold PRF [NR97]. Then, in the PPSS,
the gain of the zero-knowledge proofs by the server is quite significant.

5.1 General Description

As already presented in the high-level description, our protocols are in two phases: the initialization
phase which is assumed to be executed in a safe environment and the reconstruction phase during
which the password only is considered correct, while all the other inputs can be faked by the adversary.

Initialization. We assume that each server Si owns a key pair (ski, pki) that defines a PRF Fi, with
public parameters defined by pki and a secret key defined by ski, that admits an OPRF protocol to
allow a user with input m to evaluate Fi(m) without leaking any information on m to the server.

We additionally use a (t`, tr, n)-robust gap threshold secret sharing scheme and a non-malleable
commitment scheme (see the Appendix B). Since we already are in the random-oracle model for
the PRF, we can implement the commitment scheme with a simple second-preimage-resistant hash
function HCom, which allows a better efficiency. The user U first chooses a secret password pw:

1. the user interacts with n servers to obliviously evaluate πi = Fi(pw), and Π = (pki)i is the tuple
of the public keys of the involved servers;

2. for a random value R = K‖r, where K is the random secret key the user wants to reconstruct and
r some random coins for the commitment. The user generates (s1, . . . , sn, SSInfo)← ShareGen(R),
so that any subset of tr shares among {s1, . . . , sn} can efficiently recover R;

3. then, the user builds σi = πi ⊕ si, for i = 1, . . . , n, and sets Σ = (σi)i;
4. the user generates Com = HCom(pw, Π,Σ,SSInfo,K; r). We denote by PInfo = (Π,Σ,SSInfo,Com)

the public information that the user will need later to recover his secret K;
5. the user thus gives PInfo to all the servers.

We stress that during this initialization phase, all the values of Π are the real public keys and (πi)i are
the correct evaluations of the PRFs. On the opposite, during the reconstruction phase, all the values
in PInfo will be provided by the servers, but through the adversary, who might alter them.

Reconstruction. For the reconstruction, the user interacts with at least tr servers, that provide
him PInfo = (Π,Σ,SSInfo,Com), and help him to compute πi = Fi(pw) for several values of i, using
pki from Π. No information is trusted anymore, and so the reconstruction phase perform several
verifications:

1. the user first limits the oblivious evaluations of πi = Fi(pw) to the servers that sent the same
majority tuple PInfo = (Π,Σ,SSInfo,Com). If the number of such servers is less than tr, one
aborts with K ←⊥;

2. for all these πi (or similarly, all the i he kept), the user computes si = σi ⊕ πi, using σi from Σ
(from PInfo);

3. using these {si} with at least tr correct shares, and SSInfo (from PInfo), with RGTSSS, the user
reconstructs the shared secret R (or aborts with K ←⊥ if the reconstruction fails);

4. the user parses the secretR asK‖r, and checks, from PInfo, whether Com = HCom(pw, Π,Σ, SSInfo,K; r);
5. if the verification succeeds, K is the expected secret key, otherwise the user aborts with K ←⊥.
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5.2 Protocol I: One-More-Gap-Diffie-Hellman-based PRF

Our first instantiation is based on CDH-like assumptions in the random-oracle model. The arithmetic
is in a finite cyclic group G = 〈g〉 of prime order q. We need a full-domain hash function H1 onto
G, and another hash function H2 onto {0, 1}`2 . The commitment scheme uses a simple hash function
HCom = H3 onto {0, 1}`3 .

For a private key sk = x ∈ Zq, we consider the pseudorandom function Fx(m) = H2(m, g
x, H1(m)x),

for any bitstring m ∈ {0, 1}∗, where the public key is pk = y = gx. In the Appendix C, we prove this
is indeed a PRF, as already shown in [JKK14].

In addition, it admits an oblivious evaluation, that does not leak any information, thanks to the
three simulators Sim, SimU and SimS , as presented in Figure 2: Sim simulates an honest transcript,
SimU simulates an honest user interacting with a malicious server, and SimS simulates an honest
server with a malicious user. These simulators will be used by our simulator in the full security
proof. They generate perfectly indistinguishable views to the adversary, but they require CDHg(y, ·)
and DDHg(y, ·, ·) evaluation, and thus oracle access when the secret keys are not known. Since the
indistinguishability of the PRF relies on the CDHg(y, ·) assumption, the overall security relies on the
One-More Gap Diffie-Hellman (OMGDH) assumption (see the Appendix A) as shown in the last step
of the proof.

Theorem 2. For any adversary A, against the Protocol I, that corrupts no more than qc servers,
involves at most qs instances of the servers, qu instances of the user, and asks at most q1, q2, q3
queries to H1, H2, H3, respectively

Adv(A) ≤
(
qu +

4qs
n− 4qc

)
× 1

#D
+ ε.

where ε = n× Succomgdh(q1, qs, t, n · qu + q2) + (q23 + 2) · 2−`3/4.

Security Proof. The complete and detailed proof of the Theorem is given in the Appendix C. The
rough idea is the following: in the real attack game, we focus on a unique user, against a static adversary
(the corrupted servers are known right after the initialization, and before any reconstruction attempt).
All the parameters are honestly generated, the simulator knows the secret informations to answers the
queries, and two random keys K0 (random) and K1 (real), as well as a bit b, are selected randomly
to answer Test-queries. In the final game, we simulate all the answers to the adversary without using
a password. A random value will be chosen at the very end of the simulation and used as a password
in order to decide if some bad events should have occurred, which will immediately upper-bound the
advantage of the adversary.

We first modify the way Execute-queries are answered, using Sim that perfectly simulates honest
transcripts user-servers, and we set user’s key to K1.

User Server
m pk = y = gx sk = x

α
$← Z∗q , A← H1(m)α A -

If B = 1, then abort B� B ← Ax

C ← B1/α, R← H2(m, y,C)

Sim

α
$← Z∗q

A← gα A -
B� B ← yα

SimU

A
$←G A -

B�
¬DDHg(y,A,B)
=⇒ fail

SimS

A -
B� B ← CDHg(y,A)

Fig. 2: Secure Oblivious Evaluation of the PRF based on OMGDH



11

Then, we deal with Send-queries to the honest user, trying to exclude the cases of a fake public
information PInfo′ (sent by the majority of servers): first, we do as before if the commitment Com′ in
PInfo′ is different from the expected value C generated during the initialization, but eventually we set
K ←⊥. This would just make a difference for the adversary if Com′ indeed contains the good password
pw, which is defined as the event PWinC. This event PWinC can be evaluated using the list of queries
asked to H3. Then, a similar argument applies when a wrong PInfo′ is sent, but with a correct Com,
under the binding propriety of the commitment H3.

Once we have fixed this, and we trust the public values, we can use SimU , that perfectly simulates
a flow A from the user to a server, and can decide on the honest behavior of the servers. Then SimU

accepts with K ← K1 in the honest case or aborts with K ←⊥ otherwise. Hence, we remark that we
answer Send-queries without calling the H1 or H2 oracles, but just using K1, and no secret sharing
reconstruction is used anymore.

Next step is to replace all the shares in the initialization phase by random and independent values.
We know that until the adversary does not get more than t` = n/4 of these shares, it cannot detect
whether they are random or correct. We define the event PWinF to be the bad event, where the
adversary has enough evaluations of the PRF to notice the change. Again, our simulator is able to
decide the event PWinF by checking whether pw has been queried with the right inputs to H2, and
how many times. We eventually replace the hash value Com in the initialization phase by a random
Com.

One can note that, in the end, the password pw is not used anymore during the simulation, but
just to determine whether the events PWinC or PWinF happened. In addition, K1 does not appear
anymore during the initialization phase, hence one cannot make any difference between K0 and K1:
SuccA = 1/2 in the last game. As a consequence, Adv(A) ≤ Pr[PWinC]+Pr[PWinF]+ε, where ε comes
from the collisions or guesses in the random oracles. To evaluate the two events PWinC or PWinF to
happen, we choose a random password pw at the very end only: Pr[PWinC] is clearly upper-bounded
by qu/#D, since qu is the maximal number of fake commitment attempts containing the right pw that
can be different from the expected ones; PWinF means that the adversary managed to get n/4 − qc
evaluations of the PRFs under the chosen pw, since it can evaluate on its own the values under the qc
corrupted servers. But unless the adversary gets more evaluations than the number qs of queries asked
to the servers (which can be proven under the OMGDH assumption), the number of bad passwords
(for which the knows at least n/4 − qc evaluations of the PRFs) is less than qs/(n/4 − qc). So the
probability that the chosen pw is such a bad password is less than qs/(n/4− qc)× 1/#D.

5.3 Protocol II: DDH-based PRF

Our second instantiation makes use of the Naor and Reingold [NR97] pseudorandom function. We
consider the group G = 〈g〉 of prime order q that is a safe prime: q = 2s + 1. In the multiplicative
group of scalar Z∗q , we consider the cyclic group Gs of order s (this is the group of elements in Z∗q with
Jacobi symbol equals to +1). In both groups, the DDH assumption can be made.

The PRF key is a tuple a = (a0, a1, . . . , a`)
$← (Gs\{1})`+1, and Fa(x) = ga0

∏
a
xi
i , where x =

(x1, x2, . . . , x`) ∈ {0, 1}`. This function has been proven to be a PRF under the DDH assump-
tion [NR97] on `-bit inputs. It also admits a simple oblivious evaluation (just the messages C and G
from Figure 3), using a multiplicatively homomorphic encryption scheme in Gs, such as ElGamal for
(Encpk,Decsk), which allows the computation of C from x, α, and the ciphertexts {ci}i. Unfortunately,
without additional proofs, this is not secure against malicious users, since it works only for honest
inputs x ∈ {0, 1}`. Hence the more involved protocol presented in Figure 3 that makes use of a zero-
knowledge proof of knowledge of (xi)i ∈ {0, 1}` and α ∈ Gs. This can be efficiently done under the
sole DDH assumption. Whereas our oblivious evaluation of the PRF is in the standard model, overall,
the PPSS protocol based on this OPRF is in the random-oracle model as it makes use of the RGTSSS.
As a consequence, one could replace the interactive ZK proofs by NIZK proofs “à la Schnorr”. This
would reduce the number of flows to only 2. The full proof of our protocol II (including the DDH-based
OPRF) can be found in the Appendix C.
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User Server

x = (x1, x2, . . . , x`) ∈ {0, 1}` pk, {ci = Encpk(ai)} sk ∈ Zs
also seen as an `-bit scalar in Zs
α

$←Gs, C ← Encpk(α× a0
∏
ai
xi)

C -{� -
Proof(α, xi)� -

}
D ← Decsk(C)

If G = 1, then abort G� G← gD

R← G1/α

Fig. 3: Secure Oblivious Evaluation of the NR-PRF

6 Comparisons

We can assume that PInfo is stored in the Cloud, it does not need to be sent by each server, then
the global communication is linear in n. More precisely, our first protocol is quite similar to the one
from [JKKX16]. Of course, we did not provide any security result in the UC framework [Can01],
but our ultimate goal was the same as [JKK14]: an efficient robust password-protected secret sharing
scheme, in a BPR-like security model [BPR00]. To this aim, there is no reason to use UC-secure
building blocks, but tailored primitives.

Our algebraic OPRF structure is more efficient than the one in [FIPR05], since their construction
makes use of Oblivious Transfers (OT) and expensive public-key operations. In the online setting, this
kind of protocols are almost infeasible, as the number of desired OTs is not known in advance while
our zero-knowledge proofs are much simpler to use. Given the work of Ishai et al. [IKNP03], a better
efficiency can be achieved, considering each OT evaluation at the cost of a private-key operation. In
our case, the main cost in communication is that of a single zero-knowledge proof.

Our second protocol, based on this oblivious evaluation and with an additionally CRS turns out
to be much more efficient than the one from [JKK14]. Even if it uses the same Naor-Reingold PRF,
the oblivious evaluation is much more efficient and relies on the DDH assumption only. Our full
construction only makes use of ElGamal and Cramer-Shoup encryption schemes, and no Paillier’s
encryption [Pai99] nor Cramer-Shoup signature [CS99] that require both stronger assumptions, such
as the strong-RSA assumption and the decisional composite residuosity assumption, and much larger
parameters, which lead to huge communication load. The main reason comes from the relaxation on
the OPRF: since we do not need verifiability of server’s computations, it does not have to make any
zero-knowledge proof, which allows us to use a much more efficient OPRF.
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A Computational Assumptions

We consider a finite multiplicative cyclic group G = 〈g〉 of prime order q.

Computational Diffie-Hellman Assumption (CDH). The CDHg assumption states that given
gx and gy, where x and y were drawn at random from Zq, it is hard to compute gxy. We denote by
Succcdh(A) the success probability of the adversary A in computing gxy, and more generally, Succcdh(t)
is the best success probability an adversary can get within time t.

Decisional Diffie-Hellman Assumption (DDH). The DDHg assumption states that given one of
the two tuples (gx, gy, gxy) and (gx, gy, gz) where x, y, z are chosen at random and independently from
Zq, no efficient algorithm can distinguish between them. We denote by Advddh(A) the advantage of
the adversary A in distinguishing between the two distributions, and more generally, Advddh(t) is the
best advantage an adversary can get within time t.

Gap Diffie-Hellman Assumption (GDH). The GDHg assumption [OP01] states that the CDHg
assumption holds even when the adversary has access to a DDHg oracle that exactly answers for any
query DDHg(g

x, gy, gz) whether z = xy or not. Succgdh(A) and Succgdh(t, qd) are defined as above,
where A can ask up to qd DDHg oracle queries.

One-more Gap Diffie-Hellman Assumption (OMGDH). The (n,m)-One-more Gap Diffie-Hellman

assumption [BNPS03] states that given gx where x
$← Zq, a list (g1, · · · , gn)

$←Gn, unlimited access to
a DDHg(g

x, ·, ·) oracle, and up to m queries to a CDHg(g
x, ·) oracle, it is hard to output m + 1 valid

pairs (gi, g
x
i ).

Succomgdh(n,m,A) and Succomgdh(n,m, t, qd) are defined as above, where A can ask up to qd DDHg
oracle queries.

B Building Blocks

B.1 General Definitions

Threshold Secret Sharing Scheme. A (t, n)-threshold secret sharing scheme splits a secret s into
n shares, distributed to n participants in such a way that any subset of t (0 < t ≤ n) participants with
valid shares is able to reconstruct the original secret, whereas any subset of less than t participants
leaves the secret completely undetermined.

A (t, n)-threshold secret sharing scheme is called perfect if any subset smaller than t has no in-
formation at all about the secret, in an information-theoretic sense. More precisely, a (t, n)-threshold
secret sharing scheme is defined on a set of n participants P1, . . . , Pn, with algorithms ShareGen and
Reconstruct:

– ShareGen(s, t): on a secret s and a threshold t, this algorithm generates n shares (s1, . . . , sn), and
possible public information SSInfo;

– Reconstruct({si},SSInfo): on a set of t shares, and the possible additional information SSInfo, this
algorithm recovers the secret s.
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The correctness guarantees that the Reconstruct algorithm recovers the correct initial secret on any
set of t shares. Such a scheme is said secure if any set of less than t shares cannot reconstruct the
secret.

The notion of the threshold secret sharing scheme has been extensively studied, and extensions like
verifiability (which is the capability for the participants to verify their shares are correct), robustness,
cheater detection, and cheater identification, among others, have been proposed to this basic model
[MS81,TW88,Oba11,CFOR12,JS13,LP14].

Verifiable secret sharing schemes actually allow verifiability of individual shares, using the addi-
tional SSInfo that contains verifiers for every shares. In our proposal we want to have verifiability of
shares at a more global level only and avoid individual verifiability because it could allow to a unique
corrupted server make an off-line dictionary attack on its own. However, when a subset of valid and
invalid shares is given, without verifiability, it is in general quite difficult to extract a subset of t valid
shares and recover the secret. The unique solution is often the exhaustive search among all the subsets
of t shares, which requires an exponential time (in n).

Robust Threshold Secret Sharing Scheme. Several notions of robustness have been defined in
the literature for secret sharing schemes. For our purpose, a secret sharing scheme will be said robust
if, when a user is given m shares with at least tr valid shares, he can efficiently recover the secret. It
will be said robust with respect to random failures when the reconstruction is only possible if invalid
shares are random, and not fabricated by the adversary, which is enough for our purpose.

In the following, we present a generic technique, to enhance a (t, n)-threshold secret sharing scheme,
that allows to efficiently find the appropriate subset of t valid shares among a set of candidates, without
increasing the size of the shares. More precisely, we will assume that we have a set of m candidates,
with at least t correct values, whereas the incorrect values are random. To this aim, the additional
public information SSInfo will contain global information on the shares only, and no information on
the individual shares: for the construction we propose in this paper, SSInfo is the product of all the
fingerprints, modulo a small prime, in order not to leak too much information.

Oblivious Pseudorandom Functions. A pseudorandom function [GGM86] (PRF) is actually a
keyed-family of functions (Fk)k, where the outputs are indistinguishable, for a random key k, from
random elements in the function range. An oblivious PRF (OPRF) [FIPR05] is a protocol that allows
the sender contribute the key k and the receiver compute the value of Fk(x) on any input of x of the
receiver in a way that the sender learns nothing from the protocol.

Encryption Schemes. A public-key encryption scheme is a triple (K, E ,D) of algorithms. The key
generation algorithm K takes as input a security parameter and outputs an encryption/decryption
key pair (ek, dk). The encryption algorithm E takes as input an encryption key ek and a message m
and outputs a ciphertext c. The decryption algorithm D takes as input a decryption key dk and a
ciphertext c and outputs either the decryption m of c or ⊥. The correctness condition required is that
for all (ek, dk) generated by K, and for all messages m, D(dk, E(ek,m)) = m. Classical security notions
for encryption are IND− CPA and IND− CCA, where the adversary tries to distinguish the ciphertext
of two messages of its choice, being given just the encryption key, or also access to the decryption
oracle, respectively.

Commitment Schemes. In a commitment scheme, a sender commits on a message m to a receiver
without revealing any information, but with the guarantee that at the opening time, a unique message
can be revealed. There are two basic properties: the commitment must be hiding, which guarantees
that no information about m is leaked during the commit phase, and be binding, which guarantees
that only one message can be revealed during the opening phase. Additional classical properties are
extractability, equivocability, and non-malleability.
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B.2 Concrete Encryption Schemes

ElGamal Encryption. Introduced in 1985, by ElGamal [ElG85], based on the CDH assumption,
and achieving IND− CPA security under the DDH, the ElGamal encryption scheme works as follows:

Key Generation: Let x ∈ Zq the decryption key, the associated encryption key is y = gx;

Encryption: Given a message m ∈ G, let choose r
$← Zq, then compute u = gr and v = yrm. The

ciphertext is c = (u, v);
Decryption: Given a ciphertext c = (u, v), the message can be decrypted as m = v · u−x.

More precisely, within time t:
Advind−cpa(t) ≤ 2× Advddh(t).

Cramer-Shoup Encryption. The Cramer-Shoup encryption scheme [CS98] achieves IND− CCA
security under the DDH assumption:

Key Generation: Let g1, g2
$←G and x1, x2, y1, y2, z

$← Zq. Let c = gx11 g
x2
2 , d = gy11 g

y2
2 , h = gz1 and

a hash function H, chosen from the family of universal one-way functions. The public key is
(g1, g2, c, d, h,H) and the private key is (x1, x2, y1, y2, z);

Encryption: Given a message m ∈ G, let choose r
$← Zq, then compute u1 = gr1, u2 = gr2, e = hrm,

α = H(u1, u2, e), and v = crdrα, the ciphertext is c = (u1, u2, e, v);
Decryption: Given a ciphertext c = (u1, u2, e, v), one first computes α = H(u1, u2, e) and checks

whether ux1+y1α1 ux2+y2α2 = v or not. If this condition does not hold, then it rejects, otherwise it
outputs m = e/uz1.

Such an IND− CCA encryption scheme can be used as a perfectly binding commitment scheme. The
decryption key allows extractability and the IND− CCA security level makes the commitment scheme
non-malleable, but also extractable while still (computationally) hiding.

More precisely, within time t and after at most qd decryption queries:

Advind−cca(t) ≤ 2× Advddh(t) + Succ2ndH (t) + 3qd/q.

C Auxiliary Proofs

C.1 Fx is a PRF

Lemma 3. The above function Fx is a PRF under the Computational Diffie-Hellman (CDH) assump-
tion.

Given an instance (g, y = gx, h), one wants to compute hx = CDHg(y, h). Any H1-query on a new m
is answered by hz, for a random scalar z, and the tuple (m, z) is stored in the list Λ1. For any PRF
evaluation on a new m, one first asks for H1(m), chooses a random value r ∈ {0, 1}`, answers r and
stores (m, z, r) in the list ΛF . For any new H2-query (m, y,H), one first asks for H1(m), and answers
by a random value. A difference happens here from the real case if H = CDHg(y,H1(m)) and (m, z, r)
is in ΛF , since the answer should be r, and not a random value. The same problem happens if the F
query is asked later. In both cases, at the end of the game, among all the H values from the H2-queries
and the (m, z, r) ∈ ΛF , one pair (H, z) satisfies H = CDHg(y,H1(m)) = CDHg(y, h

z) = CDHg(y, h)z.
By choosing it at random, one gets CDHg(y, h) with non-negligible probability.
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C.2 Security Proof of the Protocol I

For the proof we consider an adversary as the one defined in the security model description in Section 2.
After the initialization phase, this adversary can ask as many Execute and Send-queries, Test-queries
and also Corrupt-queries as it wishes, and has access to the extra random oracles H1, H2, and H3.

The proof will be performed by a sequence of games, starting from the real indistinguishability
game, focusing on a unique user, against a static adversary (the corrupted servers are known right
after the initialization, and before any reconstruction attempt). In the final game, the goal to achieve
is to simulate all the queries to the adversary without using a password. A random value will be chosen
at the very end of the simulation and used as a password in order to decide if some bad event should
have occurred, which will immediately upper-bound the advantage of the adversary.

Game G0: This initial game corresponds to the real attack game, in the random oracle model. Three
oracles are available to the adversary, H1, H2, and H3 and the adversary chooses some servers to
be corrupted: the related secret informations are then revealed to the adversary right after the
initialization.
First, we emulate the initialization phase, which is honestly performed: we choose one random
pw, n random keys (xi)i for the servers’ secret information, which lead to the evaluation of (πi)i,
together with their public part Π = (yi = gxi)i, and one random value corresponding to the
secret K, together with a secret sharing (s1, . . . , sn,SSInfo) of R = K‖r, for a random r. This
last random value r is used to compute the commitment Com = H3(pw, Π,Σ,SSInfo,K, r), where

Σ = (σi = πi ⊕ si)i. One also chooses a second random key K0, as well as a bit b
$←{0, 1}, both

used in Test-queries: in a reconstruction execution, if a key K1 is reconstructed, the Test-query
outputs Kb, if the reconstruction is not completed or failed, the Test-query outputs undefined
or ⊥. For the reconstruction, we simulate all the instances, the user and the servers, in Execute
and Send-queries, as the real players would do.
The adversary eventually outputs its guess b′ for the bit b. The output of the game is the success
bit S = (b′ = b). By definition we have :

SuccG0 = Pr[S] Adv(A) = 2× SuccG0 − 1

Game G1: We do not modify the initialization, and first deal with Execute-queries, by replacing the
user and the servers by the simulator Sim that perfectly simulates honest transcripts (A,B), and
user’s key is set to K1. The change being just syntactic: SuccG0 = SuccG1 .

Game G2: We now deal with Send-queries to the user, and namely when the adversary fakes
the public information PInfo sent to the user: if the majority of at least tr tuples PInfo′ =
(Π ′, Σ′, SSInfo′,Com′) contains a commitment Com′ different from the expected commitment Com,
we make the user play as usual, but eventually set K ←⊥.
This makes a difference only if in the end this commitment would have been accepted by the user
with respect to his password pw. Since we use a hash function H3 modeled as a random oracle,
Com′ must have been obtained with a query containing pw, or the probability to be valid is 1/2`3 :
We thus define the event PWinC to be true if Com′ 6= Com but Com′ is the result of a query of
H3 on a tuple that contains pw. And at the end, after the answer b′, if PWinC is set, one sets the
output bit S at random instead of (b′ = b). In this game, we reduce the success probability of the
adversary, but only when PWinC happens: SuccG1 ≤ SuccG2 + 1/2`3 + Pr[PWinC]/2. This event
PWinC can be evaluated by looking at each of the queries asked to H3 and then checking whether
it contains pw or not.

Game G3: We continue in the same vein for fake public information PInfo′ (but correct Com) sent
to the user: if the majority of at least tr tuples PInfo′ = (Π ′, Σ′,SSInfo′,Com′) contains public
information different from the expected ones (the PInfo generated during the honest initialization
phase), we make the user play as usual, but eventually set K ←⊥. Since the hash value Com is
unchanged, the input (pw, Π ′, Σ′,SSInfo′) must be unchanged, unless one finds a collision for H3:

SuccG2 ≤ SuccG3 + q23/2
`3+1.
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Game G4: We continue with the simulation of the user, but when the majority PInfo is the expected
one, which guarantees the use of the correct public keys, and thus the knowledge of the associated
secret keys. We now use SimU , that perfectly simulates a flow A from the user to a server, and
can decide on the honest behavior of the server thanks to the server’ secret key xi to evaluate
DDHg(yi, ·, ·). If the behaviours of at least tr of the servers are correct, thanks to the RGTSSS
scheme, the user accepts with K ← K1, otherwise the user aborts with K ←⊥. Since the OPRF
protocol uses the random blinding factor α, either C = H1(pw)xi or Com is a random element
in G, unless B = 1, hence the verification. Applying the hash function H2 to obtain the final
value R assures us that the shares are either correct, or random, hence the encoding into random
non-malleable fingerprints in the RGTSSS process.
In the previous game, RGTSSS guaranteed the recovery of the secret in exactly the same cases as
here: SuccG3 = SuccG4 . We remark that during this game, the Send-queries are answered without
calling the H1 oracle, neither H2 oracle is used for the reconstruction of K. Instead, after the
DDHg(y, ·, ·) check (using the secret key x), the secret K is directly set to K1 (or to ⊥ if too many
failures).

Game G5: Since the secret sharing reconstruction is not used anymore, we can thus replace all
the shares (s1, . . . , sn) by random and independent values and generate SSInfo accordingly in the
initialization phase. We know that until the adversary does not get more than t` = n/4 of these
shares, it cannot detect whether they are random or correct: let us define the event PWinF to be
true if more than n/4− qc queries have been asked to the H2 oracle for the un-corrupted key yi on
pw with the correct CDH value, since the adversary can evaluate on its own the values under the
qc corrupted servers. And at the end, after the answer b′, if PWinF is set, one sets S at random. As
in Game G2, we have the upper-bound: SuccG4 ≤ SuccG5 +Pr[PWinF]/2. Using the servers’ secret
keys (xi)i (to test DDHg(yi, ·, ·) validity), the simulator can check whether pw has been queried
with the right inputs to H2 to learn some πi, and how many times, to set the event PWinF.

Game G6: Instead of choosing the shares at random, one generates Σ = (σi)i and SSInfo at random,
without computing the πi’s: SuccG5 = SuccG6 .

Game G7: We now deal with Send-queries to the servers, and replace them by the simulator SimS

to provide answers, using the server’s secret key xi to evaluate CDHg(yi, ·): SuccG6 = SuccG7 .
Game G8: We now replace the hash value Com in the initialization phase by a random Com. This

is indistinguishable because of the random oracle property: SuccG7 = SuccG8 .

In this last game, one can note that the password pw is not used anymore during the simulation,
but just to determine whether the events PWinC or PWinF happened to define the game output S.
In addition, K1 does not appear any more during the initialization phase (it was just used for the
secret sharing, while the shares have been replaced by random shares, and in the commitment, while
it has been replaced by a random hash), hence one cannot make any difference between K0 and K1:
SuccG8 = 1/2. As a consequence,

Adv(A) ≤ Pr[PWinC] + Pr[PWinF] + (q23 + 2) · 2−`3 .

We thus now have to evaluate the probabilities of the two events PWinC or PWinF to happen,
which can be done by choosing a random password pw at the very end only (since it is not used
anymore during the initialization phase, nor in the reconstruction): About Pr[PWinC], it is clearly
upper-bounded by qu/#D, since qu is the maximal number of fake commitment attempts containing
the right pw that can be different from the expected ones; On the other hand, PWinF means that
the adversary managed to get n/4− qc evaluations of the PRFs under the chosen pw. But unless the
adversary gets more evaluations than the number qs of queries asked to the servers, the number of bad
passwords (for which he knows at least n/4 − qc evaluations of the PRFs) is less than qs/(n/4 − qc).
So the probability that the chosen pw is such a bad password is less than qs/(n/4− qc)× 1/#D.

The following lemma leads to Pr[PWinF] ≤ qs/(n/4−qc)×1/#D+n×Succomgdh(q1, qs, t, n·qu+q2),
which concludes the proof of the theorem.
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Lemma 4. Unless one can break a (q1, qs) − OMGDH with (n · qu + q2) queries to the DDH-oracle,
no adversary, that involves qs instances of the servers, qu instances of the user, and asks q1 queries to
H1 and q2 queries to H2, can get more evaluations of the PRF than the number qs of queries asked to
the servers.

If we denote q1 the number of queries to H1, we can also denote (h1, . . . hq1) the list of the answers,
which are random group elements. Let us be given a random instance (g, y = gx, h1, · · · , hq1) of the
(q1, qs)−OMGDH problem (see Appendix A. ), then our simulator uses y∗ = y for a randomly chosen
server i∗, and yi = gxi for random scalars xi, for the other servers. Getting one-more evaluation of the
PRF (under non-corrupted keys) than the number of queries to the (non-corrupted) servers means
that this must be the case for at least one of the non-corrupted servers: we hope the i∗-server to be
one of them. Since it is chosen at random, this is a correct guess with probability greater than 1/n.

For the simulation of the qs queries A to the honest servers, for the i∗-server, the simulator makes
one CDHg(y

∗, ·)-query, while for the others the secret key xi is known. For the (at most n× qu) tran-
scripts (A,B) obtained by the honest user with the adversary, the simulator makes one DDHg(y

∗, ·, ·)-
query when the adversary plays the role of the i∗-server, but can use xi otherwise. Getting one more
evaluation of Fi∗ than the number q of queries to the i∗-server means that for at least q + 1 queries
(pwi, y

∗, H) to the random oracle H2, H = CDHg(y
∗, H1(pwi)). Since H1(pwi) has been answered by

one of the hj , one gets q+ 1 correct values CDHg(y
∗, hj), that can be detected using the DDHg(y

∗, ·, ·)
oracle on all the q2 inputs to H2. We can of course upper-bound q by qs, hence the lemma.

C.3 Security Proof of the Protocol II

Theorem 5. For any adversary A, against the Protocol II using both ElGamal and Cramer-Shoup
encryption schemes, that corrupts no more than qc servers, involves at most qs instances of the servers,
and qu instances of the user

Adv(A) ≤
(
qu +

4qs
n− 4qc

)
× 1

#D
+ ((n− qc)`+ 4)× Advddh(t+ qstexp) + 3× Succ2ndH (t) + 6qu/q,

where ` is the size of the password and texp the time for an exponentiation.

The proof will be performed by a sequence of games, as for the previous protocol, focusing on
a unique user, against a static adversary (the corrupted servers are known from the beginning). A
change from the general description of the PPSS protocol in this particular case consists a more
efficient way to compute the commitment Com = HCom(pw, Π,Σ,SSInfo,K; r), by first a finger-
print H = H(Π,Σ,SSInfo,K) with a second-preimage-resistant hash function H, and then Com =
Enc(pw, H; r), with an IND− CCA encryption scheme. This improves the efficiency, as the information
(Π,Σ,SSInfo,K) may be long.

More precisely, we use the Cramer-Shoup encryption scheme, denoted (CS.Enc,CS.Dec), for the
extractable commitment. We will use the simulators presented in Figure 5, where the ci’s have been
replaced by random ciphertexts, which is indistinguishable under the IND− CPA security level of the
ElGamal encryption scheme, denoted (EG.Enc,EG.Dec). SimU knows the encrypted value D, and can
thus check the answer. In addition, using Proof, a zero-knowledge proof of knowledge of (xi)i ∈ {0, 1}`,
α ∈ Gs, and additional random coins such that C is correct, we show that this enhanced protocol can
check the correctness of the answers from the server. Indeed, from the extractor of Proof, SimS can
extract (xi)i ∈ {0, 1}` to ask the PRF oracle, that answers either correctly or at random, as well as
α ∈ Gs, to send a blinded answer to the client.

More precisely, using ElGamal encryption, we have (using component-wise multiplication)

C = (gr, hrα)× c0
∏

cxii = (gr, hr)× c0
∏

cxii × (1, α),
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User Server

x = (x1, x2, . . . , x`) ∈ {0, 1}` pk, {ci = Encpk(ai)} sk ∈ Zs
also seen as an `-bit scalar in Zs
α

$←Gs, C ← Encpk(α× a0
∏
ai
xi)

C -{� -
Proof(α, xi)� -

}
D ← Decsk(C)

If G = 1, then abort G� G← gD

R← G1/α

Fig. 4: Secure Oblivious Evaluation of the NR-PRF

Sim

D
$←Gs, C ← EG.Enc(D) C -{� -

SimProof� -

}
G� G← gD

SimU

D
$←Gs, C ← EG.Enc(D) C -{� -

SimProof� -

}
G 6= gD =⇒ fail G�

SimS

C -{� -
Proof� -

}
(x, α)← Proof
R← Fa(x)

G� G← Rα

SimS extracts x from Proof to build R, the expected PRF value. The ciphertexts ci have been replaced
by random encryptions.

Fig. 5: Simulators for the OPRF based on CDH

and one has to prove its knowledge of (xi)i ∈ {0, 1}`, α ∈ Gs, and r ∈ Zs that satisfy this relation.
To get a straightline extraction, one can use a Cramer-Shoup encryption of α and ux, for a generator
u ∈ Gs (assuming the use of a password small enough to allow discrete logarithm computation), where
the latter can be seen as ux =

∏
(u2

i
)xi . Otherwise, one can encrypt uxi for each index i.

One should note that we only have to do proofs in Gs, which are classical Schnorr-like proofs.

Game G0: This initial game corresponds to the real attack game. As in the proof for the PPSS
Protocol I, we emulate the initialization phase, which is honestly performed: we choose one random
pw, n random keys (ski)i for the ElGamal encryption scheme and the PRF keys ai = (ai,0, . . . ai,`)i
that represent the servers’ secret information. We generate their corresponding public part Π =
(pki, ci = (cj = Encpki(ai,j))j), and one random value corresponding to the secret K, together
with a secret sharing (s1, . . . , sn,SSInfo) of R = K‖r, for a random r. These shares are masked
using the values (πi)i, obtained as PRF evaluations of pw under all the secret strings ai of the
servers. We then set Σ = (σi = πi ⊕ si)i.
The same random value r inR = K‖r is used to compute the commitment Com = CS.Enc(pw, H; r),
where H = H(Π,Σ,SSInfo,K).

One also chooses a second random key K0, as well as a bit b
$←{0, 1}, both used in Test-queries:

if a key K1 is reconstructed, the Test-query outputs Kb, if the reconstruction is not completed
or failed, the Test-query outputs undefined or ⊥. For the reconstruction, we simulate all the
instances, the user and the servers, in Execute and Send-queries, as the real players would do.
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The adversary eventually outputs its guess b′ for the bit b. The output of the game is the success
bit S = (b′ = b). By definition we have :

SuccG0 = Pr[S] Adv(A) = 2× SuccG0 − 1

Game G1: We first deal with Execute-queries, without modifying the initialization. We replace the
user and the servers in the reconstruction protocol by the simulator Sim from figure 5. This
perfectly simulates honest transcripts (C,Proof, G), and user’s key is set to K1. The change for
the values C and G is just syntactic, the two values are equivalent to the real ones:

SuccG0(A) = SuccG1(A).

Game G2: We consider an adversary that fakes the public information PInfo in Send-queries to the
user: if the majority of at least tr tuples PInfo′ = (Π ′, Σ′, SSInfo′,Com′) contains a commitment
Com′ different from the expected commitment Com, we make the user play as usual, but eventually
set K ←⊥.
The reconstruction protocol guarantees that if the majority tuple PInfo = (Π,Σ,SSInfo,Com′)
does not contain the expected commitment Com, the user aborts with K ←⊥. This makes a
difference only if in the end this commitment would have been accepted by the user with respect to
his password. Since we use a perfectly binding commitment (an encryption scheme), the ciphertext
Com′ must contain the correct pw: We thus define the event PWinC to be true if Com′ 6= Com but
contains pw.
We simulate the game by checking if PWinC is set at the end, after receiving the answer b′. If
so, one sets the output bit S at random instead of (b′ = b). In this game, we reduce the success
probability of the adversary, but only when PWinC happens:

SuccG1 ≤ SuccG2 + Pr[PWinC]/2

This event PWinC can be evaluated by decrypting the commitment Com = CS.Enc(pw, H; r) using
the decryption key, and then checking whether it contains pw or not.

Game G3: We continue in the same vein for fake public information PInfo′ (but correct Com) sent
to the user: if the majority of at least tr tuples PInfo′ = (Π ′, Σ′,SSInfo′,Com′) contains public
information different from the expected ones (the PInfo generated during the honest initialization
phase), we make the user play as usual, but eventually set K ←⊥.
The RGTSSS protocol generates either correct fingerprints when computed from shares obtained
with the help of honest servers or random independent fingerprints when the servers cheat and
the shares obtained by the client are not the expected ones. The reconstruction using RGTSSS
guarantees the recovery of the secret in the honest case. When the value Com is unchanged,
the value H ′ = H(Π ′, Σ′, SSInfo′,K ′) must be the same as the initial commitment input H =
H(Π,Σ,SSInfo,K) in order to be accepted by the user, since this is an encryption scheme, with
a unique decryption. If in the end of the previous the simulator was accepting the key K ′, this
means that we have a second pre-image (Π ′, Σ′,SSInfo′,K ′) of the initial H = H(Π,Σ,SSInfo,K).
As a consequence, this simulation is perfectly indistinguishable from the previous one unless one
finds a second pre-image to H = H(Π,Σ,SSInfo,K) (where t is essentially the running time of
A):

SuccG2(A) ≤ SuccG3(A) + Succ2ndH (t).

Game G4: We are still dealing with Send-queries to the user, but we consider the case of the event
¬PWinC. We now use SimU , that perfectly simulates a flow C from the user to a server, and can
decide on the honest behavior of the server by choosing itself the value D (the decryption of C),
and using it to check the correctness of servers’ answers.
If the behaviors of at least tr of the servers are correct, the user accepts with K ← K1, otherwise
the user aborts with K ←⊥.
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In the previous game, the RGTSSS guaranteed the recovery of the secret in exactly the same cases
as here:

SuccG3 = SuccG4 .

We remark that during this game, the Send-queries are answered without computing the PRF for
the reconstruction of K. Instead, after G = gD check, the secret K is directly set to K1 (or to ⊥
if too many failures).

Game G5: We now deal with Send-queries to the servers, and replace them by the simulator SimS

to provide answers, getting x and the blinding factor α from the extractor of the proof: in order
to set the appropriate output to R (that is Fa(x)), the server can simply answer G ← Rα. The
simulation is perfect:

SuccG4 = SuccG5 .

Game G6: In the servers’ simulation, the value R is now chosen at random for new x (for the
uncorrupted servers). This corresponds to replace Fa by a truly random function when calling to
the PRF oracle. Under the pseudo-randomness of the Naor-Reingold PRF:

SuccG5 ≤ SuccG6 + (n− qc)`× Advddh(t+ qstexp),

where texp is the additional time for exponentiations in the reduction of the PRF.
Game G7: Instead of choosing the πi at random, one generates Σ = (σi)i and SSInfo at random.

This leads to random and independent shares (s1, . . . , sn). We know that until the adversary does
not get more than t` = n/4 of these shares, it cannot detect whether they are independent or
redundant (as should be a secret sharing): let us define the event PWinF′, a little bit different
from the previous proof, to be true if more than n/4− qc queries have been asked to the servers
on pw, since the adversary can evaluate on its own the values under the qc corrupted servers.
Then, from these values it could remark inconsistencies. At the end, after the answer b′, if PWinF′

is set, one sets S at random. Since the PRF’s are replaced by truly random functions, these
queries do not reveal anything on the other values of the functions, we have the upper-bound:
SuccG6 ≤ SuccG7 + Pr[PWinF′]/2. Thanks to the extractability of x from the proof, we are able
to check whether pw has been used, and how many times in order to set the event PWinF′.

Game G8: We now replace the commitment Com in the initialization phase by a dummy com-
mitment to 0. This is indistinguishable under the indistinguishability of the encryption scheme
(Cramer-Shoup encryption), but the decryption key is required to evaluate PWinC:

SuccG7 ≤ SuccG8 + Advind−ccaCS (t).

.
Game G9: The keyK1 does not appear any more in the simulation of the secret sharing, as the values

PInfo have been replaced by random and independent values instead of shares and the commitment
Com is currently computed for 0. Then, we can replace K1 by K0 in the reconstruction phase,
which makes the real and random cases indistinguishable:

SuccG8(A) = SuccG9(A) = 1/2.

In this final game, the password does not appear any more in the initialization of PInfo, and
the simulator does not make use of it either, except to abort if PWinC or PWinF happen. But
these events can be evaluated at the very end only, by choosing a random password pw when the
adversary outputs its guess b′:

– Pr[PWinC] is clearly upper-bounded by qu/#D, since qu is the maximal number of fake com-
mitment attempts that could be different from the expected one but with pw;

– Pr[PWinF′] is clearly upper-bounded by qs/(n/4 − qc) × 1/#D, since qs/(n/4 − qc) is the
maximal number of passwords for which the adversary asked for n/4− qc OPRF evaluations.
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In conclusion, we have:

Adv(A) ≤
(
qu +

4qs
n− 4qc

)
× 1

#D
+ (n− qc)`× Advddh(t) + 2× Advind−ccaCS (t) + Succ2ndH (t).

Since we use the Crame-Shoup encryption scheme, this leads to the bound of the Theorem.

D Experimental Results

We have implemented the decision algorithm to validate the idea of taking the | gcd(T ′′, τi)| ≥ k/2. We
have tested 221 random shares for k = {64, 96, 128, 256}-bit fingerprints and for n = {32, 44, 60, 92}
shares to evaluate the distribution of large prime numbers in different settings. In Table 1 we present
the probabilities for the best cases, which are: (i) gcd(T ′′, τi) = 1 (coprime) when τi is correct, meaning
that all common factors are canceled out and (ii) | gcd(T ′′, τi)| = k (no factors were canceled out)
when τi is incorrect. We can remark these probabilities are between 40% and 50%.

Table 1: Probabilities of the best cases (i.e., probability that gcd(T ′′, τi) = 1 when τi is correct and
probability that | gcd(T ′′, τi)| = k when τi is random)

k

n
64 96 128 256

τi correct τi random τi correct τi random τi correct τi random τi correct τi random

32 49, 24% 45, 12% 49, 62% 49, 68% 49, 68% 44, 70% 50, 05% 44, 55%

44 75, 75% 43, 78% 47, 93% 43, 62% 47, 66% 43, 20% 47, 10% 43, 88%

60 45, 51% 42, 41% 45, 68% 42, 24% 42, 75% 45, 92% 45, 92% 41, 95%

92 43, 05% 40, 93% 42, 76% 41, 15% 43, 08% 40, 77% 43, 34% 40, 58%

On the other hand, in Table 2 we present our worst-cases of the decision algorithm. One can see
that for k = 64 the algorithm fails, with both too large gcd(T ′′, τi) when τi is correct and too small
gcd(T ′′, τi) when τi is random, leading to false positive and false negative decisions. This is due to the
too small fingerprints. Indeed, increasing k to 96, the probability of false positive/negative decisions
is drastically reduced: the worst cases are far from k/2, even for n = 92. No bad decisions are taken
among the millions of tests.

Table 2: Bit size ti of gcd(T ′′, τi) for different sizes k of the fingerprint and numbers n of shares
k

n
64 96 128 256

τi correct τi random τi correct τi random τi correct τi random τi correct τi random

32 33 29 35 65 35 96 34 223

44 41 26 35 60 40 92 36 221

60 39 27 38 61 40 94 39 220

92 44 25 43 53 53 84 43 217

In the Figure 6 we present the distribution of ti = | gcd(T ′′, τi)| for k = 96 and n = 32, when τi
a valid fingerprint. It is possible to see that there is a high probability of ti be equals to 1 (T ′′ and
τi coprimes) and the probability is reducing while the bit size is increasing. Our experiments suggest
that, for our setting, the probability of bit-lengths is bounded by 2−x/2. In our case (k = 96 and
n = 32), the probability of deciding a τi as valid while it is not (false positive) looks approximately
2−28.
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Fig. 6: Distribution of the bit-length of gcd(T ′′, τi) for correct τi, when k = 96 and n = 32
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