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Abstract. Microarchitectural attacks have gained popularity in recent
years since they use only standard resources, e.g. memory and cache ac-
cess timing. Such privileges are available to applications at the lowest
privilege levels. Further, microarchitectural attacks have proven success-
ful on shared cloud instances across VMs, on smartphones with sandbox-
ing, and on numerous embedded platforms. Given the rise of malicious
code in app stores and in online repositories it becomes essential to scan
applications for such stealthy attacks. We present a static code analysis
tool, MASCAT , capable of scanning for ever evolving microarchitectural
attacks. Our proposed tool MASCAT can be used by app store service
providers to perform large scale fully automated analysis of applications.
The initial MASCAT suite is built to include attack vectors to cover pop-
ular cache/DRAM access attacks and Rowhammer. Further, our tool is
easily extensible to cover newer attack vectors as they emerge.

Keywords: Microarchitectural attacks, cache attacks, static code analysis.

1 Introduction

In recent years the security community has witnessed the rise of microachitec-
tural side channel attacks. While only 3 years ago the feasibility of microarchitec-
tural attacks was restricted to core private resources, today they are applicable
across CPU cores and even across CPU sockets. Furthermore, new sophisti-
cated methodologies are discovered frequently, e.g. memory bus locking attacks
or rowhammer attacks, raising concerns among software and hardware security
developers.

In fact, microarchitectural attacks already provide a wide range of their
capabilities. In the last few years we have witnessed cache attacks recovering
cryptographic keys [20, 18, 40, 5, 9], recover aggregate sensitive information, e.g.
the number of items in a shopping cart [44], or enable spying on a user, i.e.
through recovery of keystrokes [12] and private messages in a TLS session [21].
In addition, memory bus locking attacks have shown to be capable of acting
as covert-channels, detecting hardware co-residency and working as a Quality
of Service (QoS) degradation tools [35, 17]. Lastly, rowhammer attacks pushed
the envelope further by introducing cryptographic faults or by breaking memory
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isolation techniques [7, 37]. What makes microarchitectural attacks so powerful,
is not only the capability they provide, but also wide range of situations they
apply. Contrary to early popular belief, microarchitectural attacks have proven
to work in commercial clouds (e.g. Amazon EC2) [15], in browsers as Javascript
extensions [27], in trusted execution environments or even on mobile devices,
e.g. as smartphone applications [25]. In short, microarchitectural attacks are ap-
plicable and even practical in numerous security-critical scenarios how we use
technology every day.

Because of the threat posed it is important that applications distributed by
official digital application stores, e.g., Microsoft store or Android Google Play,
ensure the sanity of the binaries they release. In fact applications being released
by these distributors have the full trust of the customers. However, unlike other
kind of malware, microarchitectural attacks are harder to detect as their repre-
sentation does not look harmful. A common solution is to utilize an anti-virus
software to detect malicious code inside binaries. Nevertheless, as it will be
presented later in this document, these mis-detect the entire range of microar-
chitectural attacks, as they are based on (apparently) innocent instructions.

Other solutions have been proposed to protect against microarchitectural
attacks, which may be divided into preventive and reactive (online detection)
categories. Preventive countermeasures can be adopted at three layers: applica-
tion layer, OS/hypervisor design layer or at the hardware design layer. However,
none of these mechanisms help official application distributors to avoid the re-
lease of microarchitectural attack binaries. The implementation of preventive
methodologies (e.g., page coloring or Intel Cache Allocation Technology [26]) is
not in control of distributors, and indeed are rarely found in common devices.
The reactive approaches, such as the monitoring of performance counter events
by the OS [42] or the execution of the potentially malicious code inside a secure
environment, also fail on the detection of microarchitectural attack code. The
first again depends on the behavior of an OS not in control of the application dis-
tributor, while the latter can be bypassed by designing code that executes benign
code until one date, and malicious after. Thus, official application distributors
lack of a solution to prevent the release of malicious microarchitectural attack
code, but yet they are the ones to blame if one of those malicious applications
succeeds.

Our Contribution

To cope with the aforementioned issues, we present MASCAT (Micro-Architectural
Side Channel Attack Trapper), a tool to detect microarchitectural attacks through
static analysis of binaries. In short MASCAT is similar to an antivirus tool to
catch microarchitectural attacks embedded in innocent looking software. MAS-
CAT works by statically analyzing binary elf files looking for implicit characteris-
tics that microarchitectural attacks usually exhibit in their design. Our approach
is divided in several characteristics whose importance factor can be configurable
to trigger all or a specific subset of microarchitectural attacks. Further, our ap-
proach is designed to easily add more characteristics to the range of attacks that
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MASCAT already covers. The execution of our approach is fully automated and
in comparison to other solutions, the outcome is easily understandable as it not
only colors the location where the threat was found in the binary but also adds
an explanation on the characteristics that generated the threat.

Due to its similarity to antivirus tools, MASCAT can be adopted by digital
application distributors (like Androids GooglePlay, Microsoft Store or Apple app
store) to ensure the applications being offered do not contain microarchitectural
attacks. In fact they can use MASCAT to detect the presence of microarchitec-
tural attack characteristics, and decide whether the application is dropped (never
placed in the store) or modified (if the source code is available). More than that,
if such an attack is found, the submitter can be banned from submitting any
other application. Further, MASCAT can be easily adopted by other users that
are already used to manage antivirus software, and that would find technically
challenging to adopt any of the other existing countermeasures.

In summary, this work

– shows for the first time that app store and end users can stop microar-
chitectural attacks prior to their execution without the collaboration of
OS/software designers;

– introduces a novel a static binary analysis approach looking for attributes
implicit to microarchitectural attacks in apparently innocent binaries;

– implements a configurable threat score based approach that is not only easily
changeable but also expandable;

– presents a full analysis of 25 attack codes designed by different research
groups together with an analysis on 100 benchmarking tools. Our results
show a maximum of 6% false positives and a minimum of 0% false negatives;

After reviewing additional related work in Section 2 we discuss existing cache-
based side-channel attacks in 3 and their implicit characteristics in Section 4.
The proposed tool is introduced in Section 5. The experimental setup and results
are presented in Section 6 and 7. We present the conclusions in Section 8.

2 Related Work

Microarchitectural attacks were first theoretically studied in 1992 by Hu, whose
analysis was later expanded considering cache hits and misses by Tsunoo et
al. in 2003. The first practical microarchitectural attacks (in the form of L1
data attacks) were proposed by Bernstein [6] and Osvik et al. [28]. The first
one proposed an attack based on profiling L1 cache collisions while the latter
proposed two novel spy process techniques (including the well-known Prime and

Probe technique) to create cache contentions. Shortly later, Aciimez et al. [2]
demonstrated that the spy process techniques were also applicable in the L1
instruction cache by creating set-colliding instructions. Again Aciimez et al. [3]
showed that Branch Prediction Units give a similar leakage by inferring whether
a victim branch was taken.
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In 2009, Ristenpart et al. [32] demonstrated that microarchitectural attacks
are applicable in commerical clouds by recovering key strokes from core co-
resident VMs. Shortly later, Zhang et al. [45] performed the first fine grain
attack across VMs by recovering an El Gamal decryption key from a core co-
resident VM. At the same time, Gullasch et al. [13] showed that an AES key can
be obtained with very few microarchitectural attack traces if an attacker gains
control over the Control Fair Scheduler.

It was in 2013 when Yarom et al. [40] presented the Flush and Reload attack,
capable of recovering a RSA key across VMs located in different cores. Shortly
later Irazoqui et al. [20] showed that the same technique can be applied to recover
AES keys. The Flush and Reload attack was demonstrated to succeed in many
other scenarion, like PaaS clouds [44], as a method to perform cache template
attacks [12], recover TLS messages [21], work across CPU sockets [19] or even
work across smartphone applications [25].

One of the main downsides of the Flush and Reload attack is that it requires
memory deduplication to succeed. In 2015, concurrent works from Liu et al. [9]
and Irazoqui et al. [18] demonstrated to bypass this requirement by implementing
the Prime and Probe attack on the LLC. Later, Oren et al. [27] showed that this
attack can be further executed from a javascript inside a local browser, Inci
et al. [16] demonstrated its feasibility in commerical clouds and Gruss et al.
presented its applicability across cores and in mobile devices [29, 25]. Pessl et al.
used similar techniques to perform a cross-core DRAM access based attack [30].

In contrast, rowhammer attacks have been exploited for as little as two years.
In 2014, Kim et al. [23] discovered that by constantly accessing a DRAM loca-
tion bit flips can be induced in adjacent DRAM rows, and called this effect the
rowhammer attack. Shortly later, Gruss et al. [11] demonstrated that one can
implement rowhammer attacks from javascript, while Bhattacharya et al. [7]
showed that faults in cryptographic implementations can be induced with the
same technique. Recently, Xiao et al. [37] demonstrated that intelligent execution
of rowhammer attacks from a VM to break the memory isolation provided by vir-
tualization, while Van der veen et al. [34] showed the applicability of rowhammer
in mobile platforms.

Memory bus locking attacks were presented by Varadarajan et al. [35] and
Xu et al. [38] as a mechanism to detect performance degradations and infer co-
residency. Shortly later Zhang et al. [43] and Inci et al. [17] demonstrated that
the technique can be used to cause Quality of Service degradation in co-resident
processes.

Microarchitectural attack defenses have also been widely studied at several
levels. In fact, microarchitectural attacks against security critical software ex-
ploit human coding mistakes. Aiming at fixing those mistakes, code sanity ver-
ification frameworks were proposed in [4] and [41]. However, microarchitectural
attacks can also be stopped at the Operating System level without relying on
the correctness of the software being executed. For instance, Taesoo et al. [22]
proposed a page coloring mechanism to avoid cache attack collisions, while Liu
et al. [26] utilized the Intel Cache Allocation Technology (CAT) to prevent cache
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attacks. Similarly Zhou et al. [46] propose new page access based countermea-
sures against cache side channel attacks and Basser et al. [8] propose two software
based mechanisms to prevent rowhammer attacks. Finally, countermeasures also
can be adopted at the hardware level, e.g. by proposing new microarchitectural
isolation techniques to avoid exloitations [36].

3 Microarchitectural Attacks

Microarchitectural attacks take advantage of shared hardware contention to infer
information from a co-resident victim. The choice of the hardware piece to target
usually becomes a trade-off between feasibility and threat exposure. In the last
years several practical microarchitectural attacks with severe privacy/availability
violation implications have been proposed, most of which we include in our static
analysis approach. This section gives a brief description on the functionality of
each of them.

3.1 Cache Attacks

Cache attacks take advantage of cache collisions occurring in some shared cache
in the cache hierarchy. These collisions are detected by measuring access times,
i.e., by distinguishing accesses between two levels in the same cache hierarchy or
between accesses to the cache hierarchy and accesses to the DRAM. Although
several attack designs have been proposed, two (and their combinations) stand
out over the rest: the Flush and Reload and the Prime and Probe attacks.

Fig. 1. Flush and Reload code snippet from [40]

Flush and Reload: The Flush and Reload attack assumes memory sharing
between victim and attacker and is performed in three major steps. In the first
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step, the attacker removes a shared memory block from the cache hierarchy (e.g.,
with the clflush instruction. In the second step, the attacker lets the victim
interact with the shared memory block by waiting a specified number of cycles. In
the last step, the attacker re-accesses the removed memory block. If the memory
block comes from the cache (i.e. a fast access time observed) she derives that the
victim utilized the memory block during the waiting period. On the contrary,
if the memory block comes from the DRAM (i.e. a slow access observed) the
attacker assumes the victim did not access the memory block during the waiting
period. Flush and Reload attacks have been exploited in [40, 20, 12]

Prime and Probe: The Prime and Probe attack does not make any special
assumption between victim and attacker (rather than sharing the underlying
hardware) and is also performed in three major steps. In the first step, the
attacker fills a portion of the cache (usually a set) with his own data. Then the
attacker waits again hoping to observe activity from the victim. In the third step,
he re-accesses the data he used to fill part of the cache. If all his data comes from
the cache (i.e. low access times) the attacker assumes the victim did not use the
portion of the cache she filled (otherwise one of her data lines would have been
evicted). On the contrary, if she observes that at least one of her data lines (i.e.
high access times) comes from the DRAM, the she assumes the victims utilized
that portion of the cache. Prime and Probe attacks were exploited in [18, 9]

Combinations of both techniques have also shown to be successful at execut-
ing attacks. For instance, a Prime and Reload approach would be successful in
those systems in which users do not have access to a clflush like instruction.

3.2 DRAM Access Attacks

The DRAM is usually divided in channels (physical links between DRAM and
memory controller), Dual Inline Memory Modules (DIMMS, physical memory
modules attached to each channel), ranks (bank and front of DIMMS), banks (
analogous to cache sets) and rows (analogous to cache lines). If two addresses
are physical adjacent they share the same channel, DIMM, rank and bank. Ad-
ditionally each bank contains a row buffer array that holds the most recently
accessed row.

In fact DRAM access side channel attacks take advantage of collisions pro-
duced between addresses physically adjacent, i.e., in the same bank, rank, DIMM
and channel. More precisely, retrieving a memory location from the row buffer
yields faster accesses than retrieving it from the bank. In fact, the row buffer acts
like a direct mapped cache holding the most recently accessed rows. In order to
build a successful attack, an attacker would first have to prime the row buffer.
Then he would have to evict the cache portion that the target memory location
occupies, making sure that the next victim access will hit the DRAM. After the
victim access, the attacker probes the row buffer to check whether the victim
accessed memory locations within the same bank. If he did, he will observe row
buffer misses, and thus an increase in the access time. On the contrary, if the
victim did not access bank congruent locations, the attacker will obtain fast
accesses for his primed data. The attack was proposed and exploited in [29].
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3.3 Rowhammer Attacks

Rowhammer attacks take advantage of disturbance errors that occur in adja-
cent DRAM rows within the same DRAM bank. It has been demonstrated that
continuous accesses to a DRAM row can indeed influence the charge of adjacent
row cells, making them leak at a higher rate. If these cells loose charge faster the
charge refreshing interval, accesses to a DRAM row induce bit flips in adjacent
rows in the same bank. Note that bit flips can have catastrophic consequences,
e.g., cryptographic fault injections.

In order to execute a rowhammer attack, an attacker performs three essential
steps. The attacker first opens a row that resides in the same bank as the row in
which bit flips want to be induced. Then the attacker performs accesses to the
DRAM row, trying to influence the charge leak rate of adjacent rows. In the third
step, the attacker removes the accessed DRAM row from the cache hierarchy to
ensure the next subsequent accesses will access the DRAM (e.g. with the clflush
instruction). Note that steps 2 and three are continuously executed in a loop
to try to induce bit flips in the victims DRAM row. Examples of studies in
rowhammer attacks are [23, 11, 7].

Fig. 2. Rowhammer code snippet from [23]

3.4 Memory Bus Locking Covert Channels

Memory Bus Locking attacks take advantage of pipeline flushes that occur when
atomic operations are performed on data that occupies more than one cache
line. However, if the atomic operation is performed on data that fits within a
single cache line the system locks the cache line for the atomic operation to
happen. The pipeline flushing operations cause pipeline flushes that incur in
performance overheads. Memory bus locking mechanisms have been used as a
method to establish covert channels and derive co-residency in IaaS clouds and
as a mechanism to perform Quality of Service degradation (QoS) [35, 17].

4 Implicit Characteristics of Microarchitectural Attacks

In this section we review those characteristics that well known microarchitectural
attacks exhibit in their design. More in particular, we put our focus in three of
the most dangerous microarchitectural threats presented in the last years: Cache
attacks, memory bus locking and rowhammer attacks.



8

4.1 Cache Attacks

As already explained in the background section, cache attacks are implemented
by creating cache contentions in any of the caches in the cache hierarchy. This
effect, depending on the attack structure, can be accomplished in several ways.
However, all cache attacks have three main characteristics in common:

– High resolution timers Cache attacks rely on the ability of distinguishing
different access patterns (e.g. L1 accesses from LLC accesses or even mem-
ory accesses). As these accesses differ at most by a few hundred cycles, the
attacker needs to have access to a timer accurate enough to carry out an at-
tack. These timers can be accessed in many different ways (e.g., the common
rdtsc function or an incremental thread).

– Memory Barriers Another common factor of cache attacks is the utiliza-
tion of memory barriers to ensure serialization before the targeted reads are
executed (i.e. making sure any load and stores have finished before the tar-
get access). This memory barriers sometimes can sometimes be embedded
in timer instructions (like the popular rdtscp instruction) or can come in
the form of different instructions.

– Cache evictions The last factor that all cache attacks have in common is
the implementation of an eviction routine that removes a target cache line
from the cache hierarchy. This can be implemented with the popular flush
instruction (in the case of shared memory) or with the creation of eviction
sets.

4.2 DRAM Access Attacks

Similar to cache attacks, DRAM access attacks base their functionality on the
capacity of colliding with an attacker in the same row buffer of the same bank,
rank, Dual Inline Memory Module (DIMM) and channel. In order to achieve
that purpose, DRAM attacks share common characteristics with cache attacks.

– Cache evictions DRAM access attacks exploit collisions in the DRAM row
buffer, and as such, attackers need the victim to access the DRAM (instead of
caches) for memory fetches. Since every time the victim makes an access the
memory location would be brought to the cache, the attacker continuously
needs to evict memory location from the cache hierarchy. As with cache
attacks, this can be achieved by utilizing specific instructions (i.e. the flush
instruction) or with carefully designed eviction set mechanisms.

– Fine grain timers In order to retrieve meaningful information, attackers
need to distinguish between DRAM row buffer hits and misses. This implic-
itly requires accesses to fine grain timers.

– Memory barriers To prevent out of order execution and obtain precise
timing behavior.
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4.3 Rowhammer Attacks

Perhaps the microarchitectural attack with the most dangerous implications that
has been discovered in the last decade, due to the ability of flipping bits from
memory locations belonging to a victim. In contrast to cache or memory bus
locking attacks, rowhammer attacks only have one clear distinguishable charac-
teristic distinguishable from bening code:

– Cache evictions In fact, rowhammer attacks rely on continuous access to
a DRAM location that shares the DRAM bank with the victims memory
location. Thus, attacker need to continuously bypass the cache, otherwise
the CPU will bring the accessed DRAM portion to the cache for faster
access. There are several methodologies to avoid the cache accesses, some of
which are similar to those utilized in cache attacks (e.g. flush instructions or
eviction sets).

4.4 Memory Bus Locking Covert Channels

Another popular attack in the last years is the ability to stall the memory bus
to establish a covert channel between two co-resident processes. As with cache
attacks, memory bus locking covert channels also have their own characteristics
that need to be accomplished in their design:

– High resolution timers As with cache attacks, memory bus locking mech-
anisms require of a fine grain timer that measure the transmission of a 1 or 0
bit depending on the time to execute atomic operations. Further, fine grain
timers might also be utilized by attackers willing to ensure the effects of the
memory bus lockdown prior to its execution.

– Lock Instructions In addition to the fine grain timer, these attacks also
require of specific atomic instructions capable of locking the memory bus.
In x86 systems this instructions include, among others, the ADC, ADD,
AND, BTC, BTR, BTS, CMPXCHG, DEC, FADDL, INC, NEG, NOT,
OR, SBB, SUB, XADD, XOR instructions with the lock prefix. Further,
the XCHG instruction executes atomically when operating on a memory
location, regardless of the LOCK use.

5 Our Approach: MASCAT a Static Analysis Tool for
Microarchitectural Attacks

Once the main characteristics of the attacks we are trying to prevent have been
identified, we propose a novel technique based on statically analyzing binaries
looking for embedded microarchitectural attacks. Proposed countermeasures to
detect microarchitectural attacks are based on dynamically detecting specific
microarchitectural patterns when the binary is executed. We observe two clear
problems with this mechanism:
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– Cache attacks can be embedded into a binary to be executed only after some
specific time/date. Thus, the system should be monitoring the microarchi-
tectural patterns of the binary every time it is executed and not only once.
This can create significant overhead in the system.

– The knowledge on how to install such a mechanism might not be trivial for
every end-user. Thus, although such an approach might well be adoptable
by large scale systems (like IaaS clouds), a regular user might not have the
capabilities to perform such an action.

Our approach tries to solve both issues. Imagine a regular user that receives a
binary from a trustworthy (or not) person, or an official application distributor
aiming at providing malware free applications. How do they know whether the
binary contains malicious code, and particularly microarchitectural exploitation
code? The most common approach is to utilize an antivirus software to deter-
mine whether the binary is safe to execute. Although antivirus tools might work
well with certain kind of malware [33], their success when detecting microarchi-
tectural attacks is still an open question. Table 1 shows the outcome of such
an analysis in list of well known antivirus software (the best in 2016, as stated
in [24]). Indeed, we utilized several examples of both cache, DRAM, rowhammer
and memory bus locking attacks. None of the antivirus softwares was able to
detect that the binaries were malicious.

Antivirus software Output cache/DRAM attack Output rowhammer Output bus locking

Avast X X X
BitDefender X X X

Emsisoft X X X
ESET-NOD32 X X X

KasperSky X X X
F-secure X X X
McAfee X X X

Symantec X X X
TrendMicro X X X

Table 1. As of 12.28.2016, none of the major antivirus tools detects any of the attacks
we analyzed.

In order to cope with this problem, we propose MASCAT, a tool that tries
to find intrinsic characteristics of microarchitectural attack code in potentially
malicious binaries. MASCAT consists on several fully automated scripts that are
executed by the well known IDA Pro static binary analyzer. Thus, MASCAT can
be directly adopted by any person using IDA Pro or can be directly translated
by any other static binary analyzer. Furthermore, it can be offered as an online
scanner for microarchitectural attack code. The following section summarize
the approaches that our static analysis approach follows to detect malicious
microarchitectural attacks.
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5.1 Attributes Analyzed by MASCAT

This section summarizes the attributes that MASCAT tries to identify within
the binary code. Note that the goal of our design is not to detect all possible mi-
croarchitectural attack designs (indeed, if an expert attacker knows the approach
taken by our tool, he can always find a way to bypass it) but rather to give a
good framework on the detection of existing attacks. More attributes can be
added to cover more sophisticated and intelligent designs of microarchitectural
attacks.

– clflush instruction: The clflush instructions is a common factor to both
cache attacks, DRAM access and rowhammer attacks. Since these attacks
require several accesses to succeed, our tool identifies those clflush instruc-
tions that are being used inside a loop.

– monvnti & movntdq instructions: The monvnti and movntdq allow at-
tacker to bypass the cache to directly access the DRAM in rowhammer
attacks. Our tool further tries to find these instructions being utilized in a
loop.

– Thread counters, performance counters, rdtscp & rdtsc instruc-
tions: The rdtscp and rdtsc instructions are fine grain timers provided in
x86 64 processors. In contrast to rdtsc, rdtscp further implements memory
barrier instructions before reading the clock cycle counter. Similarly, the per-
formance counters can give us the number of clock cycles elapsed/evictions.
Lastly, if none of these is accesible, a timer can be created by using a thread
continuously incrementing a counter. Our tool identifies all these approaches
being utilized in loops.

– lfence & mfence & cpuid instructions: Instructions that execute mem-
ory barrier operations to ensure all loads (lfence) and all loads and stores
(mfence, cpuid) have been issued. This instructions are necessary to prevent
out of order execution and to obtain accurate timings from the fine grain
timers.

– lock instructions: Atomic instructions that can be issued to implement
memory bus locking attacks. Our tool monitors for all the instruction with
the lock prefix plus the XCHG instruction.

– jump opcodes: L1 instruction cache attacks are commonly designed uti-
lizing jump opcodes to jump to set concurrent addresses. Our tool again
analyzes whether any of the functions inside a binary assigns jump opcodes
in a loop.

– Pointer chasing & Page size jump approaches: One of the approaches
that can be taken to create cache eviction sets (which can be utilized for
cache, DRAM access and rowhammer attacks) is the pointer chasing ap-
proach, in which the address of the next address is stored in contents of
the previous address. Another approach is to introduce jumps of  lnumber
of bytes within a vector, being  lthe necessary bytes to find set-concurrent
addresses. Our tool tries to identify both approaches being utilized in binary
code.



12

– selfmap translation & slice mappings Although non-available from
userspace since linux kernel 4.0.0, prior kernels are still vulnerable from hav-
ing an attacker looking at the phsyical address of his memory to facilitate
eviction set creations. Aiming at avoiding these attacks, our tool also identi-
fies accesses to this particular mapping. Further, our tool also finds whether
the known slice selection algorithms are utilized in the binary code to guess
the slice location of the memory addresses.

– affinity assignment Some of the above mentioned attacks (like the L1 cache
attacks or LLC attacks) only succeed when core co-residency or CPU clus-
ter co-residency are achieved. Further, the timers (and specially the thread
counter) exhibit better performance when scheduled in a single core. Thus,
our tool also tries to identify whether there is any affinity assignment inside
the inspected binary code.

5.2 Measuring the Threat Score

One of the most important challenges of the design of our tool is to determine,
based on the attributes observed, whether a threat exists or not. Although we
could use machine learning algorithms to design such a methodology, we believe
there are several facts that have to be smartly taken into account (e.g. location
of the attributes, location of the nested functions calling the functions where the
attributes were found, etc.) that can make machine learning algorithms to per-
form poorly. In contrast, we design MASCAT to be intelligent enough to retrieve
those facts, such that we do not have a necessity for utilizing an automated data
analysis tool. We decide to implement a score system based on the combination
of attributes observed. For instance, we know memory barrier instructions are
not a threat if they are not issued together with timers, lock or eviction instruc-
tions. In this sense, we designed the following score based threat classification:

Maximum Threat Attributes: Attributes from this category are immedi-
ately considered a threat when found by our algorithm. clflush, monvnti,

movntdq and selfmap translation attributes fall into this category. The first 3
because they can directly imply a rowhammer attack, the latter one because
having access to the physical address space can become a threat for both cache,
DRAM access rowhammer attacks. The location where these attributes (and the
functions calling them) are found will be marked in red.

Medium Threat Attributes: Attributes from this category are not imme-
diately considered threats but rather warnings. The locations in which these
attributes are found will only be considered a threat if the rest of the necessary
attributes (as revealed in section X) are found within the same location of the
code. Examples of these attributes are rdtscp and lock instructions, as well
as pointer chasing, set-concurrent jumps and jump opcode assigments. A com-
bination of 2 related medium threat attributes will immediately be considered
a threat, while a combination of two non-related medium threat attributes will
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not change the score. For instance, rdtscp and lock instructions together would
be considered a threat, while lock instructions with pointer chasing functions
are not (see Section).

Low Threat Attributes: Attributes from this category are not immediately
considered threats but rather small warnings. Only if these attributes are ob-
served within the same location of the necessary of necessary medium or low
threat attributes the code portion is considered a threat. Examples of these kind
of attributes are memory barriers, timers (excluding rdtscp) and affinity as-
signment. Only if two low threat attributes are observed with a medium threat
attribute the code location is classified as a threat.

5.3 Tool Framework

In order to implement the specified design we utilize the popular IDA PRO static
binary analyzer. We chose IDA because it offers us a high level programming
language and several built in functions that facilitate our attribute finding design.
Note that developing our tool with another open source static library analyzer
(like hooper) should also be feasible with an extra amount of work.

In summary MASCAT works by analyzing binary elf files without the need for
the source code. The tool tries to find the attributes described above, coloring
those locations where microarchitectural attack related features are found. Our
tool colors threats in read, warnings in orange and small warnings in magenta.
Note that, as MASCAT finds new attributes in already colored locations, the
colors of those locations might change. Once the analysis is finished, MASCAT
outputs a summary of the locations in which threats and warnings were found
and their root of cause (e.g., rdtsc instruction, lock instructions, etc.). Figure 3
shows a visual example of an analysis made to one of our microarchitectural
attacks. The binary is considered a threat for utilizing flush and fine grain timer
instructions.

6 Experiment Setup

The goal of our experimental setup is to test different sets of microarchitec-
tural attacks designed by very different researchers. Thus, our analysis includes
the Mastik tool (which performs all range of L1 and LLC attacks) designed by
Yarom et al. [39], LLC attacks and memory bus locking attacks designed by Inci
et al. [14] and Irazoqui et al. [20, 18, 16], LLC, cache prefetching, DRAM access
and rowhammer attacks designed by Gruss et al. [12, 29, 10, 11], rowhammer at-
tacks designer Google Project Zero (which were modified to cover [31]), L1 cache
attacks from Tampere university [1] and DRAM access attacks designed by Abra-
ham Fernandez, former Intel employee. Some of these source codes were modified
to cover several corner cases (e.g., thread created timers, eviction set creations,
non-temporal accesses, doble-sided rowhammer, etc.). In total, we cover a range
of 26 different microarchitectural attacks.
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Fig. 3. Visual example output of MASCAT

As the benign binary set that was included for our test framework, we chose
100 binaries from the phoronix-test-suite. This choice was not random, but was
intended to possibly maximize the number of false positives that our tool can
output. In fact, a large number of the tests in the phoronix-test-suite are per-
formance benchmarks that might need to utilize some of the attributes that our
tool looks for. Since we do not expect to observe such a behavior in regular
non-performance measurement related binaries, the binaries from the phoronix-
test-suite should give a good upper false positive threshold.

Our analysis only focused in x86 64 binaries and utilized binaries compiled
under Linux Operating Systems (as they are the most utilized OS to carry out
microarchitectural attacks). However, this does not mean that other binaries
(e.g., smartphone applications) can not be similarly analyzed. In order to perform
such an analysis, only the semantics related to each architecture/OS should
change (e.g., in ARM there is not a clflush instruction but the clean cache

system call). For that reason, we believe the same analysis can be easily carried
out for other architectures and scenarios.

7 Results

The results obtained for both the malicious and benign code in terms of false
positives and negatives indeed depends on the conditions (i.e., strength factor)
imposed for the attributes found. We start by taking the approach described in
Section, i.e., imposing the conditions to detect all the microarchitectural attacks
described in Section. The effects on the success rate that different conditions
have will discussed in the subsequent paragraphs.

Our analysis indicates that all the malicious binaries that we analyzed flag as
threats. The reason for this categorization is indeed very different in each of the
binaries (e.g. rowhammer codes tend to flag due to the utilization of specialized
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eviction instructions, while cache attacks are usually a combination of timers
and eviction policies). In any case, we obtained a 100% success rate in the 25
malicious binaries analyzed. Note that our tool looks for the attributes in a
generic manner, i.e., our analysis scripts are not modified accordingly to flag
each malicious binary as a threat.

As for the benign binaries, the results are presented in Table 7, in which
binaries categorized as threats are displayed with red font, binaries with warnings
are displayed with yellow font and non-warning binaries are displayed with green
font. We observed that out of the 100 binaries, only 6 flagged as potential threats.
The rest either contained insufficient attributes to be considered as threats (i.e.
warnings) or did not contain any of the attributes we were looking for. Thus, we
obtained a 6% of false positives and a 0% of false negatives in our test binaries.
Note that, due to the nature of the phoronix-test-suite benchmarks, the 6% rate
of false positives is a good upper threshold indicator, but we expect a lower false
positive rate with regular non-benchmarking binaries.

Table 7 shows the reason why those 6 binaries flagged as threats. Nqueens,
multichase, mencoder and fs mark benchmarks flagged due to the usage of non-
temporal load and stores instructions that could be an indicator of rowhammer
attacks. Fio and ffmpeg benchmarks flagged because of the usage of timers,
memory barriers and pointer chasing/set congruent jump instructions within the
same location, which could be indicators of cache and DRAM access attacks.
Lastly fs mark and again ffmpeg flagged because of the usage of timers and
atomic instructions, indicating a potential memory bus locking covert channel
exploitation.

Obviously this means that our false positive rate and our false negative rate
will increase/decrease depending on the importance assigned to the attributes
found. Table 7 represents the False Negatives (FN) and False Positives (FP)
when the score of the attributes are changed to look only for a subset of at-
tacks from our attack vector (rowhammer, memory bus locking, DRAM/cache
attacks). We cover DRAM access and cache attacks together, as they share
exploitation attributes. Our results show that, due to common characteristics
between cache/DRAM access and rowhammer attacks, looking only for rowham-
mer also gives us zero false negatives for cache/DRAM attack binaries. Finally,
if only cache/DRAM access attributes are seeked, as cache evictions would not
directly be considered a threat without the appropriate timers, only 50% of the
rowhammer attacks are detected. On the contrary, the nature of bus locking
covert channels makes our tool miss cache/DRAM and rowhammer attacks if
we only look for memory bus locking characteristics. Finally, we further observe
that the false positive rate drops if we only look for one of the attacks, being even
as low as 2% in the case of cache attacks. In summary, the attributes searched
for and their importance critically influence the false negative and false positive
rate found in malicious and benign code respectively. In any case, covering the 4
microarchitectural attack range only lead us to 6% false positive rate in benign
benchmarking code. We believe the false positive rate should be even smaller
if benign code with other characteristics was chosen. However our choice was
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aio-stress apache api-test apitrace blake

blogbench botan byte c-ray cairo

clomp compress-7zip compress-lzma pbzip core-breach

crafty cyclictest d-bench dcraw dolfyn

doom ebizzy encode-ape encode-ape encode-flac

encode-mp3 ffmpeg ffte fftw fhourstones

fio fs mark glmark2 gluxmark gmpbench

gputest graphics magic gtkperf himeno hint

hmmer hpcc hpcg interbench iozone

johnripper juliagpu jxrendmart lamps lightsmark

luxmark mandelgpu mafft mencoder minion

mrbayes multichase nbp nginx nqueens

openarena openporous padman parboil pgpbench

php polybench postmark prey primesieve

psstop qdvpau ramspeed reaction redis

render-bench rodinia sample program scimark2 shoc

smallpt smallptGPU somkingguns specviewperf sqlite

stockfish stream stresscpu supertuxart systester

tachyon tesseract tremulous tscp ttsiod renderer

unigine valley unigine heaven unigine sanctuary unigine tropics viennacl

Table 2. Output of the microarchitectural static analyzer on 100 benign phoronix-test-
suite binaries. Green indicates no warnings, yellow indicates the presence of warnings
and red indicates presence of threats

Binary flagged Reason

ffmpeg timers, memory barriers, pointer chasing and lock functions

fio timers, memory barriers and pointer chasing functions

fs mark timers, lock and non-temporal load/store functions

mencoder non-temporal load/store functions

multichase non-temporal load/store functions

nqueens non-temporal load/store functions
Table 3. Explanation for benign binaries classified as threats

Attack targeted FN rowhammer FN cache/DRAM FN bus locking FP bening

rowhammer 0% 100% 0% 4%

cache/DRAM attacks 50% 100% 0% 2%

bus locking 100% 0% 100% 2%

Table 4. False Negative/Positive variation looking only for a subset of microarchitec-
tural attacks
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intended to obtain an estimate of the upper false positive threshold that our
tool can output.

8 Conclusion

For the first time we presented a static code analysis tool, MASCAT capable
of scanning for common microarchitectural attacks. Microarchitechtural attacks
are particularly damaging as they are hard to detect since they use standard
resources, e.g. memory access, made available to applications at the lowest priv-
ilege level. Given the rise of malicious code in app stores and online repositories
it becomes essential to scan applications for such stealthy attacks. The proposed
tool, MASCAT is ideally suited to fill this need. MASCAT can be used by app
store service providers to perform large scale fully automated analysis of ap-
plications. The initial MASCAT suite is built to include attack vectors to cover
popular cache/DRAM access attacks, rowhammer and memory bus covert chan-
nels. Nevertheless, our tool is easily configurable to include newer attack vectors
as they arise.
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