
Challenges with Assessing the Impact of NFS Advances on the
Security of Pairing-based Cryptography

Alfred Menezes1, Palash Sarkar2, and Shashank Singh3

1 Department of Combinatorics & Optimization, University of Waterloo
ajmeneze@uwaterloo.ca

2 Applied Statistics Unit, Indian Statistical Institute
palash@isical.ac.in

3 INRIA
sha2nk.singh@gmail.com

Abstract. In the past two years there have been several advances in Number Field Sieve (NFS)
algorithms for computing discrete logarithms in finite fields Fpn where p is prime and n > 1 is a small
integer. This article presents a concise overview of these algorithms and discusses some of the challenges
with assessing their impact on keylengths for pairing-based cryptosystems.

1 Introduction

A cryptographic pairing is a non-degenerate bilinear map ê : G1 × G2 → GT , where G1, G2,
GT are groups of the same prime order r. The pairing is symmetric if G1 = G2; otherwise it is
asymmetric. Such pairings are generally constructed from elliptic curves E defined over a finite field
Fq and having low embedding degree n. For symmetric pairings, Fq is either a characteristic-two
or characteristic-three field (with n = 4 or n = 6) or a prime field (with n = 2). For asymmetric
pairings, Fp is a prime field and n is small, e.g., n ∈ {2, 6, 12, 18, 24}. Here, G1 and G2 are order-r
groups of Fqn-rational points on E, GT is the order-r subgroup of F∗qn , and the map ê is derived
from the Weil or Tate pairings.

Beginning in 2001 when Boneh and Franklin proposed their identity-based encryption scheme
[11], pairings have become an indispensable instrument in the cryptographer’s toolbox. Hundreds
(if not thousands) of research papers have been written that use pairings to design protocols that
achieve certain cryptographic or efficiency objectives that do not seem attainable with conventional
cryptosystems such as RSA and elliptic curve cryptography (ECC). Among these applications are
aggregate signature schemes, non-interactive zero-knowledge proof systems, certificateless encryp-
tion, attribute-based encryption, and searchable encryption.

A vast majority of research papers on pairing-based protocols treat the underlying pairing
ê as a black box, and emphasize reductionist security proofs for the protocols with respect to
some hardness assumption on ê. An unfortunate consequence of this predominant point of view is
that issues with functionality, efficiency and security of the pairing-based protocols have not been
given the attention they deserve sometimes leading to misleading or incorrect claims. For example,
beginning with the BLS signature scheme [12], many papers described protocols using so-called
Type-2 asymmetric pairings whereby G1 6= G2 and an efficiently-computable isomorphism ψ from
G2 to G1 is known. However, a concrete analysis subsequently revealed that Type 2 pairings are
inferior to their Type 3 counterparts with respect to functionality, efficiency and security, and
therefore there is no reason to use them [14] (see also [15]). As a second example, consider the
Boneh-Shacham group signature scheme with asymmetric pairings ê : G1 × G2 → GT in which

BN curves: n = 12, ρ ≈ 1

p(z) = 36z4 + 36z3 + 24z2 + 6z + 1

r(z) = 36z4 + 36z3 + 18z2 + 6z + 1, t(z) = 6z2 + 1

BLS12 curves: n = 12, ρ ≈ 1.5

p(z) = (z − 1)2(z4 − z2 + 1)/3 + z, r(z) = z4 − z2 + 1, t(z) = z + 1

KSS curves: n = 18, ρ ≈ 4/3

p(z) = (z8 + 5z7 + 7z6 + 37z5 + 188z4 + 259z3 + 343z2 + 1763z + 2401)/21

r(z) = (z6 + 37z3 + 343)/343, t(z) = (z4 + 16z + 7)/7

BLS24 curves: n = 24, ρ ≈ 1.25

p(z) = (z − 1)2(z8 − z4 + 1)/3 + z, r(z) = z8 − z4 + 1, t(z) = z + 1

Table 1. Important parameters for the BN, BLS12, KSS and BLS24 families of elliptic curves.

one needs to hash onto G2 and thereafter apply ψ to the resulting hash value [13]. This protocol,
although ‘provably secure’, is not implementable since no construction of such a pairing is known.
As a third example, we mention the bewildering array of contrived hardness assumptions that have
been proposed in the literature in order to attain a reductionist security proof (see [32]). It is
typically easy to prove that these assumptions are valid in the generic group model. However, their
validity in practice is much more difficult to ascertain. Indeed, Cheon [16] showed that the so-called
Strong Diffie-Hellman (SDH) problem that had been formulated by Boneh and Boyen [10] can be
solved significantly faster than previous believed. Shortly after, Jao and Yoshida [24] showed that
Cheon’s SDH solver could be used to forge signatures for the Boneh-Boyen signature scheme.

More recently, confidence in the security of pairing-based protocols has been shaken because
of spectacular advances in algorithms for solving the discrete logarithm problem (DLP) in GT ,
a problem whose intractability is necessary for the security of all pairing-based protocols. Most
astonishingly, the DLP in small-characteristic finite fields can now be solved in quasi-polynomial
time [3], thereby rendering insecure all protocols that use symmetric pairings derived from elliptic
and hyperelliptic curves over small-characteristic finite fields. Moreover, numerous improvements
to the Number Field Sieve for computing discrete logarithms in fields Fpn where p is prime and
n > 1 is small have been proposed [4, 31], thereby appearing to decrease the security of popular
asymmetric pairings including those derived from Barreto-Naehrig (BN) elliptic curves [8].

The purpose of this paper is to initiate an examination of the impact of the aforementioned NFS
improvements on keylengths for protocols that employ asymmetric pairings. Of special interest are
parameters for BN [8], BLS12 [7], KSS [30] and BLS24 [7] pairings that achieve the 128-bit and
192-bit security levels in light of the new DLP attacks. Table 1 lists the important parameters for
these families of elliptic curves. All elliptic curves E are defined over a prime field Fp. The group
order #E(Fp) = p+ 1− t is divisible by a prime r, and we set ρ = log p/ log r. In order to achieve
the `-bit security level, one must select the parameter z so that the bitlength of r is at least 2`
(in order to resist Pollard’s rho attack [36] on the DLP in G1), and so that the bitlength of pn is
sufficiently large to resist NFS attacks on the DLP in F∗pn .

We find that the published analyses of the NFS algorithms are inherently asymptotic in nature,
and that much more work remains to be done before the impact on keylengths can be determined
with full confidence. In the meantime, implementers who wish to deploy pairing-based protocols are
advised to make conservative parameter choices that ignore hidden constants in the running times
of the NFS algorithms. Note that these hidden constants (most likely) have the effect of multiplying

2

the running time by at least 1, so ignoring them results in an underestimation of the NFS running
times.

The remainder of this paper is organized as follows. In §2 we give some examples of the difficulties
and limitations of interpreting asymptotic results in practice. Concise overviews of the NFS and
the Tower Number Field Sieve (TNFS) and their derivatives are presented in §3 and §4. In §5, we
identify some hidden constants in the asymptotic analysis of the TNFS. The combined effect of these
hidden constants is difficult to ascertain but can have a significant impact on the concrete running
time of the algorithm. In §6, we consider the effect of one such constant, namely the constant that
arises in the expression for the upper bound of the norm. Translating the effect of this constant
into concrete running times yields several interesting observations on the practical efficiency of the
algorithms. We make some concluding remarks in §7.

2 Pitfalls in Asymptotic Analysis

This section gives some examples of the difficulties and limitations of interpreting asymptotic results
in practice.

2.1 Integer Factorization

The NFS for factoring integers N has running time LN (13 , 1.923) [33]. Here, LN (a, c) with 0 < a < 1
and c > 0 denotes the expression

O
(
exp

(
(c+ o(1))(logN)a(log logN)1−a

))
(1)

that is subexponential in logN1. This running time expression hides a multiplicative constant.
Moreover, an exact formula for the o(1) term in the exponent is not known.

In the 1990’s, there was considerable debate in standards forums about the RSA keylengths that
were needed to ensure long-term security against NFS attacks. While experiments with factoring
medium-sized N were being conducted, there was no consensus on how to scale the experimental
results to large-sized N . In addition, the NFS has large storage needs and requires a large amount of
RAM in order to perform sieving efficiently. Thus, since it is difficult to predict the cost and speed
of hardware many years into the future, it was difficult to assess the true cost of running the NFS on
large-sized N . Nonetheless, consensus was reached that the conservative approach to determining
security levels for RSA would be to use the running time of the NFS as the sole measure. RSA
keylength estimates that were made 15 years ago have survived with no changes. In particular, it
has become widely accepted that RSA with moduli of bitlengths 1024, 2048, 3072, 7680, 15360,
offers security levels of 80, 112, 128, 192, 256 bits, respectively [6].

2.2 Elliptic Curve Discrete Logarithm Problem

For any fixed n ≥ 4, the Gaudry-Hess-Smart (GHS) Weil descent attack [21] for solving the elliptic
curve discrete logarithm problem (ECDLP) in elliptic curves over characteristic-two finite fields
Fqn has running time

O(q2+ε) as q →∞. (2)

1 In this paper, logN and lgN are the logarithms of N to the base e and 2, respectively.

3

Consider the case of elliptic curves E over F2163 where #E(F2163) is twice a prime. Pollard’s rho
attack takes time 281 to compute logarithms in E(F2163). One would expect that the GHS attack
is not applicable since q = 2 is small. On the other hand, if one ignores the hidden constant and
the ε term in (2) then one might conclude that by embedding F2163 in F225·163 (where we now have
q = 225 and n = 163), the GHS attack would take time approximately 250 and thus would be
significantly faster than Pollard’s rho method. However, the running time expression (2) hides a
very bad dependency on n, namely a multiplicative constant 2n!. For n = 163, 2n! ≈ 22

170
which

makes it clear that the GHS attack is completely impractical for computing logarithms in elliptic
curves over F2163 .

As another example, we mention Diem’s striking result [18] (see also [19]). Let a and b be fixed
positive real numbers with a < b. Then Diem proved that discrete logarithms in the group of
rational points on any elliptic curve defined over Fqn with a ·

√
log q ≤ n ≤ b ·

√
log q can be solved

in subexponential time

eO((log qn)2/3).

Now, a subexponential-time algorithm for solving the ECDLP could have devastating consequences
for the security of conventional ECC whose raison d’être is the belief that the fastest algorithm for
solving the ECDLP is Pollard’s rho method which takes fully exponential time. However, Diem’s
algorithm is inherently asymptotic and it is generally accepted that it does not pose a threat to the
security of ECC in practice where elliptic curves over prime fields or over prime-degree extensions
of the field of two elements are employed.

2.3 Indistinguishability Obfuscation

In 2013, Garg et al. [20] gave the first provably-secure construction for a polynomial-time indistin-
guishability obfuscator. The security proof was for all polynomial-time adversaries under certain
assumptions on the underlying cryptographic primitives. However, a concrete analysis undertaken
by Mayo [34] highlighted the asymptotic nature of the scheme and its impracticality. Mayo consid-
ered the obfuscation of a circuit of depth `3 and size `5, where ` denotes the security parameter.
When the Coron-Lepoint-Tibouchi multilinear map [17] is employed in the Garg et al. obfuscator,
the size of the obfuscated circuit for ` = 128 was estimated to be at least 21357 bits. Thus, even
though the Garg et al. obfuscator was provably secure and efficient within the “polynomial-time”
paradigm, it is hopelessly impractical.

3 Overview of the Number Field Sieve

Let p be a prime, n ≥ 1, and Q = pn. Suppose that p is written as p = LQ(a, cp) for real numbers
a, cp > 0. Depending on the value of a, finite fields FQ are classified into the following types: small
characteristic if a ≤ 1/3; medium characteristic if 1/3 < a < 2/3; boundary if a = 2/3; and large
characteristic if a > 2/3.

For small-characteristic finite fields, there has been tremendous progress in the discrete loga-
rithm computation. The approach has been based on the function field sieve algorithm and asymp-
totically the fastest known algorithm runs in quasi-polynomial time [3].

For the other classes of finite fields, i.e., those with medium to large characteristic, the Number
Field Sieve is presently the state-of-the-art. The NFS was initially proposed for integer factorization
[33]. Application of the NFS to DLP computation was first proposed by Gordon [22] who considered

4

prime-order fields. Extensions to composite-order fields were made by Schirokauer [41]. For the case
of prime-order fields, improvements were made by Joux and Lercier [27]. Joux, Lercier, Smart and
Vercauteren [28] showed that the NFS is applicable to all finite fields. For fields where the prime p
is of a special form, Joux and Pierrot [29] applied the special NFS to obtain improved complexity.

The NFS is an index-calculus algorithm having three main phases: (i) relation collection, (ii) lin-
ear algebra, and (iii) individual logarithm. Asymptotically, the times for the relation collection and
the linear algebra phases dominate the time for the individual logarithm phase. The parameters are
tuned so that the time for the relation collection phase is equal to the time for the linear algebra
phase and this time is the asymptotic run time of the NFS.

Two number fields Kf = Q[x]/(f) and Kg = Q[x]/(g) are defined by choosing irreducible
polynomials f(x) and g(x) over the integers. The required condition on f(x) and g(x) is that modulo
p they have a common irreducible factor ϕ(x) of degree n over Fp. The field Fpn is represented by
ϕ(x). Let γ be a generator of the multiplicative group of Fpn .

Let α, β ∈ C and m ∈ Fpn be roots of f(x), g(x) and ϕ(x) respectively. The commutative
diagram given in Figure 1 shows two homomorphisms Kf → Fpn and Kg → Fpn given by α 7→ m
and β 7→ m respectively. This diagram explains the basic working of the NFS.

Z[x]

Z(α) Z(β)

Fp(m)

α
7→x x 7→

β

α 7→
m

m

7→β

Fig. 1. The basic principle of NFS.

Instead of working over the whole number fields Kf and Kg, one works over the corresponding
rings of integers Of and Og. The notion of norm of ideals allows one to define a suitable factor base,
namely the prime ideals of Of and Og, whose norms are at most some pre-specified smoothness
bound B. The size of the factor base is B1+o(1), where B is chosen so as to balance the times for
relation collection and linear algebra.

To generate relations, polynomials φ ∈ Z[x] of degree at most t−1 are considered. If the principal
ideals φ(α)Of and φ(β)Og are B-smooth, then such a φ yields a relation among the factor base
elements. Formally, a relation is actually a linear relation between the discrete logarithms of certain
elements of the field Fpn . Such discrete logarithms are called virtual logarithms2. The number
of relations collected is a little more than B. This allows carrying out the linear algebra phase
to compute the virtual logarithms of the factor base elements. The individual logarithm phase
consists of finding the discrete logarithm of some element h ∈ Fpn . The task in this phase is to find
an element of the form hiγj such that the principal ideal generated by the preimage of hiγj in Of
factors into prime ideals of degrees at most t− 1 and bounded norms. Then the special-q technique
is used to express the desired discrete logarithm in terms of the virtual discrete logarithms of factor

2 The details are complicated and involve using the homomorphisms α 7→ m and β 7→ m along with the class
numbers and the torsion-free ranks of Of and Og. We skip these details.

5

base elements. Since these virtual discrete logarithms have already been computed, it is possible
to finally obtain the desired discrete logarithm. We refer to [2] for more details on the relation
collection phase and to [23] for the individual discrete logarithm phase.

3.1 Polynomial Selection and Sizes of Norms

The crucial step in relation collection is to obtain φ ∈ Z[x] such that the ideals φ(α)Of and φ(β)Og
are both smooth. For ensuring this smoothness, it is sufficient to ensure that their norms, i.e.,
Res(f, φ) and Res(g, φ), are both B-smooth, where Res denotes the resultant. Let E be such that
the coefficients of φ are in

[
−1

2E
2/t, 12E

2/t
)

, whence ‖φ‖∞ ≈ E2/t and the number of polynomials φ
that are considered for sieving is E2. Here, the `∞ norm ‖φ‖∞ of the polynomial φ is the maximum
of the absolute values of the coefficients of φ. For p = LQ(a, cp) with a > 1

3 , the following can be
shown (a more precise bound is provided later in the context of the TNFS):

|Res(f, φ)| = O
((
‖f‖∞

)t−1
E2(deg f)/t

)
and |Res(g, φ)| = O

((
‖g‖∞

)t−1
E2(deg g)/t

)
, (3)

yielding the norm bound

|Res(f, φ)× Res(g, φ)| = O
((
‖f‖∞‖g‖∞

)t−1
E(deg f+deg g)2/t

)
. (4)

The probability of B-smoothness of the product of norms (4) determines the cost of obtaining a
single relation and hence the cost of relation collection. A suitable choice of B is made to balance
this cost with the cost of the linear algebra step. Thus the value of the product of norms in (4) is
crucial for determining the overall run time of the algorithm.

Note that the norm bound is determined by the degrees of f and g and their `∞ norms. So,
to ensure that the norm bound is small, it is required that the degrees and `∞ norms of f and
g are small. Ensuring both of these is a very difficult problem. In the literature several methods
for polynomial selection have been proposed which provide polynomials with different trade-offs
between degrees and `∞ norms. We briefly describe some of the important ones next.

JLSV1 [28]. Choose random polynomials f0(x) and f1(x) having small coefficients with deg(f1) <
deg(f0) = n. Choose a random positive integer δ which is slightly greater than d√pe and let (u, v)
be a rational reconstruction of δ modulo p, i.e., δ ≡ u/v (mod p). More precisely, (u, v) is obtained
as the first row on applying the LLL-reduction algorithm to the matrix[

p 0
δ 1

]
.

Let f(x) = f0(x) + δf1(x) and g(x) = vf0(x) + uf1(x) and ϕ(x) = f(x) mod p. Repeat the above
procedure until f and g are irreducible over Z and ϕ is irreducible over Fp. For this method, the
bound (4) is O

(
E4n/tQ(t−1)/n).

GJL [2]. The basic Joux-Lercier method [27] works for prime fields. In [2], it was generalized to
work over composite-order fields. Let ϕ(x) = xn + ϕn−1x

n−1 + · · · + ϕ1x + ϕ0 and r ≥ n. Define
an (r + 1)× (r + 1) matrix Mϕ,r whose rows are obtained from the coefficients of the polynomials
p, px, . . . , pxn−1, ϕ(x), xϕ(x), . . . , xr−nϕ(x). The LLL algorithm is applied to Mϕ,r. Let the first
row of the resulting LLL-reduced matrix be [g0, g1, . . . , gr−1, gr] and let g = LLL (Mϕ,r) denote the

6

corresponding polynomial g(x) = g0 +g1x+ · · ·+gr−1x
r−1 +grx

r. By construction, ϕ(x) is a factor
of g(x) modulo p.

The GJL procedure for polynomial selection is the following. Let r ≥ n and randomly choose a
degree-(r+ 1) polynomial f(x) that is irreducible over Z, has coefficients of size O(log p), and has a
degree-n factor ϕ(x) modulo p which is both monic and irreducible. The procedure is repeated until
g = LLL (Mϕ,r) is irreducible over Z. In this case, the norm bound (4) is O

(
E2(2r+1)/tQ(t−1)/(r+1)

)
.

Conjugation [2]. Choose a random monic quadratic polynomial µ(x) having coefficients of size
O(log p), and which is irreducible over Z but has a root t modulo p. Let (u, v) be a rational
reconstruction of t modulo p. Choose random polynomials g0(x) and g1(x) with small coefficients
with deg g1 < deg g0 = n. Let g(x) = vg0(x) + ug1(x) and f(x) = Resy

(
µ(y), g0(x) + y · g1(x)

)
.

Repeat this until f and g are irreducible over Z and ϕ is irreducible over Fp. In this case, the norm
bound (4) is O

(
E6n/tQ(t−1)/(2n)).

SS [37]. A general method (called Algorithm-A) for polynomial selection was given in [37]. This
method has two parameters d and r, where d is a divisor of n and r ≥ n/d. The method uses
the LLL algorithm in a more general manner than the GJL method. The norm bound (4) is
O
(
E2d(2r+1)/tQ(t−1)/(d(r+1))

)
. Putting d = n and r = 1 gives the Conjugation method, whereas

putting d = 1 gives the GJL method. For 1 < d < n and also for d = n, r > 1, this method provides
trade-offs which cannot be obtained using either the GJL or the Conjugation method.

3.2 Asymptotic Complexity

For each polynomial selection method, the norm bound (4) can be used to obtain a rough estimate
of the efficiency of the resulting DLP computation. It is also possible to convert the norm bound
into an asymptotic estimate of the run time. The details of how this can be done are a bit messy
and so we skip the details. Instead, we just mention the final results.

Medium characteristic case: For p = LQ(a, cp) with a > 1/3, the run time of the NFS with
the Conjugation method is LQ(1/3, (96/9)1/3).

Boundary case: For p = LQ(2/3, cp), the run time of the NFS with Algorithm-A is LQ(1/3, 2cb),
where

cb =
2r + 1

3cpkt
+

√(
2r + 1

3cpkt

)2

+
kcp(t− 1)

3(r + 1)
(5)

with k = n/d. For d = n and r = k = 1, this reduces to the complexity obtained by the Con-
jugation method. The best complexity that is obtained is LQ(1/3, (48/9)1/3). This complexity,
however, is attained for only one particular value of cp, namely cp = 121/3 ≈ 2.3. As cp → ∞,
the minimum complexity (taken over r, k and t) approaches LQ(1/3, (64/9)1/3) from below.

Large characteristic case: For p = LQ(a, cp) with a > 2/3, the run time of the NFS with the
GJL method is LQ(1/3, (64/9)1/3).3

Among the three cases, the best complexity is achieved in the boundary case for a specific cp value.

3 For comparisons with other run times, it is useful to note that (96/9)1/3 ≈ 2.201, (64/9)1/3 ≈ 1.923, (48/9)1/3 ≈
1.747, and (32/9)1/3 ≈ 1.526.

7

Remark 1. The sharp distinction between the run times for the medium characteristic, boundary
(with cp = 121/3), and large characteristic cases highlights the inherent asymptotic nature of the
analysis and the difficulty in deriving concrete run time estimates. In particular, without the benefit
of extensive experimentation, it is not clear whether a concrete problem instance, e.g., with p ≈ 2256

and n = 12, falls within the medium characteristic, boundary, or large characteristic cases.

3.3 Multiple Number Field Sieve Algorithm

Using multiple number fields to obtain faster asymptotic complexity was suggested in [5, 35]. Pier-
rot [35] provided a detailed analysis of the GJL and the Conjugation methods using multiple
number fields. The MNFS variant of Algorithm-A was analyzed in [37]. The complexities of the
MNFS algorithms for the different cases of p = LQ(a, cp) are as follows: LQ(1/3, 2.156) for the
medium characteristic case, LQ(1/3, 1.71) for the boundary case, and LQ(1/3, 1.90) for the large
characteristic case. The complexity for the boundary case is obtained for only one value of cp,
namely cp ≈ 2.12.

3.4 Special Number Field Sieve Algorithm

Suppose that p can be written as p = Γ (u) for some polynomial Γ of degree λ and having small
coefficients so that u = O(p1/λ). Note that the primes p in Table 1 are in this special form. Joux
and Pierrot [29] showed how to modify the polynomial selection algorithm from [28] to obtain
improved complexity. Choose an irreducible polynomial f of the form f(x) = xn +R(x)− u where
R(x) is a polynomial of small degree with coefficients from {0,±1}. Let g = Γ (xn + R(x)). Then
g(x) = Γ (f(x)+u) ≡ Γ (u) = p (mod f(x)) and so g(x)−p is a multiple of f(x) implying that g(x)
is a multiple of f(x) modulo p. This choice of f and g ensures that deg f = n, ‖f‖∞ = O(p1/λ),
deg g = λn, and ‖g‖∞ = O((log n)λ).

The asymptotic complexities reported in [29] are the following. As before, let p = LQ(a, cp).

Medium characteristic case: LQ
(
1/3, ((64/9) · (λ+ 1)/λ)1/3

)
for 1/3 ≤ a < 2/3.

Boundary case: LQ
(
1/3, ((32/9) · (λ+ 1)/λ)1/3

)
for a = 2/3;

Large characteristic case: LQ
(
1/3, (32/9)1/3

)
for 2/3 < a < 1.

Unlike the NFS, for SNFS the best complexity is achieved for the large characteristic case.

4 Overview of the Tower Number Field Sieve

The Tower Number Field Sieve (TNFS) algorithm was initially considered by Schirokauer [41]
and was revisited by Barbulescu et al. [4]. The implications of this algorithm for improving the
complexity of the medium prime case were pointed out by Kim and Barbulescu [31] which has led
to several follow-up works [38, 39]. Following [31] we denote these algorithms by ‘extended TNFS’
(exTNFS).

As we saw in §3.2, the Conjugation method from [2] resulted in the NFS complexity of the
boundary case being smaller than the complexity of the medium prime case. Suppose that the
extension degree n is composite and n = ηκ is a non-trivial factorization of n. Then Fpn has a
tower field representation Fqκ , where q = pη. The main idea behind the complexity reduction for
the medium prime case using a tower field representation is the following. If p and Q = pn are such

8

that p = LQ(a, cp) for 1/3 < a < 2/3, then one can translate the problem to that of computing
DLP in Fqκ where q = LQ(2/3, cq). This corresponds to the boundary case and so one benefits from
the lower complexity of the boundary case for the medium prime case.

Here q is not prime and the characteristic of the field FQ remains p irrespective of how the
field is represented. Hence, strictly speaking, it is not correct to say that the medium characteristic
case transforms to the boundary case. On the other hand, from the complexity point of view what
matters are the norms of the polynomials and in that sense it is possible to obtain smaller norm
bounds with the tower field representation than what could be done directly.

The basic idea of the exTNFS algorithm is the following. One starts with a monic polyno-
mial h(z) of degree η which is irreducible over Fp and hence is also irreducible over Z. Let Fpη =
Fp[z]/(h(z)) and R = Z[z]/(h(z)). Suppose f and g are polynomials in R[x] whose leading coeffi-
cients are from Z. It is required that both f and g are irreducible over R (this can be verified by test-
ing irreducibility over Q[z]/(h(z))) and over Fpη , and that f and g have a degree-κ common factor
ϕ(x) that is irreducible over Fpη . The field Fpn is then realized as Fpη [x]/(ϕ(x)) = (R/pR)[x]/(ϕ(x)).

Let Kf and Kg be the number fields defined by f and g respectively. As in the case of the NFS
(see Figure 1), the above set-up provides two different decompositions of a homomorphism from
R[x] to Fpn . One of these goes through R[x]/(f(x)) and the other goes through R[x]/(g(x)). Using
this set-up it is possible to define a factor base and carry out the three main phases of NFS. Here
also, the factor base consists of B1+o(1) elements for some smoothness bound B.

Sieving for relation collection is done using polynomials φ ∈ R[x] of degrees at most t− 1 with
‖φ‖∞ = E2/ηt so that the number of sieving polynomials is E2. A sieving polynomial φ ∈ R[x]
generates a relation if both the norms

N(φ, f) = Resz(Resx(φ(x), f(x)), h(z)) and N(φ, g) = Resz(Resx(φ(x), g(x)), h(z)) (6)

are B-smooth. Note that in this case, f and g can be viewed as bivariate polynomials in x and z
and hence the norm is obtained by taking resultants twice. Bounds on the norm are obtained from
the bounds on resultants of bivariate polynomials [9].

The polynomial selection methods for NFS (see §3.1) translate to the exTNFS setting. Instead
of providing the details of these methods, we provide a summary of recent work with a focus on
the medium prime case.

Kim and Barbulescu [31]. This work chooses f, g ∈ Z[x], whence the degree-κ polynomial
ϕ(x) = gcd(f(x), g(x)) is over Fp. The requirement that ϕ(x) is irreducible over Fpη imposes the
condition that gcd(η, κ) = 1. Hence, the Kim-Barbulescu method works only for composite non
prime-power values of n. The actual polynomial selection is done using a translated version of the
Conjugation method, resulting in the best achievable complexity for p = LQ(a, cp), 1/3 < a < 2/3
to be LQ(1/3, (48/9)1/3). This complexity, however, is not achieved for all values of p.

Sarkar and Singh [38]. This work described a polynomial selection method (called Algorithm-C)
in which the coefficients f and g are in R (and not necessarily in Z), with the restriction that f is
monic and the leading coefficient of g is in Z. As a result, the restriction that ϕ(x) has coefficients
in Fp is also removed resulting in the removal of the gcd(η, κ) = 1 constraint. This leads to a
variant of the TNFS algorithm for the medium characteristic case with improved complexity for all
composite n. For prime-power n, however, the minimum complexity obtained in [38] is larger than
LQ(1/3, (48/9)1/3).

9

Jeong and Kim [25]. The Conjugation method was extended to the TNFS setting where the
condition gcd(η, κ) = 1 was not required. The best achievable complexity for p = LQ(a, cp), 1/3 <
a < 2/3 was shown to be LQ(1/3, (48/9)1/3). For prime-power n, this improves upon the complexity
achieved in [38].

Sarkar and Singh [39]. A new polynomial selection algorithm, called Algorithm-D, was de-
scribed. This provides another translation of Algorithm-A to the TNFS setting without requiring
the condition gcd(η, κ) = 1. Special cases of Algorithm-D lead to the GJL and the Conjugation
methods in both classical NFS and TNFS. As a result, Algorithm-D subsumes the Jeong-Kim poly-
nomial selection method. The asymptotic complexity for the medium prime case can be described
as follows. Let p = LQ(a, cp) with 1/3 ≤ a < 2/3 and suppose that q = pη can be written as
q = LQ(2/3, cθ). Then the asymptotic complexity is LQ(1/3, 2cb) where cb is given by (5) with cp
replaced by cθ. The minimum complexity is still LQ(1/3, (48/9)1/3) which is the same as that of
the Jeong-Kim method and this complexity is attained for cθ = 121/3. However, improvements in
asymptotic complexity are obtained for certain ranges of values of cθ.

4.1 Multiple Number Field Sieve Algorithm

Multiple number fields can also be used with the TNFS [31]. As in the case of the NFS, this
reduces the asymptotic complexity. The best achievable complexity for the medium prime case is
LQ(1/3, 1.71).

4.2 Special Number Field Sieve Algorithm

As explained above, the main advantage of the TNFS method is to transform the problem for
the medium characteristic case to that of the boundary characteristic for which the complexity is
lower. In fact, it is also possible to transform to the large characteristic case. Carrying out this
exercise for the SNFS (yielding the SexTNFS algorithm) leads to an asymptotic complexity of
LQ(1/3, (32/9)1/3) for the medium prime case; this complexity is achieved for all medium primes
unlike the case of TNFS. This works for composite n; in the case where n has a non-trivial fac-
torization as n = ηκ with gcd(η, κ) = 1, this complexity was reported in [31], whereas the same
complexity was reported in [25] without the restriction gcd(η, κ) = 1.

5 Asymptotic Analysis

In summary, the asymptotic run times of the NFS variants for computing discrete logarithms in
FQ in the medium characteristic case are LQ(1/3, c) where:

– c = 2.201 for the NFS (§3.2);

– c = 2.156 for the multiple NFS (§3.3);

– c = 2.072 for the special NFS with λ = 4 (§3.4);

– c = 1.747 for the exTNFS for some p (§4);

– c = 1.71 for the multiple exTNFS for some p (§4.1); and

– c = 1.526 for the SexTNFS (§4.2).

10

Asymptotic complexity analysis proceeds by ignoring various factors that do not have significant
effect on the run time as Q = pn goes to infinity. In this section, we take a look at the different steps
of this analysis with a view towards assessing whether the ignored factors can have a noticeable
effect on the run time for concrete values of Q. At the same time, we consider issues of storage
and observe that different operations which are assumed to asymptotically require O(1) time, in
practice have noticeable difference in their times.

We consider the TNFS setting where Q = pn and n = ηκ is a non-trivial factorization of n.

5.1 Bounds on Norms of Polynomials

The number fields Kf and Kg are defined using two polynomials f(x) and g(x) over R = Z[z]/(h(z))
where h(z) is a degree-η irreducible polynomial over Z. The degrees and `∞ norms of f and g are
the main factors that influence the running time. These quantities are determined based on the
actual polynomial selection method that is employed. To make the ideas concrete, we work with a
special case of Algorithm-D [37]. This special case is important since it is the TNFS variant of the
Conjugation method proposed by Kim and Barbulescu [31].

Using random trials, one chooses a monic quadratic polynomial A1 ∈ Z[y] having O(log p)-
size coefficients such that A1 is irreducible over Z and has a factor A2(y) = y + δ over Fp. Fur-
ther, using random trials, one chooses monic polynomials C0(x) and C1(x) over R with ‖Ci‖∞ =
O(1), degC0(x) = κ, degC1(x) < κ, and such that f(x) and g(x) are irreducible over R and
ϕ(x) is irreducible over Fpη = Fp[z]/(h(z)) where f(x) = Resx(A1(y), C0(x) + yC1(x)), ϕ(x) =
Resy(A2(y), C0(x) +yC1(x)) mod p, ψ(x) = ψ1x+ψ0, and g(x) = Resx(ψ(y), C0(x) +yC1(x)). The
integer coefficients ψ1 and ψ0 of ψ(x) are obtained by a rational reconstruction of δ modulo p. From
the bound on the first vector of an LLL-reduced basis and the bound on the shortest vector of a
lattice, one obtains ‖ψ‖∞ ≤ 2p1/2.

Asymptotically, the above method for selecting f and g yields ‖f‖∞ = O(log p) and ‖g‖∞ =
O(Q1/2n). The contribution to ‖f‖∞ and ‖g‖∞ from the coefficients of C0(x) and C1(x) arising
from the resultant computation are absorbed in the big-O notation.

5.2 Size of the Factor Base

The polynomials f and g define the two (tower) number fields Kf and Kg having ring of integers
Of and Og respectively. The factor base consists of all prime ideals of Of and Og whose norms are
at most B. From this, the factor base size is asymptotically B1+o(1). For concrete polynomials f
and g, the actual number of prime ideals could have a small but noticeable difference from B.

5.3 Bounds on Norms of Ideals

Sieving is done using polynomials of degrees at most t − 1. Consider the simplest and the most
important case of t = 2. Then the sieving polynomials are linear polynomials φ ∈ R[x] with
‖φ‖∞ = E1/η. There are a total of E2 sieving polynomials. A relation is obtained if the principal
ideals generated by the images of φ in Of and Og are smooth over the factor base. This smoothness
depends on the norms N(f, φ) and N(g, φ) whose bounds are given by (6).

Let H = ‖h‖∞ and

C(η, s,H) = ((η − 1)(1 + s) + 1)η/2 · (η + 1)(η−1)(1+s)/2 ·H(η−1)(1+s) · ((s+ 1)!ηs)η .

11

The following bounds on the norms can be obtained:

N(f, φ) ≤ C(η, 2κ,H) · E2κ ·O ((log p)η) and N(g, φ) ≤ C(η, κ,H) · Eκ ·O
(
Q1/(2κ)

)
; (7)

see Appendix A for details of the resultant calculations. In the asymptotic analysis these are written
as N(f, φ) = E2κLQ(2/3, o(1)) and N(g, φ) = EκQ1/(2κ)LQ(2/3, o(1)). In other words, one takes
C(η, 2κ,H) = LQ(2/3, o(1)) and C(η, κ,H) = LQ(2/3, o(1)), and consequently their contribution to
the overall running time LQ(1/3, c) is absorbed by the o(1) term in the latter.

For concrete values, the factors that get absorbed in the LQ(2/3, o(1)) expression can be very
large. For n = 12, let η = 4 and κ = 3 and suppose that H = 5. Then C(4, 3, 5) ≈ 291.5 and
C(4, 6, 5) ≈ 2179.3. On the other hand, suppose we choose η = 1 and κ = 12 and H = 5 as
before. These values of η and κ correspond to the usual NFS, i.e., we are not exploiting the tower
structure. Then C(1, 12, 5) ≈ 232.5 and C(1, 24, 5) ≈ 283.7. While these are still large numbers, they
are significantly smaller than the numbers obtained in the case of the tower representation.

5.4 Smoothness Probability from the Canfield-Erdös-Pomerance Theorem

The bounds obtained on the norms N(f, φ) and N(g, φ) are used to estimate the probability that
a random sieving polynomial will provide a relation. The required condition is that the principal
ideals generated by the images of φ in the two integer rings are smooth over the factor base. Two
assumptions are used, which means that the entire analysis is heuristic.

1. It is assumed that the probability that the principal ideal generated by the image of φ in Of
factors over the factor base is the same as the probability that a random integer of size N(f, φ)
is B-smooth. Similarly for Og.

2. The events that the two principal ideals generated by the images of φ are smooth over the factor
base are independent.

The probability that a random integer of size N(f, φ) is B-smooth is obtained from the L-notation
version of a theorem due to Canfield, Erdös and Pomerance. (See Theorem 15.2 of [26] for the
statement of the theorem.) The smoothness probability can also be expressed in concrete terms.
Let Ψ(N,B) be the number of positive integers ≤ N which are B-smooth. Ignoring lower order
terms, it can be shown that

log

(
Ψ(N,B)

N

)
≈ − logN

logB
log

(
logN

logB

)
. (8)

Let Π(N,B) = Ψ(N,B)/N be the probability that a random integer ≤ N is B-smooth. We are
interested in

Π(N(f, φ), B) ·Π(N(g, φ), B). (9)

The number of trials (i.e., the number of sieving polynomials to consider) to obtain a single relation
is about

n = (Π(N(f, φ), B) ·Π(N(g, φ), B))−1 .

Since about B relations are required, the total number of trials to obtain all the relations is about
Bn. This is how the bounds on the norms determine the run time of the relation collection phase.

12

5.5 Balancing Costs

For the asymptotic analysis, the costs of the relation collection and the linear algebra phases are
balanced. This balancing proceeds by imposing two conditions. Recall that the number of sieving
polynomials is E2 and the size of the factor base is B1+o(1). Sparse linear algebra requires time
B2+o(1). Hence, the costs of the relation collection and linear algebra phases are balanced by setting
E = B.

Note that this assumes that the total time for sieving with E2 polynomials is equal to the
time required for completing the linear algebra phase. While this is true in an asymptotic sense,
in concrete terms the two costs can be significantly different. We note the following differences
between these two tasks.

1. For both sieving and linear algebra, the basic operations are field operations in Fp. However,
the number of such field operations are different for the two tasks.

2. For linear algebra, it is required to perform read and write operations on a very large matrix.
In practice, these read/write operations will incur a significant overhead.

3. The sieving step is parallelizable up to any extent. This is not true for the linear algebra step.
The block Wiedemann algorithm can be parallelized, but this comes at the cost of additional
memory requirements.

6 Concrete Analysis

We take some concrete values to get an idea of the effect of the constants in the norm bounds on
the smoothness probability. Suppose Q ≈ 23000, n = 12, η = 4, κ = 3, H = 5, whence p ≈ 2250.
Assume that the factor base size is B = 264 so that the linear algebra phase requires approximately
2128 operations. As discussed in §5.5, E is taken to be equal to B so that E is also 264. Then taking
the upper bounds in (7) to be the norm values and the hidden constants in the big-O notation to
be 1, we obtain

N(f, φ) ≈ C(4, 6, 5)E2κ(log p)η ≈ 2593,

N(g, φ) ≈ C(4, 3, 5)EκQ1/(2κ) ≈ 2783,

Π(N(f, φ), B) ≈ Π(2593, 264) ≈ 2−29.8,

Π(N(g, φ), B) ≈ Π(2783, 264) ≈ 2−44.2,

n = (Π(N(f, φ), B) ·Π(N(g, φ), B))−1 ≈ 274.

Hence a single relation will be obtained after trying about 274 sieving polynomials. On the other
hand, if we ignore the factors C(4, 6, 5) and C(4, 3, 5), then n ≈ 254. So, in this case the effect of the
constants in the norm bounds is to increase the number of iterations for finding a single relation
by a factor of about 220.

The number of iterations required to find a single relation affects the overall cost of the algo-
rithm. The total number of iterations required to find the B required relations determines the cost
of the relation collection phase. If we take the constants into account, the relation collection phase
will have cost about 274B = 2138 for B = 264. On the other hand, if the constants are ignored, then
the relation collection phase will have cost about 254B = 2118. In both cases, the linear algebra
phase will have cost approximately B2 = 2128.

The above choice of B does not balance the costs of the relation collection and linear algebra
phases. We have redone the calculations with Q ≈ 23000 so as to balance these costs. The overall

13

approximate costs of the algorithm are given by the values in the fourth column (if the constants
are taken into consideration) and fifth column (if the constants are ignored) of the first row of
Table 2. The size of the factor base is the square root of the overall cost.

n algorithm (η, κ, λ) with without
constants constants

12
exTNFS (4, 3,−) 2138 2116

SexTNFS (6, 2, 4) 2155 2108

18
exTNFS (6, 3,−) 2154 2118

SexTNFS (9, 2, 8) 2279 2160

24
exTNFS (8, 3,−) 2169 2118

SexTNFS (12, 2, 10) 2369 2186

Table 2. Approximate run times of exTNFS and SexTNFS for Q = pn ≈ 23000 for several different values of n, with
and without the constants. These constants are C(η, κ,H) and C(η, 2κ,H) for exTNFS, and C(η, κ,H) and C(η, κλ,H)
for SexTNFS.

A similar calculation can be done for SexTNFS; cf. Remark 2. In this case, however, the mini-
mum complexity is not achieved for η = 4 and κ = 3. Instead the minimum is achieved for η = 6
and κ = 2. Since in this case η and κ are not coprime, this choice would not be allowed by the
Kim-Barbulescu work [31], but would be permitted by [25]. The run times considering and ignoring
constants are respectively given in the second row of Table 2.

We have performed similar calculations for n = 18 and n = 24. It turns out that the factorization
of n that minimizes the exTNFS complexity is not the same as the factorization of n that minimizes
the SexTNFS complexity. Table 2 provides the run times of exTNFS and SexTNFS both when the
constants in the norm bound are taken into consideration and also when they are ignored. We
observe the following from the values in Table 2.

1. If the constants are taken into consideration, then in each case the run time is significantly
greater than if the constants are ignored. In particular, a 3000-bit Q does seem to provide at
least 128-bit security for n = 12.

2. The concrete run time for exTNFS is smaller than that of SexTNFS. (The only exception to
this is for n = 12 and when the constants in the norm bounds are ignored.) This is contrary
to what one would expect from the asymptotic analysis in which the run time of SexTNFS is
smaller than that of exTNFS; cf. Remark 2.

3. The asymptotic expression for the run time does not have any dependence on n and depends
only on Q. This means that for a given Q, the run times will asymptotically be the same for all
n. However, concrete values show a significant dependence on the value of n. For a fixed Q, as
n increases there is a significant increase in the run time. This is because the constants in the
norm bound depend on n and increase quite rapidly as n increases.

4. For exTNFS without constants, the run time does not vary much as n increases. This behaviour
is not observed for SexTNFS.

Remark 2. For SexTNFS, the upper bounds on the norms are

N(f, φ) ≤ C(η, κ,H) · Eκ · pη/λ and N(g, φ) ≤ C(η, κλ,H) · Eκλ · ‖Γ‖n∞. (10)

14

These values should be compared with the norm bounds for exTNFS-Conj given by (7). The values
of λ are 4, 6, 8 and 10 respectively for BN, BLS12, KSS and BLS24 curves. In the asymptotic
complexity analysis, λ is treated as a constant and does not have a noticeable influence on the run
time. On the other hand, in the concrete analysis, the actual value of λ has a noticeable effect on
the upper bound on N(g, φ). This effect is present even if the constants C(η, κ,H) and C(η, κλ,H)
are ignored. Since a higher value of the norm bound implies a lower smoothness probability and
hence a higher overall run time, the concrete run time for SexTNFS turns out to be greater than
that of exTNFS.

Remark 3. Consider an asymmetric pairing derived from an ordinary elliptic curve over Fp with
embedding degree n, whereby the target group is GT = F∗Q with Q = pn. For a fixed Q, as n
increases, p decreases. Since the elliptic curve group is of size roughly p, the size of the elliptic
curve group also decreases. Considering the 128-bit security level, the size of p going below 256
will violate Pollard-rho security. Hence, 128-bit security cannot be achieved by keeping Q at the
3000-bit level and simply increasing n beyond 12.

6.1 On the Tightness of the Norm Bounds

The norms N(f, φ) and N(g, φ) are expressed in terms of resultants. Upper bounds on these norms
are known bounds on resultants [9] and are given by (7); let Uf and Ug be the upper bounds on
N(f, φ) and N(g, φ). Let Vf = E2κ · O ((log p)η) and Vg = Eκ · O

(
Q1/(2κ)

)
. Note that Vf and Vg

are not necessarily upper bounds on N(f, φ) and N(g, φ) because the constants C(η, 2κ,H) and
C(η, κ,H) are absent.

Let µ = Π(Uf , B) ·Π(Ug, B) and ν = Π(Vf , B) ·Π(Vg, B) where B is the factor base size. Then
µ is a lower bound on the probability of obtaining a single relation and µ−1 is an upper bound on
the number of iterations required to obtain a single relation. The quantity ν is similar to that of µ
except that Vf and Vg are used instead of Uf and Ug.

In [9], an example is provided to show that the resultant bounds are tight and in general cannot
be improved. On the other hand, the question of whether the bounds are tight for the kinds of
polynomials arising in the context of NFS algorithms deserves an answer. To determine this, we
conducted some experiments. The generalized Conjugate method (gConj) [25] was implemented
and the polynomials h(z), f(x) and g(x) computed. This determines H = ‖h‖∞, ‖f‖∞ and ‖g‖∞.
Now choose a value for B and set E = B so that the number of sieving polynomials φ(x) is B2.
We further set t = 2, i.e., only linear sieving polynomials were considered. Then the coefficients of
a sieving polynomial φ(x) (considered as a bivariate polynomial in z and x) can take B1/η values.
We chose 1000 random sieving polynomials and in each case computed the actual values of N(f, φ)
and N(g, φ). From these two values, the smoothness probability π = Π(N(f, φ), B) ·Π(N(g, φ), B)
was computed. Let Nf , Ng and π be the average of N(f, φ), N(g, φ) and π computed over the 1000
random φ’s. A summary of these values is given in Table 3. The table also shows the results of a
similar experiment conducted for the SexTNFS algorithm where BN curves were used.

In each case considered in Table 3, it turned out that taking H = 2 is sufficient. We have
previously considered H = 5 and the reduced value of H = 2 results in slightly lower values for Uf
and Ug. There are several points to note from the results in Table 3.

1. The average value lgNf is closer to lg Vf than to the known upper bound lgUf . Similarly for
lgNg and π.

15

Table 3. Upper bound and average values of norms for the 128-bit security level.

method n η κ lg p lgB lg Vf lgNf lgUf lg Vg lgNg lgUg − lg ν − lg π − lgµ

exTNFS-gConj 12 4 3 384 70 452 458 603 978 992 1053 70 70 85

exTNFS-gConj 18 6 3 256 70 464 495 731 978 996 1113 71 72 98

exTNFS-gConj 24 8 3 256 81 545 617 937 1267 1302 1467 80 84 116

SexTNFS 12 6 2 384 64 543 717 902 711 655 806 64 70 99

2. Consider lgNf . The average has been computed over 1000 iterations. The value of lgNf being
substantially less than lgUf indicates that polynomials φ such that N(f, φ) is close to Uf are
not very common. On the other hand, this does not indicate that such polynomials do not
occur at all. A total of B2 sieving polynomials φ have to be considered. It is possible that a
non-negligible fraction of these do have norms close to the upper bound. Our experiments only
indicate that the fraction is less than 1/1000. Thus, in the absence of further experimental data,
one cannot completely disregard the role of the constants in the analysis.

3. In each case, B has been chosen so that lgB is roughly equal to µ. Further, in each case it turns
out that π is at least µ. So, even if the actual norms behave like Nf and Ng, choosing lg p as
given provides at least 128 bits of security.

6.2 Deriving Group Sizes from the Asymptotic Run Time Expressions

In this subsection, we consider the question of deriving concrete group sizes from the asymptotic
run time expressions. Following the ECRYPT recommendation [42, Page 26], consider a constant
A and write the run time of an NFS algorithm as

A · exp
(

(c+ o(1))(logQ)1/3(log logQ)2/3
)
. (11)

Again following [42], assume o(1) = 0. In [42], the constant A is determined in the following manner.
It is mentioned that experience from available data points suggests that the resistance of RSA-512
is about 4 to 6 bits lower than that of DES. Plugging in Q = 2512 and c = (64/9)1/3 into (11) and
setting the resulting expression equal to 250, one obtains A ≈ 2−14.

More generally, let A = 2−d and denote by s(Q, c, d) the base-two logarithm of the expression
in (11) with o(1) = 0. Then, we have

s(Q, c, d) = c(lg e)(logQ)1/3(log logQ)2/3 − d. (12)

Here Q is pn and c is the second argument in the L-notation. As described above, the ECRYPT
recommendation takes d = 14.

The task of deriving group sizes is the following. Given c, d, n and a target security level `, find
the minimum Q such that both (lgQ)/n ≥ 2` and s(Q, c, d) ≥ ` hold. The first condition ensures
Pollard-rho security while the second condition ensures security against (exT)NFS attack. In the
case where ρ > 1 (see Table 1), the Pollard-rho condition (lgQ)/n ≥ 2` should be replaced with
the condition (lgQ)/n ≥ 2`ρ.

Taking c = (64/9)1/3 and d = 14, yields lgQ values of 3247, 7958, 15447 for ` = 128, 192, 256,
respectively. These values of lgQ are close to the ECRYPT recommendations of 3248, 7936, 15424.

16

We note that taking c = (64/9)1/3 and d = 10 yields lgQ values of 3034, 7587, 14889 for ` = 128,
192, 256, respectively. Rounding up these lgQ values to the nearest integer multiple of 512 yields
3072, 7680, 15360, which are the NIST recommendations for prime-order fields at the 128, 192,
256-bit security levels [6].

Remark 4. (on the choice of d) As we have described earlier, the LQ(1/3, c) run time expression for
exTNFS is obtained from the bounds C(η, 2κ,H) ·E2κ ·O((log p)η) and C(η, κ,H) ·Eκ ·O(Q1/(2κ))
respectively on the norms N(f, φ) and N(g, φ). The asymptotic analysis considers C(η, 2κ,H) and
C(η, κ,H) to be LQ(2/3, o(1)) and ultimately the effect of these constants get absorbed in the o(1)
term in (11). At a later point, when we set o(1) to be 0, we are in effect replacing the constants by
1. The values in Table 3 show that replacing the constants by 1 actually results in underestimates
of the run time compared to what would be obtained from the actual values of the norms.

Choosing a positive value of d amounts to considering the actual run time to be lower than
the run time predicted by values obtained from the asymptotic expression LQ(1/3, c) (with o(1)
assumed to be 0). Since the values obtained from the asymptotic run time expression are already
lower than what would be obtained from the actual value of the norms, reducing these values further
by choosing a value of d greater than 0 seems to be over-engineering. So, we suggest that the value
of d be taken as 0 which would mean choosing A = 1 in (11).

6.3 The 128-bit and 192-bit Security Levels

In this section, we provide estimates of group sizes required to achieve a desired security level.
These estimates depend on the values of the norms N(f, φ) and N(g, φ). One can work with the
upper bounds on these norms. The upper bounds involve the constant terms which can be quite
large. The experiments reported in Section 6.1 show that the actual values of the norms appear to
be closer to the expressions for the upper bounds without the constants. So, we report group size
estimates both with and without the constants in the norm bounds. The estimates obtained without
considering the constants can be considered to be conservative estimates. The actual methodology
for obtaining the estimates is described below.

For each choice of security level ` ∈ {128, 192}, the value of n, the choice of curve, the choice
of the algorithm (exTNFS or SexTNFS), and the choice of whether or not to use constants in the
bounds, the following was done. For each possible non-trivial factor η of n, let lgp(η) denote the
minimum value of lg p required to achieve security level `. The maximum of lgp(η) over all possible
non-trivial factors η of n is reported.

The values lgp(η) were determined as follows. The initial value of lg p was taken to be 2ρ` and
the size B of the factor base was fixed to 2`/2. The joint smoothness probability (9) was computed
and the value of lg p was incremented until for the first time the joint smoothness probability
became lower than 2−`/2. This value was returned as lgp(η).

Once lg p was calculated, the complexity of each stage was determined as follows. With all
other parameters fixed, the value of B was incremented until the smoothness probability became
approximately equal to 1/B. This balances the costs of the relation collection and the linear algebra
stages.

The final results are given in Tables 4 and 5. Note that all estimates were generated using
H = 2.

A reasonable conclusion is that BN curves with lg p = 383 and lgQ = 4596 offer (at least)
128 bits of security. With these parameters, there is a mismatch in security levels with BN curves

17

BN curves: n = 12, ρ = 1, λ = 4, ‖Γ‖∞ = 36

algorithm constants η κ lg p lgQ lg(run time)

exTNFS without 4 3 311 3732 128

exTNFS with 4 3 256 3072 136

SexTNFS without 6 2 383 4596 128

SexTNFS with 6 2 256 3072 150

BLS12 curves: n = 12, ρ ≈ 1.5, λ = 6, ‖Γ‖∞ ≈ 1

algorithm constants η κ lg p lgQ lg(run time)

exTNFS without 4 3 384 4608 140

exTNFS with 4 3 384 4608 156

SexTNFS without 6 2 384 4608 132

SexTNFS with 6 2 384 4608 189

KSS curves: n = 18, ρ ≈ 4/3, λ = 8, ‖Γ‖∞ ≈ 2401/21

algorithm constants η κ lg p lgQ lg(run time)

exTNFS without 6 3 342 6156 160

exTNFS with 6 3 342 6156 184

SexTNFS without 9 2 342 6156 170

SexTNFS with 9 2 342 6156 274

BLS24 curves: n = 24, ρ ≈ 1.25, λ = 10, ‖Γ‖∞ ≈ 1

algorithm constants η κ lg p lgQ lg(run time)

exTNFS without 6 4 320 7680 172

exTNFS with 6 4 320 7680 204

SexTNFS without 12 2 320 7680 202

SexTNFS with 12 2 320 7680 360

Table 4. Approximate run times of exTNFS and SexTNFS for values of Q and n that achieve the 128-bit security
level. The constants are C(η, κ,H) and C(η, 2κ,H) for exTNFS, and C(η, κ,H) and C(η, κλ,H) for SexTNFS.

18

BN curves: n = 12, ρ = 1, λ = 4, ‖Γ‖∞ = 36

algorithm constants η κ lg p lgQ lg(run time)

exTNFS without 3 4 847 10164 192

exTNFS with 3 4 728 8736 192

SexTNFS without 6 2 1031 12372 192

SexTNFS with 6 2 697 8364 192

BLS12 curves: n = 12, ρ ≈ 1.5, λ = 6, ‖Γ‖∞ ≈ 1

algorithm constants η κ lg p lgQ lg(run time)

exTNFS without 3 4 847 10164 192

exTNFS with 3 4 728 8736 192

SexTNFS without 6 2 1147 13764 192

SexTNFS with 6 2 576 6912 200

KSS curves: n = 18, ρ ≈ 4/3, λ = 8, ‖Γ‖∞ ≈ 2401/21

algorithm constants η κ lg p lgQ lg(run time)

exTNFS without 3 6 512 9216 194

exTNFS with 6 3 512 9216 214

SexTNFS without 9 2 597 10746 192

SexTNFS with 9 2 512 9216 281

BLS24 curves: n = 24, ρ ≈ 1.25, λ = 10, ‖Γ‖∞ ≈ 1

algorithm constants η κ lg p lgQ lg(run time)

exTNFS without 6 4 480 11520 203

exTNFS with 6 4 480 11520 231

SexTNFS without 12 2 480 11520 214

SexTNFS with 12 2 480 11520 366

Table 5. Approximate run times of exTNFS and SexTNFS for values of Q and n that achieve the 192-bit security
level. The constants are C(η, κ,H) and C(η, 2κ,H) for exTNFS, and C(η, κ,H) and C(η, κλ,H) for SexTNFS.

19

(λ = 4) for G1 and GT — the former offers 191 bits of security, whereas the latter offers 128 bits. On
the other hand, BLS12 curves (λ = 6) with lg p = 384 and lgQ = 4608 do not have this mismatch
— G1 and GT both offer 128 bits of security (the former since the bitlength of r is approximately
256). Since KSS curves have ρ ≈ 4/3 and BLS24 curves have ρ ≈ 1.25, these curves with lg p = 342
and lg p = 320, respectively, offer (at least) 128 bits of security. In summary, if one is aiming for
the 128-bit security level, then the bitlength of p should be at least 383, 384, 342 and 320 for BN,
BLS12, KSS and BLS24 pairings.

For the 192-bit security level, the bitlength of p should be at least 1031, 1147, 597 and 480 for
BLS, BLS12, KSS and BLS24 pairings. This should be contrasted with the pre-TNFS recommen-
dations of 640, 640, 512 and 480 bits [1].

Remark 5. We have reported group size estimates for several families of curves at the 128-bit and
the 192-bit security levels. The methodology for obtaining these estimates is more general. It can
be applied to other curve families and also to the 256-bit security level.

Remark 6. Prior to the recent developments of the TNFS algorithm, BN curves with a 256-bit p
(and consequently a 3072-bit Q) were considered to provide 128-bit security. Applying our method-
ology to these curves, we find the runtime estimates of exTNFS are 2136 and 2118 with and without
constants respectively; and the runtime estimates of SexTNFS are 2150 and 2110 with and with-
out constants respectively. Thus, a conservative estimate of the security level of BN curves with a
256-bit prime p is 110 bits.

7 Concluding Remarks

Our examination of the run times of recently-proposed improvements to the TNFS highlights their
asymptotic nature. Much work remains to be done before the impact of these new algorithms on
concrete keylengths for pairing-based cryptography can be determined with full confidence. Before
this concrete analysis is completed, a conservative choice for BN pairings would be to increase
the bitlength of p from 256 to 383 if one is aiming for the 128-bit security level. For BLS12, KSS
and BLS24 pairings, there is no change in the pre-TNFS recommendations to use primes p of
bitlength 384, 342 and 320, respectively, at the 128-bit security level. At the 192-bit security level,
conservative choices for the bitlength p are 1031, 1147, 597 and 480 for BN, BLS12, KSS and BL24
pairings, respectively.

Acknowledgements

We thank the referees for their comments which helped improve the presentation of the paper.

References

1. D. Aranha, L. Fuentes-Castañeda, E. Knapp, A. Menezes and F. Rodŕıguez-Henŕıquez, “Implementing pairings
at the 192-bit security level”, Pairing-Based Cryptography – Pairing 2012, LNCS 7708 (2013), 177–195.

2. R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain, “Improving NFS for the discrete logarithm problem in
non-prime finite fields”, Advances in Cryptology – EUROCRYPT 2015, LNCS 9056 (2015), 129–155.

3. R. Barbulescu, P. Gaudry, A. Joux and E. Thomé, “A heuristic quasi-polynomial algorithm for discrete logarithm
in finite fields of small characteristic: Improvements over FFS in small to medium characteristic”, Advances in
Cryptology – EUROCRYPT 2014, LNCS 8441 (2014), 1–16.

20

4. R. Barbulescu, P. Gaudry and T. Kleinjung, “The tower number field sieve”, Advances in Cryptology – ASI-
ACRYPT 2015, LNCS 9453 (2015), 31–55.

5. R. Barbulescu and C. Pierrot, “The multiple number field sieve for medium and high characteristic finite fields”,
LMS Journal of Computation and Mathematics, 17 (2014), 230–246.

6. E. Barker, “Recommendation for key management, Part 1: General”, NIST Special Publication 800-57, Part 1,
Revision 4, January 2016.

7. P. Barreto, B. Lynn and M. Scott, “Constructing elliptic curves with prescribed embedding degrees”, Security in
Communication Networks – SCN 2002, LNCS 2576 (2003), 257–267.

8. P. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime order”, Selected Areas in Cryptography –
SAC 2005, LNCS 3897 (2006), 319–331.

9. Y. Bistritz and A. Lifshitz, “Bounds for resultants of univariate and bivariate polynomials”, Linear Algebra and
its Applications, 432 (2010), 1995–2005.

10. D. Boneh and X. Boyen, “Strong signatures without random oracles and the SDH assumption in bilinear groups”,
Journal of Cryptology, 21 (2008), 149–177.

11. D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing”, Advances in Cryptology – CRYPTO
2001, LNCS 2139 (2001), 213–229.

12. D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing”, Journal of Cryptology, 17 (2004),
297–319.

13. D. Boneh and H. Shacham, “Group signatures with verifier-local revocation”, 11th ACM Conference on Computer
and Communications Security – CCS 2004, 168–177, 2004.

14. S. Chatterjee and A. Menezes, “On cryptographic protocols employing asymmetric pairings – The role of ψ
revisited”, Discrete Applied Mathematics, 159 (2011), 1311–1322.

15. S. Chatterjee and A. Menezes, “Type 2 structure-preserving signature schemes revisited”, Advances in Cryptology
– ASIACRYPT 2015, LNCS 9452 (2015), 286–310.

16. J. Cheon, “Security analysis of the Strong Diffie–Hellman problem”, Advances in Cryptology – EUROCRYPT
2006, LNCS 4004 (2006), 1–11.

17. J. Coron, T. Lepoint and M. Tibouchi, “Practical multilinear maps over the integers”, Advances in Cryptology –
CRYPTO 2013, LNCS 8042 (2013), 476–493.

18. C. Diem, “On the discrete logarithm problem in elliptic curves”, Compositio Mathematica, 147 (2011), 75–104.
19. C. Diem, “On the discrete logarithm problem in elliptic curves II”, Algebra and Number Theory, 7 (2013), 1281–

1323.
20. S. Garg, C. Gentry, S. Halevi, M. Raykova, S. Sahai and B. Waters, “Candidate indistinguishability obfuscation

and functional encryption for all circuits”, IEEE 54th Annual Symposium on Foundations of Computer Science
(FOCS), 2013, 40–49.

21. P. Gaudry, F. Hess and N. Smart, “Constructive and destructive facets of Weil descent on elliptic curves”, Journal
of Cryptology, 15 (2002), 19–34.

22. D. Gordon, “Discrete logarithms in GF (p) using the number field sieve”, SIAM Journal on Discrete Mathematics,
6 (1993), 124–138.

23. A. Guillevic, “Computing individual discrete logarithms faster in GF (pn) with the NFS-DL algorithm”, Advances
in Cryptology – ASIACRYPT 2015, LNCS 9452 (2015), 149–173.

24. D. Jao and K. Yoshida, “Boneh–Boyen signatures and the strong Diffie-Hellman problem”, Pairing-Based Cryp-
tography – Pairing 2009, LNCS 5671 (2009), 1–16.

25. J. Jeong and T. Kim, “Extended tower number field sieve with application to finite fields of arbitrary composite
extension degree”, Cryptology ePrint Archive: Report 2016/526, 2016.

26. A. Joux, Algorithmic Cryptanalysis. Chapman & Hall/CRC, 2009.
27. A. Joux and R. Lercier, “Improvements to the general number field sieve for discrete logarithms in prime fields.

A comparison with the Gaussian integer method”, Mathematics of Computation, 72 (2003), 953–967.
28. A. Joux, R. Lercier, N. Smart and F. Vercauteren, “The number field sieve in the medium prime case”’, Advances

in Cryptology – CRYPTO 2006, LNCS 4117 (2006), 326–344.
29. A. Joux and C. Pierrot, “The special number field sieve in Fpn – Application to pairing-friendly constructions”,

Pairing-Based Cryptography – Pairing 2013, LNCS 8365 (2013), 45–61.
30. E. Kachisa, E. Schaefer and M. Scott, “Constructing Brezing-Weng pairing-friendly elliptic curves using elements

in the cyclotomic field”, Pairing-Based Cryptography – Pairing 2008, LNCS 5209 (2008), 126–135.
31. T. Kim and R. Barbulescu, “Extended tower number field sieve: A new complexity for medium prime case”,

Advances in Cryptology – CRYPTO 2016, LNCS 9814 (2016), 543–571.
32. N. Koblitz and A. Menezes, “The brave new world of bodacious assumptions in cryptography”, Notices of the

AMS, 57 (2010), 357–365.

21

33. A. Lenstra, H. Lenstra, M. Manasse and J. Pollard, “The number field sieve”, The Development of the Number
Field Sieve, Lecture Notes in Mathematics 1554 (1993), 11–42

34. K. Mayo, “A primer on cryptographic multilinear maps and code obfuscation”, M.Math. thesis, University of
Waterloo, 2015. Available at http://hdl.handle.net/10012/9698.

35. C. Pierrot. “The multiple number field sieve with conjugation and generalized Joux-Lercier methods”, Advances
in Cryptology – EUROCRYPT 2015, LNCS 9056 (2015), 156–170.

36. J. Pollard, “Monte Carlo methods for index computation mod p”, Mathematics of Computation, 32 (1978),
918–924.

37. P. Sarkar and S. Singh, “New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime
fields”, Advances in Cryptology – EUROCRYPT 2016, LNCS 9665 (2016), 429–458.

38. P. Sarkar and S. Singh, “A general polynomial selection method and new asymptotic complexities for the tower
number field sieve algorithm”, Advances in Cryptology – ASIACRYPT 2016, LNCS 10031 (2016), 37–62.

39. P. Sarkar and S. Singh, “A generalisation of the conjugation method for polynomial selection for the extended
tower number field sieve algorithm”, IACR Cryptology ePrint Archive: Report 2016/537, 2016.

40. O. Schirokauer, “Discrete logarithms and local units”, Philosophical Transactions of the Royal Society London
A, 345 (1993), 409–423.

41. O. Schirokauer, “Using number fields to compute logarithms in finite fields”, Mathematics of Computation, 69
(2000), 1267–1283.

42. N. Smart (editor), “ECRYPT II yearly report on algorithms and keysizes (2011-2012)”, September 30, 2012.

A Calculations of Bounds on Resultants

Consider the setting of the TNFS with Q = pn, n = ηκ, h a degree-η irreducible polynomial in
Z[z], R = Z[z]/(h(z)), and f, φ ∈ R[x]. Note that degz f = degz φ = η − 1.

Let f(z, x) be a bivariate polynomial with integer coefficients where fi,j is the coefficient of xizj .
Then ‖f‖∞ = max |fi,j |. Bounds on resultants of univariate and bivariate polynomials have been
given in [9]. We summarize these below.

Let a(u) and b(u) be two polynomials with integer coefficients. From [9], we have

|Resu(a(u), b(u))| ≤ (deg(a) + 1)deg(b)/2 · (deg(b) + 1)deg(a)/2 · ‖a‖deg(b)∞ · ‖b‖deg(a)∞ . (13)

Let a(u, v) and b(u, v) be two polynomials with integer coefficients. Let c(u) = Resv(a(u, v), b(u, v)).
Then

‖c‖∞ ≤ (degv(a) + degv(b))! · (max(degu(a),degu(b)) + 1)degva+degvb−1 · ‖a‖degvb∞ · ‖b‖degva∞ . (14)

The bounds given by (13) and (14) combine to provide bounds on Resz(Resx(φ(x), f(x)), h(z)). Let
c(z) = Resx(φ(x), f(x)). The degree of c(z) is given in [9] and from (14) we obtain ‖c‖∞. These
quantities are as follows:

deg c(z) = (degx φ+ degx f) ·max(degz φ+ degz f) = (η − 1)(degx φ+ degx f),

‖c‖∞ ≤ (degx φ+ degx f)! · (max(degz φ, degz f) + 1)degx φ+degx f−1 · ‖φ‖degx f∞ · ‖f‖degx φ∞

= (degx φ+ degx f)! · ηdegx φ+degx f−1 · ‖φ‖degx f∞ · ‖f‖degx φ∞ .

Using these values we obtain

|Resz(Resx(φ(x), f(x)), h(z))| = |Resz(c(z), h(z))|
≤ ((η − 1)(degx φ+ degx f) + 1)η/2 · (η + 1)(η−1)(degx φ+degx f)/2 · ‖c‖η∞ · ‖h‖

(η−1)(degx φ+degx f)∞

≤ ((η − 1)(degx φ+ degx f) + 1)η/2 · (η + 1)(η−1)(degx φ+degx f)/2 · ‖h‖(η−1)(degx φ+degx f)∞

·
(

(degx φ+ degx f)! · ηdegx φ+degx f−1
)η
· ‖φ‖η degx f∞ · ×‖f‖η degx φ∞ . (15)

22

