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Abstract. We study the question of securely multiplying N -bit integers
that are stored in binary representation, in the context of protocols for
dishonest majority with preprocessing. We achieve communication com-
plexity O(N) using only secure operations over small fields F2 and Fp

with log(p) ≈ log(N). For semi-honest security we achieve communica-
tion O(N)2O(log∗(N)) using only secure operations over F2. This improves
over the straightforward solution of simulating a Boolean multiplication
circuit, both asymptotically and in practice.

1 Introduction

In multiparty computation, a number of players wish to carry out a computation
on private inputs such that the desired result is the only new information re-
leased. A very large number of protocols exist for secure computations of general
functions or even reactive functionalities. In this paper we focus on one extremely
popular approach for this, which is to implement an ideal functionality known as
an arithmetic black-box. Such a functionality BBF offers secure computation over
some finite field F: players can load values from the field into registers in the box,
and can then ask for arithmetic operations to be done on data inside the box,
and finally ask for results to be revealed to all players. In this paper we consider
information theoretically secure implementations of arithmetic black-boxes, for
the case of dishonest majority with preprocessing (see, e.g., [NNOB12,DPSZ12]).
For all known implementations it is the case that addition is cheap because it
does not require communication, while multiplication requires does require com-
munication, of Ω(1) field elements.

The question we study in this paper is the following: suppose we are given an
arithmetic black-box that offers operations over a small field. Suppose further
that we are given two N -bit numbers a, b, where the box already holds 2N
registers containing the bits of a and b, which we will denote by [a]bits, [b]bits
in the following. Suppose also N is large, i.e., much larger than the bit-size of
the field elements the box can handle. How much communication is required to
compute the product [ab]bits securely?
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Before coming to our contribution, let us examine what is known about
this problem, and also the motivation for the question. First, the most obvious
solution is to take the most efficient known multiplication algorithm, formulate
it as a binary circuit and have the box execute this circuit. Using for instance
the well known Schönhage-Strassen algorithm, this will lead to communication
complexity O(NlogNloglogN) (and O(log(N)) rounds). This can be slightly
improved using the algorithm of Führer, [Für07], to O(N logN2log

∗N ), and this
is the best known complexity using this approach. It is natural to ask if this
can be improved, say to linear complexity? Moreover, from a practical point of
view, the most advanced multiplication methods are not useful for practical size
numbers, which means that in practice the best known circuits will have size
O(N c) for a constant c > 1, where c in practice can be expected to be 1.5 (as in
Karatsuba’s method[KO62]).

However, one might challenge the motivation for the question: after all, im-
plementations of BBF are known for any size of field, so one could instead take an
implementation over Fp for a prime p > ab, and assume that we get the inputs
as values in Fp. Now the multiplication can be done while communicating O(1)
field elements (ignoring dependency on the number of players), which is O(N)
bits. So why bother optimizing what we can do based on small fields?

A first answer to this is that assuming we can always get the inputs rep-
resented “in one piece” is too optimistic. The computations we want to do in
practice are not just additions and multiplications, but also comparisons and
related operations. These are easy when we have a bit-wise representation but
very hard using only native field arithmetic. This means that in many cases,
it will make sense to stay with a bit-wise representation throughout and sim-
ulate arithmetic using bit-wise operations - provided, of course, that the cost
of this manageable, which brings us back to our question: while addition can
clearly be done with linear communication, it is not clear if this is possible for
multiplication.

Another issue is that for our case (dishonest majority with preprocessing), it
is not practical to do computations over (very) large fields: known preprocessing
protocols either scale badly with the size of the target field, or are based on OT-
extension which naturally gives us implementations over F2 (and directly not
over large fields). More specifically, if we base the preprocessing on some form of
homomorphic public-key cryptosystem, as in [DPSZ12], then the parameters of
that system grows with the size of the target field, and for the known schemes,
the solution becomes impractical for Fp when p has more than a few hundred
bits. If we use OT extension (as suggested in [NNOB12] for malicious adversaries
and optimised in several later papers), then the only thing we obtain directly
is secure arithmetic on bits. Of course, we can do preprocessing for larger fields
by simulating it using Boolean operations, but then once again we run into the
problem that multiplication circuits are larger that we would like and certainly
at least superlinear. This means that a solution to the question we propose can
either be used to enhance the preprocessing of an OT based protocol, or be used
to optimise the on-line phase when the preprocessing only considered bits.



Fast integer multiplication has been studied intensively, state of the art methods
for computing multiplications classically include Karatsuba [KO62], Toom-Cook
[Too63,Coo66], Shoenhage-Strassen [SS71] and Martin Furer [Für07]. In the se-
cure distributed setting early works by Rabin-Rabin-Gennaro [GRR98] followed
up by Lory in [Lor09] achieve methods communicating O(N2) bits. More recent
work carried out in practice include [HKS+10] by Schneider et al. where Kara-
suba’s method is shown to be fast than the high-school-method for more than
20 bits using their TASTY framework.

Our contributions We consider Toom-Cook’s technique for large integer multi-
plication and our goal is to utilize this algorithm in the correlated randomness
model (aka the preprocessing model) studied in [IKM+13] by Ishai et al. We
consider both the semi-honest and malicious security case where n− 1 of the n
players may be corrupted. Our constructions can be realised on top of one of
many known protocols [NNOB12,DZ13,DPSZ12,DLT14], as they are all imple-
mentations of (variants of) arithmetic black boxes.

Our first result assumes access to a functionality BBN
F2,Fp

, defined as follows:
p is a prime of length O(log(N)) bits, we describe later exactly how the size of p
is defined in terms of N , but it is sufficient if its bit length is at least 3 log(N).
The box offers to store values and do secure arithmetic in both F2 and Fp, more
precisely we use the following notation:

– [b]bits means that the box holds a bit b in a register. If P =
∑N
i=0 Pi2

i for
binary values Pi, [P ]bits is shorthand for registers [P0]bits, ..., [PN ]bits.

– Player can issue commands to add and multiply binary values, we write this
as [b]bits ⊕ [b′]bits = [b⊕ b′]bits and [b]bits · [b′]bits = [b · b′]bits.

– [a]p means that the box holds a number a ∈ Fp in a register.
– Player can issue commands to add and multiply values in Fp, we write this

as [a]p + [a′]p = [a+ a′ mod p]p and [a]p · [a′]p = [a · a′ mod p]p.
– Player can issue commands to add and multiply public constants to stored

values in Fp, we write this as [a]p + c = [a+ c mod p]p and [a]p · c =
[a · c mod p]p.

– Players can issue a command that causes the box to produce a pair of reg-
isters ([r]bits, [r]p) for a randomly chosen r ∈ Fp.

It is straightforward to implement BBN
F2,Fp

based on known protocols in the
pre-processing model, and even the preprocessing can be done quite efficiently:
because Fp is very small, we do not run into the problems with large fields
mentioned above.

Definition 1. A protocol in the preprocessing model that securely implements
BBN

F2,Fp
is said to be communication efficient if implementations of commands

that do linear operations require no communication, while implementations of
multiplication require communication of a constant number of field elements -
and finally the command that creates pairs ([r]bits, [r]p) does not require commu-
nication.



Note that known protocols in the preprocessing model are typically communica-
tion efficient1. The command that produces ([r]bits, [r]p) without communication
is not directly supported by known protocols but can easily be handled by pre-
processing a number of such pairs. The purpose of the pairs is to convert between
binary and mod-p representation, as we shall see. Of course, if we were willing
to assume such pairs for a prime so large that p > PQ, then we could convert
P and Q to mod-p representation “in one piece” and then trivially do the mul-
tiplication with communication complexity O(N) bits. But as discussed above,
with known preprocessing protocols, this would either be impractical for large
N , or we would need to use a (rather large) Boolean multiplication circuit in the
preprocessing.

We show the following (where log() denotes the base-2 logarithm):

Theorem 1. Assume we are given access to BBN
F2,Fp

. There exists an informa-

tion theoretically maliciously secure n-player protocol π, such that (BBN
F2,Fp

, π)

together implement an enhanced functionality that has all commands of BBN
F2,Fp

as well as a command that computes [PQ]bits from [P ]bits and [Q]bits, for N -

bit integers P,Q. Using any communication efficient implementation of BBN
F2,Fp

together with protocol π results in an implementation of the new command re-
quiring communication of O(N) bits and O(log(N)) rounds.

For semihonest security we can make do with a weaker functionality, if we
pay for this with a slightly larger complexity:

Theorem 2. Assume we are given access to BBF2 . There exists an informa-
tion theoretically semi-honestly secure n-player protocol π, such that (BBN

F2
, π)

together implement an enhanced functionality that has all commands of BBN
F2

as
well as a command that computes [PQ]bits from [P ]bits and [Q]bits, for N -bit in-

tegers P,Q. Using any communication efficient implementation of BBN
F2

together
with protocol π results in an implementation of the new command requiring com-
munication of O(N)2O(log∗(N)) bits and O(log(N)) rounds.

Note that log∗(N) is the number of times one needs to iterate the log function
on N to get a value less than 1. This grows extremely slowly and is a constant
less than 4 or 5 for any practical value of N .

We do not have a result for active security that uses only BBF2 , we only have
Theorem 1 but this is nevertheless useful with known preprocessing protocols:
using homomorphic encryption as in [DPSZ12], we can implement preprocessing
for both F2 and Fp, and this is likely to be practical since p has only log(N) bits,
where doing it for field elements of size N bits would not work in practice. If we
want maliciously secure preprocessing from OT extension as in [NNOB12], we

1 In the case of malicious security, multiplication also requires that we check some
authentication codes, and these may be larger than the field size. However, the cost
of such checks can be amortised over several multiplications such that the extra cost
becomes insignificant. See [NNOB12] for details.



can preprocess operations mod p using Boolean circuits, which is no problem,
again because p is small.

One should note that our results not only beat the best Boolean multiplica-
tion circuits for asymptotic communication complexity, but also have reasonable
hidden constants making them useful for practical size numbers. This is not
the case for a solution based on a circuit derived from Shönhage-Strassen. Our
number of rounds is the same as the best one gets from a Boolean circuit based
solution.

As for computational complexity, our construction has O(N3) complexity out
of the box, but we give parameters for which the Fast Fourier Transform can be
applied, essentially using Shönhage-Strassen’s trick with our distributed Toom-
variant obtaining O(N logN log logN) computational complexity. We note that
the conjectured lower bound for multiplication with MPC of O(N logN) is sur-
passed by our results.

2 Main result

Let P and Q be N -bit numbers over the integers. We assume we have binary
representations given: [P ]bits and [Q]bits, respectively. We will now describe a
basic version our protocol following essentially follow the structure of the Toom-
Cook [Too63,Coo66] algorithm describing the steps Split, Evaluate, Multiply,
Interpolate and Carrying .

2.1 The split step

Let B = {0, . . . , 2l − 1} with l = logN and take the algebraic view of P and Q

as base B numbers with κ-digits. That is, we write P=
∑κ−1
i=0 P iBi and like wise

for Q =
∑κ−1
i=0 QiBi where Qi, P i ∈ B and κ = N

logN
2.

With our base B view on P and Q it is straightforward to consider their
”digits” as coefficients of polynomials:

P (x) = P0 + P1x+ ...+ Pκ−1x
κ−1

Q(x) = Q0 +Q1x+ ...+Qκ−1x
κ−1 (1)

The first idea of the algorithm is now that if we multiply these two polynomials
over the integers and evaluate the result in point B, then we will obtain the
result PQ that we are after. The next observation is that if we take the view
of P i, Qi ∈ Fp by choosing a prime p of suitable size, then if we multiply the
polynomials over Fp instead, we will get the same coefficients as before. This
happens if we avoid overflow modulo p) and therefore we choose it such that
2 · B2N ≥ p > B2N . 3

2 For now we assume that logN divides N evenly and also N is a power of two. Note
if this is not the case we can pad with leading zeros to make it so.

3 Such a prime always exists by the Bertrand - Chebyshev theorem.



Once we have the coefficients we can evaluate the product polynomial in
point B over the integers, and we are done.

The point of multiplying the polynomials over Fp is that we can do it by eval-
uating both polynomials in the same set of points, do point wise multiplications,
and then interpolate the product polynomial. Since evaluation and interpolation
are linear operations, they will be cheap in our scenario.

2.2 The evaluation step

We now the functionality we are given (BBN
F2,Fp

) for random pairs of values [Ri]bits
and [Ri]p where Ri ∈ Fp. The goal is to obtain a Fp-representation of P i and Qi,
[P i]p, [Qi]p for i = 0, . . . , κ − 1. The parties employs a binary addition circuit
(while issuing addition and multiplication commands as needed) to compute
the value [P i −Ri mod p]bits. Note that such a circuit can be designed to have
size linear in the bit length of p. This means that in total, O(N) commands in
O(log log(N)) rounds will be issued to compute all the required additions.

Denote ∆ = P i − Ri, which we will open to all parties. All parties will
compute [P i]p = [Ri]p + ∆. The parties agree on a ω0, . . . , ω2κ−2 evaluation
points and compute:

1 ω0 · · · ω2κ−2
0

...
... · · ·

...
1 ω2κ−2 · · · ω2κ−2

2κ−2

×


[P 0]p
...

[Pκ−1]p
0
...
0


= [P (ω0)]p, . . . , [P (ω2κ−2)]p.

And likewise for Q such that the parties have [P (ω0)]p, . . . , [P (ω2κ−2)]p and
[Q(ω0)]p, . . . , [Q(ω2κ−2)]p between them. We emphasize that since our digits/coefficients
are now represented in the [·]p form, evaluating our polynomial in ωi as depicted
above requires no further communication.

2.3 The pointwise multiplication step

We simply ask the box to compute

[P ()(ω0)]p · [Q(ω0)]p = [P (ω0)Q(ω0)]p, . . .

. . . , [P ()(ω2κ−2)]p · [Q(ω2κ−2)]p = [P (ω2κ−2)Q(ω2κ−2)]p.

Note that, because of our choice of p, no coefficient overflows mod p, i.e., the
coefficients have the same integer value they would have if we had multiplied the
polynomials over the integers.



2.4 The interpolation step

The parties computes the following on their shares modulo p:1 ω0 · · · ω2κ−2
0

...
... · · ·

...
1 ω2κ−2 · · · ω2κ−2

2κ−2


−1

×

 [P (ω0)Q(ω0)]p
...

[P (ω2κ−2)Q(ω2κ−2)]p


Yielding representations of the coefficient of the product polynomial PQ(x) =
PQ0 + PQ1x + ... + PQ2κ−1−1x

2κ−1−1, i.e., we have computed [PQi]p, i =
0, .., 2κ− 2. This requires only issuing of commands that do linear operations.

2.5 The carrying step

The final result we want can be computed as PQ(B) = PQ0+· · ·+PQ2κ−2B2κ−2.
It can clearly be computed (over the integers) from the coefficients which we
have in representation modulo p. But of course trying to to do this computation
directly mod p will result in overflow.

Instead we will use a trick based on the fact that the absolute value of
each PQi is strictly smaller than B3. In terms of bits we have that PQi is
shorter than 3 logN bits. Consider Figure 1: On Figure 1a we see that the

PQ

PQ0

PQ1

PQ2

PQ2κ−2

(a) Carrying overlapping coefficients.

+
PQ0

PQ1

PQ2

PQ3

PQ4

PQ5

PQ7

PQ8

PQ6

=
PQ

+

B2B3B4B5B6B7B8B9B10B11 B B0

(b) Carrying laid out as a three way
sum, exemplified for κ = 9.

Fig. 1: How we handle carrying without overflowing modulo p.

product PQ can be ”tiled” by the coefficients of PQ(x) but they may overlap.
These overlaps are the carries that we need to handle also. What we can do is
align the coefficients PQi as three numbers, where no two coefficients in any
of the numbers overlap. Now we use the pre-processing to provide more pairs
[Ri]bits, [Ri]p to transform our coefficients to their bits representation. Then we



perform a Three-Way addition circuit as depicted on Figure 1b ending up with
[PQ]bits. This requires an addition circuit of size O(N) and depth O(log(N)).

Now, by simple inspection of this and the previous subsections, one can verify
that the protocol we have found is as promised in Theorem 1.

3 Semi-honest from bits only

In this section, we show how to apply our main result above to achieve multi-
plication even given only the functionality BBF2 , in the semi-honest setting with
corruption of n− 1 of the n players.

We first observe that in this setting, we can define a representation of numbers
in Fp, denoted by [·]p as above, namely for a ∈ Fp we will use [a]p as shorthand
for (a1, . . . , an) where the ai are chosen at random such that

∑
i ai mod p = a

and ai is held by the i’th player.
It is now simple to get the pairs ([r]bits, [r]p) required by our main protocol:

Each player i chooses and stores ri ∈ Fp at random, this already defines [r]p,
where r =

∑
i ri mod p. Player i also provides the bits in ri as input to BBF2 . We

now simulate an Boolean addition circuit that adds the ri modulo p by issuing
the appropriate commands to BBF2 . As a result we obtain [r]bits. The number of
commands depends linearly on the bit length of p (we consider the number of
players as a constant here).

This means that the only step of the main algorithm that we cannot do
with these extensions is the point-wise multiplication step. For this one, we
simply call the same protocol recursively for each point-wise multiplication, and
if the bitlength of p is below predefined constant, we will instead simulate the
multiplication using a (constant size) Boolean multiplication circuit.

If we let C(N) denote the communication complexity of this solution on
N -bit input using a communication efficient underlying protocol, we see that

C(N) = c ·N +
N

log(N)
C(3 log(N)),

since it is sufficient to have the bit length of p be 3 log(N). By unfolding this
expression, one easily sees that we will get a sum of log∗(N) terms, where the
dominating one is O(N3log

∗(N)). Thus we have the protocol promised by Theo-
rem 2.

4 Reducing computational complexity

In general the Toom-Cook method uses O(N3) multiplications in Fp during
the evaluation and interpolation steps. Tailoring our parameters carefully to
suit the fast fourier transform we can reduce this to O(N logN log logN) using
Shönhage-Strassen.

For a given bit length N we can choose a slightly larger N ′, on the form:

N ′ = 22
c

, s.t.N < N ′



Hence we can apply the Fast Fourier transform for Evaluation and Interpolation
running in time O(N logN log logN) with a small insignificant overhead from
choosing N ′ > N . Notice here that the parties runs the fast fourier transform
on their shares both of them and by linearity of the transform the sum of their
results yields the correct points or coefficients of our polynomials.

5 Conclusion

We have demonstrated how the well known Toom-Cook algorithm for multipli-
cations can be successfully applied in MPC. We give a variant obtaining com-
munication complexity O(N2log

∗N ) using only secure binary operations, which
is better than what we can hope for performing the best known binary circuit.
Using also operations in a small field, we can even get linear communication.
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