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Abstract

Indistinguishability obfuscation (iO) has emerged as a surprisingly powerful notion. Almost
all known cryptographic primitives can be constructed from general purpose iO and other min-
imalistic assumptions such as one-way functions. A major challenge in this direction of research
is to develop novel techniques for using iO since iO by itself offers virtually no protection for se-
cret information in the underlying programs. When dealing with complex situations, often these
techniques have to consider an exponential number of hybrids (usually one per input) in the
security proof. This results in a sub-exponential loss in the security reduction. Unfortunately,
this scenario is becoming more and more common and appears to be a fundamental barrier to
many current techniques.

A parallel research challenge is building obfuscation from simpler assumptions. Unfortu-
nately, it appears that such a construction would likely incur an exponential loss in the security
reduction. Thus, achieving any application of iO from simpler assumptions would also require
a sub-exponential loss, even if the iO-to-application security proof incurred a polynomial loss.
Functional encryption (FE) is known to be equivalent to iO up to a sub-exponential loss in
the FE-to-iO security reduction; yet, unlike iO, FE can be achieved from simpler assumptions
(namely, specific multilinear map assumptions) with only a polynomial loss.

In the interest of basing applications on weaker assumptions, we therefore argue for using
FE as the starting point, rather than iO, and restricting to reductions with only a polynomial
loss. By significantly expanding on ideas developed by Garg, Pandey, and Srinivasan (CRYPTO
2016), we achieve the following early results in this line of study:

• We construct universal samplers based only on polynomially-secure public-key FE . As an
application of this result, we construct a non-interactive multiparty key exchange (NIKE)
protocol for an unbounded number of users without a trusted setup. Prior to this work,
such constructions were only known from indistinguishability obfuscation.

• We also construct trapdoor one-way permutations (OWP) based on polynomially-secure
public-key FE . This improves upon the recent result of Bitansky, Paneth, and Wichs (TCC
2016) which requires iO of sub-exponential strength. We proceed in two steps, first giving
a construction requiring iO of polynomial strength, and then specializing the FE-to-iO
conversion to our specific application.

Many of the techniques that have been developed for using iO, including many of those based
on the “punctured programming” approach, become inapplicable when we insist on polynomial
reductions to FE . As such, our results above require many new ideas that will likely be useful
for future works on basing security on FE .
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1 Introduction

Indistinguishability obfuscation (iO) [BGI+12, GGH+13b] has emerged as a powerful cryptographic
primitive in the past few years. It has proven sufficient to construct a plethora of cryptographic
primitives, many of them for the first time, [SW14, BZ14, BLR+15, AS16, BPW16]. Recently, iO
also proved instrumental in proving the hardness of complexity class PPAD [BPR15].

A major challenge in this direction of research stems from the fact that iO by itself is “too
weak” to work with. The standard security of iO may not even hide any secrets present in the
underlying programs. Therefore, the crucial part of most iO-based constructions lies in developing
novel techniques for using iO to obfuscate “programs with secrets.”

Despite its enormous power, we only know of a limited set of techniques for working with iO. In
complex situations, these techniques often run into what we call the sub-exponential barrier. More
specifically, the security proof of many iO-based constructions end up considering an exponential
number of hybrid experiments in order to make just one change in the underlying obfuscation. The
goal is usually to eliminate all “troublesome” inputs, one at a time, that may be affected by the
change. There are often exponentially many such inputs, resulting in a sub-exponential loss in the
security reduction.

To make matters worse, a sub-exponential loss seems inherent to achieving iO from “simple”
assumptions, such as those based on multilinear maps1. Indeed, all known security proofs for
iO relative to “simple” assumptions2 iterate over all (exponentially-many) inputs anyway, and
there are reasons to believe that this loss may be necessary [GGSW13] 3. Indeed, any reduction
from iO to a simple assumption would need to work for equivalent programs, but should fail for
inequivalent programs (since inequivalent programs can be distinguished). Thus, such a reduction
would seemingly need to decide if two programs compute equivalent functions; assuming P 6= NP,
this in general cannot be done in polynomial time. This exponential loss would then carry over to
any application of iO, even if the iO-to-application security reduction only incurred a polynomial
loss. On the other hand, this exponential loss does not seem inherent to the vast majority of iO
applications. This leaves us in an undesirable situation where the only way we know to instantiate
an application from “simple” assumptions requires sub-exponential hardness assumptions, even
though sub-exponential hardness is not inherent to the application.

One application for which an exponential loss does not appear inherent is Functional encryption
(FE), and indeed starting from the work of Garg et al. [GGHZ16], it has been shown in [LV16, Lin16]
how to build FE from progressively simpler assumptions on multilinear maps with only a polynomial
loss. Therefore, to bypass the difficulties above, we ask the following:

Can applications of iO be based instead on
FE with a polynomial security reduction?

There are two results that give us hope in this endeavor. First, it is known that FE is actually
equivalent to iO, except that the FE-to-iO reduction [AJ15, BV15] incurs an exponential loss.

1Here, we do not define “simple.” However, one can consider various notions of “simplicity” or “niceness” for
assumptions, such as falsifiable assumptions [Nao03] or complexity assumptions [GK15].

2Here, we exclude über assumptions such as semantically secure graded encodings [PST14], which encompass
exponentially many distinct complexity assumptions.

3We stress that this argument has not yet been formalized.
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This hints at the possibility that, perhaps, specializing the FEto-iO-to-application reduction to
particular applications can aleviate the need for sub-exponential hardness.

Second and very recently, Garg, Pandey, and Srinivasan [GPS16] took upon the issue of sub-
exponential loss in iO-based constructions in the context of PPAD hardness. They developed tech-
niques to eliminate the sub-exponential loss in the work of Bitansky, Paneth, and Rosen [BPR15]
and reduced the hardness of PPAD to the hardness of standard, polynomially-secure iO (and in-
jective one-way functions). More importantly for us, they also presented a new reduction which
bases the hardness of PPAD on standard polynomially-secure functional encryption, thus giving
essentially the first non-trivial instance of using FE to build applications with only a polynomial
loss.

This work. Our goal is to develop techniques to break the sub-exponential barrier in crypto-
graphic constructions based on iO and FE . Towards this goal, we build upon and significantly
extend the techniques in [GPS16]. Our techniques are applicable, roughly, to any iO setting where
the computation is changed on just a polynomial number of points; on all other points, the exact
same circuit is used to compute the outputs. Notice that for such settings there exists an efficient
procedure for checking functional equivalence. This enables us to argue indistinguishability based
only on polynomial hardness assumptions. As it turns out, for many applications of iO, the hybrid
arguments involve circuits with the above specified structure. In this work, we focus on two such
applications: trapdoor permutations and universal samplers.

We start with the construction of trapdoor permutations of Bitanksy, Paneth, and Wichs
[BPW16] based on sub-exponentially secure iO. We improve their work by constructing trap-
door permutations based only on polynomially-secure iO (and one-way permutations). We further
extend our results and obtain a construction based on standard, polynomial hard, functional en-
cryption (instead of iO). Together with the result of [GGHZ16, LV16, Lin16], this gives us trapdoor
permutations based on simple polynomial-hard assumptions on multilinear maps.

We then consider universal samplers, a notion put forward by Hofheinz, Jager, Khurana, Sahai,
Waters, and Zhandry [HJK+16]. It allows for a single trusted setup which can be used to sample
common parameters for any protocol. Hofheinz et al. construct universal samplers from iO. They
also show how to use them to construct multi-party non-interactive key-exchange (NIKE) and
broadcast encryption.

We consider the task of constructing universal samplers from the weaker notion of only polynomially-
secure functional encryption. As noted earlier, we cannot use the generic reduction of [AJ15, BV15]
between FE and iO since it incurs sub-exponential loss. Intuitively, a fresh approach that is not
powerful enough to imply iO is essential to obtaining a polynomial-time reduction for this task.

We present a new construction of universal samplers directly from FE . We also consider the
task of constructing multiparty NIKE for an unbounded number of users based on FE . As detailed
later, this turns out to be non-trivial even given the work of Hofheinz et al. This is because the
definitions presented in [HJK+16] are not completely suitable to deal with an unbounded number
of users. To support unbounded number of users, we devise a new security notion for universal
samplers called interactive simulation. We present a construction of universal samplers based on
FE that achieves this notion and gives us multiparty NIKE for unbounded number of users.

Remark 1.1 Our construction of TDP from FE is weaker in comparison to our construction from
iO (and the construction of Bitansky et al. in [BPW16]). In particular, given the random coins
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used to sample the function and the trapdoor, the output of the sampler is no longer pseudorandom.
This property is important for some applications of TDPs like the construction of OT.

An overview of our approach. In the following sections, we present a detailed overview of our
approach of constructing Universal Samplers, NIKE for unbounded number of parties and Trapdoor
Permutations.

1.1 Universal Samplers and Multiparty Non-interactive Key Exchange from FE

Multiparty Non-Interactive Key Exchange (multiparty NIKE) was one of the early applications of
multilinear maps and iO. In multiparty NIKE, n parties simultaneously post a single message to
a public bulletin board. Then they each read off the contents of the board, and are then able to
derive a shared key K which is hidden to any adversary that does not engage in the protocol, but
is able to see the contents of the public bulletin board.

Boneh and Silverberg [BS02] show that multilinear maps imply multiparty NIKE. However, (1)
their protocol requires an a priori bound on the number of users n, and (2) due to limitations with
current multilinear map candidates [GGH13a, CLT13], the protocol requires a trusted setup. The
party that runs the trusted setup can also learn the shared key k, even if that party does not engage
in the protocol.

Boneh and Zhandry [BZ14] show how to use iO to remove the trusted setup. Later, Ananth
et al. [ABG+13] shows how to remove the bound on the number of users by using the very strong
differing inputs obfuscation. Khurana, Rao, and Sahai [KRS15] further modify the Boneh-Zhandry
protocol to get unbounded users with just iO. In [BZ14] and [KRS15], iO is invoked on programs
for which are guaranteed to be equivalent; however it is computationally infeasible to actually
verify this equivalence. Thus, following the arguments of [GGSW13], it would appear that any
reduction to a few simple assumptions, no matter how specialized to the particular programs being
obfuscated, would need to incur an exponential loss. Hence, these approaches do not seem suitable
to achieving secure multiparty NIKE from polynomially secure FE .

1.1.1 Universal Samplers

Instead, we follow an alternate approach given by Hofheinz et al. [HJK+16] using universal samplers.
A universal sampler is an algorithm that takes as input the description of a sampling procedure
(say, the sampling procedure for the common parameters of some protocol) and outputs a sample
from that procedure (a set of parameters for that protocol). The algorithm is deterministic, so that
anyone running the protocol on a given sampling procedure gets the same sampled parameters. Yet
the generated parameters should be “as good as” a freshly generated set of parameters. Therefore,
the only set of common parameters needed for all protocols is just a single universal sampler.
When a group of users wish to engage in a protocol involving a trusted setup, they can each feed
the setup procedure of that protocol into the universal sampler, and use the output as the common
parameters.

Unfortunately, defining a satisfactory notion of “as good as” above is non-trivial. Hofheinz et
al. give two definitions: a static definition which only remains secure for a bounded number of
generated parameters, as well as an adaptive definition that is inherently tied to the random oracle
model, but allows for an unbounded number of generated parameters. They show how to use the
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stronger definitions to realize primitives such as adaptively secure multiparty non-interactive key
exchange (NIKE) and broadcast encryption.

In this work, we focus on the standard model, and here we review the static standard-model
security definition for universal samplers. Fix some bound k on the number of generated parameters.
Intuitively, the k-time static security definition says that up to k freshly generated parameters
s1, . . . , sk for sampling algorithms C1, . . . , Ck can be embedded into the universal sampler without
detection. Thus, if the sampler is used on any of the sampling algorithms Ci, the generated
output will be the fresh sample si. Formally, there is a simulator Sim that takes as input up
to k sampler/sample pairs (Ci, si), and outputs a simulated universal sampler Sampler, such that
Sampler(Ci) = si. As long as the si are fresh samples from Ci, the simulated universal sampler will
be indistinguishable from a honestly generated sampler.

Fortunately for us, the iO-based construction of [HJK+16] only invokes iO on programs for
which it is trivial to verify equivalence. Thus, there seems hope that universal samplers can be
based on simple assumptions without an exponential loss. In particular, there is hope to base
universal samplers on the polynomial hardness of functional encryption.

Application to Multiparty NIKE. From the static definition above, it is straightforward to
obtain a statically secure multiparty NIKE protocol analogous to the adaptive protocol of Hofheinz
et al. [HJK+16]. Each party simply publishes a public key pki for a public key encryption scheme,
and keeps the corresponding secret key ski hidden. Then to generate the shared group key, all
parties run Sampler on the sampler Cpk1,...,pkn . Here, Cpk1,...,pkn is the randomized procedure that
generates a random string K, and encrypts K under each of the public keys pk1, . . . , pkn, resulting
in n ciphertexts c1, . . . , cn which it outputs. Then party i decrypts ci using ski. The result is that
all parties in the protocol learn K.

Meanwhile, an eavesdropper who does not know any of the secret keys will only have the public
keys, the sampler, and thus the ciphertexts ci outputted by the sampler. The proof that the
eavesdropper will not learn K is as follows. First, we consider a hybrid experiment where K is
generated uniformly at random, and the universal sampler is simulated on sampler Cpk1,...,pkn , and
sample s = (c1, . . . , cn), where ci are fresh encryptions of K under each of the public keys pki. 1-time
static security of the universal sampler implies that this hybrid is indistinguishable to the adversary
from the real world. Next, we change each of the ci to encrypt 0. Here, indistinguishability follows
from the security of the public key encryption scheme. In this final hybrid, the view of the adversary
is independent of the shared secret key K, and security follows.

Unbounded multiparty NIKE. One limitation of the protocol above is that the number of
users must be a priori bounded. There are several reasons for this, the most notable being that
in order to simulate, the universal sampler must be as large as the sample s = (c1, . . . , cn), which
grows with n. Thus, once the universal sampler is published, the number of users is capped.
Unfortunately, the only prior protocols for achieving an unbounded number of users, [ABG+13]
and [KRS15], seems inherently tied to the Boneh-Zhandry approach, and it is not clear that their
techniques can be adapted to universal samplers.

In order to get around this issue, we change the sampling procedure Cpk1,...,pkn fed into the
universal sampler. Instead, we feed in circuits of the form Dpk,pk′ , which generate a new secret and
public key (sk′′, pk′′), encrypt sk′′ under both pk and pk′, and output both encryptions as well as the
new public key pk′′. A group of users with public keys pk1, . . . , pkn then generates the shared key
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in an iterative fashion as follows. Run the universal sampler on Dpk1,pk2 , obtaining a new public
key pk′3, as well as encryptions of the corresponding secret key sk′3 under both pk1, pk2. Notice
that users 1 and 2 can both recover sk′3 using their secret keys. Then run the universal sampler
on Dpk3,pk

′
3
, obtaining a new public key pk′4 and encryptions of the corresponding secret key sk′4.

Notice that user 3 can recover sk′4 by decrypting the appropriate ciphertext using sk3, and users
1 and 2 can recover sk′4 by decrypting the other ciphertext using sk′3. Continue in this way until
public key pk′n+1 is generated, and all users 1 through n recover the corresponding secret key sk′n+1.
Set sk′n+1 to be the shared secret key.

For security, since an eavesdropper does not know any of the secret keys and the ciphertexts
are “as good as” fresh ciphertexts, he should not be able to decrypt any of the ciphertexts in the
procedure above. However, turning this intuition into a security proof using the static notion of
security is problematic. The straightforward approach requires constructing a simulated Sampler
where the outputs on each of the circuits Dpki,pk

′
i

are fresh samples. Then, each of the ciphertexts
in the samples are replaced with encryptions of 0 (instead of the correct secret decryption key).
However, as there are n such circuits, a standard incompressibility argument shows that Sampler
must grow linearly in n. Thus again, once the universal sampler is published, the number of users
is capped.

Simulating at fewer points. To get around this issue, we devise a sequence of hybrids where in
each hybrid, we only need replace log n outputs of the sampler with fresh samples. The core idea
is the following. Say that a circuit Dpki,pk

′
i

has been “treated” if the public key pk′i+1 outputted by
the universal sampler is freshly sampled and the corresponding ciphertexts are changed to encrypt
0 (instead of the secret key sk′i+1) . We observe that to switch circuit Dpki,pk

′
i

from untreated
to treated, circuit Dpki−1,pk

′
i−1

needs to currently be treated so that the view of the adversary

is independent of the secret key sk′i. However the status of all the other circuits is irrelevant.
Moreover, once we have treated Dpki,pk

′
i
, we can potentially “untreat” Dpki−1,pk

′
i−1

and reset its
ciphertexts to the correct values, assuming Dpki−2,pk

′
i−2

is currently treated. Our goal is to start
from no treated circuits, and arrive at a hybrid where Dpkn,pk

′
n

is treated, which implies that the
view of the adversary is independent of the shared secret skn+1.

This gives rise to an interesting algorithmic problem. The goal is to get a pebble at position
n, where the only valid moves are (1) placing or removing a pebble at position 1, or (2) placing or
removing a pebble at position i provided there is currently a pebble at position i− 1. We desire to
get a pebble at position n while minimizing the number of pebbles used at any time. The trivial
solution is to place a pebble at 1, then 2, and so on, requiring n pebbles. We show a pebbling
scheme that gets a pebble to position n using only ≈ log n pebbles by removing certain pebbles
as we go. Interestingly, the pebbling scheme is exactly same as the one used in [Ben89] in the
context of reversible computation. The pebbling scheme is also efficient: the number of moves is
polynomial in n.

Using our pebbling algorithm, we derive a sequence of hybrids corresponding to each move in
the algorithm. Thus we show that the number of circuits that need simulating can be taken to be
≈ log n.

A new universal sampler definition. Unfortunately, we run into a problem when trying to
base security on the basic static sampler definition of Hofheinz et al. [HJK+16]. The issue stems
from the fact that the simulator in the static definition requires knowing all of the circuits Dpki,pk

′
i

up
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front. However, in our pebbling approach, some of the pk′i (and thus the Dpki,pk
′
i
) are determined by

the sampler Sampler - namely, all the pk′i for which Dpki−1,pk
′
i−1

is “untreated.” Thus we encounter
a circularity where we need to know Sampler to compute the circuit Dpki,pk

′
i
, but we need Dpki,pk

′
i

in order to simulate the Sampler.
To get around this issue, we devise a new security notion for universal samplers that allows

for interactive simulation. That is, before the simulator outputs Sampler, we are allowed to query
it on various inputs, learning what the output of the sampler will be on that input (called as
the read query). Moreover, we are allowed to feed circuit/sample pairs (C, s) (called as write
query) interactively, potentially after seeing some of the sample outputs, and the simulator will
guarantee that the simulated Sampler will output s on C. For security, we require that for a
statically chosen query index i∗ and a circuit C∗ the simulator’s outputs in the following two cases
are computationally indistinguishable:

1. i∗th query is a read query on C∗.

2. i∗th query is a write query on (C∗, s∗) where s∗ is fresh sample from C∗.

This new definition allows us to avoid the circularity above and complete the security proof for
our NIKE protocol.

Construction. Before we describe our construction of universal samplers from FE , we first de-
scribe a construction from iO that satisfies the above definition of interactive simulation.

The universal sampler is an obfuscation of a circuit that has a puncturable PRF key K hardwired
in its description and on input C outputs C(; PRFK(C)) i.e it uses the PRF key to generate the
random coins. This is precisely the same construction as given by Hofheinz et al. [HJK+16] for the
static security case. To prove that this construction satisfies the stronger definition of interactive
simulation we construct a simulator that works as follows. It first samples a fresh PRF key K ′

and answers the read queries using it. At the end of the simulation, it outputs an obfuscation of
a circuit that has the PRF key K ′ as well as (Ci, si) for every write query made by the adversary
hardwired in its description. When run on input C where C is one of the write queries, it outputs
the corresponding s. On other inputs, it outputs C(; PRFK′(C)).

The security is shown via a hybrid argument. The initial hybrid corresponds to the output of
the simulator when the challenge query (made at index i∗) is a write query on (Ci∗ , si∗) where si∗

is a fresh random sample from Ci∗ . We first change the obfuscated circuit to have the PRF key
K ′ punctured at Ci∗ . This is possible since the circuit does not use K ′ to compute the output on
Ci∗ . Relying on the security of puncturable PRF, we change si∗ from Ci∗(; r) where r is random
string to Ci∗(; PRFK′(Ci∗)). We then unpuncture the key K ′ and finally remove Ci∗ , si∗ from the
hardwired list.

We adapt the above construction from iO to the FE setting using techniques from [BV15,
GPS16]. Recall that the “obfuscated” universal sampler consists of `+ 1 (` is the maximum size of
the input circuit) function keys (where each function key computes a bit extension function) along
with an initial ciphertext cφ that encrypts the empty string φ and a prefix constrained PRF key K
4. These bit extension functions form a natural binary tree structure and “parsing” an input circuit
C corresponds to traveling along the path from the root to the leaf labeled C. Each node x along

4[GPS16] used the term prefix-punctured PRF to denote the same primitive. We use the term prefix constrained
PRF as we feel that this name is more appropriate. This was also suggested by an anonymous Eurocrypt reviewer.
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the path from the root to C contains the key K prefix constrained at x. The prefix constrained PRF
key appearing at the leaf C is precisely equal to the PRF value at C and we use this to generate a
“pseudorandom” sample from C.

We are now ready to describe the construction of our simulator. As in the iO case, the simulator
samples a random prefix constrained PRF key K ′ and uses it to answer the read queries made by the
adversary. Recall that for every write query (Ci, si) the adversary makes, the simulator must ensure
that the sampler on Ci outputs si. The simulator accomplishes this by “tunneling” the underlying
binary tree along path Ci. To give a bit more details, the simulator “forces” the function keys at
every level i to output a precomputed value say Vi (instead of the bit-extension) if the input to the
function matches with a prefix of Ci. At the leaf level, if the input matches Ci then the function
outputs si. Illustration of “tunneling” is given in Figure 1. We now explain how this “tunneling”
is done.

cφ

V1

c00 V2

V3

si

c011

c1

FE.Dec(FSK1, ·)

FE.Dec(FSK2, ·)

FE.Dec(FSK4, ·)

FE.Dec(FSK3, ·)

Figure 1: Illustration of “tunneling” on Ci = 010 and κ = 3.

At a high level, the “tunneling” is achieved by triggering a hidden “trapdoor” thread in the
function keys using techniques illustrated in [ABSV15, GPS16]. This technique proceeds by first
encrypting a set of precomputed values under a symmetric key sk and hardwires them in the
description of bit-extension function in each level. The symmetric key sk is encrypted in the initial
ciphertext cφ along with the empty string and the prefix constrained PRF key. The trapdoor thread
(that is triggered only along the write query paths) uses this secret key sk to decrypt the hardcoded
ciphertext and outputs the appropriate pre-computed value.

To complete the security proof, we want to show that we can indistinguishably “tunnel” the
binary tree along a new path C∗i and output s∗i which is a fresh random sample from C∗i at the
leaf. Recall that in the construction of Garg et al. in [GPS16] a single secret key sk is used to for
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computing the encryptions of pre-computed values along multiple paths. But having a single secret
key does not allow us to “tunnel” along a new path C∗i as this secret key already appears in the
initial ciphertext cφ. Hence, we cannot rely on the semantic security of symmetric key encryption
to augument the pre-computed values to include values along the new path C∗i . In order to get
around this issue, we use multiple secret keys: one for each write query 5 which enables us to
“tunnel” along a new path C∗i .

1.2 Trapdoor Permutations from iO

Recall that a trapdoor permutation is a tuple of efficiently computable algorithms (F, I,Samp). F
describes a permutation over some domain D and I (having access to a trapdoor) is the inversion
algorithm i.e. given a point x in the domain gives the pre-image of x under F . Samp is the sampler
algorithm that samples a “random” point from the domain. The (standard) one-wayness property
of the trapdoor permutation [GR13] requires that: given F (x) where x is a random point output
by Samp, no polynomial time algorithm can find x with non-negligible probability.

BPW idea. Recently Bitansky, Paneth and Wichs [BPW16] gave a construction of trapdoor
permutations from indistinguishability obfuscation and one-way functions. We will now recall
the main ideas behind their construction. The domain of the trapdoor permutation is a tuple
(x,PRFS(x)) where x is a κ-bit binary string and PRFS(·) is a pseudorandom function with key S.
The domain can be thought of as consisting of two components: an index and a “signature” on the
index. Intuitively, the permutation can be thought of as a cycle where the point (x,PRFS(x)) is
connected to (x+ 1,PRFS(x+ 1)) and (1κ,PRFS(1κ)) is connected to (0κ,PRFS(0κ)).

The public key is an obfuscation of a circuit that on input (x, σ) checks the validity of σ and
outputs the next point in the domain if σ is valid. On an invalid point, it outputs a special symbol
⊥. The trapdoor is the PRF key S. Bitansky, Paneth and Wichs showed that if the underlying
indistinguishability obfuscator is sub-exponentially secure then the it is hard to invert the image
of a randomly sampled point from the domain. A high level overview of the proof strategy is to
first “puncture” the public key at a random point u such that it outputs the special symbol ⊥ on
input (u,PRFS(u)) instead of (u + 1,PRFS(u + 1)). The public key is then iteratively punctured
at points u+ 1, u+ 2 and so on until i− 1 where (i,PRFS(i)) is the inversion challenge. The main
observation that completes the proof is that once the public key is punctured at i−1, no adversary
can invert the challenge with non-zero probability. This approach requires sub-exponentially secure
indistinguishability obfuacator because it is restricted to puncturing the public key one point at a
time in the exponentially large interval [u+ 1, i− 1].

Our idea. Garg, Pandey and Srinivasan [GPS16] described a method to eliminate sub-exponential
loss in the security reduction in basing hardness of the complexity class PPAD on indistinguishability
obfuscation. We adapt their strategy to construct trapdoor permutation from polynomially hard
indistinguishability obfuscation. Parts of this section are taken verbatim from [GPS16].

The main idea is to consider a domain that allows us to iteratively puncture the public key
at a larger interval instead of a single point. The domain now includes κ signatures on the pre-
fixes of the index x instead of a single signature. More formally, every point in the domain is a

5In the security definition, the number of write queries that an adversary could make is apriori bounded. On the
otherhand, the adversary could make an unbounded number of read queries. Thus, we can fix the number of secret
keys to be sampled at the time of setup.
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tuple (x,PRFS1(x[1]),PRFS2(x[2]), · · · ,PRFSκ(x[κ])) where x is a κ-bit string, S1, · · · , Sκ are inde-
pendently chosen PRF keys and x[i] denotes the i-bit prefix of x. The public key is an obfuscation
of a circuit that on input (x, σ1, · · · , σκ) checks the validity of σi for all i ∈ [κ] and outputs the
next point (x+ 1, ·, · · · , ·) if all the signatures are valid. The trapdoor is given by S1, · · · , Sκ. The
sampler is similar to Bitansky et al. construction: it is an obfuscation of a circuit that takes some
randomness r, expands it using a pseudorandom generator and signs on all prefixes of the result.

We prove the one-wayness of the above construction using the “multiple chains” approach of
Garg et al. [GPS16]. Intuitively, this approach allows one to imagine signatures as “virtual chains”
emanating out of every node. The first chain coming out of a point i is connected to its immediate
successor i + 1. The second chain is connected to a point two hops away namely, i + 2 and so
on. More generally, the j-th chain connects point i with point i + 2j . The number of chains
coming out of node i is one more than the number of trailing ones in the binary representation
of i. Equivalently, the number of chains is equal to the number of bits that are different in i and
i+ 1. At a high level, puncturing the public key can be though of as cutting a chain of appropriate
length. While the Bitansky et al. ’s approach in [BPW16] allows to cut a chain of length 1 thus
puncturing the public key at one point, “multiple chains” approach illustrated in [GPS16] allows us
to puncture the public key at a large number of points (even exponential in number) in a “single-
stroke.” This allows us to base one-wayness of our construction only on polynomial hardness of
indistinguishability obfuscation.

We now discuss a few additional technicalities that arise while formalizing the above idea. These
issues do not arise while proving hardness of PPAD. The first technicality is that while attempting to
invert a trapdoor challenge the adversary has access to the sampler. Our sampler has the trapdoor
(S1, · · · , Sκ) hardwired in its description which could potentially help the adversary in inverting the
challenge. Hence, these keys have to be “punctured” using the punctured-programming approach
of [SW14] carefully to enable puncturing the public key in the interval [u + 1, u + 2k]. Another
technical issue is that, the random point u at which the public key is initially punctured should
not be “too-far” away from the challenge i. Otherwise, the sampler’s image would fall in the
range [u, i − 1] and we would not be able to puncture the public key on this interval as before.
Bitansky, Paneth and Wichs [BPW16] overcame this difficulty by sampling u from a “small-but-
still-large-enough” interval such that the sampler’s image does not fall in the interval [u, i− 1] with
overwhelming probability. Yet another issue is that, while iteratively puncturing the public key we
cannot always cut chains of the longest length as in [GPS16]. This is because it could very well be
the case that we overshoot i − 1. To tackle this, we begin by cutting chains of increasing lengths
and at some point we start cutting chains of smaller and smaller lengths until we reach i− 1. The
number of chains that must be cut is still polynomial in the security parameter.

1.3 Trapdoor Permutations from FE

Garg, Pandey and Srinivasan in [GPS16] showed that it is possible to base hardness of PPAD relying
on the security of polynomially hard public key functional encryption. We adapt their techniques
to construct trapdoor permutation from public key functional encryption.

The domain of the permutation is exactly same as in the previous case i.e it consists of tuples
of the form (x,PRFS1(x[1]),PRFS1(x[2]), · · · ,PRFS1(x[κ])). The circuit implementing the public key
must be able to check the validity of the input signatures and output the signatures on the next
point in the domain if the signatures are valid. We give out an “obfuscation” of such a circuit
where the obfuscation is emulated using public key functional encryption based techniques from
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[BV15].
We now give a high level overview of our public key construction. The public key consists of

κ + 1 function keys. The first κ function keys implement a bit-extension function i.e. on input
y outputs a functional encryption of y‖0 and y‖1. These keys are used to compute a functional
encryption of the first component of a domain point i.e. x. Until this step, the construction is same
as the one in [BV15] emulating the obfuscation of public-key of the TDP via functional encryption.
The last function key implements a function that outputs encryptions of signatures on the next
point (x+ 1) using the signatures at x as the secret key. Intuitively, an evaluator can obtain valid
signatures on the next point x + 1 if and only if he has valid signatures on x. In order to enable
the last function key to perform this functionality, the bit extension functions compute a set of
carefully constructed prefix-constrained PRF keys [GPS16] that are passed to the next level.

We note that our construction of public key of the permutation is almost identical 6 to the
Garg et al.’s [GPS16] construction of successor circuit. We now move on to our construction of the
sampler.

Challenge in Sampler Construction. Recall that the sampler in the iO based construction
satisfied two properties:

1. Pseudorandomness of Samples: This property states that given a random input r, the
first component of the output of the sampler is pseudorandom. To be more precise, if the
output of the sampler is (i, ·, . . . , ·) then i should be computationally indistinguishable to
random given the public key and the description of the sampler.

2. Sparseness of Images: Intuitively, this property states that the size of the image set of the
sampler is much smaller than the size of the domain. This property is crucially used in the
one-wayness proof to argue that (with overwhelming probability over the randomness of i)
the sampler’s image does not intersect with the range [u, i− 1].

In the iO based construction, the sampler first expands the randomness using a length doubling
pseudorandom generator PRG and then signs on all prefixes of the result. The first property namely,
pseudorandomness of samples follows directly from the security of PRG. The sparseness of images
follows from the property that PRG is length doubling.

If we try to directly implement the iO based sampler construction using the prefix constraining
techniques in [GPS16], we run into the following problem. Recall that the sampler has to sign on
all prefixes of PRG(r). This translates to constraining the keys S1, · · · , Sκ along the prefixes of
PRG(r). But PRG(r) can only be computed after r has been parsed in the encryption tree. This
implies that along every path in the sub-tree where r is parsed, S1, · · · , Sκ must be propagated.
Thus, constraining any key Si along a prefix of PRG(r), involves constraining it along every path
in the sub-tree where r is parsed. This incurs an exponential loss in the security reduction!

In order to overcome this challenge, we modify our sampler construction so that instead of
signing on PRG(r) it now signs on r‖Kr (r ∈ {0, 1}κ/2 is the random input to the sampler) where
K is a fresh prefix constrained key. Recall that Kr denotes the PRF key K constrained at prefix
r. To give more details, the “obfuscated” sampler consists of κ/2 + 1 function keys similar to
the construction of public key where the first κ/2 implement the bit extension functions that

6For readers familiar with the work of Garg et al., the only differences being that instead of outputting the special
symbol SOLVED on a valid input (1κ, ·, · · · , ·) we output the node (0κ, ·, · · · , ·).
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are used to obtain an functional encryption of r. The bit extension functions also pass down a
set of keys S1, · · · , Sκ that are constrained on the prefixes of r. These keys would be used for
computing the signatures on the prefixes in the last level. Additionally, it passes down a new PRF
key K constrained along the prefixes of r. The last function key (numbered κ/2 + 1) implements a
function that takes in r, the set of keys {S1,r[1] , · · · , Sκ,r[κ/2]} where Si,r[j] denotes the key Si prefix
constrained on the first j-bit prefix of r and the new PRF key K that is also prefix constrained at r
and outputs (r‖Kr, S1,(r‖Kr)[1] , · · · , Sκ,(r‖Kr)[κ]). Observe that the final function can compute this

output given r and the set of prefix constrained keys. This sampler “conforms” well with the prefix
puncturing techniques of Garg et al. [GPS16] and has the required sparseness of images guarantee.
But the issue with this construction is in arguing the pseudorandomness of samples property. In
particular, given the description of the sampler, we still can’t use the prefix constraining techniques
in [GPS16] to show that Kr can be replaced with a random string. This is because the sampler
outputs Kr in the clear when run with input r.

To fix this issue, we interpret the randomness r that is given as input to the sampler as a public
key and output the encryptions of the signatures on prefixes of r‖Kr as well as Kr using r as the
public key. To give more details, to sample a point in the domain, we generate a public key pk,
secret key pair sk and run the sampler on the public key to obtain the encryptions under pk of
the signatures on the prefixes of pk‖Kpk as well as encryption of Kpk. These encryptions are then
decrypted using the secret key sk and pk‖Kpk along with the signatures on its prefixes are output.
To prove the pseudorandomness of samples, we rely on prefix constraining technique of Garg et
al. [GPS16] and the semantic security of public key encryption (which enables us to replace the
encryptions (including that of Kpk) that are output on input pk with junk values). 7

Remark 1.2 Our construction of TDP from FE is weaker in comparison to our construction from
iO (and the construction of Bitansky et al. in [BPW16]) since given K the output of the sampler
is not pseudorandom. Thus, our construction of TDP can only be used in applications where
the system parameters are generated by honest parties. For example, our TDP cannot be used to
guarantee receiver privacy in the Oblivious Transfer (OT) protocol of Even et al. in [EGL85].

2 Preliminaries

κ denotes the security parameter. A function µ(·) : N → R+ is said to be negligible if for all
polynomials poly(·), µ(k) < 1

poly(k) for large enough k. For a probabilistic algorithm A, we denote

by A(x; r) the output of A on input x with the content of the random tape being r. We will omit r

when it is implicit from the context. For a finite set S, we denote x
$← S as the process of sampling x

uniformly from the set S. We will use PPT to denote Probabilistic Polynomial Time algorithm. We
denote [k] to be the set {1, · · · , k}. We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial. We denote the identity polynomial by I(·) i.e.
I(x) = x. All adversarial functions are modeled as polynomial sized circuits. We assume that all
cryptographic algorithms take the security parameter in unary as input and would not explicitly
mention it in all cases. We assume without loss of generality that the length of the random tape
used by all cryptographic algorithms is κ.

7Additionally, we need the public key encryption scheme to have random public keys in order to prove that the
output of the sampler is a pseudorandom string.
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A binary string x ∈ {0, 1}k is represented as x1 · · ·xk. x1 is the most significant (or the highest
order bit) and xk is the least significant (or the lowest order bit). The i-bit prefix x1 · · ·xi of the
binary string x is denoted by x[i]. We denote |x| to be the length of the binary string x ∈ {0, 1}∗.
We use x‖y to denote concatenation of binary strings x and y. We say that a binary string y is a
prefix of x if and only if there exists a string z ∈ {0, 1}∗ such that x = y‖z.

Injective Pseudo Random Generator. We give the definition of an injective Pseudo Random
Generator PRG.

Definition 2.1 An injective pseudo random generator PRG is a deterministic polynomial time
algorithm with the following properties:

• Expansion: There exists a polynomial `(·) (called as the expansion factor) such that for all
κ and x ∈ {0, 1}κ, |PRG(x)| = `(κ).

• Pseudorandomness: For all κ and for all poly sized adversaries A ,

|Pr[A(PRG(Uκ)) = 1]− Pr[A(U`(κ)) = 1]| ≤ negl(κ)

where Ui denotes the uniform distribution on {0, 1}i.

• Injectivity: For every κ and for all x, x′ ∈ {0, 1}κ such that x 6= x′, PRG(x) 6= PRG(x′).

We need an additional property from an injective PRG. Let us consider a PRG where the
expansion factor (or the output length) is given by 2`(·). Let us denote the first `(·) bits of the
output of the PRG by the function PRG0 and the next `(·) bits of the output of the PRG by PRG1.

Definition 2.2 A pseudorandom generator PRG is said to be left half injective if for every κ and
for all x, x′ ∈ {0, 1}κ such that x 6= x′, PRG0(x) 6= PRG0(x′).

Note that left half injective PRG is also an injective PRG. We note that the standard construction
of pseudorandom generator for arbitrary polynomial stretch from one-way permutations is left half
injective. For completeness, we state the construction:

Lemma 2.3 Assuming the existence of one-way permutations, there exists a pseudorandom gen-
erator with expansion factor 2`(κ) where `(κ) > κ and is left half injective.

Proof Let f : {0, 1}κ → {0, 1}κ be a one-way permutation with hardcore predicate B : {0, 1}κ →
{0, 1} [GL89]. Let G be an algorithm defined as follows: On input x ∈ {0, 1}κ, G(x) = fn(x)‖B(x)‖
B(f(x)) · · ·B(fn−1(x)) where n = 2`(κ) − κ. Clearly, |G(x)| = 2`(κ). The pseudorandomness
property of G(·) follows from the security of hardcore bit. The left half injectivity property follows
from the observation that fn is a permutation.
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Puncturable pseudorandom Function. We recall the notion of puncturable pseudorandom
function from [SW14]. The construction of pseudorandom function given in [GGM86] satisfies the
following definition [BW13, KPTZ13, BGI14].

Definition 2.4 A puncturable pseudorandom function PRF is a tuple of PPT algorithms (KeyGenPRF ,
PRF,Punc) with the following properties:

• Efficiently Computable: For all κ and for all S ← KeyGenPRF (1κ), PRFS : {0, 1}poly(κ) →
{0, 1}κ is polynomial time computable.

• Functionality is preserved under puncturing: For all κ, for all y ∈ {0, 1}κ and ∀x 6= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPRF (1κ) and S{y} ← Punc(S, y).

• Pseudorandomness at punctured points: For all κ, for all y ∈ {0, 1}κ, and for all poly
sized adversaries A

|Pr[A(PRFS(y), S{y}) = 1]− Pr[A(Uκ, S{y}) = 1]| ≤ negl(κ)

where S ← KeyGenPRF (1κ), S{y} ← Punc(S, y) and Uκ denotes the uniform distribution over
{0, 1}κ.

Indistinguishability Obfuscator. We now define Indistinguishability obfuscator from [BGI+12,
GGH+13b].

Definition 2.5 A PPT algorithm iO is an indistinguishability obfuscator for a family of circuits
{Cκ}κ that satisfies the following properties:

• Correctness: For all κ and for all C ∈ Cκ and for all x,

Pr[iO(C)(x) = C(x)] = 1

where the probability is over the random choices of iO.

• Security: For all C0, C1 ∈ Cκ such that for all x, C0(x) = C1(x) and for all poly sized
adversaries A,

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(κ)

Functional Encryption. We recall the notion of functional encryption with selective indistin-
guishability based security [BSW11, O’N10].

A functional encryption FE is a tuple of PPT algorithms (FE.Setup,FE.Enc,
FE.KeyGen,FE.Dec) with the message space {0, 1}∗ having the following syntax:

• FE.Setup(1κ) : Takes as input the unary encoding of the security parameter κ and outputs a
public key PK and a master secret key MSK.

• FE.EncPK(m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryption C of m under
the public key PK.
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• FE.KeyGen(MSK, f) : Takes as input the master secret key MSK and a function f (given as
a circuit) as input and outputs the function key FSKf .

• FE.Dec(FSKf , C): Takes as input the function key FSKf and the ciphertext C and outputs a
string y.

Definition 2.6 (Correctness) The functional encryption scheme FE is correct if for all κ and
for all messages m ∈ {0, 1}∗,

Pr

y = f(m)

∣∣∣∣∣∣∣∣
(PK,MSK)← FE.Setup(1κ)
C ← FE.EncPK(m)
FSKf ← FE.KeyGen(MSK, f)
y ← FE.Dec(FSKf , C)

 = 1

Definition 2.7 (Selective Security) For all κ and for all poly sized adversaries A,∣∣Pr[Expt1κ,0,A = 1]− Pr[Expt1κ,1,A = 1]
∣∣ ≤ negl(κ)

where Expt1κ,b,A is defined below:

• Challenge Message Queries: The adversary A outputs two messages m0, m1 such that
|m0| = |m1| to the challenger.

• The challenger samples (PK,MSK) ← FE.Setup(1κ) and generates the challenge ciphertext
C ← FE.EncPK(mb). It then sends (PK,C) to A.

• Function Queries: A submits function queries f to the challenger. The challenger responds
with FSKf ← FE.KeyGen(MSK, f).

• If A makes a query f to functional key generation oracle such that f(m0) 6= f(m1), output
of the experiment is ⊥. Otherwise, the output is b′ which is the output of A.

Remark 2.8 We say that the functional encryption scheme FE is single-key, selectively se-
cure if the adversary A in Expt1κ,b,A is allowed to query the functional key generation oracle
FE.KeyGen(MSK, ·) on a single function f .

Definition 2.9 (Compactness, [AJS15, BV15, AJ15]) The functional encryption scheme FE
is said to be compact if for all κ ∈ N and for all m ∈ {0, 1}∗ the running time of the encryption
algorithm FE.Enc is poly(κ, |m|).

Bitansky et al. in [BV15] and Ananth et al. in [AJS15] show a generic transformation from any
collusion-resistant FE for general circuits where the ciphertext size is independent of the number
of collusions (but may depend arbitrarily on the circuit parameters) to a compact FE for general
circuits. The property that the ciphertext size does not depend on the number of collusion is
referred as collusion-succinctness.

Lemma 2.10 ([BV15, AJS15]) Assuming the existence of selectively secure collusion-resistant
functional encryption with collusion-succinct ciphertexts, there exists a selectively secure compact
functional encryption scheme.
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Symmetric Key Encryption. A Symmetric-Key Encryption scheme SKE is a tuple of algo-
rithms (SK.KeyGen,SK.Enc,SK.Dec) with the following syntax:

• SK.KeyGen(1κ) : Takes as input an unary encoding of the security parameter κ and outputs
a symmetric key SK.

• SK.EncSK(m) : Takes as input a message m ∈ {0, 1}∗ and outputs an encryption C of the
message m under the symmetric key SK.

• SK.DecSK(C): Takes as input a ciphertext C and outputs a message m′.

We say that SKE is correct if for all κ and for all messages m ∈ {0, 1}∗, Pr[SK.DecSK(C) =
m] = 1 where SK ← SK.KeyGen(1κ) and C ← SK.EncSK(m).

Definition 2.11 For all κ and for all polysized adversaries A,∣∣Pr[Expt1κ,0,A = 1]− Pr[Expt1κ,1,A = 1]
∣∣ ≤ negl(κ)

where Expt1κ,b,A is defined below:

• The challenger samples SK ← SK.KeyGen(1κ).

• Left-Right Oracle Queries: The adversary submits two messages m0,m1 and the chal-
lenger responds with SK.EncSK(mb). The adversary can make an arbitrary number of left-
right queries.

• Output is b′ which is the output of A.

Public Key Encryption. A public-key Encryption scheme PKE is a tuple of algorithms (PK.KeyGen,
PK.Enc,PK.Dec) with the following syntax:

• PK.KeyGen(1κ) : Takes as input an unary encoding of the security parameter κ and outputs
a public key, secret key pair (pk, sk).

• PK.Encpk(m) : Takes as input a message m ∈ {0, 1}∗ and outputs an encryption C of the
message m under the public key pk.

• PK.Decsk(C): Takes as input a ciphertext C and outputs a message m′.

We say that PKE is correct if for all κ and for all messages m ∈ {0, 1}∗, Pr[PK.Decsk(C) =
m] = 1 where (pk, sk)← PK.KeyGen(1κ) and C ← PK.Encpk(m).

Definition 2.12 For all κ and for all polysized adversaries A and for all messages m0,m1 ∈ {0, 1}∗
such that |m0| = |m1|,

|Pr[A(pk,PK.Encpk(m0)) = 1]− Pr[A(pk,PK.Encpk(m1)) = 1]| ≤ negl(κ)

where (pk, sk)← PK.KeyGen(1κ).

We require an additional property of the public key which is described below. We assume that
|pk| = κ where (pk, sk)← PK.KeyGen(1κ).
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Definition 2.13 A PKE is said to have random public keys if, {pk}κ ' {Uκ}κ where (pk, sk) ←
PK.KeyGen(1κ) and Uκ is the uniform distribution over {0, 1}κ.

The public key encryption due to El-Gamal [Gam85] based on DDH assumption satisfies the
above property. We note that the public key encryption system from Learning with Errors assump-
tion (LWE) due to Regev [Reg09] (having public keys that are computationally indistinguishable
from random elements) is sufficient for our purposes.

Prefix Constrained Pseudorandom Function. A PCPRF is a tuple of algorithms (KeyGenPCPRF ,
PrefixCons) with the following syntax. KeyGenPCPRF takes the security parameter (encoded in
unary) and descriptions of two polynomials pin and pout as input and outputs a PCPRF key
S ∈ {0, 1}κ. PrefixCons is a deterministic algorithm and has two modes of operation:

1. Normal Mode: In the normal mode, PrefixCons takes a PCPRF key S and a string y ∈
∪pin(κ)
k=0 {0, 1}

k and outputs a prefix constrained key Sy ∈ {0, 1}κ if |y| < pin(κ); else outputs
Sy ∈ {0, 1}pout(κ). We assume that Sy contains implicit information about |y|.

2. Repeated Constraining Mode: In the repeated constraining mode, PrefixCons takes a

prefix constrained key Sy and a string z ∈ ∪pin(κ)
k=0 {0, 1}

k as input and works as follows. If
|y|+ |z| > pin(κ), it outputs ⊥; else if |y|+ |z| < pin(κ), it outputs the prefix constrained key
Sy‖z ∈ {0, 1}κ; else it outputs Sy‖z ∈ {0, 1}pout(κ).

Henceforth, unless it is not directly evident from the context, we will not explicitly mention if
PrefixCons is in the normal mode or in the repeated constraining mode. We note that there is no
explicit evaluation procedure for PCPRF and the output of PCPRF on an input x ∈ {0, 1}pin(κ) is
given by PrefixCons(S, x) ∈ {0, 1}pout(κ).

We now describe the security properties that PCPRF must satisfy. The first property states
that for any string x ∈ ∪k∈[pin(κ)]{0, 1}k, constraining a key S on x is equivalent to constraining
the key first on any prefix of x and then constraining it on the suffix. Let T denote the set of all
prefixes of x but with last bit flipped. For example, if x = 101, then T = {0, 11, 100}. The second
property states that PrefixCons(S, x) is pseudorandom even given the set of keys constrained on
every element in T .

Definition 2.14 A prefix constrained pseudorandom function PCPRF is a tuple of PPT algo-
rithms (KeyGenPCPRF ,PrefixCons) satisfying the following properties:

• Functionality is preserved under repeated constraining: For all κ, polynomials pin(·), pout(·)
and for all x ∈ ∪k∈[pin(κ)]{0, 1}k, y, z ∈ {0, 1}∗ s.t. x = y‖z,

Pr[PrefixCons(PrefixCons(S, y), z) = PrefixCons(S, x)] = 1

where S ← KeyGenPCPRF (1κ, pin(·), pout(·)).

• Pseudorandomness at constrained prefix: For all κ, polynomials pin(·),
pout(·), for all x ∈ ∪k∈[pin(κ)]{0, 1}k, and for all poly sized adversaries A

|Pr[A(PrefixCons(S, x),Keys) = 1]− Pr[A(U`,Keys) = 1]| ≤ negl(κ)

where S ← KeyGenPCPRF (1κ, pin(·), pout(·)), ` = |PrefixCons(S, x)| and Keys = {PrefixCons(S, x[i−1]‖(1−
xi))}i∈[|x|].

The above properties are satisfied by the construction of the pseudorandom function in [GGM86].
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Notation. For a key Si (indexed by i), we will use Si,y to denote PrefixCons(Si, y).

3 Universal Samplers

Intuitively, a universal sampler, defined by Hofheinz et al. [HJK+16] is a box that takes as input the
description of a sampling procedure, and outputs a fresh-looking sample according to the sampling
procedure. The difficulty is that we want the box to be public code, and that every user, when they
run the sampler on a particular procedure, gets the same result. Moreover, we want the sample to
appear as if it were a fresh random sample.

3.1 Definition

A Universal Sampler consists of an algorithm Setup that takes as input a security parameter κ
(encoded in unary) and a size bound `(·), random tape size r(·) and an output size t(·). It outputs
a program Sampler. Sampler takes as input a circuit of size at most `(κ), uses r(κ) bits of randomness
and outputs an t(κ)-bit string.

Intuitively, Sampler(C) will be a pseudorandom sample from C: Sampler(C) = C(s) for some
s pseudorandomly chosen based on C. We will actually not formalize a standalone correctness
requirement, but instead correctness will follow from our security notion.

For security, we ask that the sample output by Sampler(C) actually looks like a fresh random
sample from C. Unfortunately, formalizing this requirement is tricky. Hofheinz et al. [HJK+16]
defined two notions: the first is a “static” and “bounded” security notion, while the second stronger
notion is “adaptive” and “unbounded.” The latter definition requires random oracles, so it is
unfortunately uninstantiable in the standard model. We will provide a third definition which
strikes some middle ground between the two, and is still instantiable in the standard model.

Definition 3.1 A Universal Sampler given by Setup is n-time statically secure with interactive
simulation if there exists an efficient randomized simulator Sim such that the following hold.

• Sim takes as input κ (encoded in unary) and three polynomials `(·), r(·), t(·) (for ease of
notation, we denote ` = `(κ), r = r(κ) and t = t(κ)), and ultimately will output a simulated
sampler Sampler. However, before doing so, Sim provides the following interface for additional
input:

– Read queries: here the user submits an input circuit C of size at most `, that uses r
bits of randomness and has output length t. Sim will respond with a sample s that will
ultimately be the output of the simulated sampler on C. Sim supports an unbounded
number of Read queries.

– Set queries: here the user submits in input circuit C of size at most `, that uses r bits
of randomness with output length t, as well as a sample s of length t. Sim will record
(C, s), and set the output of the simulated sampler on C to be s. Sim supports up to n
Set queries. We require that there is no overlap between circuits C in Read and Set
queries, and that all Set queries are for distinct circuits.

– Finish query: here, the user submits nothing, and Sim closes its interfaces, terminates,
and outputs a sampler Sampler.
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Sim must be capable of taking the queries above in any order.

• Correctness. Sampler is consistent with any queries made. That is, if a Read query was
made on C and the response was s, then Sampler(C) = s. Similarly, if a Set query was made
on (C, s), then Sampler(C) = s.

• Indistinguishability from honest generation. Roughly, this requirement says that in
the absence of any Write queries, and honest and simulated sampler are indistinguishable.
More precisely, the advantage of any polynomial-time algorithm A is negligible in the following
experiment:

– The challenger flips a random bit b. If b = 0, the challenger runs Sampler← Setup(1κ, `, r, t).
If b = 1, the challenger initiates Sim(1κ, `, r, t).

– A is allowed to make Read queries on arbitrary circuits C of size at most `, using r bits
of randomness and output length t. If b = 0, the challenger runs s ← Sampler(C) and
responds with s. If b = 1, the challenger forwards C to Sim as a Read query, and when
Sim responds with s, the challenger forwards s to A.

– Finally, A sends a Finish query. If b = 0, the challenger then sends Sampler to A. If
b = 1, the challenger sends a Finish query to Sim, gets Sampler from Sim, and forwards
Sampler to A.

– A then tries to guess b. The advantage of A is the advantage A has in guessing b.

• Pseudorandomness of samples. Roughly, this requirement says that, in the simulated
sampler, if an additional Set query is performed on (C, s) where s is a fresh sample from C,
then the simulated sampler is indistinguishable from the case where the Set query was not
performed. More precisely, the advantage of any polynomial-time algorithm B is negligible in
the following experiment:

– The challenger flips a random bit b. It then initiates Sim(1κ, `, r, t).

– B first makes a Challenge query on circuit C∗ of size at most `, using r bits of ran-
domness and output length t, as well as an integer i∗.

– B is allowed to make arbitrary Read and Set queries, as long as the number of Set
queries is at most n − 1, and the queries are all on distinct circuits that are different
from C∗. The Read and Set queries can occur in any order; the only restriction is that
the Challenge query comes before all Read and Set queries.

– After i∗ − 1 Read and Set queries, the challenger does the following:

∗ If b = 0, the challenger makes a Read query to Sim, and forwards the response s∗

to B.

∗ If b = 1, the challenger computes a fresh random sample s∗ ← C∗(r), and makes a
Set query to Sim on (C∗, s∗). Then it gives s∗ to B.

Thus the i∗th query made to Sim is on circuit C∗, and the only difference between b = 0
and b = 1 is whether the output of the simulated sampler will be a pseudorandom sample
or a fresh random sample from C∗.

– B is allowed to continue making arbitrary Read and Set queries, as long as the number
of Set queries is at most n − 1 and the queries are all on distinct circuits that are
different from C∗.
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– Finally B makes a Finish query, at which point the challenger makes a Finish query
to Sim. It obtained a simulated sampler Sampler, which it then gives to B.

– B then tries to guess b. The advantage of B is the advantage B has in guessing b.

In Appendix A we sketch a construction of Universal Samplers satisfying the above definition
using iO. But as noted in the introduction, constructing iO — at least from “simple” assumptions —
seems to inherently require an exponential loss in security. In the next section we give a construction
of Universal Samplers from polynomially hard, compact Functional Encryption.

3.2 Construction from FE

In this section, we will construct Universal Samplers that satisfies Definition 3.1 from polynomially
hard, compact Functional Encryption and Prefix Constrained Pseudorandom Function (which is
implied by Functional Encryption).

Theorem 3.2 Assuming the existence of selective secure, single key, compact public key functional
encryption there exists an Universal Sampler scheme satisfying Definition 3.1.

Our Construction. The formal description our construction appears in Figure 2.

3.3 Security

We give the description of a simulator that satisfies Definition 3.1 in Figure 4.

Correctness. We give a sketch of the proof of correctness. We need to argue the following
properties of the sampler constructed by Sim:

1. For every read query C made by the adversary and response s given by Sim to that query,
the output of the sampler on C should be equal to s.

2. For every set query (C, s) made by the adversary, the output of sampler on C should be equal
to s.

Let Cq be the set of all circuits queried by the adversary in a set query. By definition, q ≤ n. Let
C be an arbitrary read query. Let x be the longest prefix of C that is shared with an element in
Cq. Since the adversary is not allowed to submit the same circuit in both read and set queries,
we notice that x 6= C or in other words x is a strict prefix of C. When we evaluate the sampler
output by Sim on input C (refer Step 1 in Evaluating the Sampler given in Figure 2), we observe
that for every prefix y of x (including x), we obtain cy = FE.EncPK|y|+1

(y, 0κ, 0κ, Z ′q, 1; ry). This can
be shown via a simple induction argument on the length of the prefix (by observing the elements
in πq|y|−1) with the base case being the empty prefix. Again by an induction argument on the

length of the prefix, we can show that for every prefix z of C of length > |x|, we obtain cz =
FE.EncPK|z|+1

(z, Sz,Kz, Z
′
q, 0;K ′z) (the base case is prefix of length |x|+ 1 and by choice of πq|x| we

obtain cC[|x|+1]
= FE.EncPK|x|+2

(C[|x|+1], SC[|x|+1]
,KC[|x|+1]

, Z ′q, 0;K ′C[|x|+1]
)). Hence, cC obtained in

the evaluation is equal to FE.EncPK`+1
(C, SC ,KC , Z

′
q, 0;K ′C). Decrypting cC with FSK`+1, gives

C(SC) which is same as the response given by Sim. This shows the first part of the claim.
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Setup

- Input: 1κ and three polynomials `(·), r(·), t(·).

- Sampled Ingredients:

1. Sample S ← KeyGenPCPRF (1κ, `(·), r(·)) and K ← KeyGenPCPRF (1κ, rand(·), I(·))
where rand(κ) = 2`(κ) and I(κ) = κ. For ease of notation, we denote ` = `(κ) and
r = r(κ).

2. For every i ∈ [`+ 1], sample (PKi,MSKi)← FE.Setup(1κ) .

3. For every j ∈ [n], sample skj ← SK.KeyGen(1κ). Let |skj | = p(κ). For i ∈ [`+1] and

j ∈ [n], let Πj
i ← SK.Encskj (π

j
i ) where πji = 0len(κ) . Here len(·) is an appropriate

length function that would be specified later. For all i ∈ [`+ 1], let Πi = {Πj
i}j∈[n].

- Functional encryption ciphertext and keys to simulate obfuscation of Setup:

1. For each i ∈ [`], generate FSKi ← FE.KeyGen(MSKi, Fi,PKi+1,Πi) and FSK`+1 ←
FE.KeyGen(MSK`+1, GΠ`+1

), where Fi,PKi+1,Πi and GΠ`+1
are circuits described in

Figure 3.

2. For every j ∈ [n], Zj = (j,⊥). Let Z := {Zj}j∈[n].

3. Let cφ = FE.EncPK1(φ, S,K,Z, 0).

4. Output (cφ, {FSKi}i∈[`+1]) as the sampler.

Evaluating the Sampler

- Input: Circuit C of size ` (padded with dummy symbols if its size is less than `) using
r bits of randomness and output length t and the sampler given by (cφ, {FSKi}i∈[`+1]).

- Evaluation:

1. For i ∈ [`], compute cC[i−1]‖0, cC[i−1]‖1 := FE.Dec(FSKi, cC[i−1]
).

2. Compute dC as output of FE.Dec(FSK`+1, cC).

3. Output dC .

Figure 2: Setup and Evaluating the Sampler

Let (C, s) be an arbitrary set query. When evaluating the sampler on input C, we observe that
for every prefix y of C, we obtain cy = FE.EncPK|y|+1

(y, 0κ, 0κ, Z ′q, 1; ry). Hence, cC obtained in the
evaluation procedure is equal to FE.EncPK`+1

(C, 0κ, 0κ, Z ′q, 1; ry). Decrypting cC with FSK`+1 gives
(C, s) as the output due to the choice of πq`+1.
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Fi,PKi+1,Πi

Hardcoded Values: i, PKi+1,Πi.
Input: C ∈ {0, 1}i−1, SC , KC , Z, mode

1. If (mode = 0),

(a) Output FE.EncPKi+1(C‖0, SC‖0,KC‖0, Z,mode;K ′C‖0) and
FE.EncPKi+1(C‖1, SC‖1,KC‖1, Z,mode;K ′C‖1), where for b ∈ {0, 1}, KC‖b =
PrefixCons(KC , b‖0) andK ′C‖b = PrefixCons(KC , b‖1) and SC‖b := PrefixCons(SC , b).

2. Else,

(a) Let j∗ be the minimum value of j ∈ [n] such that Zj+1 = (j + 1,⊥).

(b) Let πj
∗

i ← SK.Decskj∗ (Π
j∗

i ) where πj
∗

i is a collection of elements of the form (C ′, ·, ·)
for C ′ ∈ {0, 1}i−1. Recover (C, (C‖b, cC‖b), (C‖(1 − b), cC‖(1−b))) (if there are more

than one value of (C, ·, ·), select the lexicographically first such value) from πj
∗

i and
output (cC‖0, cC‖1).

GΠ`+1

Hardcoded Values: Π`+1

Input: C ∈ {0, 1}`, SC ,KC , sk,mode

1. If mode = 0, output C(SC).

2. Else, let j∗ be the minimum value of j ∈ [n] such that Zj+1 = (j+ 1,⊥). Recover (C, dC)

from SK.Decskj∗ (Π
j∗

i ) and output dC .

Figure 3: Circuits for simulating Public Key.

Indistinguishability from honest generation. This property directly follows from the obser-
vation that when adversary makes only read queries, the distribution of the sampler generated by
Sim is identically distributed to an honestly generated sampler.

Pseudorandomness of Samples. We show this through a hybrid argument.

• Hyb0: This is b = 0 case in the pseudorandomness game. The Challenge query is answered
by making a Read query to Sim, which responds with s∗ = C∗(S1

C∗).

• Hyb1 : Informally speaking, in this hybrid we are going to “tunnel” through sampler circuit
along all the paths given by the circuits in the set queries including the challenge circuit C∗.
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- Input: 1κ and three polynomials `(·), r(·), t(·).

- Sampled Ingredients:

1. Sample S ← KeyGenPCPRF (1κ, `(·), r(·)) and K ← KeyGenPCPRF (1κ, rand(·), I(·))
2. For all i ∈ [`+ 1], sample (PKi,MSKi)← FE.Setup(1κ).

3. For all j ∈ [n], sample skj ← SK.KeyGen(1κ).

- Read Queries: For every Read query on C that the adversary makes, simulator answers
with C(SC).

- Set Queries: For every Set query (Ci, si), the simulator records the query.

- Setting πji values. Let q denote the number of Set queries made by the adversary. By
definition, q ≤ n. For each j ∈ [q],

1. Let Z ′j = {(1, sk1), · · · , (j, skj), (j + 1,⊥), · · · , (n,⊥)}.
2. Let Cj = {C1, · · · , Cj} where Ck is the k-th Set query. For every non-empty prefix
x of length at most `− 1 of some string Ck in Cj ,
(a) Let cx ← FE.EncPK|x|+1

(x, 0κ, 0κ, Z ′j , 1; rx) where rx denotes uniformly chosen
random string from {0, 1}κ.

(b) Let y denote the string which is same as x except that the last bit
of x is flipped. More formally, y = x[|x|−1]‖(1 − x|x|). Let ey =
FE.EncPK|y|+1

(y, Sy,Ky, Z
′
j−1, 0;K ′y).

(c) Add the element (x[|x|−1], (x, cx), (y, ey)) to πj|x|.

3. For each i ∈ [`], pad πji until its length is 0len(κ). Set πj`+1 := (C1, s1), · · · , (Cj , sj)
and pad until its length is 0len(κ).

4. For every i ∈ [`+ 1], set Πj
i := SK.Encskj (π

j
i ).

For q+ 1 ≤ j ≤ n and for all i ∈ [`+ 1], set Πj
i := SK.Encskj (0

len(κ)). For each i ∈ [`+ 1],

let Πi = {Πj
i}j∈[n].

- Functional encryption ciphertext and keys to simulate obfuscation of Setup:

1. For each i ∈ [`], generate FSKi ← FE.KeyGen(MSKi, Fi,PKi+1,Πi) and FSK`+1 ←
FE.KeyGen(MSK`+1, GΠ`+1

) where Fi,PKi+1,Πi and GΠ`+1
are circuits described in

Figure 3.

2. If q > 1 then set cφ = FE.EncPK1(φ, 0κ, 0κ, Z ′q, 1); else set cφ =
FE.EncPK1(φ, S,K,Z ′0, 0) where Z ′0 = (1,⊥), · · · , (n,⊥).

3. Output (cφ, {FSKi}i∈[`+1]) as the sampler.

- Evaluating the Sampler: Same as described in Figure 2.

Figure 4: Description of the simulator
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Recall that “tunneling” through a path C means that at every prefix x of the string C, cx
obtained in Step 1 of the evaluation algorithm has the mode bit set to 1. Additionally, instead
of encrypting the “secrets” Sx and Kx, cx encrypts the junk values (say the all zeroes string)
in those positions. We now provide the details of how to accomplish the tunneling below.

Let us assume that the adversary has made q (≤ n−1) set queries. For the sake of simplicity,
we assume that q > 0. The case when q = 0 is analogous. Let (C ′1, ·), (C ′2, ·), · · · , (C ′q, ·)
be the collection of all set queries in the same order as queried by the adversary. In the
collection of all read and set queries, let the challenge index i∗ be such that the i∗-th
query is in between the set queries (C ′k∗ , ·) and (C ′k∗+1, ·). We denote (C1, · · · , Cq+1) =
(C ′1, · · · , C ′k∗ , C∗, C ′k∗+1, · · · , C ′q). Let Z ′q = (1, sk1), · · · , (q, skq), (q + 1,⊥), · · · ,
(n,⊥) and let Z ′q+1 = (1, sk1), · · · , (q + 1, skq+1), (q + 2,⊥), · · · , (n,⊥).

– Hyb0,0 : In this hybrid, we are going to change how πq+1
i is generated for every i ∈ [`+1].

For every prefix x of a string in (C1, · · · , Cq+1) of length at most `− 1,

1. Let ex = FE.EncPK|x|+1
(x, Sx,Kx, Z

′
q, 0;K ′x). Notice that ex is same as cx obtained

in Step 1 of evaluation algorithm when initialized with cφ = FE.EncPK1(φ, 0κ, 0κ, Z ′q, 1).

2. Let y denote the string which is same as x except that the last bit of x is flipped.
Let ey be defined analogously.

3. We add (x[|x|−1], (x, ex), (y, ey)) to πq+1
|x| .

We finally set πq+1
(`+1) = (C1, s1), · · · , (Cq+1, sq+1). For every i ∈ [` + 1], we pad πq+1

i

with dummy symbols so that its length = len(κ). For all i ∈ [` + 1], we set Πq+1
i =

SK.Encskq+1(πq+1
i ).

Notice that the only difference between Hyb0 and Hyb0,0 is that in Hyb0, Πq+1
i is set to

encryption of all zeroes string of length len(κ) whereas in Hyb1, Πq+1
i is generated as

above. The probability that adversary outputs 1 in Hyb0 and Hyb0,0 is negligible close
from the semantic security of symmetric key encryption as shown in the claim below.

Lemma 3.3 Assuming the semantic security of symmetric key encryption SKE, the prob-
ability that adversary outputs 1 in Hyb0 is negligible close to the probability it outputs 1 in
Hyb0,0 .

Proof Assume for the sake of contradiction that absolute difference of the probabilities
that adversary outputs 1 in Hyb0 and Hyb0,0 is non-negligible. We construct an adversary B
breaking the semantic security of symmetric key encryption.

B works exactly as Sim in Hyb0 except that:

– It does not sample the symmetric key skq+1 and samples all other secret keys by itself.

– For every i ∈ [` + 1], it sets πq+1
i exactly as the simulator in Hyb0,0 and queries the

external challenger with the challenge messages {πq+1
i }i∈[`+1] and (0len(κ))`+1. It receives

the challenge ciphertexts {Ci}i∈[`+1] where {Ci} is either an encryption of {πq+1
i } or

{0len(κ)}. It sets Πq+1
i = Ci for every i ∈ [`+ 1].

– It finally outputs whatever the adversary outputs.
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Notice that if {Ci}i∈[`+1] is an encryption {πq+1
i } the view generated by B is identical to

the view generated by the simulator in Hyb0. Else, the view generated by B is identical to
the view generated by Sim in Hyb0,0. Thus, B breaks the semantic security of symmetric
encryption scheme.

– Hyb0,1 : In this hybrid, for every prefix x of an element in {C1, · · · , Cq+1}, we change

how ex is generated in πq+1
|x| .

We introduce a partial ordering of strings denoted by ≺ where x ≺ x′ if |x| < |x′|.
Let T be the partially ordered set of prefixes (including the empty prefix) of elements
in {C1, · · · , Cq+1}. Let Hyb0,x denote an hybrid where for all x′ ≺ x in T , ex′ is set
to FE.EncPK|x′|+1

(x′, 0κ, 0κ, Z ′q+1, 1; rx′) where rx′ is chosen uniformly at random. Note

that in the previously, ex′ was set to FE.EncPK|x′|+1
(x′, Sx′ ,Kx′ , Z

′
q, 0;K ′x′). Let x∗ be

the last element in T . Notice that Hyb0,x∗ is distributed identically to Hyb1. We first
show the following lemma.

Lemma 3.4 Assuming the single-key, selective security of functional encryption scheme
the probability that adversary outputs 1 in Hyb0,0 and Hyb0,φ is negligibly close.

Proof Assume for the sake of contradiction that the statement of lemma is not true.
We construct an adversary B against the single-key, selective security of FE scheme.

B works exactly as the simulator in Hyb0,0 except that:

∗ It does not sample the public key, master secret key pair (PK1,MSK1) but samples
all other pairs by itself.

∗ It computes the function F1,pk2,Π1 exactly as the simulator in Hyb0,0. It constructs
two messages (φ, S,K,Z ′q, 0) and (φ, 0κ, 0κ, Z ′q+1, 1) and gives these messages as the
challenge messages to the external challenger. It also queries functional secret key
for the function F1,pk2,Π1 . It receives the challenge ciphertext c∗ and sets cφ = c∗.
It sets FSK1 to be the same as FSK∗ obtained from the challenger.

∗ It finally outputs whatever the adversary outputs.

Notice that the output of F1,pk2,Π1 is the same on both inputs (φ, S,K,Z ′q, 0) and
(φ, 0κ, 0κ, Z ′q+1, 1). Additionally, the choice of these two messages does not depend on
the public key PK1. Thus, B represents a valid adversary against the selective security
of FE .

We observe that if c∗ is an encryption of (φ, S,K,Z ′q, 0), the view generated by B is
identical to the view generated by simulator in Hyb0,0. Else, the view generated by B is
identical to the view generated by simulator in Hyb0,φ. Thus, B breaks the single-key,
selective security of FE .

To complete the proof of indistinguishability between Hyb0 and Hyb1, we now show
that the probability that the adversary outputs 1 in Hyb0,x is negligibly close to the
probability that it outputs 1 in Hyb0,x′ where x ≺ x′ and x and x′ are adjacent elements
in the ordered set T .
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∗ Hyb0,x,1 : In this hybrid, we are going to change K ′1x′ to uniformly chosen random

value rx′ at πq+1
|x′| .

Lemma 3.5 Assuming the pseudorandomness at constrained prefix property of PCPRF,
the probability that adversary outputs 1 in Hyb0,x and Hyb0,x,1 is negligibly close.

Proof Assume for the sake of contradiction that the statement of the lemma is
not true. We construct an adversary B against the pseudorandomness at constrained
prefix property of PCPRF.
B works exactly as the simulator in Hybx except that:

1. It does not sample K.

2. It queries the external challenger with the prefix s = x′1‖0‖x′2‖0 · · ·
x′|x′|−1‖0‖x

′
|x′|‖1. In return, it receives a challenge string y which is either

PrefixCons(K, s) or a random string as well as Keys which contains {Ks[i−1]‖(1−si)}i∈[|s|].

3. It uses Keys to generate all encryptions in {πq+1
i }i∈[`+1] except ex′ . Notice that

in Hyb0,x and Hyb0,x,1, Keys contain all the information needed to generate

encryptions in {πq+1
i }i∈[`+1] except ex′ .

4. It sets ex′ = FE.EncPK|x′|+1
(x′, Sx′ ,Kx′ , 0; y).

5. It finally outputs whatever adversary outputs.

If y = PrefixCons(K, s) then the view generated by B is identical to view generated
in Hyb0,x. Else, the view is identical to the view generated in Hyb0,x,1. Thus, B
breaks the pseudorandomness at constrained prefix property of PCPRF.

∗ Hyb0,x,2 : In this hybrid, we are going to change cx′ = FE.EncPK|x′|+1
(x′,

0κ, 0κ, Z ′q+1, 1; rx′) at πq+1
|x′| . This change is possible from the selective security of

functional encryption. Observe that FSK|x′|+1 decrypts both the ciphertexts to the
same value. Note that Hyb0,x,2 is identical to Hyb0,x′ .

Lemma 3.6 Assuming the single-key, selective security of functional encryption
scheme the probability that adversary outputs 1 in Hyb0,x,1 and Hyb0,x,2 is negligibly
close.

Proof The proof of this lemma is very similar to proof of Lemma 6.8.

– Hyb2 : In this hybrid, we are going to replace (C∗, C∗(SC∗)) in πq+1
`+1 with (C∗, C∗(r∗))

where r∗ is chosen uniformly at random. This change is possible from the pseudorandom-
ness at prefix punctured property of PCPRF. Observe that Hyb2 is identically distributed
to the case where the challenge query is a Set query of an uniform sample.

Lemma 3.7 Assuming the pseudorandomness at constrained prefix property of PCPRF, the
probability that adversary outputs 1 in Hyb0,x and Hyb0,x,1 is negligibly close.

Proof Assume for the sake of contradiction that the statement of the lemma is not true.
We construct an adversary B against the pseudorandomness at constrained prefix property
of PCPRF.

B works exactly as the simulator in Hybx except that:
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1. It does not sample S.

2. It queries the external challenger with the prefix C∗. In return, it receives a chal-
lenge string y which is either SC∗ or a random string as well as Keys which contains
{SC∗[i−1]‖(1−C∗i )}i∈[`].

3. It uses Keys to generate all encryptions in {πq+1
i }i∈[`]. Notice that Keys contains all the

information needed to generate encryptions in {πq+1
i }i∈[`].

4. It sets πq+1
`+1 = (C1, s1), · · · , (C∗, y), · · · , (Cq+1, sq+1).

5. It finally outputs whatever adversary outputs.

If y = SC∗ then the view generated by B is identical to view generated in Hyb1. Else, it is
identical to the view generated in Hyb2. Thus, B breaks the pseudorandomness at constrained
prefix property of PCPRF.

Setting the parameters. We set len(κ) to be the maximum size of πji for all i ∈ [`+ 1] and for
all j ∈ [n] used in the construction of the simulator and in security proof.

4 Multiparty Non-interactive Key Exchange

In this section, we build multiparty non-interactive key exchange for an unbounded number of
users. Moreover, in constrast to the original multilinear map protocols [GGH13a], our protocol has
no trusted setup.

4.1 Definition

A multiparty key exchange protocol consists of:

• Publish(κ) takes as input the security parameter and outputs a user secret sv and public value
pv. pv is posted to the bulletin board.

• KeyGen({pvj}j∈S , svi, i) takes as input the public values of a set S of users, plus one of the
user’s secrets svi. It outputs a group key k ∈ K.

For correctness, we require that all users generate the same key:

KeyGen({pvj}j∈S , svi, i) = KeyGen({pvj}j∈S , svi′ , i
′)

for all (svj , pvj)← Publish(κ) and i, i′ ∈ S. For security, we have the following:

Definition 4.1 A non-interactive multiparty key exchange protocol is statically secure if the fol-
lowing distributions are indistinguishable for any polynomial-sized set S:

{pvj}j∈S , k where (svj , pvj)← Publish(κ)∀j ∈ S, k ← KeyGen({pvj}j∈S , s1, 1) and

{pvj}j∈S , k where (svj , pvj)← Publish(κ)∀j ∈ G, k ← K
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Notice that our syntax does not allow a trusted setup, as the original constructions based
on multilinear maps [BS02, GGH13a, CLT13] require. Boneh and Zhandry [BZ14] give the first
multiparty key exchange protocol without trusted setup, based on obfuscation. A construction of
obfuscation from a finite set of assumptions with polynomial security appears implausible due to an
argument of [GGSW13]. Notice as well that our syntax does not allow the key generation to depend
on the number of users who wish to share a group key. To date, prior key exchange protocols
satisfying this property relied on strong knowledge variants of obfuscation [ABG+13]. Recently
Khurana, Rao and Sahai in [KRS15] constructed a key exchange protocol supporting unbounded
number of users based on indistinguishability obfuscation and a tool called as somewhere statistically
binding hash functions [HW15]. Here, we get an unbounded protocol based on functiona encryption
only, and without using complexity leveraging.

4.2 Construction

Our construction will use the universal samplers built in Section 3, as well as any public key
encryption scheme.

• Publish(κ). Run (sk, pk) ← PK.KeyGen(κ). Also run the universal sampler setup algorithm
Sampler ← Setup(κ, `, t) where output size ` and circuit size bound t will be decided later.
Output pv = (pk, Sampler) as the public value and keep sv = sk as the secret value.

• KeyGen({(pkj , Samplerj)}j∈S , ski, i). Interpret S as the set [1, n] for n = |S|, choosing some
canonical ordering for the users in S (say, the lexicographic order of their public values).
Define Sampler = Sampler1.

Define Cpk,pk′ for two public keys pk, pk′ to be the circuit that samples a random (sk′′, pk′′)←
PK.KeyGen(κ), then encrypts sk′′ under both pk and pk′, obtaining encryptions c and c′

respectively, and then outputs (pk′′, c, c′).

Let Dpk,pk′ be a similar circuit that samples a uniformly random string sk′′ in the key space
of PKE , encrypts sk′′ to get c, c′ as before, and outputs (0, c, c′) where 0 is a string of zeros
with the same length as a public key for PKE . Let ` the the length of (pk′′, c, c′) and let t be
the size of Cpk,pk′ (which we will assume is at least as large as Dpk,pk′).

Next, define pk′2 = pk1, and recursively define (pk′j+1, cj , c
′
j) = Sampler(Cpkj ,pk

′
j
) for j =

2, . . . , n−1. Define sk′j+1 to be the secret key corresponding to pk′j+1, which is also the secret
key encrypted in cj , c

′
j . Finally, define (0, cn, c

′
n) = Sampler(Dpkn,pk

′
n
), and define sk′n+1 to be

the secret key encrypted in cn, c
′
n.

First, it is straightforward that given {pkj}j∈[n] and Sampler, it is possible to compute
pk′j , cj , c

′
j for all k ∈ [2, n]. Thus anyone, including an eavesdropper, can compute these

values.

Next, we claim that if additionally given secret keys skj or sk′j , it is possible to compute
sk′j+1. Indeed, sk′j+1 can be computed by decrypting cj (using skj) or decrypting c′j (using
sk′j). By iterating, it is possible to compute sk′k for every k > j. This implies that all users
in [n] can compute skn+1.

Security. We now argue that any eavesdropper cannot learn any information about sk. Our
theorem is the following:
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Theorem 4.2 If PKE is a secure public key encryption scheme and Setup is a m-time statically
secure universal sampler with interactive simulation, the the construction above is a statically secure
NIKE for up to 2m users. In particular, by setting m = κ, the scheme is secure for an unbounded
number of users.

We prove this theorem by introducing a collection of hybrids. For a subset T ⊆ [3, n+ 1] of size
at most m, define the hybrid HybridT as follows. (skj , pkj) for j ∈ [n] are generated randomly
from PK.KeyGen. Similarly, (sk′i, pk′i) for i ∈ T are generated randomly from PK.KeyGen. For
each j > 1, a random Samplerj is generated from Setup. Define (sk′2, pk′2) = (sk1, pk1). Finally,
Sampler = Sampler1 is simulated using Sim as follows.

For j = 3, . . . , n, do the following:

• If j /∈ T, j ≤ n, make a Read query on Cpkj−1,pk
′
j−1

, obtaining pk′j , cj−1, c
′
j−1.

• If j = n+ 1 /∈ T , make a Read query on Dpkn,pk
′
n
, obtaining cn, c

′
n.

• If j ∈ T, j ≤ n, let cj−1 = PK.Enc(pkj−1, 0) and c′j−1 = PK.Enc(pk′j−1, 0). Then make a Set
query on Cpkj−1,pk

′
j−1
, (pk′j , cj−1, c

′
j−1).

• If j = n+ 1 ∈ T , let cn = PK.Enc(pkn, 0) and c′n = PK.Enc(pk′j−1, 0). Then make a Set query
on Dpkn,pk

′
n
, (0, cn, c

′
n).

Then make a Finish query, and output the resulting Sampler as Sampler1. In short, we simulate
Sampler so that the ciphertexts cj−1, c

′
j−1 for all j ∈ T encrypt 0 instead of the secret key sk′j .

First, we observe that if T = ∅, then there are no Set queries at all, and thus Sampler is
indistinguishable from a correctly generated sampler. Next, we note that if n+ 1 ∈ T , then sk′n+1

is information-theoretically independent of the adversary’s view. Thus, in this case, security holds.
Our goal then is to move from T = ∅ to some T that contains n + 1. We first make the following
claim:

Claim 4.3 Let T ⊂ [3, n+ 1] be a set of size at most m, let i∗ ∈ T such that either i∗ − 1 ∈ T or
i∗ = 3, and let T ′ = T \ {i∗}. Then HybridT ′ and HybridT are indistinguishable.

Proof First, we describe an intermediate hybrid which is identical to HybridT,i∗ , except that in
the Set query on j = i∗, we now generate ci∗−1 = PK.Enc(pki∗−1, ski∗) and c′i∗−1 = PK.Enc(pk′i∗−1, ski∗).
Notice that simulating HybridT and HybridT,i∗ do not rely on the knowledge of ski∗−1 or sk′i∗−1.
Therefore, the ciphertexts ci∗−1, c

′
i∗−1 are secure. Thus HybridT and HybridT,i∗ are indistin-

guishable by the security of PKE .
Now we show that HybridT,i∗ and HybridT ′ are indistinguishable. Notice that, for i∗ ≤ n

in HybridT,i∗ , (pki∗ , ci∗−1, c
′
i∗−1) is a fresh sample from Cpki∗−1,pk

′
i∗−1

. The analagous statement

holds for i∗ = n + 1. Thus the only difference between the two hybrids is that this sample is
pseudorandom in HybridT ′ , and freshly random in HybridT,i∗ . Moreover, we know the sampler
circuit Cpki∗−1,pk

′
i∗−1

before initiating the simulator. Thus, by the pseudorandomness of samples

property of the simulator, these two hybrids are actually indistinguishable.

Now it remains to show that there is a sequence of hybrids for sets T0, . . . , Tt such that T0 = ∅,
n + 1 ∈ Tt, |Tr| ≤ m for all r ∈ [0, t], and finally Tr and Tr+1 only differ on a single point jr, and
j− 1 ∈ (Tr ∩Tr+1)∪{2}. We also require that t is polynomial in n. Once this algorithmic problem
is solved, we have a complete security proof. In the following, we abstract out this algorithmic
problem, and show how to solve it.
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4.3 An Algorithmic Problem

We now describe the pebbling strategy of Bennet in [Ben89]. Consider the positive integer line
1, 2, . . . . Suppose we are given k pebbles. At first, all k pebbles are in our hand. We make a
sequence of moves where we place a pebble on the line or remove a pebble back into our hand,
subject to the following restrictions:

• The total number of pebbles on the line can never exceed k.

• In any move, we can only place or remove a pebble at integer i > 1 if there is currently a
pebble at integer i − 1. This restriction does not apply to i = 1: we can always place or
remove a pebble at position 1, as long as we do not exceed k pebbles.

Our goal is to place a pebble at the highest possible integer, and get there using as few moves
as possible.

Theorem 4.4 For any integer n < 2k, it is possible to make O(nlog2 3) ≈ O(n1.585) moves and get
a pebble at position n. For any n ≥ 2k, it is impossible to get a pebble at position n.

We give the proof of this Theorem in Appendix B.

5 TDP from IO in poly loss

We now give the definition of Trapdoor permutation with pseudorandom sampling which is a
weakened notion than the traditional uniform sampling. This definition is equivalent to the one
given in [BPW16].

Definition 5.1 ([GR13, BPW16]) An efficiently computable family of functions:

T DP = {TDPPK : DPK → DPK and PK ∈ {0, 1}poly(κ)}

over the domain DPK with the associated (probabilistic) (KeyGen,SampGen) algorithms is a (stan-
dard) trapdoor permutation if it satisfies:

1. Trapdoor Invertibility: For any (PK,SK)← KeyGen(1κ), TDPPK is a permutation over
DPK . For any y ∈ DPK , TDP−1

SK(y) is efficiently computable given the trapdoor SK.

2. Pseudorandom Sampling: For any polysized distinguisher A,∣∣Pr
[
ExpA,0,PRS = 1

]
− Pr

[
ExpA,1,PRS = 1

]∣∣ ≤ negl(κ)

where ExpA,b,PRS is described in Figure 5.

3. One-wayness: For all poly sized adversaries A,

Pr

A(PK,Samp, TDPPK(x)) = x

∣∣∣∣∣(PK,SK)← KeyGen(1κ)
Samp← SampGen(SK)
x← Samp

 ≤ negl(κ)
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(a) r1, r2
$← {0, 1}κ

(b) (PK,SK)← KeyGen(1κ; r1).

(c) Samp← SampGen(SK; r2)

(d) if(b = 0), x
$← DPK .

(e) else, x← Samp.

(f) Output A(r1, r2, x)

Figure 5: ExpA,b,PRS

5.1 Construction of Trapdoor Permutations

In this section, we give a construction of trapdoor permutations and prove the one-wayness assuming
the existence polynomially hard iO, puncturable pseudorandom function PRF and injective PRG
(used only in the proof).

Theorem 5.2 Assuming the existence of one-way permutations and indistinguishablity obfuscation
against polytime adversaries there exists a trapdoor permutation satisfying Definition 5.1.

Our Construction. Our construction uses the following primitives:

1. An indistinguishability Obfuscator iO.

2. A puncturable pseudorandom function PRF = (KeyGenPRF ,PRF,Punc).

3. A length doubling pseudorandom generator PRG : {0, 1}κ/2 → {0, 1}κ.

4. Additionally, in the proof of security, we use a length doubling injective pseudorandom gen-
erator InjPRG : [2κ/4]→ [2κ/2].

The formal description of our construction appears in Figure 6.

5.2 Security

It is easy to observe that the function computed by FS1,··· ,Sκ is a permutation over the points in the
domain and the pseudorandomness property of the sampler follows from security of pseudorandom
generator PRG (even when given the random coins used by KeyGen and SampGen).

We now prove the one-wayness of the above construction in the presence of the public key and
the sampler. A high level overview of our proof is to indistinguishably change the public key to
one that outputs ⊥ on inputs of the form (i − 1, ·, · · · , ·) where (i,PRFS1(i[1]), · · · ,PRFSκ(i[κ]))
is the inversion challenge. Clearly, the advantage of the adversary in inverting the challenge
(i,PRFS1(i[1]), · · · ,PRFSκ(i[κ])) in the final hybrid is 0.
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• KeyGen(1κ):

1. Sample {Si}i∈[κ] ← KeyGenPRF (1κ). For all i ∈ [κ], Si is a seed for a PRF mapping
i bits to κ bits. That is, PRFSi : {0, 1}i → {0, 1}κ.

2. The public key is given by iO(FS1,··· ,Sκ) where FS1,··· ,Sκ is described in Figure 7 and
the secret key is given by S1, · · · , Sκ.

• TDPPK : Run the obfuscated circuit iO(FS1,··· ,Sκ) on the given input (x, σ1, · · · , σκ).

• TDP−1
SK : The Inverter IS1,··· ,Sκ is described in Figure 7.

• SampGen(SK): The sampler is given by iO(XS1,··· ,Sκ) where XS1,··· ,Sκ is described in
Figure 7.

• Samp: Run the circuit iO(XS1,··· ,Sκ) on the given randomness r.

Figure 6: Construction of Trapdoor Permutation

Circuit F ∗. We denote by F ∗S1,··· ,Sκ,α,β (with β ≥ α) the circuit which works exactly as FS1,··· ,Sκ
on all inputs except on those inputs (s, ·, · · · , ·) where α ≤ s ≤ β, it outputs ⊥. The formal
description of the circuit is given in Figure 8. This notation would be used in our hybrids.

Notation. In the following proof, we denote Adv(Hybi) to be the probability that adversary
inverts the challenge in Hybi.

Our Hybrids. We now describe our hybrids.

• Hyb0: Original experiment where the adversary is given a random challenge ((i, σ1, · · ·σκ),

iO(XS1,··· ,Sκ), iO(FS1,··· ,Sκ)) where i = PRG(r) and r
$← {0, 1}κ/2.

• Hyb1: Instead of setting i = PRG(r), we sample i
$← {0, 1}κ. The following claim follows

directly from pseudorandomness property of PRG.

Lemma 5.3 Assuming the pseudorandomness property of PRG, we have |Adv(Hyb0)−Adv(Hyb1)| ≤
negl(κ).

Proof Assume that the statement of the lemma is not true. We construct an adversary B
that breaks the pseudorandomness property.

B receives a challenge y from the external challenger and constructs iO(XS1,··· ,Sκ), iO(FS1,··· ,Sκ)
by first sampling S1, · · · , Sκ exactly as in Hyb0. It computes σi = PRFSi(y) and runs the ad-
versary with input ((y, σ1, · · · , σκ), iO(XS1,··· ,Sκ), iO(FS1,··· ,Sκ)). If the adversary inverts the
challenge then B outputs 1; else it outputs 0.

If y is a random string then the distribution of adversary’s input is identical to Hyb1. Else, it
is distributed identical to Hyb0. Thus, B breaks the pseudorandomness property of PRG.
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FS1,··· ,Sκ

Input: (i, σ1, · · · , σκ)
Constants: S1, · · · , Sκ

1. For all j ∈ [κ], check if σj = PRFSj (i[j]).

2. If any of the above checks fail, output ⊥.

3. Else, for all j ∈ [κ] compute σ′j = PRFSj ((i+ 1)[j]) where i+ 1 is computed modulo 2κ.

4. Output (i+ 1, σ′1, · · · , σ′κ).

Padding: The circuit would be padded to size p(κ) where p(·) is a polynomial that would be
specified later.

XS1,··· ,Sκ

Input: r ∈ {0, 1}κ/2
Constants: S1, · · · , Sκ

1. Compute i = PRG(r).

2. For every j ∈ [κ], compute σj = PRFSj (i[j]).

3. Output (i, σ1, σ2, · · · , σκ).

Padding: The circuit would be padded to size q(κ) where q(·) is a polynomial that would be
specified later.

IS1,··· ,Sκ

Input: (i, σ1, · · · , σκ)
Constants: S1, · · · , Sκ

1. Check whether for all j ∈ [κ], σj = PRFSj (i[j]).

2. If any of the checks fail, output ⊥.

3. Else, for all j ∈ [κ] compute σ′j = PRFSj ((i− 1)[j]) where i− 1 is computed modulo 2κ.

4. Output (i− 1, σ′1, σ
′
2, · · · , σ′κ).

Figure 7: Public Key, Sampler and the Inverter for the Trapdoor permutations

• Hyb2: In this hybrid, we change the public key of the permutation. The public key of the
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F ∗S1,··· ,Sκ,α,β

Input: (x, σ1, · · · , σκ)
Constants: S1, · · · , Sκ, α, β

1. For all j ∈ [κ], check if σj = PRFSj (x[j]).

2. If any of the above checks fail, output ⊥.

3. If α ≤ x ≤ β, output ⊥.

4. Else, for all j ∈ [κ] compute σ′j = PRFSj ((x+ 1)[j]) where x+ 1 is computed modulo 2κ.

5. Output (x+ 1, σ′1, · · · , σ′κ).

Padding: The circuit would be padded to size p(κ) where p(·) is a polynomial that would be
specified later.

Figure 8: F ∗S1,··· ,Sκ,α,β

permutation is generated as iO(F 1
S1,··· ,Sκ,i,v) instead of iO(FS1,··· ,Sκ) where v

$← [2κ/2]. The

function F 1
S1,··· ,Sκ,i,v (padded to length p(κ)) is similar to that of FS1,··· ,Sκ except that on

inputs (x, ·, · · · , ·) such that i − 2
κ
4 ≤ x ≤ i − 1 and InjPRG(i − x) = v, it outputs ⊥. The

formal description of F 1
S1,··· ,Sκ,i,v is described in Figure 9.

Lemma 5.4 Assuming the security of iO, we have |Adv(Hyb1)− Adv(Hyb2)| ≤ negl(κ).

Proof Assume that the statement of the lemma is not true. We construct an adversary B
that breaks the security of iO.

B samples PRF keys S1, · · · , Sκ. It computes iO(XS1,··· ,Sκ) exactly as in Hyb1. It constructs
two circuits F 1

S1,··· ,Sκ,i,v and FS1,··· ,Sκ described in Figure 9 and Figure 7 respectively. It gives
them to the external challenger as the challenge circuits and receives iO(C∗) where C∗ is

either F 1
S1,··· ,Sκ,i,v or FS1,··· ,Sκ . It samples i

$← {0, 1}κ and constructs σ1, · · · , σκ as in Hyb1.
It runs the adversary with ((i, σ1, · · · , σκ), iO(C∗), iO(XS1,··· ,Sκ)). If adversary inverts the
challenge, B outputs 1; else outputs 0.

Since v is chosen randomly from [2κ/2] it is not in the image of the InjPRG with overwhelming
probability (actually with probability 1 − 1

2
κ
4

). Thus, the check in Step 3 does not pass for

any x ∈ [i−2κ/4, i−1] with overwhelming probability. Hence, with overwhelming probability
F 1
S1,··· ,Sκ,i,v and FS1,··· ,Sκ compute the exact same functionality. Thus, B represents a valid

adversary against iO security.

Notice that if C∗ = F 1
S1,··· ,Sκ,i,v, the inputs to the adversary is distributed identically to the

inputs in Hyb2; else it is distributed identically to the inputs in Hyb1. Thus, B breaks the
security of iO.
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F 1
S1,··· ,Sκ,i,v

Input: (x, σ1, · · · , σκ)
Constants: S1, · · · , Sκ, i, v

1. For all j ∈ [κ], check if σj = PRFSj (x[j]).

2. If any of the above checks fail, output ⊥.

3. If i− 2
κ
4 ≤ x ≤ i− 1 and InjPRG(i− x) = v, output ⊥.

4. Else, for all j ∈ [κ] compute σ′j = PRFSj ((x+ 1)[j]) where x+ 1 is computed modulo 2κ.

5. Output (x+ 1, σ′1, · · · , σ′κ).

Padding: The circuit would be padded to size p(κ) where p(·) is a polynomial that would be
specified later.

Figure 9: F 1
S1,··· ,Sκ,i,v

• Hyb3: In this hybrid, we change how v is computed. Instead of sampling v uniformly at

random from [2κ/2], we generate v as InjPRG(u0) where u0
$← [2κ/4]. The public key of the

permutation would now correspond to iO(FS1,··· ,Sκ,i,PRG(u0)).

Lemma 5.5 Assuming the pseudorandomness property of InjPRG, we have |Adv(Hyb2) −
Adv(Hyb3)| ≤ negl(κ).

Proof We construct an adversary B against the pseudorandomness property of InjPRG. B
receives a challenge string y from the external challenger and sets v = y. It samples the rest
of the inputs to the adversary as in Hyb2. Notice that if y is a random string then the inputs
to the adversary are distributed identically to inputs in Hyb2; else it is distributed identically
to inputs in Hyb3. Thus, B breaks the pseudorandomness property of InjPRG.

The computational indistinguishability of Hyb2 and Hyb3 follows from the pseudorandomness
property of the InjPRG.

Notation. We denote α0 := i− u0 from now on.

• Hyb4: In this hybrid, we replace the public key for computing the permutation with iO(F ∗S1,··· ,Sκ,α0,α0
).

The only difference between Hyb3 and Hyb4 is that in Hyb3 the public key is generated as
iO(F 1

S1,··· ,Sκ,i,InjPRG(u0)) whereas in Hyb4 it is generated as iO(F ∗S1,··· ,Sκ,α0,α0
). We have the

following lemma from the security of iO.

Lemma 5.6 Assuming the security of iO, we have |Adv(Hyb3)− Adv(Hyb4)| ≤ negl(κ).

Proof We construct an adversary B against the security of iO. B samples S1, · · · , Sκ
and constructs iO(XS1,··· ,Sκ) as in Hyb3. It constructs two circuits F 1

S1,··· ,Sκ,i,InjPRG(u0) and
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F ∗S1,··· ,Sκ,α0,α0
(padded to length p(κ)) and gives it as challenge circuits to the external chal-

lenger. It receives iO(C∗) from the external challenger where C∗ is either F 1
S1,··· ,Sκ,i,InjPRG(u0)

or F ∗S1,··· ,Sκ,α0,α0
. It samples i

$← {0, 1}κ and constructs the inversion challenge exactly as
in Hyb4. It then runs the adversary with the inversion challenge, iO(C∗) and iO(XS1,··· ,Sκ)
as inputs. B outputs 1 if and only if the adversary inverts the challenge. Observe that
F 1
S1,··· ,Sκ,i,InjPRG(u0) and F ∗S1,··· ,Sκ,α0,α0

(padded to length p(κ)) compute the exact same func-
tion due to the injectivity of the InjPRG. In particular, both these functions output ⊥ on any
input of the form (α0, ·, · · · , ·). Thus, B represents a valid adversary against iO security and
breaks iO security.

If C∗ = F ∗S1,··· ,Sκ,α0,α0
then the inputs to the adversary are distributed identically to inputs

in Hyb4; else it is distributed identically to inputs in Hyb3. Thus, B breaks iO security.

• Hyb5,j : In this hybrid, we replace the public key of our permutation with iO(F ∗S1,··· ,Sκ,α0,αj
)

for j ∈ {0, · · · , δ(α0) + µ(αδ(α0))} where δ(·) and µ(·) are defined below.

Defining αj values. We define the following functions. We assume that all functions take
i as an implicit input.

1. For any string α ∈ {0, 1}κ, let f(α) denote the index of the lowest order bit of α that is
0 (with the index of the highest order bit being 1). More formally, f(α) is the smallest

j such that α = α[j]||1κ−j . For example, if α =

3︷︸︸︷
100 11 then f(α) = 3.

2. Let `(β, γ) denotes the unique j ∈ [κ] such that β[j−1] = γ[j−1] and βj 6= γj if β 6= γ and
is a special symbol ζ otherwise. In other words, `(β, γ) denotes the first index at which
β and δ differ if β 6= δ and is equal to the special symbol ζ otherwise.

3. Let δ(α) denote the number of 0s in the positions [`(α, i − 1) + 1, κ] in the binary
representation of α if `(α, i − 1) 6= ζ and is equal to 0 otherwise. For example, if
α = 0010 and i − 1 = 1010, `(α, i − 1) = 1 since the two strings differ in the first
position. Then, δ(α) = 2 since there are two zeroes in positions [2, 4] in α.

4. Let ρ(α) = `(α+ 1, i− 1) if `(α+ 1, i− 1) 6= ζ and equal to κ otherwise.

5. Let µ(α) denote one more than the number of ones in the positions [`(α, i− 1) + 1, κ] in
the binary representation of i− 1 if `(α, i− 1) 6= ζ and is equal to 0 otherwise.

Starting with a value α0 ∈ {0, 1}κ we define for j ∈ [0, δ(α0) + µ(αδ(α0))− 1],

αj+1 =

{
αj + 2κ−f(αj) if j < δ(α0)

αj + 2κ−ρ(αj) otherwise

Intuition behind the definition of αj’s. Let us assume for the sake of simplicity that
α0 < i − 1. Let i∗ = `(α0, i − 1). Recall that `(α0, i − 1) gives the first index where α0 and
i− 1 differ. Since α0 < i− 1 we have (α0)i∗ = 0 and (i− 1)i∗ = 1. Recall the multiple chains
techinque from [GPS16]. For all j ≤ δ(α0), we cut the chain of maximum possible length. Note
that by this definition αδ(α0) = (i− 1)[`(α0,i−1)−1]‖(α0)i∗‖1κ−`(α0,i−1) where (α0)i∗ = 0. Once
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we reach αδ(α0), if we cut the chain of maximum possible length we overshoot i− 1. Thus, we
start cutting chains of smaller lengths until we reach i−1. Notice that αδ(α0)+µ(αδ(α0))

= i−1.
Illustrations of αjs are given in Figure 10,11.

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

α0 α1 α2 α3 i− 1

Figure 10: Illustration of the steps starting with α0 = 0010 and i− 1 = 1010.

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

i− 1 α0 α1 α2α3

Figure 11: Illustration of the steps starting with α0 = 1100 and i− 1 = 0001.

Indistinguishability Argument: Observe that Hyb5,0 is distributed identically to Hyb4

and Hyb5,δ(α0)+µ(αδ(α0))
is a hybrid where the public key of the permutation outputs ⊥ on

every input (s, ·, · · · , ·) where α0 ≤ s ≤ i − 1. We now prove that Adv(Hyb5,j) is negligibly
close to Adv(Hyb5,j+1) for all 0 ≤ j ≤ δ(α0) + µ(αδ(α0)) − 1. We prove this through a
sequence of hybrids. we let νj as the shorthand for f(αj) for j < δ(α0) and equal to ρ(αj)
for j ≥ δ(α0). Let tj = (αj)[νj ]

+ 1. Note that by definition if for any x ∈ {0, 1}κ, x[νj ] = tj
then αj + 1 ≤ x ≤ αj+1.

– Hyb5,j,1 : Let S′νj ← Punc(Sνj , tj) and σ? = PRFSνj (tj). In this hybrid we replace the

public key of the trapdoor permutation with iO(F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?

, tj). The func-

tion F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?,tj

(padded to length p(κ)) is identical to F ∗S1,··· ,Sνj ,··· ,Sκ,α0,αj

except that it has the punctured key S′νj and uses σ? to perform the computations us-

ing PRFSνj (tj). We give the formal description of the circuit F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?

in

Figure 12.

Lemma 5.7 Assuming the security of iO, we have |Adv(Hyb5,j) − Adv(Hyb5,j,1)| ≤
negl(κ).
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F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?

Input: (x, σ1, · · · , σκ)
Constants: S1, · · · , S′νj , · · · , Sκ, α0, αj , σ

?, tj

1. For all k ∈ [κ] \ {νj}, check if σk = PRFSk(x[k]).

2. If x[νj ] = tj , check if σνj = σ?. Else, check if σνj = PRFS′νj
(x[νj ])

3. If any of the above checks fail, output ⊥.

4. If α0 ≤ x ≤ αj , then output ⊥.

5. Else, for all k ∈ [κ]\{νj} compute σ′k = PRFSj ((x+ 1)[k]) where x+ 1 is computed modulo
2κ.

6. If (x+ 1)[νj ]
= tj , set σ′νj = σνj . Else, set σ′νj = PRFS′νj

((x+ 1)[j])

7. Output (x+ 1, σ′1, · · · , σ′κ).

Padding: The circuit would be padded to size p(κ) where p(·) is a polynomial that would be
specified later.

Figure 12: F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?,tj

Proof We construct an adversary B against the security of iO. B samples S1, · · · , Sκ
as in Hyb5,j . It samples i

$← {0, 1}κ. It punctures Sνj at the string tj to obtain
S′νj . It constructs two circuits F 2

S1,··· ,S′νj ,···Sκ,α0,αj ,σ?,tj
(padded to length p(κ)) and

F ∗S1,··· ,Sνj ,··· ,Sκ,α0,αj
and provides them as the challenge circuits to the external chal-

lenger. In return, it obtains iO(C∗) where C∗ is either one of the two circuits. B
provides iO(C∗) as the public key to the adversary and generates other inputs identical
to Hyb5,j . It outputs 1 if the adversary inverts the challenge; else it outputs 0.

We observe that the two circuits compute the exact same functionality which follows
from setting σ? = PRFSνj (tj). Note that if the x ∈ [αj + 1, αj+1 − 1] (or in other words

(x+ 1)[νj ]
= tj), then the next node on the path also has the νthj associated signature to

be same as σ?. So in that case, if the input is valid then the circuit F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?,tj

outputs the input σνj in place of σ?. Hence, B represents a valid adversary against the
security of iO.

If C∗ = F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?,tj

then the distribution of inputs to A is identically dis-

tributed to the inputs in Hyb5,j,1; else the inputs are distributed identically to Hyb5,j .
Thus, B breaks the security of iO.

– Hyb5,j,2: In this hybrid we replace the sampler iO(XS1,··· ,Sκ) with
iO(X2

S1,··· ,S′νj ,··· ,Sκ,tj
). X2

S1,··· ,S′νj ,··· ,Sκ
(padded to length q(κ)) is identical to XS1,··· ,Sκ

except that if required to evaluate PRFSνj on tj , it outputs ⊥. We describe the sampler
in Figure 13.

We now show the following claim.
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X2
S1,··· ,S′νj ,··· ,Sκ

Input: r ∈ {0, 1}κ/2
Constants: S1, · · · , S′νj , · · · , Sκ,tj

1. Compute x = PRG(r).

2. If x[νj ] = tj , output ⊥.

3. For every j ∈ [κ] \ {νj}, compute σj = PRFSj (x[j]); compute σνj = PRFS′νj
(x[νj ]).

4. Output (x, σ1, σ2, · · · , σκ).

Padding: The circuit would be padded to size q(κ) where q(·) is a polynomial that would be
specified later.

Figure 13: X2
S1,··· ,S′νj ,··· ,Sκ,tj

Lemma 5.8 Assuming the security of iO, we have |Adv(Hyb5,j,1) − Adv(Hyb5,j,2)| ≤
negl(κ).

Proof We construct an adversary B against the security of iO. B samples S1, · · · , Sκ
as in Hyb5,j . It samples i

$← {0, 1}κ. It punctures Sνj at the string tj to obtain S′νj .

It constructs two circuits (X2
S1,··· ,S′νj ,··· ,Sκ

) and X2
S1,··· ,S′νj ,··· ,Sκ

(padded to length q(κ))

and provides them as challenge circuits to the external challenger. In return, it obtains
iO(C∗) where C∗ is either one of the two circuits. B provides iO(C∗) as the sampler
to the adversary and generates other inputs identical to Hyb5,j,1. It outputs 1 if the
adversary inverts the challenge; else it outputs 0.

We now argue that X2
S1,··· ,S′νj ,··· ,Sκ

and XS1,··· ,Sκ compute the same functionality with

overwhelming probability. Observe thatX2
S1,··· ,S′νj ,··· ,Sκ

is required to compute PRFSνj (tj)

if and only if PRG(r) ∈ [αj + 1, αj+1]. We note that every x ∈ [αj + 1, αj+1] is of the
form i − u0 + c where c is at most u0 and u0 is chosen independent of i. In particular,
c − u0 is independent of i and hence x is uniformly distributed in the interval {0, 1}κ
since i is randomly distributed in the interval {0, 1}κ. Hence, with overwhelming prob-
ability (equal to 1− 1

2κ/2
), x is not in the image of PRG. By an union bound, no point

in [αj + 1, αj+1] is in the image of the PRG except with probability 1
2κ/4

(since the size

of the interval is at most 2κ/4). Hence, the two circuits X2
S1,··· ,S′νj ,··· ,Sκ

and XS1,··· ,Sκ

compute the same functionality with overwhelming probability. Thus, B represents a
valid adversary against iO security.

If C∗ = X2
S1,··· ,S′νj ,··· ,Sκ

then the distribution of inputs to the adversary is identical to

inputs in Hyb5,j,2; else the inputs are distributed identically to Hyb5,j,3. Thus, B breaks
the iO security.

– Hyb5,j,3: In this hybrid we change how σ? that is hardwired in the public key

iO(F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?

) is generated. In particular, we choose σ?
$← {0, 1}κ instead of

setting σ? = PRFSνj (tj).
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F 3
S1,··· ,S′νj ,···Sκ,α0,αj ,InjPRG(σ?),tj

Input: (x, σ1, · · · , σκ)
Constants: S1, · · · , S′νj , · · · , Sκ, α0, αj , InjPRG(σ?), tj

1. For all k ∈ [κ] \ {νj}, check if σk = PRFSk(x[k]).

2. If x[νj ] = tj , check if InjPRG(σνj ) = InjPRG(σ?). Else, check if σνj = PRFS′νj
(x[νj ])

3. If any of the above checks fail, output ⊥.

4. If α0 ≤ x ≤ αj , then output ⊥.

5. Else, for all k ∈ [κ]\{νj} compute σ′k = PRFSj ((x+ 1)[k]) where x+ 1 is computed modulo
2κ.

6. If (x+ 1)[νj ]
= tj , set σ′νj = σνj . Else, set σ′νj = PRFS′νj

((x+ 1)[j])

7. Output (i+ 1, σ′1, · · · , σ′κ).

Padding: The circuit would be padded to size p(κ) where p(·) is a polynomial that would be
specified later.

Figure 14: F 3
S1,··· ,S′νj ,···Sκ,α0,αj ,InjPRG(σ?),tj

Lemma 5.9 Assuming the pseudorandomness at punctured point property of PRF , we
have |Adv(Hyb5,j,2)− Adv(Hyb5,j,3)| ≤ negl(κ).

Proof We construct an B against pseudorandomness at punctured point property of

PRF . B chooses i
$← {0, 1}κ. It samples S1, · · · , Sνj−1, Sνj+1, · · · , Sκ. It queries with

the external challenger on string tj and obtains S′νj which is a PRF key punctured at
tj and a challenge string y which is either PRFSνj (tj) or an uniformly chosen random

string. It sets σ? = y and constructs iO(X2
S1,··· ,S′νj ,··· ,Sκ

) and iO(F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?,tj

).

It runs the adversary with the above constructed public key and sampler along with the
trapdoor challenge (i, σ1, · · · , σκ) where σk = PRFSk(i[k]) for all k ∈ [κ] \ {νj} and
σνj = PRFS′νj

(i[νj ]). Notice that S′νj can be uses to evaluate the PRF on i[νj ]. If the

adversary inverts the trapdoor challenge, B outputs 1; else outputs 0.

Notice that if the challenge string y is randomly chosen then the distribution of inputs
is identically distributed to the inputs in Hyb5,j,3; else it is distributed identically to the
inputs in Hyb5,j,2. Thus, B breaks pseudorandomness at punctured point property of
PRF .

– Hyb5,j,4 : In this hybrid we replace the public key of the permutation with
iO(F 3

S1,··· ,S′νj ,···Sκ,α0,αj ,InjPRG(σ?)). The circuit F 3
S1,··· ,S′νj ,···Sκ,α0,αj ,InjPRG(σ?),tj

(padded to

length p(κ)) is similar to that of F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?,tj

except that on input (x, σ1, · · · , σκ)

such that x ∈ [αj + 1, αj+1], it checks the validity of σνj by checking InjPRG(σνj ) =
InjPRG(σ?) instead of checking σνj = σ?. The formal description of F 3

S1,··· ,S′νj ,···Sκ,α0,αj ,InjPRG(σ?),tj

appears in Figure 14.

The circuits F 3
S1,··· ,S′νj ,···Sκ,α0,αj ,InjPRG(σ?),tj

and F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?,tj

compute the exact
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same functionality which follows from the injectivity of InjPRG. Hence, the following
claim directly follows from iO security.

Lemma 5.10 Assuming the security of iO, we have |Adv(Hyb5,j,3) − Adv(Hyb5,j,4)| ≤
negl(κ).

Proof We construct an adversary B against the security of iO. B samples S1, · · · , Sκ
as in Hyb5,j . It samples i

$← {0, 1}κ. It punctures Sνj at the string tj to obtain S′νj .

It constructs two circuits F 3
S1,··· ,S′νj ,···Sκ,α0,αj ,InjPRG(σ?),tj

and F 2
S1,··· ,S′νj ,···Sκ,α0,αj ,σ?,tj

and

provides them as challenge circuits to the external challenger. In return, it obtains
iO(C∗) where C∗ is either one of the two circuits. B provides iO(C∗) as the public
to the adversary and generates other inputs identical to Hyb5,j,3. It outputs 1 if the
adversary inverts the challenge; else it outputs 0.

As argued above the two challenge circuits are functionally equivalent from the injectivity
of InjPRG. Thus, B represents a valid adversary against iO security.

If C∗ = F 3
S1,··· ,S′νj ,···Sκ,α0,αj ,InjPRG(σ?),tj

then the distribution of inputs to the adversary

is identical to inputs in Hyb5,j,4; else the inputs are distributed identically to Hyb5,j,3.
Thus, B breaks the iO security.

– Hyb5,j,5 : In this hybrid, the public key of the permutation corresponds to
iO(F 3

S1,··· ,S′νj ,···Sκ,α0,αj ,τ?,tj
) where we set τ? to be a string chosen uniformly at random

from {0, 1}2κ instead of setting τ? = InjPRG(σ?).

Lemma 5.11 Assuming the pseudorandomness property of InjPRG, we have |Adv(Hyb5,j,5)−
Adv(Hyb5,j,4)| ≤ negl(κ).

Proof We construct an adversary B against pseudorandomness property of InjPRG.

B receives a challenge string τ? from the external challenger. It samples i
$← {0, 1}κ

and samples PRF keys S1, · · · , Sκ ← KeyGenPRF . It punctures Sνj at the string tj to
obtain the punctured key S′νj . It computes iO(F 3

S1,··· ,S′νj ,···Sκ,α0,αj ,τ?,tj
) and sets it as

the public key of the permutation. It computes the sampler and the inversion challenge
as in Hyb5,j,4 and runs the adversary with the challenge, sampler and the public key as
input. If the adversary inverts the challenge, then it outputs 1. Else, it outputs 0.

If τ? is randomly chosen then the distribution of the inputs to the adversary is identical
to the inputs in Hyb5,j,5; else the it is distributed identically to the inputs in Hyb5,j,4.
Thus, B breaks the pseudorandomness property of InjPRG.

– Hyb5,j,6 : In this hybrid the public key of the permutation corresponds to
iO(F 4

S1,··· ,S′νj ,···Sκ,α0,αj ,αj+1
) where F 4

S1,··· ,S′νj ,···Sκ,α0,αj ,αj+1
is described in Figure 15.

Lemma 5.12 Assuming the security of iO, we have |Adv(Hyb5,j,5) − Adv(Hyb5,j,6)| ≤
negl(κ).

Proof We construct an adversary B against the security of iO. B samples S1, · · · , Sκ
as in Hyb5,j . It samples i

$← {0, 1}κ and τ∗
$← {0, 1}2κ. It punctures Sνj at the string tj to
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F 4
S1,··· ,S′νj ,···Sκ,α0,αj ,αj+1

Input: (x, σ1, · · · , σκ)
Constants: S1, · · · , S′νj , · · · , Sκ, α0, αj , αj+1

1. For all k ∈ [κ] \ {νj}, check if σk = PRFSk(x[k]).

2. If αj + 1 ≤ x ≤ αj+1, output ⊥. Else, check if σνj = PRFS′νj
(x[νj ])

3. If any of the above checks fail, output ⊥.

4. If α0 ≤ x ≤ αj , then output ⊥.

5. Else, for all k ∈ [κ]\{νj} compute σ′k = PRFSj ((x+ 1)[k]) where x+ 1 is computed modulo
2κ.

6. If (x+ 1)[νj ]
= tj , set σ′νj = σνj . Else, set σ′νj = PRFS′νj

((x+ 1)[j])

7. Output (i+ 1, σ′1, · · · , σ′κ).

Padding: The circuit would be padded to size p(κ) where p(·) is a polynomial that would be
specified later.

Figure 15: F 4
S1,··· ,S′νj ,···Sκ,α0,αj ,αj+1

obtain S′νj . It constructs two circuits F 3
S1,··· ,S′νj ,···Sκ,α0,αj ,τ∗),tj

and F 4
S1,··· ,S′νj ,···Sκ,α0,αj ,αj+1

and provides them as challenge circuits to the external challenger. In return, it obtains
iO(C∗) where C∗ is either one of the two circuits. B provides iO(C∗) as the public to the
adversary and generates other inputs identical to Hyb5,j,5. It outputs 1 if the adversary
inverts the challenge; else it outputs 0.

Observe that since τ∗ is chosen uniformly at random from {0, 1}2κ, with overwhelming
probability it is not in the image of InjPRG. Hence, for no value of σνj (with overwhelming
probability) the test PRG(σνj ) = τ∗ passes. Thus the two challenge circuits compute the
same functionality with overwhelming probability. Thus, B represents a valid adversary
against iO security.

If C∗ = F 3
S1,··· ,S′νj ,···Sκ,α0,αj ,τ∗),tj

then the distribution of inputs to the adversary is iden-

tical to the distribution in Hyb5,j,5; else the distribution is identical to inputs in Hyb5,j,6.
Thus, B breaks the iO security.

– Hyb5,j,7 : In this hybrid the public key of the permutation corresponds to iO(F ∗S1,··· ,Sνj ,···Sκ,α0,αj+1
).

That is, it contains the unpunctured key Sνj instead of the punctured key S′νj .

Lemma 5.13 Assuming the security of iO, we have |Adv(Hyb5,j,6) − Adv(Hyb5,j,7)| ≤
negl(κ).

Proof We construct an adversary B against the security of iO. B samples S1, · · · , Sκ
as in Hyb5,j . It samples i

$← {0, 1}κ. It punctures Sνj at the string tj to obtain S′νj .

It constructs two circuits F ∗S1,··· ,Sνj ,···Sκ,α0,αj+1
and F 4

S1,··· ,S′νj ,···Sκ,α0,αj ,αj+1
and provides

them as challenge circuits to the external challenger. In return, it obtains iO(C∗) where
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C∗ is either one of the two circuits. B provides iO(C∗) as the public to the adversary
and generates other inputs identical to Hyb5,j,5. It outputs 1 if the adversary inverts the
challenge; else it outputs 0.

Note that both F ∗S1,··· ,Sνj ,···Sκ,α0,αj+1
(padded to length p(κ)) and F 4

S1,··· ,S′νj ,···Sκ,α0,αj ,αj+1

do not require the evaluation of PRFSνj on tj . Hence they are functionally equivalent
from the functionality is preserved under puncturing property of PRF . Thus, B repre-
sents a valid adversary against iO security.

If C∗ = F 4
S1,··· ,S′νj ,···Sκ,α0,αj ,αj+1

then the distribution of inputs to the adversary is iden-

tical to the distribution in Hyb5,j,6; else the distribution is identical to inputs in Hyb5,j,7.
Thus, B breaks the iO security.

Note that both F ∗S1,··· ,Sνj ,···Sκ,α0,αj+1
(padded to length p(κ)) and F ∗S1,··· ,S′νj ,···Sκ,α0,αj+1

do

not require the evaluation of PRFSνj on tj and hence the indistinguishability of hybrids
Hyb5,j,6 and Hyb5,j,7 follows from security of iO.

– Hyb5,j,8: In this hybrid, we replace the sampler with iO(XS1,··· ,Sκ) instead of iO(X2
S1,··· ,S′νj ,··· ,Sκ

).

Lemma 5.14 Assuming the security of iO, we have |Adv(Hyb5,j,7) − Adv(Hyb5,j,8)| ≤
negl(κ).

Proof The proof of this Lemma is identical to Lemma 5.8.

Note that the distribution of inputs in Hyb5,j,8 is identical to the distribution in Hyb5,j+1.

Setting the parameters. Note that δ(α0) ≤ κ−1 and µ(αδ(α0)) ≤ κ and hence δα0 +µ(αδ(α0)) ≤
2κ − 1. p(·) is the maximum size of the circuit computing the public key that appears in the
construction and in the proof and q(·) is the maximum size of the circuit computing the sampler
that appears in the construction and in the proof.

6 Trapdoor Permutation from FE

We start by defining a weaker (with respect to pseudorandom sampling) notion of trapdoor per-
mutation.

Definition 6.1 An efficiently computable family of functions:

T DP = {TDPPK : DPK → DPK and PK ∈ {0, 1}poly(κ)}

over the domain DPK with associated (probabilistic) (KeyGen, SampGen) algorithms is a weakly
samplable trapdoor permutation if it satisfies:

• Trapdoor Invertibility: For any (PK,SK)← KeyGen(1κ), TDPPK is a permutation over
DPK . For any y ∈ DPK , TDP−1

SK(y) is efficiently computable given the trapdoor SK.

• Weak Pseudorandom Sampling: For any (PK,SK)← KeyGen(1κ) and Samp← SampGen(SK),
Samp(·) samples pseudo random points in the domain DPK . Formally, for any polysized dis-
tinguisher A, ∣∣Pr

[
ExpA,0,wPRS = 1

]
− Pr

[
ExpA,1,wPRS = 1

]∣∣ ≤ negl(κ)

where ExpA,b,wPRS is described in Figure 16.
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1. (PK,SK)← KeyGen(1κ).

2. Samp← SampGen(SK)

3. if(b = 0), x
$← DPK .

4. else, x← Samp.

5. Output A(PK,Samp, x)

Figure 16: ExpA,b,wPRS

• One-wayness: For all poly sized adversaries A,

Pr

A(PK,Samp, TDPPK(x)) = x

∣∣∣∣∣(PK,SK)← KeyGen(1κ)
Samp← SampGen(SK)
x← Samp

 ≤ negl(κ)

Remark 6.2 The requirement of pseudorandom sampling considered in Bitanksy et al.’s work
[BPW16] is stronger than the one considered here in sense that they require the pseudorandomness
property to hold even when given the random coins used by KeyGen and the SampGen algorithms.
We do not achieve the stronger notion in this work. In particular, given the random coins used in
SampGen the sampler’s output is no longer pseudorandom. Therefore, our trapdoor permutations
can be only used in applications where an honest party runs the KeyGen and SampGen algorithm. It
cannot be used for example to achieve receiver privacy in EGL Oblivious Transfer protocol [EGL85].

In this section, we construct trapdoor permutation satisfying the Definition 6.1 from polyno-
mially hard public key functional encryption, prefix puncturable pseudorandom function, left half
injective pseudorandom generator, strong randomness extractor and public key encryption with
random public keys.

Theorem 6.3 Assuming the existence of one-way permutations, single-key, selective secure, public
key functional encryption and public key encryption with (pseudo) random public keys, there exists
a weakly samplable trapdoor permutation.

We now recall the special key structure [GPS16] which forms a crucial part of our construction
of trapdoor permutation.

Notation. We treat 1i+1 as 0i and φ+1 as φ. Let LeftInjPRG be a left half injective pseudorandom
generator. Let τ be the size of public key output by PK.KeyGen(1κ). Below, for every i ∈ [κ+ τ ],
Si ← KeyGenPCPRF (1κ.Ci(·), I(·)) where Ci(κ) = i and I(κ) = κ. Recall Si,x denotes a prefix
constrained PRF key Si constrained at a prefix x.

Special Key Structure.

Ux =
⋃

i∈[τ+κ]

Uix Uix =

{
{Si,x[i]} if |x| > i

{Si,x} otherwise
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Vx =
⋃

i∈[τ+κ]

Vix Vix =


{Si,x[i] , Si,x[i]+1} if |x| > i and x = x[i]‖1|x|−i

{Si,x, Si,(x+1)‖0i−|x|} if |x| ≤ i
∅ if |x| > i and x 6= x[i]‖1|x|−i

Wx =
⋃

i∈[τ+κ]

Wi
x Wi

x =

{
{LeftInjPRG0(Si,x[i])} if |x| ≥ i
∅ otherwise

For the empty string x = φ, these sets can be initialized as follows.

Uφ =
⋃

i∈[τ+κ]

Uiφ Uiφ = {Si}

Vφ =
⋃

i∈[τ+κ]

Viφ Viφ = {Si}

Wφ =
⋃

i∈[τ+κ]

Wi
φ Wi

φ = ∅

Jumping ahead, the set of keys in Ux would be used by the sampler to generate the set of
associated signatures on the sampled point. The set Wx (called as the vestigial set in [GPS16]) is
used to check the validity of input i.e checking whether the input belongs to the domain. The set
Vx is used to generate the associated signatures on the “next” point as defined by the permutation.

We state and prove some properties of Special Key Structure below.

Lemma 6.4 (Computability Lemma,[GPS16]) There exists an explicit efficient procedure that
given Ux,Vx,Wx computes Ux‖0,Vx‖0,Wx‖0 and Ux‖1,Vx‖1,Wx‖1.

Proof We start by noting that it suffices to show that for each i, given Uix,V
i
x,W

i
x one can

compute Uix‖0,V
i
x‖0,W

i
x‖0 and Uix‖1,V

i
x‖1,W

i
x‖1. We argue this next. Observe that two cases arise

either |x| < i or |x| ≥ i. We deal with the two cases:

- |x| < i: Note that in this case, Uix = {Si,x} and this can be used for computing Si,x‖0 :=
PrefixCons(Si,x, 0) and Si,x‖1 := PrefixCons(Si,x, 1) 8. Similarly, Vix is {Si,x, Si,(x+1)‖0i−|x|}
when |x| < i and these values can be used to compute (by appropriate prefix constraining)
Si,x‖0, Si,x‖1, Si,(x‖0)+1 = Si,x‖1 and Si,((x‖1)+1)‖0i−|x|−1 = Si,(x+1)‖0‖0i−|x|−1 = Si,(x+1)‖0i−|x| .

Observe by case by case inspection that these values are sufficient for computing Uix‖0,V
i
x‖0,W

i
x‖0

and Uix‖1,V
i
x‖1,W

i
x‖1 in all cases.

- |x| ≥ i: Observe that U ix = {Si,x[i]} and U ix‖0 = U ix‖1 = {Si,x[i]} = U ix. Also, note that

according to the constraints placed on x by the definition, if Vix = ∅ then both Vix‖0 and

Vix‖1 must be ∅ as well. On the other hand if V i
x 6= ∅ then Vix‖0 is still ∅ while Vix‖1 = Vix.

Additionally, W i
x‖0 = W i

x‖1 = W i
x.

This concludes the proof.

Lemma 6.5 (Derivability Lemma,[GPS16]) For every i ∈ [κ + τ ], x ∈ {0, 1}i we have that,
Si,x+1 can be derived from keys in Viy if and only if y is a prefix of x‖1κ+τ−i or (x+ 1)‖1κ+τ−i.

45



φ

0

00

000 001

01

010 011

1

10

100 101

11

110 111

Figure 17: Black nodes represent the choices of x ∈ {0, 1}≤3 such that V 2
x can be used to derive S2,10.

Proof We start by noting that for any y ∈ {0, 1}>i ∩ {0, 1}≤κ+τ , by definition of V-sets we have
that Viy = Viy[i] (when |y| > i and y = y[i]‖1|y|−i) or Viy = ∅ (when |y| > i and y 6= y[i]‖1|y|−i).
Hence it suffices to prove the above lemma for y ∈ {0, 1}≤i.

We first prove that if y is a prefix of x or (x+ 1) then we can derive Si,x+1 from V i
y . Two cases

arise:

- Observe that if y is a prefix of x then we must have that either y is a prefix of x+1 or x+1 =
(y + 1)‖0i−|y|. Next note that by definition of V-sets we have that Viy = {Si,y, Si,(y+1)‖0i−|y|},
and one of these values can be used to compute Si,x+1.

- On the other hand if y is a prefix of x + 1 then again by definition of V-sets we have that
Viy = {Si,y, Si,(y+1)‖0i−|y|}, and Si,y can be used to compute Si,x+1.

Next we show that no other y ∈ {0, 1}≤i allows for such a derivation. Note that by definition
of V-sets we have that V i

y = {Si,y, Si,(y+1)‖0i−|y|}. We will argue that neither Si,y nor Si,(y+1)‖0i−|y|
can be used to derive Si,x+1.

- We are given that y is not a prefix of x+ 1. This implies that Si,y cannot be used to derive
Si,x+1.

- Now we need to argue that Si,(y+1)‖0i−|y| cannot be used to compute Si,x+1. For this, it suffices

to argue that x + 1 6= (y + 1)‖0i−|y|. If x + 1 = (y + 1)‖0i−|y| then y must be prefix of x.
However, we are given that this is not the case. This proves our claim.

This concludes the proof.

Our Construction. The construction of weakly samplable trapdoor permutation uses the fol-
lowing primitives:

1. A single-key, selective secure public key functional encryption scheme FE .

2. A prefix constrained pseudorandom function PCPRF .

8Observe that since |x| < i, Si,x‖b for b ∈ {0, 1} is well-defined.
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3. An injective length doubling pseudorandom generator InjPRG : {0, 1}κ/8 → {0, 1}κ/4

4. A length doubling Left half injective pseudorandom generator LeftInjPRG : {0, 1}κ → {0, 1}2κ

In the construction, we denote SK.Encsk1,··· ,skn(m) to be SK.Encskn(SK.Encskn−1(· · · SK.Encsk1(m))).
The formal description our construction appears in Figure 18.

Setting rand(·) We set rand(κ) to be the maximum number of random bits needed to generate
τ + κ encryptions under γ1, · · · , γκ as well as τ + κ+ 1 encryptions under the public keys pk.

6.1 Proof of Theorem 6.3

We show that our construction satisfies the three properties given in Definition 6.1.

Trapdoor Invertibility. Observe that the domain of the TDP consists of strings of the form
(x, σ1, · · · , στ+κ) where for all i ∈ [τ + κ], σi = Si,x[i] . We first show that given (x, σ1, · · · , στ+κ),

TDPPK computes (x + 1, σ′1, · · · , σ′τ+κ) where x + 1 is computed modulo 2τ+κ and σ′i = Si,(x+1)[i]

for all i ∈ [τ + κ].

We first observe that since v
$← {0, 1}κ/4, with probability 1− 1

2κ/8
, v is not in the image of the

InjPRG and hence Step 1 of G1
v,Λ1,w

is not triggered. Since mode is set to 0 in c1
φ, alternate behavior

(the “Hidden” mode) of G1
v,Λ1,w

and F 1
i,PK1

i+1,Π1
is not triggered during the honest execution of the

permutation function.
Given that the above cases do not arise, we infer that ψi = LeftInjPRG0(Si,x[i]) for every i ∈

[τ + κ]. This follows from the correctness of FE scheme. Recall that in Step 3, evaluation function
(i.e. TDPPK) checks if LeftInjPRG0(σi) = ψi. It follows from the left half injectivity property of the
LeftInjPRG that these checks pass if and only if σi = Si,x[i] . Hence, if public key does not output ⊥
then the input (x, σ1, · · · , στ+κ) must be valid i.e. belonging to the domain. Additionally, notice
that for every i such that x[i] 6= (x+ 1)[i], V

i
x contains Si,(x+1)[i]

. This follows since for such an i,

x = x[i]‖1τ+κ−i and by definition V i
x contains Si,x[i]+1 = Si,(x+1)[i]

due to the special structure of x.

It follows from the correctness of SK.Dec, TDPPK correctly obtains Si,(x+1)[i]
in Step 5 for every i

such that x[i] 6= (x+ 1)[i]. For the rest of the indexes, the associated signature is obtained directly
from the input. Hence, TDPPK correctly computes the full set of associated signatures on x + 1.
Since on input (x, σ1, · · · , στ+κ) the function outputs (x+1, σ′1, · · · , σ′τ+κ) where x+1 is computed
modulo 2τ+κ, we observe that the public key indeed computes a permutation on the domain.

The correctness of the trapdoor inversion follows directly from the definition of the domain.
Similarly, since mode is set to 0 in c2

φ, the “hidden” mode in F 2
i,PK2

i+1,Π2
and G2

Λ2
is not triggered

during an honest execution of the sampler. It follows from the correctness of functional encryption
scheme that hpk = (pk, ρ, ρ1, · · · , ρτ+κ) where ρ = PK.Encpk(Kpk) and ρi = PK.Encpk(Si,(pk‖Kpk)

[i]
)

for all i ∈ [τ + κ]. Hence, from the correctness of decryption of public key encryption, the output
of the sampler is a set of correct associated signatures on the prefixes of pk‖Kpk.

Weak Pseudorandom sampling. The pseudorandomness of the samples follows as a direct
consequence of the following lemma.
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- KeyGen(1κ):

1. For each i ∈ [τ + κ], sample Si ← KeyGenPCPRF (1κ, Ci(·), I(·)) where Ci(κ) = i
and I(κ) = κ. Sample K̃ ← KeyGenPCPRF (1κ, quad(·), rand(·)) where quad(κ) =
2(κ+τ)+1. For every i ∈ [τ + κ], initialize Viφ := Si, Vφ =

⋃
i∈[τ+κ] Viφ and Wφ = ∅.

2. Let Extw : {0, 1}τ+κ → {0, 1}κ/8 be a (κ/4, negl(κ)) strong randomness extractor

with seed length q(κ). Sample a seed w
$← {0, 1}q(κ) for the extractor Ext.

3. Sample (PK1
i ,MSK1

i )← FE.Setup(1κ) for all i ∈ [τ + κ+ 1].

4. Sample sk1 ← SK.KeyGen(1κ) where |sk1| = p(κ) and let Π1 ← SK.Encsk1(π1) and
Λ1 ← SK.Encsk1(λ1) where π1 = 0`1(κ) and λ1 = 0`

′
1(κ). Here, `1(·) and `′1(·) are

appropriate length functions specified later.

5. Sample v
$← {0, 1}κ/4.

6. For each i ∈ [τ + κ], generate FSK1
i ← FE.KeyGen(MSK1

i , F
1
i,PK1

i+1,Π1
) and

FSK1
τ+κ+1 ← FE.KeyGen(MSK1

τ+κ+1, G
1
v,Λ1,w

), where F 1
i,PK1

i+1,Π1
and G1

v,Λ1,w
are cir-

cuits described in Figure 19.

7. Let c1
φ = FE.EncPK1(φ,Vφ,Wφ, K̃φ, 0

p(κ), 0).

8. The Public Key PK is given by ({FSK1
i }i∈[τ+κ+1], c

1
φ) and the secret key SK is given

by (S1, · · · , Sτ+κ).

- TDPPK : The evaluation algorithm takes as input (x, σ1, . . . , στ+κ) and outputs (x +
1, σ′1, . . . , σ

′
τ+κ) if the associated signatures σ1, . . . , στ+κ are valid. It proceeds as follows:

1. For i ∈ [τ + κ], compute c1
x[i−1]‖0

, c1
x[i−1]‖1

:= FE.Dec(FSK1
i , c

1
x[i−1]

).

2. Obtain dx = ((ψ1, . . . , ψτ+κ), (βj , . . . , βτ+κ)) as output of FE.Dec(FSK1
τ+κ+1, c

1
x).

Here, j = f(x). Recall from Section 5.2 that f(x) is the smallest k such that
x = x[k]‖1τ+κ−k.

3. Output ⊥ if LeftInjPRG0(σi) 6= ψi for any i ∈ [τ + κ].

4. For each i ∈ [j − 1], set σ′i = σi.

5. For each i ∈ {j, . . . , τ + κ}, set γi = LeftInjPRG1(σi) and σ′i as SK.Decγj ,...,γτ+κ(βi),
iteratively decrypting βi encrypted under γj , . . . , γτ+κ.

6. Output (x+ 1, σ′1, · · · , σ′τ+κ).

Figure 18: Construction of TDP from FE

Lemma 6.6 (pk‖Kpk) where (pk, sk) ← PK.KeyGen(1κ) and (pk‖Kpk, ·, · · · , ·) ← Samp(pk) is
pseudorandom given ({FSK2

i }i∈[κ+1], c
2
φ) 9 and ({FSK1

i }i∈[τ+κ+1], c
1
φ) (which is equal to the public

key).

9Note that ({FSK2
i }i∈[κ+1], c

2
φ) defines the sampler.
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• TDP−1
SK : The inversion algorithm on input (x, σ1, · · · , στ+κ) checks for all i ∈ [τ + κ] if

σi = Si,x[i] and if so it outputs (x−1, σ′1, · · · , σ′τ+κ) where x−1 is computed modulo 2τ+κ

and for all i ∈ [τ + κ] σ′i = Si,(x−1)[i]
.

• SampGen(SK) :

1. Choose K ← KeyGenPCPRF (1κ, 2υ(·) + 1, rand(·)) and K ←
KeyGenPCPRF (1κ, υ(·), I(·)) where υ(κ) = τ . Initialize Uiφ := Si and

Uφ =
⋃
i∈[τ+κ] Uiφ.

2. For every i ∈ [τ + 1], choose (PK2
i ,MSK2

i )← FE.Setup(1κ).

3. Sample sk2 ← SK.KeyGen(1κ) where |sk2| = p(κ) and set Π2 ← SK.Encsk2(π2) and
Λ2 ← SK.Encsk2(λ2) where π2 = 0`2(κ) and λ2 = 0`

′
2(κ). Here `2(·) and `′2(·) are

appropriate length functions specified later.

4. For each i ∈ [τ ], generate FSK2
i ← FE.KeyGen(MSK2

i , F
2
i,PK2

i+1,Π2
) and FSK2

τ+1 ←
FE.KeyGen(MSK2

τ+1, G
2
Λ2

) where F 2
i,PK2

i+1,Π2
, G2

Λ2
are described in Figure 20.

5. Let c2
φ ← FE.EncPK2

1
(φ,Uφ,K,K, 0

p(κ), 0).

6. The sampler circuit has {FSK2
i }i∈[τ+1] and c2

φ hardwired in its description and works
as described below.

- Samp: The sampler takes pk where (pk, sk)← PK.KeyGen(1κ). It proceeds as follows:

1. For i ∈ [τ ], compute c2
pk[i−1]‖0

, c2
pk[i−1]‖1

:= FE.Dec(FSK2
i , c

2
pk[i−1]

).

2. Obtain (pk, hpk) = (pk, (pk, ρ, ρ1, · · · , ρτ+κ)) as output of FE.Dec(FSK2
τ+1, c

2
pk).

3. Compute Kpk := PK.Decsk(ρ) and σi := PK.Decsk(ρi) for all i ∈ [τ + κ]

4. Output (pk‖Kpk, σ1, · · · , στ+κ).

Figure 18: Construction of TDP from FE

Proof We will show this through a hybrid argument.

Notation. Let Adv(Hybi) be the probability that adversary outputs 1 when given inputs gener-
ated as in Hybi.

• Hyb0 : In this hybrid the adversary is given access to (pk‖Kpk, ({FSK2
i }i∈[τ+1], c

2
φ), ({FSK1

i }i∈[τ+κ+1], c
1
φ))

where (pk, sk)← PK.KeyGen(1κ).

New π?2, λ
?
2: We now change the plain text encrypted in Π2,Λ2 used in generating the

sampler Samp as follows. Note that in Hyb0, π?2 was set to 0`2(κ) and λ?2 was set to 0`
′
2(κ).

Let P2 denote the set of all prefixes including the empty prefix of pk. Observe that |P2| = τ+1.
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F 1
i,PK1

i+1,Π1

Hardcoded Values: i,PK1
i+1,Π1.

Input: (x ∈ {0, 1}i−1, Vx,Wx, K̃x, sk, mode)

1. If (mode = 0)

(a) Output FE.EncPK1
i+1

(x‖0,Vx‖0,Wx‖0, K̃x‖0, sk,mode; K̃ ′x‖0) and

FE.EncPK1
i+1

(x‖1,Vx‖1,Wx‖1, K̃x‖1, sk,mode; K̃ ′x‖1), where for b ∈ {0, 1},
K̃x‖b = PrefixCons(K̃x, b‖0) and K̃ ′x‖b = PrefixCons(K̃x, b‖1) and (Vx‖0,Wx‖0),

(Vx‖1,Wx‖1) are computed using the efficient procedure from the Computability
Lemma (Lemma 6.4).

2. Else, compute π1 ← SK.Decsk1(Π1) and parse π1 as a set of tuples of the form (z, c1
z).

Recover (x||0, c1
x‖0) and (x‖1, c1

x‖1) from π1. Output c1
x‖0 and c1

x‖1.

G1
v,Λ1,w

Hardcoded Values: v, Λ1, w
Input: x ∈ {0, 1}τ+κ,Vx,Wx, K̃x, sk1,mode

1. If (InjPRG(Extw(x)) = v) then output ⊥.

2. If mode = 0, (Below j = f(x). Recall from Section 5.2 that f(x) is the smallest j such
that x = x[j]‖1τ+κ−j .)

(a) For each i ∈ [τ + κ], set ψi = LeftInjPRG0(Si,x[i]) (obtained from Wi
x for i ≤ j and

from Vix for i > j).

(b) For each i ∈ {j, . . . , τ + κ} set γi = LeftInjPRG1(Si,x[i]) and βi =
SK.Encγj ,··· ,γτ+κ(Si,x[i]+1), encrypting Si,x[i]+1 under γj , . . . γτ+κ using

PrefixCons(K̃x, 0) as the random tape. In the above, Si,x[i] and Si,x[i]+1 are

obtained from V i
x for all i ∈ [j, τ + κ].

(c) Output ((ψ1, . . . , ψτ+κ), (βj , . . . , βτ+κ))

3. Else, recover (x, dx) from SK.Decsk1(Λ1) and output dx.

Figure 19: Circuits for simulating Public Key.

For every string x ∈ {0, 1}≤τ , let c2
x, hx denote the output of Step 1,2 of the sampler when

run with input x (Note that hx is defined only for x ∈ {0, 1}τ ). For every string x ∈ P2, let y

50



F 2
i,PK2

i+1,Π2

Hardcoded Values: i,PK2
i+1,Π2.

Input: (x ∈ {0, 1}i−1, Ux, Kx, Kx, sk2, mode)

1. If (mode = 0),

(a) Output FE.EncPK2
i+1

(x‖0,Ux‖0,Kx‖0,Kx‖0, sk,mode;K ′x‖0) and

FE.EncPK2
i+1

(x‖1,Ux‖1,Kx‖1,Kx‖1, sk,mode;K ′x‖1), where for b ∈ {0, 1},
Kx‖b = PrefixCons(Kx, b‖0) and K ′x‖b = PrefixCons(Kx, b‖1) and Ux‖0 and
Ux‖1 are computed as described in Computability Lemma (Lemma 6.4).

2. Else recover (x||0, c2
x‖0) and (x‖1, c2

x‖1) from SK.Decsk2(Π2) and output c2
x‖0 and c2

x‖1.

G2
Λ2

Hardcoded Values: Λ2

Input: pk ∈ {0, 1}κ,Upk,Kpk,Kpk, sk2,mode

1. If mode = 0,

(a) For all i ∈ [τ + κ], compute σi := Si,(pk‖Kpk)
[i]

from Upk.

(b) Compute ρ ← PK.Encpk(Kpk) and ρi ← PK.Encpk(σi) for all i ∈ [τ + κ] using
PrefixCons(Kpk, 0) as the random tape.

(c) Output (pk, (pk, ρ, ρ1, · · · , ρτ+κ)).

2. Else, recover (pk, hpk) from SK.Decsk2(Λ2) and output hpk.

Figure 20: Circuits for simulating Sampler

denote the string which is same as x except that the last bit of x is flipped. We define a new
set Q2 which is the set of all such y if y 6∈ P2. Note that |P2 ∪Q2| = 2τ + 1. We define:

π?2 = ||x∈P2∪Q2 (x, c2
x)

λ?2 = (pk, hpk)

We set `2(κ) and `′2(κ) to be the maximum size of π?2 and λ?2 respectively. Intuitively, defining
P2, Q2 and π?2, λ

?
2 as above allows us to “tunnel” through the sampler along the path given

by pk.
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• Hyb1 : In this hybrid we change Π2,Λ2 to Π?
2,Λ

?
2 that encrypt π?2 and λ?2 (which are of length

`2(κ) and `′2(κ)) respectively instead of 0`2(κ) and 0`
′
2(κ).

Lemma 6.7 Assuming the semantic security of SKE, |Adv(Hyb0)− Adv(Hyb1)| ≤ negl(κ).

Proof We construct an adversary against the semantic security of symmetric encryption. B
samples (pk, sk)← PK.KeyGen(1κ). It generates the public key of the trapdoor permutation
exactly as in Hyb0. It generates two sets of messages, (0`2(κ), 0`

′
2(κ)) and (π?2, λ

?
2) (defined

above). It queries these messages as the challenge messages to the external challenger and
obtains Π2,Λ2 as the challenge ciphertext. It constructs the sampler exactly as in Hyb0 except
that:

1. It does not sample sk2.

2. It uses the challenge ciphertext Π2,Λ2 instead of generating them as encryptions of all
zeroes string.

B runs the adversary with the challenge, public key and the constructed sampler and outputs
whatever it outputs.

Note that if Π2,Λ2 correspond to encryptions of (0`2(κ), 0`
′
2(κ)) the distribution of inputs to

the adversary is identical to Hyb0; else it is identical to Hyb1. Thus, B breaks the semantic
security of SKE .

• Hyb2 : In this hybrid, we change how c2
x is generated for every x ∈ P2. Note that for x ∈ Q2

we do not change the ciphertext. In Hyb1, c2
x := FE.EncPK2

|x|+1
(x,Ux,Kx,Kx, 0

p(κ), 0;K ′2x).

In this hybrid, we change c2
x := FE.EncPK2

|x|+1
(x, 0|Ux|, 0κ, 0κ, sk2, 1; r2

x) where r2
x is uniformly

chosen random string. Observe that in Hyb2, the “hidden” mode in F 2
i,PK2

|i+1|,Π
?
2

and G2
Λ?2

is

triggered along the path from the root to the leaf labeled pk.

We are going to accomplish this change by a couple of intermediate hybrids. Before de-
scribing the intermediate hybrids, let us introduce an ordering of elements in P2. For any
two elements x, y ∈ P2, x ≺ y if x is a prefix of y 10. Observe that by this ordering φ is
the smallest element in P2. Let Hyb1,y denote an hybrid where for all x ≺ y, c2

x is set to

FE.EncPK|x|+1
(x, 0|Ux|, 0κ, 0κ, sk2, 1; r2

x). We first show that Hyb1 is computationally indistin-
guishable to Hyb1,φ and then show that for adjacent unequal x, x′ ∈ P2 such that x ≺ x′,
Hyb1,x is computationally indistinguishable to Hyb1,x′ . Note that this is sufficient to show
that Hyb2 is computationally indistinguishable to Hyb1

11.

– Hyb1,φ : In this hybrid, we change c2
φ to FE.EncPK2

1
(φ, 0|Ux|, 0κ, 0κ, sk2, 1).

Lemma 6.8 Assuming the single-key, selective security of FE, we have |Adv(Hyb1) −
Adv(Hyb1,φ)| ≤ negl(κ).

10Note that by this ordering y ≺ y.
11The loss in the reduction is only linear since |P2| = κ+ 1
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Proof We construct an adversary B against the single-key, selective security of FE .
B samples (pk, sk) ← PK.KeyGen(1κ). It constructs the public key of the trapdoor
permutation exactly as in Hyb1. The sampler constructed by B is same as that in Hyb1

except that:

1. It does not sample (PK2
1,MSK2

1) but samples all other public keys and master secret
keys.

2. It constructs two messages (φ, 0|Ux|, 0κ, 0κ, sk2, 1) and (φ,Uφ,K,K, 0
p(κ), 0) and pro-

vides them as challenge messages to the external challenger. In return, it gets a chal-
lenge ciphertext c∗ which encrypts one of the above two messages. It sets c2

φ = c∗.

3. It queries the external challenger with the function F 2
1,PK2,Π?2

and obtains the func-

tional secret key FSK corresponding to the above function. It sets FSK2
1 = FSK.

B runs the adversary with the challenge, sampler and public key as constructed above
and outputs whatever the adversary outputs.

Notice that both (φ, 0τ+κ, 0κ, 0κ, sk2, 1) and (φ,Uφ,K,K
2
φ, 0

κ, 0) trigger the same output

in F 2
1,PK2,Π?2

because of the values encrypted in Π?
2. Further, the choice of the two

messages does not depend on the knowledge of PK2
1. Thus, B represents a valid adversary

against FE scheme.

If c∗ is an encryption of (φ, 0|Ux|, 0κ, 0κ, sk2, 1) then the inputs to the adversary is dis-
tributed identically to Hyb1,φ; else the inputs are distributed identically to Hyb1. Thus,
B breaks the single-key, selective security of FE .

– Hyb1,x,1 : In this hybrid we change c2
x′ (encrypted in Π?

2) to FE.EncPK2
|x′|+1

(x′,Ux′ ,Kx′ ,Kx′ ,

0κ, 0; r2
x′) where r2

x′ is chosen uniformly and independently at random.

Lemma 6.9 Assuming the pseudorandomness at constrained prefix property of PCPRF ,
we have |Adv(Hyb1,x,1)− Adv(Hyb1,x)| ≤ negl(κ)

Proof We construct an adversary B against the pseudorandomness at constrained
prefix property of PCPRF . B samples (pk, sk) ← PK.KeyGen(1κ). It constructs the
public key of the trapdoor permutation exactly as in Hyb1,x. The sampler constructed
by B is same as that in Hyb1,x except that:

1. It does not sample the PCPRF key K.

2. It queries the external challenger with the prefix s = x′1‖0‖x′2‖0 · · ·
x′|x′|−1‖0‖x

′
|x′|‖1. In return, it receives a challenge string y which is either PrefixCons(K, s)

or a random string as well as Keys which contains {Ks[i−1]‖(1−si)}i∈[|s|].

3. It uses Keys to generate all encryptions in π?2 except c2
x′ . Notice that in Hyb1,x

and Hyb1,x,1, Keys contain all the information needed to generate encryptions in π?2
except c2

x′ as for every prefix y of s, Ky is set to 0κ in the FE ciphertexts in π?2.

4. It sets c2
x′ encrypted in Π?

2 as FE.EncPK2
|x′|+1

(x′,Ux′ ,Kx′ ,Kx′ , 0
κ, 0; y).

B runs the adversary with the challenge, sampler and public key as constructed above
and outputs whatever the adversary outputs.

Note that if y is a random string then the inputs to the adversary is distributed identically
to Hyb1,x,1; else the inputs are distributed identically to Hyb1,x. Thus, B against the
pseudorandomness at constrained prefix property of PCPRF .
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– Hyb1,x,2: In this hybrid we change c2
x′ (encrypted in Π?

2) to FE.EncPK2
|x′|+1

(x′, 0τ+κ, 0κ, 0κ,

sk2, 1; r2
x′). Computational indistinguishability of Hyb1,x,1 and Hyb1,x,2 follows from sin-

gle key, selective security of functional encryption. Note that F 2
|x′|+1,PK2

|x′|+2
,Π?2

(or G2
Λ?2

)

has the same output for both (x′, 0τ+κ, 0κ, 0κ, sk, 1) and (x′,Ux′ ,Kx′ ,K
2
x′ , 0

κ, 0) because
of the values encrypted in Π?

2 (or Λ?2). Further, the choice of the two messages does not
depend on the knowledge of PK2

|x′|+1. The proof of the following lemma is similar to
proof of Lemma 6.8 and thus we omit the proof.

Lemma 6.10 Assuming the single-key, selective security of FE, we have |Adv(Hyb1,x,2)−
Adv(Hyb1,x,1)| ≤ negl(κ).

Observe that Hyb1,x,2 is identically distributed to Hyb1,x′

Note that in Hyb2 on input pk, the G2
Λ∗2

uses hpk encrypted in Λ?2 to generate the out-

put. Note that hpk is given by (pk, ρ, ρ1, · · · , ρτ+κ) where ρ is an encryption of Kpk and ρi
is an encryption of Si,(pk‖Kpk)

[i]
under pk. Note that the encryptions are generated using

PrefixCons(Kpk, 0) as the random tape.

• Hyb3 : In this hybrid, we are going to generate the encryptions ρ, {ρi}i∈[τ+κ] in hpk (encrypted

in Λ?2) using true random strings instead of using stings generated by PrefixCons(Kpk, 0).

Lemma 6.11 Assuming the pseudorandomness at constrained prefix property of PCPRF ,
we have |Adv(Hyb2)− Adv(Hyb3)| ≤ negl(κ).

Proof We construct an adversary B against the pseudorandomness at constrained prefix
property of PCPRF . B samples (pk, sk) ← PK.KeyGen(1κ). It constructs the public key of
the trapdoor permutation exactly as in Hyb2. The sampler constructed by B is same as that
in Hyb2 except that:

1. It does not sample the PCPRF key K.

2. It queries the external challenger with the prefix s = pk1‖0‖pk2‖0 · · ·
pkτ−1‖0‖pkτ‖1. In return, it receives a challenge string y which is either PrefixCons(K, s)
or a random string as well as Keys which contains {Ks[i−1]‖(1−si)}i∈[|s|].

3. It uses Keys to generate all encryptions in π?2. Notice that in Hyb2 and Hyb3, Keys
contain all the information needed to generate encryptions in π?2. This is because for
every prefix y of s, Ky is set to 0κ in the FE ciphertexts in π?2.

4. It uses the string y as the random tape to generate encryptions ρ, ρ1, · · · , ρτ+κ. It sets
hpk = (pk, ρ, ρ1, · · · , ρτ+κ)

B runs the adversary with the challenge, sampler and public key as constructed above and
outputs whatever the adversary outputs.

Note that if y is a random string then the inputs to the adversary is distributed identically
to Hyb3; else the inputs are distributed identically to Hyb2. Thus, B against the pseudoran-
domness at constrained prefix property of PCPRF .
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• Hyb4 : In this hybrid, we are going to change ρ, {ρi}i∈2[κ] in hpk (encrypted in Λ?2) to encryp-
tions of 0κ.

Lemma 6.12 Assuming the semantic security of PKE, we have |Adv(Hyb4)−Adv(Hyb3)| ≤
negl(κ).

Proof We construct an adversary against the semantic security of PKE . B interacts with
the external challenger and obtains the public key pk. It constructs the public key of the
trapdoor permutation exactly as in Hyb3. The sampler constructed by B is same as that in
Hyb3 except that:

1. It constructs two sets of messages (Kpk, {Si,(pk‖Kpk)
[i]
}i∈[τ+κ]) and (0κ, 0κ, · · · , 0κ) and

gives them as challenge messages to the external challenger. In return, it receives
(c, c1, · · · , cτ+κ) as the challenge ciphertext that encrypts one of the above two sets of
messages. It sets ρ = c and ρi = ci for all i ∈ [τ + κ] and sets hpk = (pk, ρ, ρ1, · · · , ρτ+κ).

B runs the adversary with the challenge, sampler and public key as constructed above and
outputs whatever the adversary outputs.

Note that if c, c1, · · · , cτ+κ is an encryption of (Kpk, {Si,(pk‖Kpk)
[i]
}i∈[τ+κ]) then the inputs to

the adversary is distributed identically to Hyb4; else the inputs are distributed identically to
Hyb3. Thus, B against the semantic security of PKE .

• Hyb5 : In this hybrid, we are going to change Kpk in the challenge given to the adversary to
a random string z.

Lemma 6.13 Assuming the pseudorandomness at constrained prefix property of PCPRF ,
we have |Adv(Hyb4)− Adv(Hyb5)| ≤ negl(κ).

Proof We construct an adversary B against the pseudorandomness at constrained prefix
property of PCPRF . B samples (pk, sk) ← PK.KeyGen(1κ). It constructs the public key of
the trapdoor permutation exactly as in Hyb4. The sampler constructed by B is same as that
in Hyb4 except that:

1. It does not sample the PCPRF key K.

2. It queries the external challenger with the prefix pk. In return, it receives a challenge
string y which is either PrefixCons(K, pk) or a random string as well as Keys which
contains {Kpk[i−1]‖(1−pki)}i∈[τ ].

3. It uses Keys to generate all encryptions in π?2 and λ?2. Notice that in Hyb4 and Hyb5, Keys
contain all the information needed to generate encryptions in π?2 and λ?2. This is because
for every prefix y of pk, Ky is set to 0κ in the FE ciphertexts in π?2 and Sj,(pk‖Kpk)

[j]
for

j > κ is also set to 0κ in hpk.

4. It sets the challenge (pk‖y, σ1, · · · , στ+κ) where σi = Si,(pk‖y)[i]
for all i ∈ [τ + κ].

55



B runs the adversary with the challenge, sampler and public key as constructed above and
outputs whatever the adversary outputs.

Note that if y is a random string then the inputs to the adversary is distributed identically
to Hyb5; else the inputs are distributed identically to Hyb4. Thus, B against the pseudoran-
domness at constrained prefix property of PCPRF .

• Hyb6: Same as Hyb3 except that the challenge is generated as ((pk‖z), σ1, · · · , σκ+τ ) where
z is chosen uniformly at random from {0, 1}κ and σi = Si,(pk‖z)[i] . We have via an identical

argument to Lemma 6.12 that

Lemma 6.14 Assuming the semantic security of PKE, we have |Adv(Hyb5)−Adv(Hyb6)| ≤
negl(κ).

• Hyb7 : Same as Hyb2 except that the challenge is generated as ((pk‖z), σ1, · · · , σκ+τ ) where z
is chosen uniformly at random from {0, 1}κ and σi = Si,(pk‖z)[i] . The following lemma follows

via an identical argument to Lemma 6.11.

Lemma 6.15 Assuming the pseudorandomness at constrained prefix property of PCPRF ,
we have |Adv(Hyb6)− Adv(Hyb7)| ≤ negl(κ).

• Hyb8 : Same as Hyb1 except that the challenge is generated as ((pk‖z), σ1, · · · , σκ+τ ) where
z is chosen uniformly at random from {0, 1}κ and σi = Si,(pk‖z)[i] . We have the following

Lemma via an identical arguments to Lemma 6.8, Lemma 6.9 and Lemma 6.10.

Lemma 6.16 Assuming the pseudorandomness at constrained prefix property of PCPRF
and the single-key selective security of FE, we have |Adv(Hyb7)− Adv(Hyb8)| ≤ negl(κ).

• Hyb9 : Same as Hyb0 except that the challenge is generated as ((pk‖z), σ1, · · · , σκ+τ ) where z
is chosen uniformly at random from {0, 1}κ and σi = Si,(pk‖z)[i] . The following Lemma follows

from an identical argument to Lemma 6.7.

Lemma 6.17 Assuming the semantic security of SKE, |Adv(Hyb8)− Adv(Hyb9)| ≤ negl(κ).

Note that in Hyb9, an adversary is given (pk‖z), the public key ({FSK1
i }i∈[τ+κ+1], c

1
φ) and the

sampler ({FSK2
i }i∈[τ+1], c

2
φ). It follows from the random public key property of the public key

encryption pk is randomly distributed and z is randomly distributed. Also, we know that pk, z do
not occur anywhere (in an information theoretic sense) in the modified function keys and the initial
ciphertext used in the sampler computation. Hence, pk‖z is randomly distributed.

One-Wayness: We now show that the trapdoor permutation is hard to invert given the public
key and the sampler.
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Figure 21: Condition for Aborting

Notation. Let Adv(Hybi) denote the probability that adversary inverts the trapdoor challenge
in Hybi.

• Hyb0 : This hybrid is same as the inversion experiment where the adversary is given ((pk‖Kpk),
σ1, · · · , στ+κ) as the trapdoor challenge where (pk, sk)← PK.KeyGen(1κ) and the sampler is
run with input pk to obtain (pk‖Kpk, ·, · · · , ·). The adversary is additionally provided with
({FSK2

i }i∈[τ+1], c
2
φ) and ({FSK1

i }i∈[τ+κ+1], c
1
φ as the sampler and public key respectively.

• Hyb1 : We modify the function keys and the initial ciphertext used in the computation of the
sampler such that it is distributed identically to Hyb5 in the proof of Lemma 6.6. We infer
that |Adv(Hyb0)− Adv(Hyb1)| ≤ negl(κ) as a direct consequence of Lemma 6.6.

Let i denote the first component of inversion challenge namely, pk‖z in Hyb1. Recall that z
is sampled uniformly at random from {0, 1}κ.

Let i1 · · · iτ+κ denote the binary representation of i. If iτ+1 · · · iτ+3κ/4 is equal to 03κ/4, we
abort. Figure 21 illustrates the condition for aborting. Notice that since z = iτ+1 · · · iτ+κ

is randomly distributed, the probability that we abort is at most 1
23κ/4

which is negligible.

Hence, from now on we assume that we have not aborted 12.

• Hyb2 : In this hybrid, we change how the value v that is hardwired in G1
v,Λ1,w

is generated.

Let i? = i[3κ/4] − 1. We set v := InjPRG(Extw(i?‖u0)) where u0
$← {0, 1}κ/4. We accomplish

this change via a couple of intermediate steps:

– Hyb1,1 : In this hybrid, instead of choosing v uniformly at random from {0, 1}κ/4, we set

v := InjPRG(v′) where v′
$← {0, 1}κ/8.

Lemma 6.18 Assuming the pseudorandomness property of InjPRG, we have |Adv(Hyb1)−
Adv(Hyb1,1)| ≤ negl(κ).

12We introduce abort in our analysis to simplify the proof. We note that it is possible to prove the one-wayness
property with a tighter security reduction without using abort.
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Proof We construct an adversary B against the pseudorandomness property of InjPRG.

A samples (pk, sk) ← PK.KeyGen(1κ) and z
$← {0, 1}κ and set i = pk‖z. It constructs

the inversion challenge (i, ·, . . . , ·) and the sampler exactly as in Hyb1. It constructs the
public key of the permutation as in Hyb1 except that:

1. In constructing G1
v,λ1,w

, it does not sample v
$← {0, 1}κ/4.

2. It interacts with the external challenger and receives a challenge string y which is
either the output of InjPRG on a random seed or a uniformly chosen random string.
It sets v = y and constructs the rest of the components in G1

v,λ1,w
as in Hyb1.

B runs the adversary on the inversion challenge, sampler and the constructed public key.
It outputs 1 if the adversary inverts the challenge; else it outputs 0.

Notice that if y is a random string then inputs to the adversary are distributed identically
to Hyb1; else it is identically distributed to Hyb1,1. Thus, B breaks the pseudorandomness
property of InjPRG.

– Hyb1,2 : In this hybrid, we set v := InjPRG(Extw(i?‖u0)) where u0
$← {0, 1}κ/4.

Lemma 6.19 Assuming the statistical closeness of the output of Ext, we have |Adv(Hyb1,1)−
Adv(Hyb1,2)| ≤ negl(κ).

Sketch of Proof (Informal) We set the X source to be of the form i?‖R where R is
a random variable that is uniformly distributed on {0, 1}κ/4. Note that the min-entropy
of the source X is at least κ/4. We set v = InjPRG(y) where y is the challenge string
(which is either Extw(X) or is uniformly chosen) and use the seed w to construct G1

v,Λ1,w
.

If y is a random string then we generate distribution identical to Hyb1,1; else we generate
distribution identical to Hyb1,2. Thus, depending on the adversary inverts the challenge
we can distinguish between whether y is a random string or output of the extractor thus
breaking the statistical closeness of the output of Ext.

Note that in this hybrid the public key outputs ⊥ on all inputs of the form (i∗‖u0, ·, . . . , ·).
For brevity of notation we denote α0 := i∗‖u0.

In the subsequent hybrids, we are going to puncture the public key of the permutation such
that it outputs ⊥ on all inputs in the range [α0, i− 1]. Once we have done that no adversary
has non-zero advantage in inverting the permutation at (i, ·, · · · , ·). Observe that since we
have not aborted, for all y ∈ [α0, i − 1] the components in the sampler cannot be used to
derive (in an information theoretic sense) Sj,y[j] for all j ≥ τ 13. This observation will be
crucial in allowing us to puncture the public key.

Recalling notation for αj. We denote α0 := i∗‖u0. Recall from Section 5.2, for any string
α ∈ {0, 1}τ+κ, let f(α) denote the index of the lowest order bit of α that is 0 (with the index of
the highest order bit being 1). More formally, f(α) is the smallest j such that α = α[j]||1τ+κ−j .

For example, if α =

3︷︸︸︷
100 111 then f(α) = 3. Recall `(β, γ) denotes the unique j ∈ [τ + κ]

13In fact it does not contain Sj,z[j] such that y[j] = i[j] for all j ≥ τ . Since we have not aborted, for every
y ∈ [α0, i− 1], we have y[κ] = i[κ]
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such that β[j−1] = γ[j−1] and βj 6= γj if β 6= γ and is a special symbol ζ otherwise. Recall
ρ(αk) = `(αk + 1, i− 1) if `(αk + 1, i− 1) 6= ζ and equal to τ + κ otherwise. Let δ(α) denote
the number of 0s in the positions [`(α, i − 1) + 1, τ + κ] in the binary representation of α if
`(α, i−1) 6= ζ and is equal to 0 otherwise. Let µ(α) denote one more than the number of ones
in the positions [`(α, i − 1) + 1, τ + κ] in the binary representation of i − 1 if `(α, i − 1) 6= ζ
and is equal to 0 otherwise.

Starting with a value α0 ∈ {0, 1}τ+κ we define for j ∈ [0, δ(α0) + µ(αδ(α0))− 1],

αj+1 =

{
αj + 2τ+κ−f(αj) if j + 1 ≤ δ(α0)

αj + 2τ+κ−ρ(αj) otherwise

Note that by this definition αδ(α0)+µ(αδ(α0))
= i− 1. Also, δ(α0) + µ(αδ(α0)) ≤ 8κ− 1.

New π1, λ1 values. As in Section 5.2 we process the hybrids according to αj values. For any
x ∈ {0, 1}≤τ+κ, let c1

x denote the ciphertext and dx denote the final output in the execution
of Steps 1 and 2 of TDPPK in Hyb2 on input x. Note that dx is defined only for x ∈ {0, 1}τ+κ.
We let P1 be the set of all prefixes of α0, α1, . . . αδ(α0)+µ(αδ(α0))

including the empty string φ.

Note that |P1| ≤ 8κ(τ + κ + 1). Additionally, we define Q1 as follows. For every x ∈ P1, let
y be the value with the last bit of x flipped. We add y to Q1 if y 6∈ P1. We set:

π?1 = ||x∈P1∪Q1 (x, c1
x)

λ?1 = ||x∈P1∩{0,1}τ+κ (x, dx)

We set `1(κ) and `′1(κ) to be the polynomials that describe an upper bound on the lengths
of π?1 and λ?1 over all choices of α0 ∈ {0, 1}τ+κ.

• Hyb3 : In this hybrid we change how the hardcoded values Π1 and Λ1 are generated. Unlike
hybrids Hyb1 and Hyb2 where these values were generated as encryptions of 0`1(κ) and 0`

′
1(κ),

in this hybrid we generate them as encryptions π?1 and λ?1 describe above, respectively. Let
us denote the new hardcoded values to be Π?

1 and Λ?1.

Notice that knowledge of secret key sk1 is not needed in simulating the function keys and
the initial ciphertext used in the function computation. Also, the length of the underlying
messages is same in Hyb2 and Hyb3. Thus, computational indistinguishability between Hyb2

and Hyb3 follows from the semantic security of the symmetric key encryption scheme (under
sk1) by an identical argument to the proof of Lemma 6.7.

Lemma 6.20 Assuming the semantic security of SKE, we have |Adv(Hyb2)− Adv(Hyb3)| ≤
negl(κ).

• Hyb4: In this hybrid, for x ∈ P1 we change the the c1
x values embedded in π?1. Recall that

in hybrid Hyb2 for each x, c1
x is generated as FE.EncPK1

|x|+1
(x,Vx,Wx, K̃x, 0

κ, 0;K ′1x). We

change the c1
x to be now generated as FE.EncPK1

|x|+1
(x, 0|Vx|, 0|Wx|, 0κ, sk1, 1;ωx) using fresh

randomness ωx.14

14Note that we do not change ciphertexts corresponding to x ∈ Q1.
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Computational indistinguishability between Hyb3 and Hyb4 follows by a sequence of sub-
hybrids. We define an ordering on elements of P1 as follows. For x, y ∈ P1 we say that
x ≺ y if either |x| < |y|, or |x| = |y|. 15. Next we define the hybrid Hyb3,y to be a
modification of Hyb3 where for all x ∈ P1 such that x ≺ y we have that c1

x is generated as
FE.EncPK1

|x|+1
(x, 0|Vx|, 0|Wx|, 0κ, sk1, 1;ωx) using fresh randomness ωx.

We first argue that Hyb3 is computationally indistinguishable to Hyb3,φ and then argue that
Hyb3,x′ and Hyb3,x are indistinguishable for any two adjacent values x′ and x in P such that
x′ < x. This is sufficient to show that Hyb3 and Hyb4 are indistinguishable with a polynomial
loss in the security reduction. We argue this via a three step hybrid argument.

1. Hyb3,φ : In this hybrid, we change c1
φ to FE.EncPK1

1
(φ, 0|Vx|, 0|Wx|, 0κ, sk1, 1). Notice

that both (φ, 0|Vx|, 0|Wx|, 0κ, sk1, 1) and (φ,Vφ,Wφ, K̃, 0
κ, 0) give the same output on

F 1
1,PK1

2 ,Π
?
2

because of the value encrypted in Π?
2. Further more the choice of two messages

does not depend on the value of PK1
1 . Hence, following lemma follows from an identical

argument to Lemma 6.8.

Lemma 6.21 Assuming the single-key, selective security of FE scheme, we have |Adv(Hyb3)−
Adv(Hyb3,φ)| ≤ negl(κ).

2. Hyb3,x,1: In this hybrid we change c1
x to FE.EncPK1

|x|+1
(x,Vx,Wx, K̃x, 0

κ, 0;ωx) using

fresh randomness ωx.

Note that for all prefixes x′′ of x we have that x′′ < x. Therefore for all such x′′ we have
that cx′′ = FE.EncPK1

|x′′|+1
(x′′, 0|Vx|, 0|Wx|, 0κ, sk1, 1;ωx′′). Thus, we lemma stated below

follows via an identical argument to the proof of Lemma 6.9.

Lemma 6.22 Assuming the pseudorandomness at the constrained prefix property of
PCPRF , we have |Adv(Hyb3,x)− Adv(Hyb3,x,1)| ≤ negl(κ).

3. Hyb3,x,2: In this hybrid we change c1
x to FE.EncPK1

|x|+1
(x, 0|Vx|, 0|Wx|, 0κ, sk1, 1;ωx) using

fresh randomness ωx.

The claim that the probability that adversary inverts the challenge in this hybrid is neg-
ligibly close to Adv(Hyb3,x,1) relies on the selective security of the functional encryption
scheme with public-key PK1

|x|+1. Note that we can invoke security of functional encryp-
tion as the change in the messages being encrypted does not change the output of the
decryption using key FSK|x|+1. Also, the choice of the two messages does not depend on
the value of PK1

|x|+1. We have the following lemma through an identical argument to
Lemma 6.10.

Lemma 6.23 Assuming the single-key, selective security of FE scheme, we have |Adv(Hyb3,x,2)−
Adv(Hyb3,x,1)| ≤ negl(κ).

• Hyb5,j+1: In hybrid Hyb5,j+1 for j ∈ {0, . . . , δ(α0)+µ(αδ(α0))−1}, we make two changes with
respect to Hyb5,j . We define Hyb5,0 to be same as Hyb4. Just like in Section 5.2, we let νj as
the shorthand for f(αj) for j < δ(α0) and equal to ρ(αj) for j ≥ δ(α0). Let tj = αj [νj ]

+ 1.

15Note that φ is the smallest value in P1 by this ordering.

60



– We change the set W
νj
tj

to be a uniformly random string y ← {0, 1}κ rather than con-
taining the value LeftInjPRG0(Sνj ,tj ). Note that this change needs to be made at two

places. Namely, we set W
νj
tj

in c1
s where s is a sibling path of αj+1 and from there on this

value will be percolated to all its descendents as well. Additionally, we set ψνj included
in dαj+1 to be z.

– We now generate encryptions βf(αj+1), . . . , βτ+κ included in dαj+1 with encryption of 0κ.

Note that as a consequence of this change the public key now starts to output ⊥ additionally
on all inputs in {αj + 1, . . . , αj+1}. This is because for every input σνj we have that y 6=
LeftInjPRG0(σνj ) with overwhelming probability. Since in hybrid Hyb5,j , the successor was
already outputting ⊥ on inputs {α0, . . . , αj} we have that the successor outputs ⊥ on all
inputs in {α0, . . . , αj+1}.
Now we argue computational indistinguishability between Hyb5,j and Hyb5,j+1.

– Hyb5,j,1: In this hybrid instead we replace the key Sνj ,tj with a random string S′ ←
{0, 1}κ. Now S′ (instead of Sνj ,tj ) is used in W

νj
tj

, in generating γνj used in dαj+1 and in
ψνj in dαj+1 .

Lemma 6.24 Assuming the pseudorandomness at constrained prefix property of PCPRF,
we have |Adv(Hyb5,j)− Adv(Hyb5,j,1)| ≤ negl(κ).

Proof We construct an adversary B against the pseudorandomness at prefix con-

strained property of PCPRF. B samples (pk, sk) ← PK.KeyGen(1κ) and samples z
$←

{0, 1}κ. It sets i = pk‖z as the first component of inversion challenge. For each
k ∈ [τ + κ] \ {νj}, it samples PCPRF key Sk as in Hyb5,j . It uses the sampled Sk
to generate σk = Sk,pk‖z[k] . Now,

1. B interacts with the external challenger and provides tj as prefix on which it wants to
constrain the PCPRF key. It receives a challenge string y and Keys which contains
{Sνj ,tj [k−1]

‖1− (tj)k}k∈[|tj |].

2. It sets W
νj
tj

= LeftInjPRG0(y), sets ψνj included in dαj+1 to be LeftInjPRG0(y) and
γνj used to generate the encryption βf(αj+1), . . . , βτ+κ to be LeftInjPRG1(y).

3. B uses the keys to generate the sampler, the νj-th signature on the inversion chal-
lenge and the rest of the components in public key exactly as in Hyb5,j .

B runs the adversary on the inversion challenge, sampler and the constructed public key.
It outputs 1 if the adversary inverts the challenge; else it outputs 0.

We now argue that Keys contain all the information needed to generate the sampler, the
νj-th signature on the inversion challenge and the rest of the components in public key.

- Recall a prior observation that the sampler cannot be used to derive (in an infor-
mation theoretic sense) Sj,s[j] for all s ∈ [α0, i− 1] and for all j ≥ κ. In particular,

since νj > κ (this is because α0 and i − 1 are at distance at most 2κ/4+1 and thus
|αj+1 − αj | ≤ 2κ/4 + 1) we can infer that the sampler does not contain Sνj ,tj .

- V
νj
y values have been removed whenever y is a prefix of αj or αj+1. Note that it

follows from the Derivability Lemma (Lemma 6.5) that these were the only V-sets
that could be used to derive Sνj ,tj .
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- Additionally σνj = Sνj ,tj is encrypted in βνj and this value is included in dαj . But
this has already been replaced with an encryption of 0κ except dα0 which is set to
⊥.

- From the choice of νj and tj , we infer that Keys cannot be used to derive the νj-
th component of the signature only on string p where αj + 1 ≤ p ≤ αj+1. Since
αj+1 ≤ i− 1, we infer that Keys can be used to derive the nuj-th component of the
challenge signature.

Notice that if y is chosen uniformly at random then distribution of inputs to the adversary
is identical to Hyb5,j,1; else the distribution is identical to Hyb5,j . Thus, B breaks the
pseudorandomness at constrained prefix property of PCPRF.

– Hyb5,j,2: In this hybrid instead we replace the βνj , . . . , βκ in dαj+1 to be generated using
fresh randomness.

Observe that K̃y where y is a prefix of αj+1 does not occur anywhere in the simulation of
Hyb5,j,2 and in Hyb5,j,1. Thus, we have the following lemma from the pseudorandomness
at constrained prefix property through an identical argument in Lemma 6.11.

Lemma 6.25 Assuming the pseudorandomness at constrained prefix property, |Adv(Hyb5,j,1)−
Adv(Hyb5,j,2)| ≤ negl(κ).

– Hyb5,j,3: In this hybrid, we change LeftInjPRG0(S′) and LeftInjPRG1(S′) to be random

strings y0, y1. Change of LeftInjPRG0(S′) to y0 implies that the set W
νj
tj

is {y0} and ψνj
in dαj+1 is also set to y0. Similarly γνj will be y1.

Lemma 6.26 Assuming the pseudorandomness property of LeftInjPRG, we have |Adv(Hyb5,j,2)−
Adv(Hyb5,j,3)| ≤ negl(κ).

Proof We construct an adversary B against the pseudorandomness property of LeftInjPRG.

B samples (pk, sk) ← PK.KeyGen(1κ) and samples z
$← {0, 1}κ. It sets i = pk‖z as the

first component of inversion challenge. It generates the sampler and the inversion chal-
lenge exactly as in Hyb5,j,2. It generates the public key as in Hyb5,j,2 except that:

1. It interacts with an external challenger and obtains y as the challenge string where
y is the output LeftInjPRG on a random seed or chosen uniformly at random. Let
y0 be the first half of the string y and let y1 be the second half of the string y.

2. It sets W
νj
tj

= y0, sets ψνj included in dαj+1 to be y0 and γνj used to generate the
encryptions βf(αj+1), . . . , βτ+κ to be y1.

B runs the adversary on the inversion challenge, sampler and the constructed public key.
It outputs 1 if the adversary inverts the challenge; else it outputs 0.

Notice that if y is uniformly chosen random string then distribution of the inputs to
the adversary is identical to Hyb5,j,3; else the distribution of inputs to the adversary is
identical to Hyb5,j,2. Thus, B breaks the pseudorandomness property of LeftInjPRG.

– Hyb5,j,4: In this hybrid we set encryptions in dαj+1 i.e. βf(αj+1), · · · , βτ+κ with encryption
of 0κ.

Lemma 6.27 Assuming the semantic security of SKE, we have |Adv(Hyb5,j,3)−Adv(Hyb5,j,4)| ≤
negl(κ).
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Proof We construct an adversary B against the semantic security of SKE . B generates
the sampler and the inversion challenge exactly as in Hyb5,j,3. In generating the public
key of the permutation, it works similar to Hyb5,j,3 except that:

1. It samples γk for all k ∈ [f(αj+1), τ + κ] \ {νj} as in Hyb5,j,3

2. It queries the external challenger with two sets of messages {SK.Encγf(αj),··· ,νj−1(0κ)}k∈[f(αj+1),τ+κ]

and
{SK.Encγf(αj),··· ,νj−1(Sk,αj+1[k]

)}k∈[f(αj+1),τ+κ]. It receives {c∗k}k∈[f(αj+1),τ+κ] as the

set of challenge ciphertexts.

3. It generates βk = SK.Encγνj+1,··· ,τ+κ(c∗k) for every k ∈ [f(αj+1), τ +κ] and uses {βk}
to generate dαj+1 .

B runs the adversary on the inversion challenge, sampler and the constructed public key.
It outputs 1 if the adversary inverts the challenge; else it outputs 0.

Notice that if {c∗k} are encryptions of 0κ then the then distribution of the inputs to
the adversary is identical to Hyb5,j,4; else the distribution of inputs to the adversary is
identical to Hyb5,j,3. Thus, B breaks the semantic security of SKE .

Note that hybrid Hyb5,j,4 is same as hybrid Hyb5,j+1.

Concluding the proof. Observe that the hybrid Hyb5,0 is defined to be identical to hybrid
Hyb4 and Hyb5,δ(α0)+µ(αδ(α0))

is such that the public key outputs ⊥ on all inputs of the form

(i − 1, ·, . . . , ·). Consequently, no adversary can invert the challenge (i, σ1, · · · , στ+κ) in this final
hybrid with probability better than 0.
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A Constructing Universal Samplers using Obufscation

Using obfuscation, obtaining a universal sampler meeting the above definition is straightforward.
Setup chooses a random seed S for a puncturable PRF PRF . Then it obfuscations the program
P (C) = C( PRFS(C) ).

The simulator Sim works as follows. Upon initialization, it chooses a random seed S. To
answer a Read query on C, it simply outputs C( PRFS(C) ). Upon receiving a Write query
on C, s, it just records the pair C, s. Finally, upon receiving the Finish query, it obfuscates
the program P(C1,s1),...,(Cn,sn) where (Ci, si) are the Write queries received, and P(C1,s1),...,(Cn,sn)

is the program that outputs si on input Ci for Write queries (Ci, si), and otherwise outputs
P (C) = C( PRFS(C) ).

Correctness of simulation is trivial, as is the indistinguishability from honest generation. Pseu-
dorandomness of samples follows from a straightforward application of the punctured programming
technique. It is proved through the following sequence of hybrids:
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• Hybrid 0. This is the b = 0 case in the pseudorandomness game. The Challenge query is
answered by making a Read query to Sim, which responds with s∗ = C∗( PRFS(C∗) ). The
final program produced by Sim is P(C1,s1),...,(Cn,sn) where n ≤ k− 1 and (Ci, si) correspond to
the write queries made by the adversary.

• Hybrid 1. In this hybrid, we puncture S at C∗, and hardcore s∗ into the program as the
output on C∗. We did not change the functionality of the program, so indistinguishability
from Hybrid 0 follows from iO.

• Hybrid 2. Now we replace PRFS(C∗) with a truly random r∗ in the generation of s∗. That
is s∗ = C∗(r∗). Indistinguishability from Hybrid 1 follows from punctured PRF security.

• Hybrid 3. Now we un-puncture S, but keep s∗ as the hardcoded output of the program on
input C∗. This does not change the functionality of the program, so indistinguishability from
Hybrid 2 follows from iO.

Notice that the program is now identical to P(C∗,s∗),(C1,s1),...,(Cn,Sn). Therefore, this exactly
simulates the case b = 1. Thus the b = 0 and b = 1 cases are indistinguishability, and security
therefore follows.

B Optimality of n in Theorem B.1

Theorem B.1 For any integer n < 2k, it is possible to make O(nlog2 3) ≈ O(n1.585) moves and get
a pebble at position n. For any n ≥ 2k, it is impossible to get a pebble at position n.

Proof First we observe to get a pebble placed at n, for each i ∈ [1, n− 1] there must have been
at some point a pebble placed at location i.

Next, we observe that it suffices to show we can get a pebble at position n = 2k − 1 for every
k using O(3k) = O(nlog2 3) steps. Indeed, for more general n, we run the protocol for n′ = 2k − 1
where k = dlog2(n− 1)e, but stop the first time we get a pebble at position n. Since n′/n ≤ 3, the
running time is at most O(nlog2 3).

Now for the algorithm. The sequence of steps will create a fractal pattern, and we describe
the steps recursively. We assume an algorithm Ak−1 using k − 1 pebbled that can get a pebble at
position 2k−1 − 1. The steps are as follows:

• Run Ak−1. There is now a pebble at position 2k−1 − 1 on the line.

• Place the remaining pebble at position 2k−1, which is allowed since there is a pebble at
position 2k−1 − 1.

• Run Ak−1 in reverse, recovering all of the k − 1 pebbles used by A. The result is that there
is a single pebble on the line at position 2k−1.

• Now associate the portion of the number line starting at 2k−1 + 1 with a new number line.
That is, associate 2k−1 + a on the original number line with a on the new number line. To
distinguish the old from the new number line, we will denote position a on the new number
line as â, so that 2k−1 + a = â. We now have k − 1 pebbles, and on this new number line,
all of the same rules apply. In particular, we can always add or remove a pebble from the
first position 1̂ = 2k−1 + 1 since we have left a pebble at 2k−1. Therefore, we can run Ak+1
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once more on the new number line starting at 1̂. The end result is a pebble at position
̂2k−1 − 1 = 2k−1 + (2k−1 − 1) = 2k − 1.

It remains to analyze the running time. The algorithm makes 3 recursive calls to Ak−1, so by
induction the overall running time is O(3k), as desired.

We now explain why the n obtained is optimal. It suffices to show that it is not possible to get
a pebble at position 2k. We do not know if the running time obtained by our algorithm is optimal,
though we believe it asyptotically optimal for n = 2k−1.

We make the following stronger claim, which in particular shows that n = 2k−1 is impossible.
In any configuration reachable starting from an empty number line given k pebbles, the jth pebble
must be no higher than position 2k−j(2j − 1). In particular the kth pebble must be at position
20(2k − 1) = 2k − 1 or lower.

Suppose for some k, j, it was possible to have the jth pebble at position 2k−j(2j − 1) + r for
some r > 0. Clearly, for k = 0, this is impossible (since there can never be a pebble anywhere).
Therefore, there is a minimal k for which this is possible, and let j be the smallest j for this k that
contradicts the claim. By the minimality of j, as long as there are any pebbles at positions greater
than 2k−(j−1)(2j−1−1) = 2k−j(2j−1)−2k−j , there must be j−1 pebbles at or below this position.
In particular, if there is a pebble at position r, there can never be more than k − j pebbles in the
interval I = [2k−j(2j − 1) − 2k−j + 1, 2k−j(2j − 1) + r − 1]. Let A be the algorithm that gets the
jth pebble to position 2k−j(2j − 1) + r. We now claim that we can derive from A an algorithm B
that uses k − j < k pebbles and gets a pebble at position 2k−j + r − 1 ≥ 2k−j , which violates the
minimality of k.

We now describe B. B simulates A in reverse, with the following modification. First, A is
simulated on the shifted number line starting at position −(2k−j(2j − 1)− 2k−j). B will only place
pebbles in the interval [1, 2k−j + r − 1], which corresponds to the interval I from A’s perspective.
For all other pebbles used by A, B will place a “virtual” at that location. Second, B will stop the
first time A removes the (virtual) pebble at position 2k−j(2j − 1) + r, which corresponds to B’s
position 2j−k + r. Since A is removing a pebble at this location, there must be a pebble at position
2k−j + r − 1, which will be a real pebble. Thus B gets a real pebble to 2k−j + r − 1. The entire
reverse execution of A has a pebble at position 2k−j(2j − 1) + r (from A’s perspective), so by the
above observation there are at most k − j pebbles in the interval I. Thus B only ever uses k − j
pebbles. Lastly, B follows all the rules of the game since A does. Thus B uses k − j < k pebbles
to get a pebble at position at or higher than 2k−j , which violates the minimality of k.
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