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ABSTRACT
User convenience and strong security are often at odds, and most
security applications need to �nd some sort of balance between
these two (often opposing) goals. The Resource Public Key Infras-
tructure (RPKI), a security infrastructure built on top of interdomain
routing, is not immune to this issue. The RPKI uses the maxLength
attribute to reduce the amount of information that must be explic-
itly recorded in its cryptographic objects. MaxLength also allows
operators to easily recon�gure their networks without modifying
their RPKI objects. Our network measurements, however, suggest
that the maxLength attribute strikes the wrong balance between
security and user convenience. We therefore believe that operators
should avoid using maxLength. We give operational recommenda-
tions and develop software that allow operators to reap many of
the bene�ts of maxLength without its security costs.
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1 INTRODUCTION
E�orts to secure interdomain routing with the Border Gateway
Protocol (BGP) have been ongoing for decades. To date, however,
the RPKI [14] is the only approach that has seen widespread deploy-
ment [20]. The IETF is diligently working towards standardizing
BGPsec [13], a more robust security enhancement that should be de-
ployed on top of the RPKI. BGPsec calls for a wholesale replacement
of BGP and heavyweight online cryptography, while providing mea-
gre bene�ts in partial deployment [16]. Thus, it seems likely that it
will take years before BGPsec deployment becomes a reality.

We therefore consider a setting where the RPKI is deployed,
but BGPsec is not. Even in this setting, network operators can
reap valuable security bene�ts [11, 16] by dropping routes that the
RPKI deems invalid. By doing this, operators can prevent some of
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the most devastating attacks on BGP: pre�x hijacks and subpre�x
hijacks.

However, RPKI objects have an attribute called maxLength, and
when maxLength is miscon�gured, it obviates most of the RPKI’s
security bene�ts. Speci�cally, an RPKI object with a miscon�gured
maxLength is vulnerable to a forged-origin subpre�x hijack (an at-
tack that was �rst outlined in [9]). We point out that this attack is as
harmful as the traditional subpre�x hijack that the RPKI is designed
to prevent. We �nd that these miscon�gurations are common: our
network measurements con�rm that the vast majority of RPKI ob-
jects that use maxLength in the wild are vulnerable to this attack.
We argue that the RPKI RFCs are not su�ciently consistent on the
limitations of maxLength. We also show how most of the bene�ts
attained through maxLength can be achieved without exposing
users to attacks, and present open-source software that achieves
this goal. We conclude with operational recommendations for the
use of maxLength.

2 HOW THE RPKI SECURES BGP
We use a running example to review how the RPKI secures routing.
ROAs. The RPKI uses Route Origin Authorizations (ROAs) to
create a trusted mapping from an IP pre�x to a set of autonomous
systems (ASes) that are authorized to originate (i.e., claim to be the
destination for) this pre�x. Each ROA contains a set S of IP pre�xes,
and the identifying number of an AS authorized to originate all the
IP pre�xes in S ; the ROA is cryptographically signed by the party
that is authorized to allocate these IP pre�xes.

For our running example, we use IP pre�x 168.122.0.0/16 which
contains all IPv4 addresses from 168.122.0.0 to 168.122.255.255. This
IP pre�x is allocated to Boston University (BU) which also has
AS 111. Therefore, the RPKI should contain a ROA with the IP
pre�x 168.122.0.0/16 mapped to AS 111. This ROA would be digitally
signed by a key that is certi�ed by ARIN (the American Registry
for Internet Numbers), the registry that allocated this IP pre�x to
BU. It is also possible for an organization like BU to sign its own
ROAs using cryptographic keys held by BU and certi�ed by the
ARIN [14]. Today, however, most organizations choose to con�gure
their ROAs through a user interface provided by their Regional
Internet Registry (RIR), (i.e., AfriNIC [3], APNIC [4], ARIN [5],
LACNIC [12], RIPE [23]). The backend of each interface generates
and then digitally signs the ROA using the RIR’s secret keys, and
then makes the ROA available to the Internet at large.

ROAs protect against some of the most harmful routing attacks;
namely, pre�x and subpre�x hijacks where a hijacking AS originates
(“hijacks") routes for IP pre�xes that it is not authorized to originate.
Originating routes. AS 111 originates its pre�x by sending a
BGP announcement to its neighboring ASes:

“168.122.0.0/16: AS 111”
Because this BGP announcement matches the corresponding ROA,
it will be considered valid. (Note that the ROA allows AS 111 to
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originate a valid route to 168.122.0.0/16, but not any of its subpre-
�xes. If AS 111 originated a route to 168.122.1.0/24, this route would
be considered invalid, unless it had its own matching ROA.) The
neighboring ASes could select this route, and propagate it to their
neighbors. For example, AS 3356 (Level3) is a neighbor of AS 111.
After validating the BGP announcement, AS 3356 selects the route,
and then announces it to its own neighbors with the following BGP
announcement (prepending its own AS number):

“168.122.0.0/16: AS 3356, AS 111”

This process of neighboring ASes validating the route against ROAs
in the RPKI, selecting it, and then propagating it to their neighbors
would continue until all ASes connected to the origin (directly or
indirectly) have learned a route to 168.122.0.0/16. Tra�c destined
to IP addresses in 168.122.0.0/16 would then �ow to AS 111.

Deployment status. As of September 2017, [20] indicates that
7.6% of the (pre�x, origin AS) pairs announced in BGP match a ROA
in the RPKI. Meanwhile, very few ASes make routing decisions
based on the validation state of a route according to ROAs in the
RPKI [9, 22].

Subpre�x hijacks. Now suppose there is a subpre�x hijack. The
attacking ASm originates a BGP announcement for a subpre�x of
the target pre�x, for example:

“168.122.0.0/24: ASm”

In the absence of the RPKI, the hijacker would intercept tra�c for
all addresses in 168.122.0.0/24—rather than �owing to AS 111, all
this tra�c would �ow to AS m instead. This is because routers
perform a longest-pre�x match when deciding where to forward
IP packets. A packet with destination IP 168.122.0.1 will �ow to
attacker AS m, rather than to AS 111, because 168.122.0.0/24 is a
longer matching pre�x than 168.122.0.0/16.

This attack is highly e�ective, since the location of the attacker
or the path he announces is irrelevant. All that matters is that the
hijacker’s route for the subpre�x propagates out into the global
Internet. Longest-pre�x-match routing ensures that the hijacked
route is always preferred over the legitimate route. This behavior
has been exploited in several high-pro�le incidents [18, 21].

ROAs should stop subpre�x hijacks. How does the ROA for
168.122.0.0/16 and AS 111 stop the subpre�x hijack?

Any RPKI-validating router receiving the attacker’s BGP an-
nouncement should notice that the announcement is invalid be-
cause (1) the ROA for 168.122.0.0/16 and AS 111 covers the attacker’s
announcement (since 168.122.0.0/24 is a subpre�x of 168.122.0.0/16),
and (2) there is no ROA matching the attacker’s announcement (i.e.,
ROA for ASm and IP pre�x 168.122.0.0/24). If routers ignore invalid
BGP announcements, the subpre�x hijack will fail, and the attacker
fails to intercept tra�c destined to BU at AS 111.

3 ENTER MAXLENGTH
We continue with our example to understand maxLength.

De-aggregation. In addition to originating the BGP announce-
ment for 168.122.0.0/16, AS 111 also originates an additional BGP
announcement for its subpre�x:

“168.122.225.0/24: AS 111”

Announcing subpre�xes of a larger pre�x from the same AS is
known as de-aggregation, and sometimes used for tra�c engineer-
ing. By announcing the /24 pre�x to some neighbors and not others,
AS 111 has some modicum of control over the routes other ASes
use to reach 168.122.225.0/24.1 However, de-aggregation tends to
bloat the size of routing tables across all routers on the Internet. As
such, network operators frown upon excessive de-aggregation, e.g.,
announcing all 28 of the /24s constituting a /16 [25].

Now suppose the RPKI only had the ROA (168.122.0.0/16, AS
111), and AS 111 originated the BGP announcements

“168.122.225.0/24: AS 111”

The above BGP announcement is invalid, since it has a covering
ROA (the ROA for 168.122.0.0/16, AS 111) but no matching ROA (i.e.,
a ROA for 168.122.225.0/24, AS 111). Routers would therefore drop
the route as invalid, stymying AS 111’s attempts to de-aggregate
its pre�x.

Using maxLength to deal with de-aggregation. The RPKI’s
maxLength attribute provides one solution to this problem. Accord-
ing to RFC 6482 [15]: “When present, the maxLength speci�es the
maximum length of the IP address pre�x that the AS is authorized
to advertise.” Thus, suppose we modi�ed the ROA by adding a
maxLength of 24. The resulting ROA would be

ROA:(168.122.0.0/16-24, AS 111)

where the notation “-24” means up to pre�x-length 24. This ROA
authorizes AS 111 to originate any subpre�x of 168.122.0.0/16, up
to length /24. For example, AS 111 could originate 168.122.225.0/24
as well as all of

168.122.0.0/17,
168.122.128.0/17,
168.122.0.0/18,
...

168.122.255.0/24

but not 168.122.0.0/25.
MaxLength thus gives AS 111 some additional �exibility; even

if AS 111 does not know how it plans to de-aggregate its pre-
�x 168.122.0.0/16 at the time it requested the ROA, by adding a
maxLength of /24 AS 111 is certain that any de-aggregation it per-
forms will not result in invalid routes.

Alternate solution: ROAs with sets of pre�xes. Alternatively,
because ROAs support sets of pre�xes, one could just update the
ROA to include both pre�xes:

ROA:({168.122.0.0/16, 168.122.225.0/24}, AS 111)

Minimal ROAs. A ROA is minimal [17, §3.2] when it includes
only those pre�xes that the AS announces in BGP, and no other
pre�xes. The ROA above is minimal, because it includes exactly the
two pre�xes announced by AS 111. Minimal ROAs come with less
�exibility, because the AS must know exactly what pre�xes it plans
to announce at the time the ROA is issued.

1Interestingly, routing security is sometimes also cited as a reason for de-aggregation.
By announcing a /24 route, AS 111 ensures that no hijacker can launch a subpre�x
hijack against the route, since BGP routes for pre�xes longer than /24 are commonly
discarded by routers [25].
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4 FORGED-ORIGIN SUBPREFIX HIJACK
The convenience of maxLength comes with a serious downside.
Speci�cally, when maxLength is used to issue ROAs that are not
minimal, these ROAs are subject to a forged-origin subpre�x hijack.
This attack is as e�ective as the traditional subpre�x hijack that
ROAs are designed to prevent.
A non-minimal ROA. Continuing with our example, suppose
that AS 111 originates the two BGP announcements:

“168.122.0.0/16: AS 111”
“168.122.225.0/24: AS 111”

and that the RPKI had the ROA
ROA:(168.122.0.0/16-24, AS 111)

with maxLength 24. This ROA is not minimal because it authorizes
routes that are not announced in BGP.
The attack. A hijacker can intercept 100% of the tra�c destined to
any subpre�x of 168.122.0.0/16 (up to length /24) except for those
addresses in 168.122.225.0/24. For instance, to intercept all tra�c
for IP pre�x 168.122.0.0/24, the hijacker performs a forged-origin
subpre�x hijack [6, 9] by sending this BGP announcement:

“168.122.0.0/24: ASm, AS 111”
Forged origin subpre�x hijacks were outlined in [9]. In this paper

we focus on evaluating the bene�ts of using maxLength in light of
this attack, and showing that comparable bene�ts can be attained
without exposing networks to forged origin subpre�x hijacks.
Why does this attack work? (1) The hijacker’s BGP announce-
ment falsely claims thatm is a neighbor of AS 111. But other ASes
and routers have no way to know that this is false, because the RPKI
does not provide a means to validate this claim (and BGPsec is not
deployed in our setting). (2) The hijacker’s BGP announcement is
valid according to the RPKI, since the non-minimal ROA authorizes
BGP routes for 168.122.0.0/24 with AS 111 as the origin AS. (3)
AS 111 never originates a route for 168.122.0.0/24. Crucially, this
means that the hijacker’s route is the only route to 168.122.0.0/24. (4)
Longest-pre�x-match routing ensures that the hijacker’s route to
the subpre�x 168.122.0.0/24 is always preferred over the legitimate
route 168.122.0.0/16.
It’s as bad as a subpre�x hijack! Thus, if the hijacker’s route
propagates through the Internet, the hijacker will intercept all
tra�c destined for IP addresses in 168.122.0.0/24. Thus, the attack
has exactly the same impact as a regular subpre�x hijack. And
a regular subpre�x hijack is more damaging than a pre�x hijack.
Indeed, one might argue that the whole point of the RPKI is to stop
subpre�x hijacks [14, 16].
What’s di�erent? An expert reader might wonder about the
di�erence between the forged-origin subpre�x hijack and the tra-
ditional forged-origin hijack [11, 16]. In a traditional forged-origin
hijack, the hijacker also (1) falsely claims to be a neighbor of the
legitimate origin AS, and (2) announces a route that is valid ac-
cording to the RPKI. However, because it is traditionally assumed
that the RPKI only authorizes routes that are announced in BGP,
the hijacker’s route is for the exact same pre�x that is legitimately
announced in BGP. Thus, the forged-origin hijackerm would an-
nounce:

“168.122.0.0/16: ASm, AS 111”

Now, the hijacker’s route is not the only route to the hijacked pre�x.
Rather than attracting all of the victim’s tra�c, the tra�c must split
between the hijacker’s route and the legitimate route. This subtlety
makes a huge di�erence in the e�ectiveness of the attack. [16]
shows that, during a traditional forged-origin hijack, the majority
of tra�c (on average) is still forwarded on the legitimate route.
Meanwhile, when non-minimal ROAs authorize routes that are not
announced in BGP, a forged-origin subpre�x hijack on these routes
causes all of the tra�c to be intercepted by the hijacker.
Who is vulnerable? Any pre�x in a non-minimal ROA is vul-
nerable. In particular, any pre�x p in a ROA with maxLength m
longer than p is vulnerable, unless every subpre�x of p of length m
is legitimately announced in BGP.

5 WHAT DO THE RFCS SAY?
RFC 7115 [6] mentions minimal ROAs:

One advantage of minimal ROA length is that the
forged origin attack does not work for sub-pre�xes
that are not covered by overly long max length.
For example, if, instead of 10.0.0.0/16-24, one is-
sues 10.0.0.0/16 and 10.0.42.0/24, an attack cannot
succeed against 10.0.666.0/24. They must attack
the whole /16, which is more likely to be noticed
because of its size.

Note that “attacking the whole /16” is not only “more likely to be
noticed”, but also much less e�ective than a forged-origin subpre�x-
hijack against 10.0.666.0/24. To see why, return to our running
example and suppose that BU had the minimal ROA described at
the end of §3. Then, a forged-origin subpre�x hijack on 168.122.0.0/24
(as described in §4) would fail, since this minimal ROA ensures that
the hijacker’s route is invalid. Thus, the hijacker m would need
to “attack the whole /16”, using a traditional forged-origin hijack
announcement:

“168.122.0.0/16: ASm, AS 111”
As remarked in §4, this causes tra�c to split between the hijacker
m and the legitimate AS 111, with the majority of ASes choosing
to route by the legitimate path (see [16]). Unlike the forged-origin
subpre�x hijack, this attack does not allow the hijacker to attract
all of the tra�c, and is thus signi�cantly less e�ective [16]. RFC
7115 [6] also o�ers this solid advice:

Operators should be conservative in use of max
length in ROAs. For example, if a pre�x will have
only a few sub-pre�xes announced, multiple ROAs
for the speci�c announcements should be used as
opposed to one ROA with a long max length.

but we note that “multiple ROAs” are not required since ROAs
support sets of IP pre�xes.

RFC6907 similarly recommends issuing minimal ROAs [17, §3.2],
but also suggests [17, §3.8] using a non-minimal ROA (that is vul-
nerable to a forged-origin subpre�x hijacks) when ASes wish to
deaggregate pre�xes per our description in §3.

6 BENEFITS OF MAXLENGTH?
We use network measurements to analyze the impact of the maxLength
attribute. We downloaded all ROAs from the RPKI publication
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Figure 1: How routers get RPKI information.

points and compared them against the routing entries in the BGP
tables of all Route Views collectors [2]; we report results from the
dataset of ROAs and BGP advertisements on June 1, 2017.
Problem: Using maxLength almost always creates vulnera-
bilities. First, we observe that only 4630 (about 12%) of the pre-
�xes in ROAs have a maxLength longer than the pre�x length. The
vast majority of these ROAs are not minimal. Speci�cally, almost
all of these pre�xes (84%) are not minimal, and thus vulnerable to
forged-origin subpre�x hijacks. To measure this, we counted the
number of pre�xes p with maxLengthm longer than p, where some
subpre�x of p up to lengthm is not announced in BGP. Thus, we see
that almost all users ‘taking advantage’ of the maxLength feature
are opening themselves up to attacks.
Bene�t? Fewer pre�xes included in ROAs. One might argue
that a bene�t of maxLength is that it reduces the number of ROAs.
We now argue this is not a signi�cant bene�t.

In our dataset, 40K pre�xes are authorized by ROAs. What if (1)
maxLength is eliminated and (2) only minimal ROAs were used?
Then, we �nd that 13K additional pre�xes would need to be added
to ROAs. (To obtain this number, we count the number of pre�xes
that are (a) announced in BGP, and (b) are also a covered by a pre�x
that is authorized by a ROA in the RPKI.) We stress, however, that
we could deal with these 13K additional pre�xes without adding
any additional ROAs (and associated cryptographic material) to the
RPKI: we just convert each original non-minimal ROA to a minimal
ROA that has the set of pre�xes announced in BGP.
Bene�t? Reducing load on routers. One might argue that
maxLength reduces load on routers. We �nd that holds in today’s
scenario (where the RPKI is partially deployed), but not if the RPKI
is fully deployed.

Figure 1 shows how routers get information from the RPKI. Each
AS has a trusted local cache (typically a general-purpose machine)
that downloads the complete set of ROAs from all default RPKI
repositories. The local cache cryptographically validates the ROAs
and creates a list of “Protocol Data Units” (PDUs). Each PDU is
essentially a tuple of (IP pre�x, maxLength, origin AS) [7, 19]. The
local cache sends the PDU list to the routers in its AS using the
(RPKI-to-Router) protocol [1]. Finally, routers use the PDU list to
determine validity of BGP announcements [1, 7, 19].

The PDU list could become longer if we replace all non-minimal
maxLength-using ROAs with minimal ROAs that do not use maxLength.
For instance, a single maxLength-using PDU for pre�x 87.254.32.0/19-
21 (shown in Figure 1), would be replaced with four non-maxLength-
using PDUs (i.e., one PDU for each subpre�x of 87.254.32.0/19 up
to length /21, that is announced in BGP). This could impact perfor-
mance at routers.

The measurements described above indicate that today’s routers
would need to process 13K additional PDUs (a 33% increase). Thus,
in today’s scenario (where the RPKI is partially deployed), we �nd
that maxLength does reduce the number of PDUs processed by
routers. Yet, the number of PDUs is not very high.

Does this �nding hold if the RPKI was fully deployed? To �nd out,
we suppose that every IP pre�x in our BGP dataset was covered by
a maximally-permissive ROA. A maximally-permissive ROA autho-
rizes each of its pre�xes to the longest possible maxLength: namely,
every IPv4 pre�x has maxLength /32, while every IPv6 pre�x has
maxLength /128. (Maximally-permissive ROAs are vulnerable to
forged-origin subpre�x hijacks; we use them only to bound the
maximum compression provided by maxLength.) Our BGP dataset
has 777K advertised (IP pre�x, AS) pairs (IPv4 and IPv6 pre�xes).
If all of these pairs were covered by maximally-permissive ROAs,
these ROAs would still need to include 729K pre�xes! Thus, in the
full-deployment scenario, the maximum compression provided by
the maxLength (in terms of reducing the number of PDUs processed
by routers) is just 6.2%. This follows because most ASes do not send
BGP announcements for subpre�xes of their pre�xes.

Next, we present software that we built to pre-process the PDU
list to reduce the number additional PDUs without introducing
vulnerabilities to forged-origin subpre�x hijacks. Our software
achieves a compression rate of 6.1% in the same full-deployment
scenario, very close to the above 6.2% bound.

7 COMPRESSING MINIMAL ROAS
Recall that a router validating routes against the RPKI is given a
list of PDUs, where each is a tuple of (IP pre�x, maxLength, origin
AS) from a ROA [7, 19]. The list of PDUs is created by the trusted
local cache, as shown in Figure 1. Thus, to avoid pushing a longer
list of PDUs to routers, we now present software that runs on
the local cache, and transforms a list of PDUs that do not use the
maxLength attribute into a list of PDUs that do. Because it runs on
the local cache, our software requires no changes to routers and
conforms with today’s RPKI architecture. Our software is publicly
available [24].
Build your own maxLength. Conceptually, our software com-
presses a set of ROAs that do not use maxLength to a set of ROAs
that do use maxLength. Consider the following minimal ROA:

ROA: ({87.254.32.0/19, 87.254.32.0/20, 87.254.48.0/20,
87.254.32.0/21 }, AS 31283)

The above ROA does not use maxLength. Our software would
compress it to the maxLength-using ROA:

ROA: ({87.254.32.0/19-20, 87.254.32.0/21}, AS 31283)
This ‘compressed’ ROA is still minimal, because it covers exactly
the same set of pre�xes as its uncompressed version. Importantly,
we do not compress the ROA to

ROA: (87.254.32.0/19-21, AS 31283)
since this is not a minimal ROA and is vulnerable to forged-origin
subpre�x hijacks (on IP pre�x 87.254.40.0/21).

7.1 Software architecture
Today’s RPKI Tools contain a utility program called scan_roas
that the local cache uses to transform a set of ROAs that have been
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Figure 2: The IPv4 pre�x trie for the minimal ROAs for
AS 31283 without maxLength (left), and after compression
with compress_roas (right). The number of output PDUs is
reduced from four to two.

downloaded from the RPKI and cryptographically validated, into a
list of PDUs, aka, (IP pre�x, maxLength, origin AS) tuples [1]. Our
utility is called compress_roas and acts as a drop-in alternative
to scan_roas. compress_roas �rst calls scan_roas on a set of
cryptographically-validated ROAs, and obtains a set of valid (IP
pre�x, maxLength, origin AS)-tuples. Then, we compress this set of
tuples to another set of tuples that do use the maxLength attribute.

Compression algorithm. Our algorithm takes in a list of (IP
pre�x, maxLength, AS)-tuples and compresses it using tries (i.e.,
pre�x trees) as shown in Figure 2. For each AS number in the
list, we generate a trie for IPv4 and a trie for IPv6. The key to
each trie is the string $pre�x where $ is a delimiter, and pre�x is a
binary representation of an IP pre�x and its length. Each trie node
corresponds to some (AS, pre�x, maxLength)-tuple in a valid ROA.
The value of the trie node is the maxLength speci�ed in the tuple.
If the tuple came from a ROA that does not use the maxLength
attribute, then the trie node’s maxLength value is identical to the
pre�x length.

For a trie node with key $k , we refer to the shortest-keyed nodes
with pre�x $k | |0 and $k | |1 as its left and right direct children. A trie
node can therefore have at most two direct children.

To compress tuples, we iterate through the trie using a depth-
�rst search (DFS). As the DFS backtracks through the trie we run
the compression function in Algorithm 1. Each trie node is assigned
a new value (i.e., a maxLength) if both its direct children exist. The
assigned maxLength of the node is the minimum maxLength of its
two children. The child is then deleted if the child’s maxLength
does not exceed the parent’s maxLength. When the DFS completes,
we get a set of (IP pre�x, maxLength, AS)-tuples that correspond
to the remaining trie nodes.

7.2 Performance
We evaluate our software both in today’s RPKI partial deployment
status, and in a future scenario where RPKI is fully deployed. We use
datasets that aggregates ROAs and BGP advertisements on a weekly
basis, from 4/13/2017 to 6/1/2017. Figure 3 presents results across
all datasets. Table 1 and the discussion below is for the 6/1/2017
dataset. See [24] for details on how to reproduce our results.

Today’s RPKI. Our dataset has 7499 ROAs, comprising 39,949
distinct tuples of (IP pre�x, maxLength, AS). Each tuple is inserted
into one of the tries and compressed with compress_roas. The
result is 33,615 tuples, for a compression of 15.90%. Thus, our
software is bene�cial even for today’s (maxLength-using) RPKI.

procedure compress(node):
if node has both direct children then

minChildVal←
min{node.lChild.value, node.rChild.value}

if minChildVal > node.value then
// Adjust parent’s maxLength to cover children
node.value← minChildVal

if node.lChild.value ≤ node.value then
// left child now covered by father
delete node.lChild

if node.rChild.value ≤ node.value then
// right child now covered by father
delete node.rChild

Algorithm 1: ROAs compression function. Called for every
node as we backtrack from iterating over trie using DFS.

scenario # PDUs secure?
Today 39,949 X
Today (compressed) 33,615 X
Today, minimal ROAs, no maxLength 52,745 X
Today, minimal ROAs, with maxLength (compressed) 49,308 X
Full deployment, minimal ROAs, no maxLength 776,945 X
Full deployment, minimal ROAs, with maxLength 730,008 X
Full deployment, lower bound (max permissive ROAs) 729,371 X

Table 1: Number of PDUs that processed by routers in the
scenarios of §7 from the dataset of 6/1/2017.

Today’s RPKI, however, is vulnerable to forged-origin subpre�x
hijacks. What if today’s RPKI was hardened against these hijacks,
by converting every existing ROA into a minimal ROA that does
not use maxLength? To convert each ROA in our RPKI dataset
into a minimal ROA with no maxLength, we (1) identify the IP
pre�xes that are made valid by that ROA and are announced in
our BGP dataset, and (2) modify the ROA so that it contains only
those IP pre�xes. We have the same number of ROAs, but now
(instead of the status quo 39,949 tuples) we have a total of 52,745 (IP
pre�x, AS)-pairs. We use compress_roas to compress these 52,745
pairs to obtain 49,308 (IP pre�x, maxLength, origin AS)-tuples, for
a compression of 6.5%. Even with compress_roas, we still have
23% more tuples than the status quo; however, the status quo is
vulnerable to forged-origin subpre�x hijacks, and the scenario we
just evaluated is not.
RPKI in full deployment. We consider a future full deployment
scenario where the RPKI is hardened against forged-origin subpre�x
hijacks. That is, we assume every IP pre�x announced in our BGP
dataset is validated by a minimal ROA that does not use maxLength.
Our BGP dataset has 776,945 (IP pre�x, AS) pairs. This is exactly the
number of (IP pre�x, AS) pairs contained in ROAs if the RPKI used
only minimal ROAs and no maxLength. Applying compress_roas
gives 730,008 (IP pre�x, length, maxLength)-tuples. This is very
close to the lower bound of 729,371 tuples for the full-deployment
scenario with maximally-permissive ROAs (which is vulnerable
forged-origin pre�x hijacks; see §6). This result is consistent across
all measurements; see Figure 3b.

Thus, if today’s RPKI eliminated maxLength and started using
minimal ROAs (to immune against forged-origin subpre�x hijacks),
we would see some increase (23%) in the number of PDUs that must
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(b) RPKI in full deployment

Figure 3: Number of PDUs processed by routers under di�erent scenarios along a timeline. A solid line marks scenarios that
are safe against forge-origin subpre�x hijacks. Scenarios with dashed lines are vulnerable.

be processed by routers. In a future RPKI deployment, however, this
increase becomes insigni�cant: using minimal ROAs along with
our compress_roas software gives us almost the optimal number
of PDUs.

Computational overhead. We tested the compress_roas util-
ity on an Intel i7-6700 machine. Compressing today’s (partially-
deployed) RPKI took 2.4 seconds and required 19MB of memory,
while the full-deployment scenario took 36 seconds and 290MB
memory. Performance could be improved by parallelizing across
tries.

Summary. We have shown how to compress away some of the
blowup in PDU lists that would result from moving that minimal
ROAs that do not use maxLength.

8 RECOMMENDATIONS
System complexity is a key challenge for the RPKI, especially be-
cause it can lead to security vulnerabilities and errors in deploy-
ment [8, 26]. As of June 1, 2017 just 12% of pre�xes in the RPKI use
maxLength. But, almost all of these pre�xes are in ROAs that are
not minimal, and thus vulnerable to forged-origin subpre�x hijacks.
These hijacks are as harmful as the traditional subpre�x hijacks
that the RPKI is designed to prevent.

Fortunately, this problem is fairly easy to �x without any changes
to the RPKI. Today, most network operators con�gure their ROAs
through interfaces provided by their local Regional Internet Reg-
istry (RIR) [3–5, 12, 23]. These interfaces typically ask the operator
to input a tuple of (pre�x, maxLength, AS). This makes it easy for
operators, that are not well-versed in the subtleties of the RPKI,
to choose a maxLength that opens themselves up to attacks. We
therefore recommend that these user interfaces steer operators to-
wards con�guring ROAs that (1) do not use maxLength and (2) are
minimal, i.e., that explicitly enumerate the set of IP pre�xes that an
AS actually originates in BGP. Indeed, some of the UIs (e.g., [23])
already help operators to con�gure minimal ROAs, by using data
from BGP looking glasses [2] to inform operators about the set of
pre�xes that their AS originates in BGP. The option to con�gure
maxLength directly could be made available for “expert users”, but
should come with a warning of the risks of forged-origin subpre�x
hijacks. That way, operators that choose to con�gure non-minimal

ROAs (in order to e.g., allow for �exible pre�x deaggregation) can
do so deliberately, with an understanding of the risks.

This change is backwards compatible, since it need not alter the
behavior of software that validates ROAs. That said, if operators
wish to limit the impact of this change on router performance
(because, by avoiding maxLength, ROAs might include a larger
set of IP pre�xes, see §7), operators can use our compress_roas
software in the toolchain described in §7.1.

In sum, using minimal ROAs and avoiding the maxLength at-
tribute makes the RPKI simpler, less error prone, and more secure.
We are currently preparing an IETF best current practice (BCP)
document with these recommendations [10].
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