
Obfuscation without Multilinear Maps

Dingfeng Ye Peng Liu
DCS Center Cyber Security Lab

Institute of Information Engineering College of Information Sciences and Technology

Chinese Academy of Sciences Pennsylvania State University

Beijing, China 100093 University Park, PA 16802

ydf@is.ac.cn pliu@ist.psu.edu

Abstract

Known methods for obfuscating a circuit need to represent the circuit as a branching
program and then use a multilinear map to encrypt the branching program. Multilinear
maps are, however, too inefficient for encrypting the branching program. We found a
dynamic encoding method which effectively singles out different inputs in the context
of the matrix randomization technique of Kilian and Gentry et al., so that multilinear
maps are no longer needed. To make the method work, we need the branching programs
to be regular. For such branching programs, we also give most efficient constructions
for NC1 circuits. This results in a much more efficient core obfuscator for NC1 circuits.

Index terms: Obfuscation, Matrix Branching Program, Dynamic Fencing

1 Introduction

Indistinguishable Obfuscation of general circuits is a powerful functionality of cryptography
[6], which was regarded infeasible [2] until work [4] gives constructions for indistinguishable
obfuscation. But this seminal work only addressed the existence problem: the solution is
totally impractical for any meaningful circuit examples. Significant improvement of efficiency
was obtained in later constructions (including [3, 1, 7, 8]), but these constructions are still
far from practical use. The inefficiency lies in the fact that all these constructions rely on
multilinear maps of large degree, which lack efficient instantiations.

Our work is inspired by [4, 7]. In these work, a circuit is first translated to a sequence
of matrix pairs (the branching program), and circuit evaluation is represented as matrix
multiplications. We observe that Kilian’s randomization technique, denoted in this work as
“fencing”, already makes the branching program computation secure for single input, as long
as the branching program is regular (roughly speaking, the rank function reveals nothing to
the attacker). We also observe that the essential thing to make the whole computation secure
is to separate computations for different inputs into different worlds, which may not need
multilinear maps at all.

A natural way to do this is dynamic fencing: different inputs use independent fences, but
this needs exponential storage. We approximate dynamic fencing with group actions: each
fence is multiplied by a group element which is bound to an input and the branching variable
at the place. This binding is achieved via a simple authentication method when working at
higher dimensions.

Another contribution of this work is a new regular branching program for NC1 circuits.
Our construction has similar efficiency as that of [7], but it is regular, so that Kilian’s
statistical simulation theorem still holds.

Finally, it should be noticed that the security of our scheme is not proved. The difficulty
of a security proof is lack of suitable security model to validate our approximation of dynamic
fencing. This also means that our scheme does not depend on any known assumptions; we
treat attacking the scheme as a new concrete problem which seems to be hard.

2 Notations

Let F2 denote a binary field. Let a+b and ab denote addition and multiplication of a,b∈ F2,
respectively. Let Mm,m′(F2) denote the set of m×m′ matrices over F2.
Let GLd(F2) denote the set of d× d invertible matrices. Let I denote the identity matrix
of appropriate dimension. We often write a matrix without specifying its dimension, if it
can be inferred from context; we also write a matrix of blocks without specifying dimensions
of the blocks, which should make multiplication of matrices of blocks meaningful. By a
matrix sequence {Mi : 1≤ i≤ l}, we mean ∏i Mi is meaningful and specification of the length
and dimensions are often omitted. Two matrix sequences {Mi} and {N j} can be catenated if
(∏i Mi)(∏ j N j) is meaningful, and {Mi}∨{N j} denote the matrix sequence of this catenation.
For any matrix sequence {Mi}, A{Mi} is the sequence {AM1}∨{Mi : i > 1}; similarly {Mi}A
means the sequence by multiplying on the right the last matrix with A.

3 Kilian’s Randomization

This section is generalization of Kilian’s Randomization to regular matrix sequences. Let
{Mi : 1≤ i≤ l} be a matrix sequence with dimensions di−1×di, and let {Ui ∈GLdi(F2) : 0≤ i≤
l} be a sequence of invertible matrices, KR({Mi},{Ui}) will denote the sequence {U−1

i−1MiUi :
1≤ i≤ l}. Here, we call {Ui} the fences. If the fences are uniformly random, KR({Mi},{Ui})
will be called the Kilian’s Randomization (denoted KR) of the matrix sequence {Mi}.

Lemma 3.1 KR of the matrix sequence {Mi} and {M′i} have the same distribution if there
exists {Vi} such that {M′i}= KR({Mi},{Vi}).

Proof KR({Mi},{ViUi}) = KR(KR({Mi},{Vi}),{Ui})

If {M′i} = KR({Mi},{Vi}), we will write {Mi} (V0,Vl) {M
′
i}, and we will simply say that

the two matrix sequences are KR equivalent. The following is obvious:

Lemma 3.2 {Mi} (U,V) {M′i}⇔ {Mi} (I,I) U{M′i}V−1.

2

Lemma 3.3 If {Mi} (U,V) {M′i} and {N j} (V,V ′) {N′j}, then {Mi}∨{N j} (U,V ′) {M′i}∨
{N′j}

Lemma 3.4 If {Mi} (U,V) {M′i} and {M′i} (U ′,V ′) {Ni}, then {Mi} (UU ′,VV ′) {Ni}

Lemma 3.5 [5] If {Mi} and {M′i} are all invertible, then {Mi} (V0,I) {M
′
i} and {Mi} (I,V)

{M′i} where V = (∏Mi)
−1(∏M′i) and V0 = (∏Mi)(∏M′i)

−1

Definition A matrix sequence {Mi} is called unit if each Mi is of the form either I or (I,0)
or (I,0)T (T means transpose), and ∏i Mi = I (where each I may have different dimension).
A matrix sequence is called regular if it is KR equivalent to a unit matrix.

.

Lemma 3.6 If {Oi} is a unit sequence, and G is invertible, then {Oi} (G,G) {Oi} .

Proof Let {Ui} be a fence of the form: Ui = G or Ui =

(
G

I

)
according to dimension.

Then KR({Oi},{Ui}) = {Oi}.

Lemma 3.7 If {Mi} is regular, and G is invertible, then both G{Mi} and {Mi}G are regular.

Proof Obvious.

Lemma 3.8 Let {Mi} be regular and {Oi} be the corresponding unit sequence, then
{Mi} (I,I) V{Oi} and {Mi} (I,I) {Oi}V where V = ∏Mi.

Proof Suppose {Mi} (U,U ′) {Oi}, Since {Oi} (U−1,U−1) {Oi}, we have {Mi} (I,U ′×U−1)

{Oi}. By comparing the product, we must have U ′×U−1 = V = ∏Mi.

Lemma 3.9 If {Mi} and {N j} are regular, so is {Mi}∨{N j}.

Proof Because catenation of unit sequences is also unit, suppose {Mi} (U,I) {Oi} and
{N j} (I,V) {O j}, then we have {Mi}∨{N j} (U,V) {Oi}∨{O′j}

4 Branching Programs of Circuits

A branching program is a pair (BP, inp), where BP = {Bi,b : 1≤ i≤ l,b = 0,1} is a sequence
of matrix pairs, and inp : [l]→ [n] is a map. A branching program can compute a function
C : F2

n→F2 as follows: C(x1,x2, · · · ,xn) = f (∏i Bi,xinp(i)) where f is some function from matrices
to F2. We often omit the specification of inp when it can be comprehended. The largest
dimension of matrices in BP is called the width of the branching program. BP = {Bi,b : 1≤
i≤ l,b = 0,1} is called regular, if all matrix sequences {Bi,bi} are regular.

It is well known that branching programs can only efficiently compute NC1 circuits
(circuits with 2-fan in gates and depth d <O(log(λ))). The efficiency of a branching program
is roughly measured by its width and length. Main results on branching programs for NC1
circuits are the following:

3

• The Barrington map: width = 5, length≤ 4d, regular;

• [1]: width≤ 2d, length≤ 2d, regular;

• [7]: width < d, length≤ 2d, not regular.

In the following, we will give a regular branching program for NC1 circuits with similar
efficiency as [7]. To begin with, the operations on matrix sequences: KR, ∨, and A{Mi},{Mi}A
are straightforwardly applied to BPs. Another operation is Aug: Aug({Bi,b}) = {Bi,b

+}, where

Bi,b
+ =

(
1

Bi,b

)
.

Let C(x1, · · · ,xn) be a circuit with n input variables. We use

(
1 v
0 1

)
to represent the

value v at a gate (and input). The following formula can be used to evaluate the circuit:

• not gate:

(
1 a
0 1

)
×
(

1 1
0 1

)
=

(
1 a + 1
0 1

)

• ⊕ gate:

(
1 a
0 1

)
×
(

1 b
0 1

)
=

(
1 a + b
0 1

)

• ∧ gate:

(
0 1 0
1 0 0

)
×

 1
1 a

1

×
 0 0 1

1 0 0
0 1 0

×
 1

1 b
1

×
 1 0

0 0
0 1

 =(
1 ab
0 1

)
The branching program for computing C(x1, · · · ,xn) is inductively constructed as follows:

• each input variable xi is a BP of length 1:

(
1 b
0 1

)
, inp(1) = i.

• not gate: (BP)

(
1 1
0 1

)
;

• ⊕ gate: BP1∨BP2;

• ∧ gate:

(
0 1 0
1 0 0

)
Aug(BP1)∨

 0 0 1
1 0 0
0 1 0

Aug(BP2)

 1 0
0 0
0 1

Theorem 4.1 The branching program constructed as above is regular.

Proof Initially the inputs are regular, and each has product value of the type

(
1 v
0 1

)
.

By induction, this property is preserved at not gates and ⊕ gates. It only remains to verify
this at ∧ gates, which will be done by the following lemma.

4

Lemma 4.2 Let {Mi} and {N j} be regular with product values

(
1 a
0 1

)
and

(
1 b
0 1

)
re-

spectively, then

(
0 1 0
1 0 0

)
Aug({Mi})∨

 0 0 1
1 0 0
0 1 0

Aug({N j})

 1 0
0 0
0 1

 is regular with

product value

(
1 ab
0 1

)
.

Proof Obviously Aug preserves regularity, so the stated matrix sequence is (I,I) reduced
to(

0 1 0
1 0 0

)
{Oi}

(
1 a
0 1

) 0 0 1
1 0 0
0 1 0

(

1 b
0 1

) 1 0
0 0
0 1

=

(
0 1 0
1 0 0

)
{Oi}

 0 1
1 ab
0 b

 (I,0){Oi}

 1 ab
0 1
0 b

.

Let α = (0,b)

(
1 ab
0 1

)−1

.

Let G =

(
I 0
α 1

)
,

then (I,0){Oi}

 1 ab
0 1
0 b

= (I,0){Oi}G−1

 1 ab
0 1
0 0

 (I,0)G−1{Oi}

(
I
0

)(
1 ab
0 1

)
= (I,0){Oi}

(
I
0

)(
1 ab
0 1

)
.

5 Dynamic Fencing

Let ({Bi,b : 1 ≤ i ≤ l}, inp) be a branching program, where Bi,b is of dimension di−1× di;
{Ui} be a fixed random fence. Let x = (x1, · · · ,xn) denote the input. We wish using a fence
{Gi,xUi} to evaluate the circuit with this input, where Gi,x is independently random relative
to its use in circuit evaluation for different inputs. In the following we will give a method to
approximate this.

Let {Gi, j,b : 0 ≤ i ≤ l,1 ≤ j ≤ n,b = 0,1} be a set of private random invertible matrices
of suitable dimensions, our intended Gi,x will be ∏ j Gi, j,x j . We need the following additonal
random data:

• {Ai,b ∈ GLdi(F2) : 1≤ i≤ l,b = 0,1}

• {Ai, j,1,b ∈ GLdi(F2) : 1≤ i≤ l, inp(i) < j ≤ n,b = 0,1}

5

• {Ai, j,2,b ∈ GLdi−1(F2) : 1≤ i≤ l,1≤ j ≤ n,b = 0,1}

• {Bi ∈Mdi−1,di(F2) : 1≤ i≤ l}

• {Ui, j ∈ GL2di−1+di(F2) : 1≤ i≤ l,−n≤ j < 0}

• {Ui, j ∈ GLdi−1+2di(F2) : 1≤ i≤ l,0≤ j < n}

The dynamic fencing of ({Bi,b}, inp) will be DF({Bi,b}, inp) =∨1≤i≤lBi, where Bi = {Bi, j,b :
−n≤ j ≤ n,b = 0,1}:

• Bi,−n,b = U−1
i−1(Bi, I, I)

 A−1
i,n,1,b

A−1
i,n,2,b

G−1
i−1,n,b

Ui,−n

if inp(i) 6= n; otherwise Bi,−n,b = U−1
i−1(Bi, I, I) A−1

i,n,1,bA−1
i,b

A−1
i,n,2,b

G−1
i−1,n,b

Ui,−n

• for inp(i) < j < n, Bi,− j,b = U−1
i,− j−1

 A−1
i, j,1,b

A−1
i, j,2,b

G−1
i−1, j,b

Ui,− j

• for j = inp(i), Bi,− j,b = U−1
i,− j−1

 A−1
i, j,1,bA−1

i,b
A−1

i, j,2,b
G−1

i−1, j,b

Ui,− j

• for 0 < j < inp(i), Bi,− j,b = U−1
i,− j−1

 I
A−1

i, j,2,b
G−1

i−1, j,b

Ui,− j

• Bi,0,b = U−1
i,−1

 Ai,b
I

Bi,b

Ui,0

• for 0 < j < inp(i), Bi, j,b = U−1
i, j−1

 I
Ai, j,2,b

Gi, j,b

Ui, j

• for inp(i)≤ j < n, Bi, j,b = U−1
i, j−1

 Ai, j,1,b
Ai, j,2,b

Gi, j,b

Ui, j

• Bi,n,b = U−1
i,n−1

 Ai,n,1,b
Ai,n,2,b

Gi,n,b

 I
Bi
I

Ui

6

Lemma 5.1 Bi can be used to obtain (Gi−1,xUi−1)−1Bi,xinp(i)Gi,xUi

Proof The wanted is just

(∏
1≤ j≤n

Bi,− j,x j)Bi,0,xinp(i)(∏
1≤ j≤n

Bi, j,x j) =U−1
i−1(Bi, I, I)

 I
I

(Gi−1,x)
−1Bi,xinp(i)Gi,x

×
 I

Bi
I

Ui

It can be seen from this computation that, if the adversary deviates from the computation
as the lemma, he will get a messed encoding at the middle term: G−1

i−1,xBi,biGi,x′+BiJ1 +J2Bi,
where J1,J2 are not all identity. This kind of messed information seems to be hard to exploit
for meaningful computation. This means that the encoding of Bi,b is bound to the input
variable xinp(i), which means that any kind of interleaved computation will result inconsistent
encodings, thus hard to derive useful information. These observations seem to support the
following conjecture:

Conjecture 5.2 DF({Bi,b}, inp) is computationally equivalent to dynamic fencing
{KR({Bi,xinp(i)},{Ui,x}) : x ∈ Fn

2 }
as long as min{di} ≥ O(λ) (i.e. All groups GLdi(F2) are complex enough.)

6 The Obfuscation Scheme

Let C(x1,x2, · · · ,xn) be an NC1 circuit of n input variables. Let (BP, inp) be the regular
branching program of C constructed as previous. Let B̃P = Augλ(BP). Let α,β be a random
pair of vectors such that

α

 I (
1 v
0 1

) β = v

. Then the obfuscation of C is just DF(αB̃Pβ, inp).

Lemma 6.1 The scheme has perfect completeness.

Proof Given DF(αB̃Pβ, inp), let αB̃Pβ = { ˜Bi,b}. For input x we can compute KR(α ˜Bi,xinp(i)β.

Gi,x,Ui) whose product value is same as that of α ˜Bi,xinp(i)β, which is C(x1,x2, · · · ,xn) .

Lemma 6.2 Assuming the conjecture, the scheme achieves VBB security.

Proof Assuming the conjecture, it only needs to prove that the circuit evaluation is simu-
latable for single input x = (x1, · · · ,xn). Let v = C(x),

then KR of α{ ˜Bi,xinp(i)}β can be simulated as KR of α

 I (
1 v
0 1

) {Oi}β.

7

Even the conjecture is false, it is still possible that the scheme achieves indistinguishability
security, we conjecture that this is the case.

For keyed circuits, i.e. the first k input variables are key bits, we can make the branching
program slightly shorter. On constructing the BP for all variables, we place the input vari-
ables left-first; then we multiply the matrices belonging to key bits to the left. This results
in a branching program where each matrix contains information about key bits. When doing
dynamic fencing, it should be noted that rank(Bi,0−Bi,1) may disclose key information. This
can be avoided by choosing Ai,b such that rank(Bi,0−Bi,1) + rank(Ai,0−Ai,1) is independent
of key.

Finally, the complexity of the scheme is obviously bounded by O(n(d +λ)2|C|), where |C|
is the circuit size, d is the algebraic degree of the circuit.

7 Conclusion

We provide the construction of an efficient obfuscation scheme whose complexity is bounded
by O(n(d +λ)2|C|). A unique characteristic of the scheme is that it does not use multilinear
maps. Nevertheless, the scheme relies on a new conjecture to achieve indistinguishability
security. How to prove or disprove the conjecture is an open problem yet to be investigated.

References

[1] Prabhanjan Aanauth, Divya Gupta, Yuval Ishai, and Amit Sahai. Optimizing
obfuscation: Avoiding barrington’s theorem. Cryptology ePrint archive, 2014.
http://eprint.iacr.org/.

[2] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, A. S. Salil, P. vadahan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[3] Dan Boneh, Sanjam Grag, Amit Sahai, and Mark Zhandry. Differing inputs obfuscation
and applications. Cryptology ePrint archive, 2013. http://eprint.iacr.org/, 2013/689.

[4] Sanjam Gary, Craig Gentry, Shai Halevi, Marianna Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[5] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, 1988.

[6] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. In STOC, 2014.

[7] Amit Sahai and Mark Zhandry. Obfuscating low rank matrix branching programs. Cryp-
tology ePrint archive, 2014. http://eprint.iacr.org/.

[8] Joe Zimmerman. How to obfuscate programs directly. In STOC, 2014.

8

