
Reverse-Engineering the S-Box of Streebog,
Kuznyechik and STRIBOBr1

(Full Version)⋆

Alex Biryukov1, Léo Perrin2, and Aleksei Udovenko3

1 alex.biryukov@uni.lu, University of Luxembourg
2 leo.perrin@uni.lu, SnT,University of Luxembourg

3 aleksei.udovenko@uni.lu, SnT,University of Luxembourg

Abstract. The Russian Federation’s standardization agency has recently
published a hash function called Streebog and a 128-bit block cipher
called Kuznyechik. Both of these algorithms use the same 8-bit S-Box
but its design rationale was never made public.
In this paper, we reverse-engineer this S-Box and reveal its hidden struc-
ture. It is based on a sort of 2-round Feistel Network where exclusive-or
is replaced by a finite field multiplication. This structure is hidden by
two different linear layers applied before and after. In total, five differ-
ent 4-bit S-Boxes, a multiplexer, two 8-bit linear permutations and two
finite field multiplications in a field of size 24 are needed to compute the
S-Box.
The knowledge of this decomposition allows a much more efficient hard-
ware implementation by dividing the area and the delay by 2.5 and 8
respectively. However, the small 4-bit S-Boxes do not have very good
cryptographic properties. In fact, one of them has a probability 1 differ-
ential.
We then generalize the method we used to partially recover the linear
layers used to whiten the core of this S-Box and illustrate it with a
generic decomposition attack against 4-round Feistel Networks whitened
with unknown linear layers. Our attack exploits a particular pattern
arising in the Linear Approximations Table of such functions.

Keywords: Reverse-Engineering, S-Box, Streebog, Kuznyechik, STRI-
BOBr1, White-Box, Linear Approximation Table, Feistel Network

1 Introduction

S-Boxes are key components of many symmetric cryptographic primitives includ-
ing block ciphers and hash functions. Their use allows elegant security arguments

⋆ Full version of the paper published in the proceedings of EuroCrypt 2016 (c○IACR
2016). The work of Léo Perrin is supported by the CORE ACRYPT project (ID
C12-15-4009992) funded by the Fonds National de la Recherche (Luxembourg). The
work of Aleksei Udovenko is supported by the Fonds National de la Recherche,
Luxembourg (project reference 9037104)

based on the so-called wide-trail strategy [1] to justify that the primitive is se-
cure against some of the best known attacks, e.g. differential [2] and linear [3,4]
cryptanalysis.

Given the importance of their role, S-Boxes are carefully chosen and the
criteria or algorithm used to build them are explained and justified by the de-
signers of new algorithms. For example, since the seminal work of Nyberg on
this topic [5], the inverse function in the finite field of size 2𝑛 is often used (see
the Advanced Encryption Standard [1], TWINE [6]...).

However, some algorithms are designed secretly and, thus, do not justify their
design choices. Notable such instances are the primitives designed by the Amer-
ican National Security Agency (NSA) or standardized by the Russian Federal
Agency on Technical Regulation and Metrology (FATRM). While the NSA even-
tually released some information about the design of the S-Boxes of the Data
Encryption Standard [7,8], the criteria they used to pick the S-Box of Skip-
jack [9] remain mostly unknown despite some recent advances on the topic [10].
Similarly, recent algorithms standardized by FATRM share the same function 𝜋,
an unexplained 8-bit S-Box. These algorithms are:

Streebog (officially called “GOST R 34.11-2012”, sometimes spelled Stribog)
is the new standard hash function for the Russian Federation [11]. Several
cryptanalyses against this algorithm have been published. A second pre-
image attack requiring 2266 calls to the compression function instead of the
expected 2512 has been found by Guo et al. [12]. Another attack [13] tar-
gets a modified version of the algorithm where only the round constants are
modified: for some new round constants, it is actually possible to find colli-
sions for the hash function. To show that the constants were not chosen with
malicious intentions, the designers published a note [14] describing how they
were derived from a modified version of the hash function. While puzzling
at a first glance, the seeds actually correspond to Russian names written
backward (see Appendix A).

Kuznyechik (officially called “GOST R 34.12-2015”; sometimes the spelling
“Kuznechik” is used instead) is the new standard block cipher for the Rus-
sian Federation. It was first mentioned in [15] and is now available at [16].
It is a 128-bit block cipher with a 256-bit key consisting of 9 rounds of a
Substitution-Permutation Network where the linear layer is a matrix multi-
plication in (F28)16 and the S-Box layer consists in the parallel application
of an 8-bit S-Box. The best attack so far is a Meet-in-the-Middle attack cov-
ering 5 rounds [17]. It should not be mistaken with GOST 28147-89 [18], a
64-bit block cipher standardized in 1989 and which is sometimes referred to
as “the GOST cipher” in the literature and “Magma” in the latest Russian
documents.

STRIBOB [19] is a CAESAR candidate which made it to the second round of
the competition. The designer of this algorithm is not related to the Russian

2

agencies. Still, the submission for the first round (stribobr1) is based on
Streebog.4

The Russian agency acting among other things as a counterpart of the Amer-
ican NSA is the Federal Security Service (FSB). It was officially involved in the
design of Streebog. Interestingly, in a presentation given at RusCrypto’13 [23] by
Shishkin on behalf of the FSB, some information about the design process of the
S-Box is given: it is supposed not to have an analytic structure — even if that
means not having optimal cryptographic properties unlike e.g. the S-Box of the
AES [1] — and to minimize the number of operations necessary to compute it
so as to optimize hardware and vectorized software implementations. However,
the designers did not publish any more details about the rationale behind their
choice for 𝜋 and, as a consequence, very little is known about it apart from its
look-up table, which we give in Table 1. In [20], Saarinen et al. summarize a
discussion they had with some of the designers of the GOST algorithms at a
conference in Moscow:

We had brief informal discussions with some members of the Streebog
and Kuznyechik design team at the CTCrypt’14 workshop (05-06 June
2014, Moscow RU). Their recollection was that the aim was to choose
a “randomized” S-Box that meets the basic differential, linear, and al-
gebraic requirements. Randomization using various building blocks was
simply iterated until a “good enough” permutation was found. This was
seen as an effective countermeasure against yet-unknown attacks [as well
as algebraic attacks].

Since we know little to nothing about the design of this S-Box, it is natural
to try and gather as much information as we can from its look-up table. In
fact, the reverse-engineering of algorithms with unknown design criteria is not a
new research area. We can mention for example the work of the community on
the American National Security Agency’s block cipher Skipjack [9] both before
and after its release [24,25,26]. More recently, Biryukov et al. proved that its
S-Box was not selected from a collection of random S-Boxes and was actually
the product of an algorithm that optimized its linear properties [10].

Another recent example of reverse-engineering actually deals with Streebog.
The linear layer of the permutation used to build its compression function was
originally given as a binary matrix. However, it was shown in [27] that it corre-
sponds to a matrix multiplication in (F28)8.

More generally, the task of reverse-engineering S-Boxes is related to finding
generic attacks against high-level constructions. For instance, the cryptanalysis
of SASAS [28], the recent attacks against the ASASA scheme [29,30] and the
recovery of the secret Feistel functions for 5-, 6- and 7-round Feistel proposed

4 The version submitted to the next round, referred to as “stribobr2” and
“whirlbob” [20], uses the S-Box of the Whirlpool hash function [21] whose de-
sign criteria and structure are public. In fact, the secrecy surrounding the S-Box of
Streebog was part of the motivation behind this change [22].

3

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f
0. fc ee dd 11 cf 6e 31 16 fb c4 fa da 23 c5 04 4d
1. e9 77 f0 db 93 2e 99 ba 17 36 f1 bb 14 cd 5f c1
2. f9 18 65 5a e2 5c ef 21 81 1c 3c 42 8b 01 8e 4f
3. 05 84 02 ae e3 6a 8f a0 06 0b ed 98 7f d4 d3 1f
4. eb 34 2c 51 ea c8 48 ab f2 2a 68 a2 fd 3a ce cc
5. b5 70 0e 56 08 0c 76 12 bf 72 13 47 9c b7 5d 87
6. 15 a1 96 29 10 7b 9a c7 f3 91 78 6f 9d 9e b2 b1
7. 32 75 19 3d ff 35 8a 7e 6d 54 c6 80 c3 bd 0d 57
8. df f5 24 a9 3e a8 43 c9 d7 79 d6 f6 7c 22 b9 03
9. e0 0f ec de 7a 94 b0 bc dc e8 28 50 4e 33 0a 4a
a. a7 97 60 73 1e 00 62 44 1a b8 38 82 64 9f 26 41
b. ad 45 46 92 27 5e 55 2f 8c a3 a5 7d 69 d5 95 3b
c. 07 58 b3 40 86 ac 1d f7 30 37 6b e4 88 d9 e7 89
d. e1 1b 83 49 4c 3f f8 fe 8d 53 aa 90 ca d8 85 61
e. 20 71 67 a4 2d 2b 09 5b cb 9b 25 d0 be e5 6c 52
f. 59 a6 74 d2 e6 f4 b4 c0 d1 66 af c2 39 4b 63 b6

Table 1: The S-Box 𝜋 in hexadecimal. For example, 𝜋(0x7a) = 0xc6.

in [31] can also be interpreted as methods to reverse-engineer S-Boxes built using
such structures.

Our Contribution We managed to reverse-engineer the hidden structure of this
S-Box. A simplified high level view is given in Figure 1. It relies on two rounds
reminiscent of a Feistel or Misty-like structure where the output of the Feistel
function is combined with the other branch using a finite field multiplication. In
each round, a different heuristic is used to prevent issues caused by multiplication
by 0. This structure is hidden by two different whitening linear layers applied
before and after it.

ℒ

𝒩
𝒩 ⊙

𝒩
𝒩⊙
ℒ

Fig. 1: A simplified view of our decomposition of 𝜋. Linear (resp. non linear)
functions are denoted ℒ (resp. 𝒩) and ⊙ is a finite field multiplication.

With the exception of the inverse function which is used once, none of the
components of this decomposition exhibits particularly good cryptographic prop-
erties. In fact, one of the non-linear 4-bit permutations used has a probability 1
differential.

4

Our recovery of the structure of 𝜋 relies on spotting visual patterns in its LAT
and exploiting those. We generalize this method and show how visual patterns in
the LAT of 4-round Feistel Networks can be exploited to decompose a so-called
AF4A structure consisting in a 4-round Feistel Network whitened with affine
layers.

Outline Section 2 introduces the definitions we need and describes how a statis-
tical analysis of 𝜋 rules out its randomness. Then, Section 3 explains the steps we
used to reverse-engineer the S-Box starting from a picture derived from its linear
properties and ending with a full specification of its secret structure. Section 4 is
our analysis of the components used by GOST to build this S-Box. Finally, Sec-
tion 5 describes a generic recovery attack against permutations affine-equivalent
to 4-round Feistel Networks with secret components.

2 Boolean Functions and Randomness

2.1 Definitions and Notations

Definition 1. We denote as F𝑝 the finite field of size 𝑝. A vectorial Boolean
function is a function mapping F𝑛

2 to F𝑚
2 . We call Boolean permutation a per-

mutation of F𝑛
2 .

In what follows, we shall use the following operations and notations:

– exclusive-OR (or XOR) is denoted ⊕,
– logical AND is denoted ∧,
– the scalar product of two elements 𝑥 = (𝑥𝑛−1, ..., 𝑥0) and 𝑦 = (𝑦𝑛−1, ..., 𝑦0)

of F𝑛
2 is denoted “·” and is equal to to 𝑥 · 𝑦 =

⨁︀𝑛−1
𝑖=0 𝑥𝑖 ∧ 𝑦𝑖, and

– finite field multiplication is denoted ⊙.

The following tables are key tools to predict the resilience of an S-Box against
linear and differential attacks.

DDT the Difference Distribution Table of a function 𝑓 mapping 𝑛 bits to 𝑚 is
a 2𝑛 × 2𝑚 matrix 𝒯 where 𝒯 [𝛿,𝛥] = #{𝑥 ∈ F𝑛

2 , 𝑓(𝑥⊕ 𝛿) ⊕ 𝑓(𝑥) = 𝛥},
LAT the Linear Approximation Table of a function 𝑓 mapping 𝑛 bits to 𝑚 is

a 2𝑛 × 2𝑚 matrix ℒ where ℒ[𝑎, 𝑏] = #{𝑥 ∈ F𝑛
2 , 𝑎 · 𝑥 = 𝑏 · 𝑓(𝑥)} − 2𝑛−1. We

note that coefficient ℒ[𝑎, 𝑏] can equivalently be expressed as follows:

ℒ[𝑎, 𝑏] =
−1

2

∑︁
𝑥∈F𝑛

2

(−1)𝑎·𝑥⊕𝑏·𝑓(𝑥),

where the sum corresponds to the so-called Walsh transform of 𝑥 ↦→ (−1)𝑏·𝑓(𝑥).

Furthermore, the coefficient 𝒯 [𝛿,𝛥] of a DDT 𝒯 is called cardinal of the dif-
ferential (𝛿 𝛥) and the coefficient ℒ[𝑎, 𝑏] of a LAT ℒ is called bias of the
approximation (𝑎 𝑏).

5

From a designer’s perspective, it is better to keep both the differential cardi-
nals and the approximation biases low. For instance, the maximum cardinal of
a differential is called the differential uniformity [5] and is chosen to be small in
many primitives including the AES [1]. Such a strategy decreases the individual
probability of all differential and linear trails.

Our analysis also requires some specific notations regarding linear functions
mapping F𝑛

2 to F𝑚
2 . Any such linear function can be represented by a matrix

of elements in F2. For the sake of simplicity, we denote 𝑀 𝑡 the transpose of a
matrix 𝑀 and 𝑓 𝑡 the linear function obtained from the transpose of the matrix
representation of the linear function 𝑓 .

Finally, we recall the following definition.

Definition 2 (Affine-Equivalence). Two vectorial Boolean functions 𝑓 and
𝑔 are affine-equivalent if there exist two affine mappings 𝜇 and 𝜂 such that 𝑓 =
𝜂 ∘ 𝑔 ∘ 𝜇.

2.2 Quantifying Non-Randomness

In [10], Biryukov et al. proposed a general approach to try to reverse-engineer
an S-Box suspected of having a hidden structure or of being built using secret
design criteria. Part of their method allows a cryptanalyst to find out whether
or not the S-Box could have been generated at random. It consists in checking
if the distributions of the coefficients in both the DDT and the LAT are as it
would be expected in the case of a random permutation.

The probability that all coefficients in the DDT of a random 8-bit permuta-
tion are at most equal to 8 and that this value occurs at most 25 times (as is
the case for Streebog) is given by:

𝑃 [max(𝑑) = 8 and 𝑁(8) ≤ 25] =

25∑︁
ℓ=0

(︂
2552

ℓ

)︂
·
[︁ 3∑︁
𝑑=0

𝒟(2𝑑)
]︁2552−ℓ

· 𝒟(8)ℓ,

where 𝒟(𝑑) is the probability that a coefficient of the DDT of a random permu-
tation of F8

2 is equal to 𝑑. It is given in [32] and is equal to

𝒟(𝑑) =
𝑒−1/2

2𝑑/2(𝑑/2)!
.

We find that 𝑃 [max(𝑑) = 8 and 𝑁(8) ≤ 25] ≈ 2−82.69. Therefore, we claim
for 𝜋 what Biryukov and Perrin claimed for the “F-Table” of Skipjack, namely
that:

1. this S-Box was not picked uniformly at random from the set of the permu-
tations of F8

2,
2. this S-Box was not generated by first picking many S-Boxes uniformly at

random and then keeping the best according to some criteria, and
3. whatever algorithm was used to build it optimized the differential properties

of the result.

6

3 Reverse-Engineering 𝜋

We used the algorithm described in [10] to try and recover possible structures
for the S-Box. It has an even signature, meaning that it could be a Substitution-
Permutation Network with simple bit permutations or a Feistel Network. How-
ever, the SASAS [28] attack and the SAT-based recovery attack against 3- ,4-
and 5-round Feistel (both using exclusive-or and modular addition) from [10]
failed. We also discarded the idea that 𝜋 is affine-equivalent to a monomial of
F28 using the following remark.

Remark 1. If 𝑓 is affine-equivalent to a monomial, then every line of its DDT
corresponding to a non-zero input difference contains the same coefficients (al-
though usually in a different order).

This observation is an immediate consequence of the definition of the differential
spectrum of monomials in [33]. For example, every line of the DDT of the S-Box
of the AES, which is affine-equivalent to 𝑥 ↦→ 𝑥−1, contains exactly 129 zeroes,
126 twos and 1 four.

3.1 From a Vague Pattern to a Highly Structured Affine-Equivalent
S-Box

It is also suggested in [10] to look at the so-called “Jackson Pollock represen-
tation” of the DDT and LAT of an unknown S-Box. These are obtained by
assigning a color to each possible coefficient and drawing the table using one
pixel per coefficient. The result for the absolute value of the coefficients of the
LAT of 𝜋 is given in Figure 2. While it may be hard to see on paper, blurry
vertical lines appear when looking at a large enough version of this picture. In
order to better see this pattern, we introduce the so-called ⊕-texture. It is a kind
of auto-correlation.

Definition 3. We call ⊕-texture of the LAT ℒ of an S-Box the matrix 𝒯 ⊕ with
coefficients 𝒯 ⊕[𝑖, 𝑗] defined as:

𝒯 ⊕[𝑖, 𝑗] = #
{︀

(𝑥, 𝑦), |ℒ[𝑥⊕ 𝑖, 𝑦 ⊕ 𝑗]| = |ℒ[𝑥, 𝑦]|
}︀
.

The Jackson Pollock representation of the ⊕-texture of the LAT ℒ𝜋 of 𝜋
is given in Figure 3. The lines are now much more obvious and, furthermore,
we observe dark dots in the very first column. The indices of both the rows
containing the black dots and the columns containing the lines are the same and
correspond to a binary vector space 𝒱 defined, using hexadecimal notations, as:

𝒱 = {00, 1𝑎, 20, 3𝑎, 44, 5𝑒, 64, 7𝑒, 8𝑎, 90, 𝑎𝑎, 𝑏0, 𝑐𝑒, 𝑑4, 𝑒𝑒, 𝑓4}.

In order to cluster the columns together to the left of the picture and the
dark dots to the top of it, we can apply a linear mapping 𝐿 to obtain a new
table ℒ′

𝜋 where ℒ′
𝜋[𝑖, 𝑗] = ℒ𝜋[𝐿(𝑖), 𝐿(𝑗)]. We define 𝐿 so that it maps 𝑖 ∈ F4

2 to

7

Fig. 2: The Jackson Pollock representation of the LAT of 𝜋 (absolute value).

the 𝑖-th element of 𝒱 and then complete it in a natural way to obtain a linear
permutation of F8

2. It maps each bit as described below in hexadecimal notations:

𝐿(01) = 1𝑎, 𝐿(02) = 20, 𝐿(04) = 44, 𝐿(08) = 8𝑎,

𝐿(10) = 01, 𝐿(20) = 02, 𝐿(40) = 04, 𝐿(80) = 08.

The Jackson Pollock representation of ℒ′
𝜋 is given in Figure 4. As we can

see, it is highly structured: there is a 16×16 square containing5 only coefficients
equal to 0 in the top left corner. Furthermore, the left-most 15 bits to the right of
column 0, exhibit a strange pattern: each of the coefficients in it has an absolute
value in [4, 12] although the maximum coefficient in the table is equal to 28.
This forms a sort of low-contrast “stripe”. The low number of different values
it contains implies a low number of colour in the corresponding columns in ℒ𝜋,
which in turn correspond to the lines we were able to distinguish in Figure 2.

It is natural to try and build another S-Box from 𝜋 such that its LAT is equal
to ℒ′

𝜋. The remainder of this section describes how we achieved this. First, we
describe a particular case6 of Proposition 8.3 of [34] in the following lemma.

Lemma 1 (Proposition 8.3 of [34]). Let 𝑓 be a permutation mapping 𝑛 bits
to 𝑛 and let ℒ be its LAT. Let ℒ′ be a table defined by ℒ′[𝑢, 𝑣] = ℒ[𝜇(𝑢), 𝑣] for
some linear permutation 𝜇. Then the function 𝑓 ′ has LAT ℒ′, where

𝑓 ′ = 𝑓 ∘ (𝜇−1)𝑡.

5 Except of course in position (0, 0) where the bias is equal to the maximum of 128.
6 It is obtained by setting 𝑏 = 𝑏0 = 𝑎 = 0 in the statement of the original proposition
and renaming the functions used.

8

Fig. 3: The ⊕-texture of the LAT ℒ𝜋 of 𝜋.

We also note that for a permutation 𝑓 , the change of variable 𝑦 = 𝑓(𝑥) implies:∑︁
𝑥∈F𝑛

2

(−1)𝑎·𝑥⊕𝑏·𝑓(𝑥) =
∑︁
𝑦∈F𝑛

2

(−1)𝑎·𝑓
−1(𝑦)⊕𝑏·𝑦,

which in turn implies the following observation regarding the LAT of a permu-
tation and its inverse.

Remark 2. Let 𝑓 be a permutation mapping 𝑛 bits to 𝑛 and let ℒ be its LAT.
Then the LAT of its inverse 𝑓−1 is ℒ𝑡.

We can prove the following theorem using this remark and Lemma 1.

Theorem 1. Let 𝑓 be a permutation mapping 𝑛 bits to 𝑛 and let ℒ be its LAT.
Let ℒ′ be a table defined by ℒ′[𝑢, 𝑣] = ℒ[𝜇(𝑢), 𝜂(𝑣)] for some linear permutations
𝜇 and 𝜂. Then the function 𝑓 ′ has LAT ℒ′, where

𝑓 ′ = 𝜂𝑡 ∘ 𝑓 ∘ (𝜇−1)𝑡.

Proof. Let 𝑓 be a permutation of 𝑛 bits and let ℒ be its LAT. We first build
𝑓𝜇 = 𝑓 ∘ (𝜇−1)𝑡 using Lemma 1 so that the LAT of 𝑓𝜇 is ℒ𝜇 with ℒ𝜇[𝑢, 𝑣] =
ℒ[𝜇(𝑢), 𝑣]. We then use Remark 2 to note that the inverse of 𝑓𝜇 has LAT ℒinv

𝜇

with ℒinv
𝜇 [𝑢, 𝑣] = ℒ𝜇[𝑣, 𝑢] = ℒ[𝑣, 𝜇(𝑢)]. Thus, 𝑓𝜂 = 𝑓−1

𝜇 ∘ (𝜂−1)𝑡 has LAT ℒ𝜂

with ℒ𝜂[𝑢, 𝑣] = ℒ[𝜂(𝑣), 𝜇(𝑢)]. Using again Remark 2, we obtain that 𝑓−1
𝜂 =

𝜂𝑡 ∘ 𝑓 ∘ (𝜇−1)𝑡 has LAT ℒ′. ⊓⊔

As a consequence of Theorem 1, the S-Box 𝐿𝑡 ∘𝜋 ∘ (𝐿𝑡)−1 has ℒ′
𝜋 as its LAT.

The mapping 𝐿𝑡 consists in a linear Feistel round followed by a permutation of

9

Fig. 4: The Jackson Pollock representation of ℒ′
𝜋, where ℒ′

𝜋[𝑖, 𝑗] = ℒ𝜋[𝐿(𝑖), 𝐿(𝑗)].

the left and right 4-bit nibbles (which we denote swapNibbles). To simplify the
modifications we make, we remove the nibble permutation and define

𝜋′ = 𝐿* ∘ 𝜋 ∘ 𝐿*

where 𝐿* is the Feistel round in 𝐿𝑡 and is described in Figure 5.

𝑥7 𝑥6 𝑥5 𝑥4 𝑥3 𝑥2 𝑥1 𝑥0

⊕
⊕

⊕
⊕
⊕

Fig. 5: A circuit computing 𝐿* where its input is given in binary.

3.2 The First Decomposition

This affine-equivalent S-Box 𝜋′ is highly structured. First of all, the LAT of(︀
swapNibbles ∘ 𝜋′ ∘ swapNibbles

)︀
is ℒ′

𝜋, with its white square in the top left and
strange left side. It also has interesting multiset properties. We use notations
similar to those in [28], i.e.:

𝐶 denotes a 4-bit nibble which is constant,
? denotes a set with no particular structure, and

10

𝑃 denotes a 4-bit nibble taking all 16 values.

Table 2 summarizes the multiset properties of 𝜋′ and 𝜋′−1. As we can see, these
are similar to those of a 3-rounds Feistel. However, using the SAT-based algo-
rithm from [10], we ruled out this possibility.

𝜋′ input output

(𝑃,𝐶) (?, ?)

(𝐶,𝑃) (𝑃, ?)

𝜋′−1 input output

(𝑃,𝐶) (?, ?)

(𝐶,𝑃) (𝑃, ?)

Table 2: The multiset properties of 𝜋′ and its inverse.

When looking at the inverse of 𝜋′, we notice that the multiset property is
actually even stronger. Indeed, for any constant ℓ, the set 𝒮ℓ = {𝜋′−1(ℓ||𝑟),∀𝑟 ∈
[0, 15]} is almost a vector space. If we replace the unique element of 𝒮ℓ of the
form (?||0) by (0||0), the set obtained is a vector space 𝑉ℓ where the right nibble
is a linear function of the left nibble. As stated before, the left nibble takes all
possible values. If we put aside the outputs of the form (?||0) then 𝜋′−1 can be
seen as

𝜋′−1(ℓ||𝑟) = 𝑇ℓ(𝑟)||𝑉ℓ
(︀
𝑇ℓ(𝑟)

)︀
,

In this decomposition, 𝑇 is a 4-bit block cipher with a 4-bit key where the left
input of 𝜋′−1 acts as a key. On the other hand, 𝑉 is a keyed linear function: for
all ℓ, 𝑉ℓ is a linear function mapping 4 bits to 4 bits.

We then complete this alternative representation by replacing 𝑉ℓ(0), which
should be equal to 0, by the left side of 𝜋′−1(ℓ||𝑇−1

ℓ (0)). This allows to find a
high level decomposition of 𝜋′−1.

Finally, we define a new keyed function 𝑈𝑟(ℓ) = 𝑉ℓ(𝑟) and notice that, for all
𝑟, 𝑈𝑟 is a permutation. A decomposition of 𝜋′−1 is thus:

𝜋′−1(ℓ||𝑟) = 𝑇ℓ(𝑟)||𝑈𝑇ℓ(𝑟)(ℓ),

where the full codebooks of both mini-block ciphers 𝑇 and 𝑈 are given in Ta-
bles 3a and 3b respectively. This structure is summarized in Figure 6.

𝑇

𝑈

Fig. 6: The high level structure of 𝜋′−1.

We decompose the mini-block ciphers 𝑇 and 𝑈 themselves in Section 3.3 and
Section 3.4 respectively.

11

0 1 2 3 4 5 6 7 8 9 a b c d e f
𝑇0 e f 2 5 7 b 8 1 3 c d a 0 9 4 6
𝑇1 2 9 a 4 e 6 7 b 1 8 3 d 0 c f 5
𝑇2 e f 2 5 7 b 8 1 3 c d a 0 9 4 6
𝑇3 5 d 4 2 6 7 b 8 c 1 9 f 0 3 a e
𝑇4 5 e 6 7 4 3 f a 0 1 d 2 8 b c 9
𝑇5 9 d f a c 6 8 1 0 5 b 3 2 4 e 7
𝑇6 3 9 d f 1 e b 8 0 2 7 c 4 a 5 6
𝑇7 5 e 6 7 4 3 f a 0 1 d 2 8 b c 9
𝑇8 7 b 8 5 9 d c 3 2 e a f 6 1 0 4
𝑇9 d f a c e 6 2 5 1 3 b 7 9 4 0 8
𝑇𝑎 e 6 7 4 c 3 8 1 a 2 d 9 5 b 0 f
𝑇𝑏 4 2 5 d b 8 6 7 9 f c 1 a e 0 3
𝑇𝑐 2 5 a 4 3 9 d 8 c f 0 7 b 1 6 e
𝑇𝑑 e 6 2 5 d f a c 9 4 0 8 1 3 b 7
𝑇𝑒 9 d c 3 7 b 8 5 6 1 0 4 2 e a f
𝑇𝑓 8 1 7 b 2 5 e f 4 6 0 9 d a 3 c

(a) 𝑇 .

0 1 2 3 4 5 6 7 8 9 a b c d e f
𝑈0 8 f 0 2 d 5 6 9 e 3 1 7 c b 4 a
𝑈1 8 c 7 3 d f 2 0 e 4 1 b 6 5 9 a
𝑈2 3 4 e 9 d 8 0 5 1 2 c f 7 b a 6
𝑈3 b 8 9 a 0 7 2 5 f 6 d 4 1 e 3 c
𝑈4 c 2 5 b e 8 7 1 4 f d 6 9 3 0 a
𝑈5 4 e 2 8 3 7 5 1 a b c d f 6 9 0
𝑈6 f 6 b 2 3 0 7 4 5 d 1 9 e 8 a c
𝑈7 7 a c 1 e f 5 4 b 9 0 2 8 d 3 6
𝑈8 a f b e c 4 d 5 7 0 6 1 8 3 9 2
𝑈9 2 3 c d 1 b f 5 9 4 7 a e 6 0 8
𝑈𝑎 9 b 5 7 1 c d 0 6 2 a e f 8 3 4
𝑈𝑏 1 7 2 4 c 3 f 0 8 6 b 5 9 d a e
𝑈𝑐 6 d e 5 2 c a 4 3 f b 7 1 0 9 8
𝑈𝑑 e 1 9 6 f 3 8 4 d b a c 7 5 0 2
𝑈𝑒 5 9 0 c f 4 a 1 2 d 7 8 6 b 3 e
𝑈𝑓 d 5 7 f 2 b 8 1 c 9 6 3 0 e a 4

(b) 𝑈 .

Table 3: The mini-block ciphers used to decompose 𝜋′−1.

3.3 Reverse-Engineering 𝑇

We note that the mini-block cipher 𝑇 ′ defined as 𝑇 ′
𝑘 : 𝑥 ↦→ 𝑇𝑘

(︀
𝑥⊕ 𝑡in(𝑘)⊕ 0𝑥𝐶

)︀
for 𝑡in(𝑘) = 0||𝑘2||𝑘3||0 (see Table 4) is such that 𝑇 ′

𝑘(0) = 0 for all 𝑘.

0 1 2 3 4 5 6 7 8 9 a b c d e f

6 0 2 7 c 4 a 5 6 3 9 d f 1 e b 8
7 0 1 d 2 8 b c 9 5 e 6 7 4 3 f a
8 0 4 6 1 a f 2 e c 3 9 d 8 5 7 b
9 0 8 9 4 b 7 1 3 2 5 e 6 a c d f

0 0 9 4 6 3 c d a 7 b 8 1 e f 2 5
1 0 c f 5 1 8 3 d e 6 7 b 2 9 a 4
2 0 9 4 6 3 c d a 7 b 8 1 e f 2 5
3 0 3 a e c 1 9 f 6 7 b 8 5 d 4 2
4 0 1 d 2 8 b c 9 5 e 6 7 4 3 f a
5 0 5 b 3 2 4 e 7 9 d f a c 6 8 1
a 0 f 5 b d 9 a 2 8 1 c 3 7 4 e 6
b 0 3 a e c 1 9 f 6 7 b 8 5 d 4 2
c 0 7 c f 6 e b 1 a 4 2 5 d 8 3 9
d 0 8 9 4 b 7 1 3 2 5 e 6 a c d f
e 0 4 6 1 a f 2 e c 3 9 d 8 5 7 b
f 0 9 4 6 3 c d a 7 b 8 1 e f 2 5

Table 4: A modified version 𝑇 ′ of the mini-block cipher 𝑇 .

12

Furthermore, 𝑇 ′ is such that all lines of 𝑇 ′
𝑘 can be obtained through a linear

combination of 𝑇 ′
6, 𝑇

′
7, 𝑇

′
8 and 𝑇 ′

9 as follows:

𝑇 ′
0 = 𝑇 ′

7 ⊕ 𝑇 ′
9 𝑇 ′

1 = 𝑇 ′
8 ⊕ 𝑇 ′

9 𝑇 ′
2 = 𝑇 ′

7 ⊕ 𝑇 ′
9

𝑇 ′
3 = 𝑇 ′

6 ⊕ 𝑇 ′
7 𝑇 ′

4 = 𝑇 ′
7 𝑇 ′

5 = 𝑇 ′
7 ⊕ 𝑇 ′

8

𝑇 ′
𝑎 = 𝑇 ′

6 ⊕ 𝑇 ′
7 ⊕ 𝑇 ′

8 ⊕ 𝑇 ′
9 𝑇 ′

𝑏 = 𝑇 ′
6 ⊕ 𝑇 ′

7 𝑇 ′
𝑐 = 𝑇 ′

6 ⊕ 𝑇 ′
7 ⊕ 𝑇 ′

8

𝑇 ′
𝑑 = 𝑇 ′

9 𝑇 ′
𝑒 = 𝑇 ′

8 𝑇 ′
𝑓 = 𝑇 ′

7 ⊕ 𝑇 ′
9.

(1)

We also notice that 𝑇 ′
6, 𝑇

′
7, 𝑇

′
8 and 𝑇 ′

9 are all affine equivalent. Indeed, the linear
mapping 𝐴 defined by 𝐴 : 1 ↦→ 4, 2 ↦→ 1, 4 ↦→ 8, 8 ↦→ 𝑎 (see Figure 7a) is such
that:

𝑇 ′
7 = 𝐴 ∘ 𝑇 ′

6

𝑇 ′
8 = 𝐴2 ∘ 𝑇 ′

6

𝑇 ′
9 = 𝐴3 ∘ 𝑇 ′

6.

If we swap the two least significant bits (an operation we denote swap2lsb)
before and after applying 𝐴 we see a clear LFSR structure (see Figure 7b).

⊕

(a) Definition of 𝐴.

⊕

(b) Swapping the least significant bits.

Fig. 7: The mapping used to generate 𝑇 ′
7, 𝑇

′
8 and 𝑇 ′

9 from 𝑇 ′
6.

We deduce the LFSR polynomial to be 𝑋4 + 𝑋3 + 1. This points towards
finite field multiplication and, indeed, the mapping 𝐴 = swap2lsb ∘𝐴 ∘ swap2lsb
can be viewed as a multiplication by 𝑋 in F24 = F2[𝑋]/(𝑋4 +𝑋3 +1). To fit the
swap into the original scheme we modify 𝑇 ′

6 and the bottom linear layer. Indeed,
note that

𝐴𝑖 = (swap2lsb ∘𝐴 ∘ swap2lsb)𝑖 = swap2lsb ∘𝐴𝑖 ∘ swap2lsb for 𝑖 = 0, 1, . . .,

so that we can merge one swap2lsb into 𝑇 ′
6 and move the other swap2lsb through

XOR’s outside 𝑇 ′. Let 𝑡 = swap2lsb ∘ 𝑇 ′
6. Then swap2lsb ∘ 𝑇 ′

𝑘(𝑥) is a linear
combination of 𝑋𝑖 ⊙ 𝑡(𝑥), where 𝑖 ∈ {0, 1, 2, 3} and ⊙ is multiplication in the
specified field. Thus, 𝑇 can be computed as follows:

𝑇𝑘(𝑥) = swap2lsb
(︀
𝑓(𝑘) ⊙ 𝑡

(︀
𝑥⊕ 𝑡in(𝑘) ⊕ 0𝑥𝐶

)︀)︀
,

where 𝑓 captures the linear relations from Equations (1). Both 𝑓 and 𝑡 are given
in Table 5 and a picture representing the structure of 𝑇 is given in Figure 8.

Note that 𝑓(𝑥) is never equal to 0: if it were the case then the function would
not be invertible. On the other hand, the inverse of 𝑇𝑘 is easy to compute: 𝑓
must be replaced by 1/𝑓 where the inversion is done in the finite field F24 , 𝑡 by
its inverse 𝑡−1 and the order of the operations must be reversed.

13

𝑘3 𝑘2 𝑘1 𝑘0 𝑥3 𝑥2 𝑥1 𝑥0
⊕

⊕

𝑡

𝑓 ⊙

Fig. 8: The mini-block cipher 𝑇 .

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑓 a c a 3 2 6 1 2 4 8 f 3 7 8 4 a

𝑡 2 d b 8 3 a e f 4 9 6 5 0 1 7 c

Table 5: Mappings 𝑓 and 𝑡.

3.4 Reverse-Engineering 𝑈

Since 𝑈𝑘(𝑥) = 𝑉𝑥(𝑘) and 𝑉𝑥 is a linear function when 𝑥 ̸= 0, we have

𝑈𝑘(𝑥) =
(︀
𝑘3 × 𝑈8(𝑥)

)︀
⊕
(︀
𝑘2 × 𝑈4(𝑥)

)︀
⊕
(︀
𝑘1 × 𝑈2(𝑥)

)︀
⊕
(︀
𝑘0 × 𝑈1(𝑥)

)︀
where 𝑘 =

∑︀
𝑖≤3 𝑘𝑖2

𝑖 and 𝑘 ̸= 0. We furthermore notice that the permutations
𝑈2, 𝑈4 and 𝑈8 can all be derived from 𝑈1 using some affine functions 𝐵𝑘 so that
𝑈𝑘 = 𝐵𝑘 ∘ 𝑈1. The values of 𝐵𝑘(𝑥) are given in Table 6.

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝐵2 5 c 0 9 2 b 7 e 3 a 6 f 4 d 1 8

𝐵4 1 d 7 b f 3 9 5 c 0 a 6 2 e 4 8

𝐵8 5 6 d e 0 3 8 b a 9 2 1 f c 7 4

Table 6: Affine functions such that 𝑈𝑘 = 𝐵𝑘 ∘ 𝑈1.

If we let 𝐵(𝑥) = 𝐵4(𝑥)⊕1 then 𝐵2(𝑥) = 𝐵−1(𝑥)⊕5 and 𝐵8(𝑥) = 𝐵2(𝑥)⊕5.
Thus, we can define a linear function 𝑢out such that

𝑈1(𝑥) = 𝐵0 ∘ 𝑈1(𝑥) ⊕ 𝑢out(1)
𝑈2(𝑥) = 𝐵−1 ∘ 𝑈1(𝑥) ⊕ 𝑢out(2)
𝑈4(𝑥) = 𝐵1 ∘ 𝑈1(𝑥) ⊕ 𝑢out(4)
𝑈8(𝑥) = 𝐵2 ∘ 𝑈1(𝑥) ⊕ 𝑢out(8).

(2)

Let 𝑀2 be the matrix representation of multiplication by 𝑋 in the finite field we
used to decompose 𝑇 , namely F24 = F2[𝑋]/(𝑋4 +𝑋3 + 1). The linear mapping
𝑢𝑓 defined by 𝑢𝑓 : 1 ↦→ 5, 2 ↦→ 2, 4 ↦→ 6, 8 ↦→ 8 is such that 𝐵 = 𝑢𝑓 ∘𝑀2 ∘ 𝑢−1

𝑓 is
so that Equations (2) can be re-written as

𝑈1(𝑥) = 𝑢𝑓 ∘𝑀0
2 ∘ 𝑢−1

𝑓 ∘ 𝑈1(𝑥) ⊕ 𝑢out(1)

𝑈2(𝑥) = 𝑢𝑓 ∘𝑀−1
2 ∘ 𝑢−1

𝑓 ∘ 𝑈1(𝑥) ⊕ 𝑢out(2)

𝑈4(𝑥) = 𝑢𝑓 ∘𝑀1
2 ∘ 𝑢−1

𝑓 ∘ 𝑈1(𝑥) ⊕ 𝑢out(4)

𝑈8(𝑥) = 𝑢𝑓 ∘𝑀2
2 ∘ 𝑢−1

𝑓 ∘ 𝑈1(𝑥) ⊕ 𝑢out(8).

(3)

14

If we swap the two least significant bits of 𝑘, then the exponents of matrix 𝑀2

will go in ascending order: (−1, 0, 1, 2). Let 𝑢1 = 𝑀−1
2 ∘ 𝑢−1

𝑓 ∘ 𝑈1(𝑥). Since 𝑀2

is multiplication by 𝑋 in the finite field, we can write the following expression
for 𝑈𝑘 (when 𝑘 ̸= 0):

𝑈𝑘(𝑥) = 𝑢𝑓
(︀
𝑢1(𝑥) ⊙ swap2lsb(𝑘)

)︀
⊕ 𝑢𝑜𝑢𝑡(𝑘). (4)

The complete decomposition of 𝑈 is presented in Figure 9. It uses the 4-bit
permutations 𝑢0 and 𝑢1 specified in Table 7. We could not find a relation between
𝑢1 and 𝑢0 = 𝑢−1

𝑓 ∘ 𝑈0(𝑥) so there has to be a conditional branching: 𝑈 selects
the result of Equation (4) if 𝑘 ̸= 0 and the result of 𝑢0(𝑥) otherwise before
applying 𝑢𝑓 . This is achieved using a multiplexer which returns the output of
𝑢0 if 𝑘3 = 𝑘2 = 𝑘1 = 𝑘0 = 0, and returns the output of 𝑢1 if it is not the case.
In other words, 𝑈 can be computed as follows:

𝑈𝑘(𝑥) =

{︃
𝑢𝑓
(︀
𝑢1(𝑥) ⊙ swap2lsb(𝑘)

)︀
⊕ 𝑢out(𝑘), if 𝑘 ̸= 0

𝑢𝑓
(︀
𝑢0(𝑥)

)︀
if 𝑘 = 0.

𝑘3 𝑘2 𝑘1 𝑘0 𝑥3 𝑥2 𝑥1 𝑥0

𝑢1 𝑢0

⊙

Multiplexer

⊕⊕
⊕⊕
⊕
⊕⊕

𝑢𝑓

⊕𝑢out

Fig. 9: The mini-block cipher 𝑈 .

0 1 2 3 4 5 6 7 8 9 a b c d e f

𝑢0 8 b 0 2 9 1 4 f c 5 7 3 e d 6 a

𝑢1 4 7 d e 8 9 1 0 6 3 f a 2 c b 5

Table 7: Permutations 𝑢0 and 𝑢1.

3.5 The Structure of 𝜋

In Sections 3.3 and 3.4, we decomposed the two mini-block ciphers 𝑇 and 𝑈
which can be used to build 𝜋′−1, the inverse of 𝐿* ∘ 𝜋 ∘ 𝐿*. These mini-block
ciphers are based on the non-linear 4-bit functions 𝑓, 𝑡, 𝑢0, 𝑢1, two finite field
multiplications, a “trick” to bypass the non-invertibility of multiplication by 0
and simple linear functions. Let us now use the expressions we identified to
express 𝜋 itself.

First, we associate the linear functions and 𝐿* into 𝛼 and 𝜔, two linear per-
mutations applied respectively at the beginning and the end of the computation.

15

𝛼 First of all, we need to apply 𝐿* as well as the the swap of the left and right
branches (swapNibbles) present in the high level decomposition of 𝜋′−1 (see
Figure 6). Then, we note that the key in 𝑈 needs a swap of its 2 bits of
lowest weight (swap2lsb) and that the ciphertext of 𝑇 needs the same swap.
Thus, we simply apply swap2lsb. Then, we apply the addition of 𝑢out and
the inverse of 𝑢𝑓 .

𝜔 This function is simpler: it is the composition of the addition of 𝑡in and of 𝐿*.

The matrix representations of these layers are

𝛼 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 1
0 1 0 0 0 0 1 1
1 1 1 0 1 1 1 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝜔 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
1 0 0 1 1 0 1 0
0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In order to invert 𝑈 , we define 𝜈0 = 𝑢−1
0 and 𝜈1 = 𝑢−1

1 . If ℓ = 0, then the
output of the inverse of 𝑈 is 𝜈0(𝑟), otherwise it is 𝜈1

(︀
𝑟⊙ℐ(ℓ)

)︀
, where ℐ : 𝑥 ↦→ 𝑥14

is the multiplicative inverse in F24 . To invert 𝑇 , we define 𝜎 = 𝑡−1 and 𝜑 = ℐ ∘ 𝑓
and compute 𝜎

(︀
𝜑(ℓ) ⊙ 𝑟

)︀
.

Figure 10 summarizes how to compute 𝜋 using these components. The non-
linear functions are all given in Table 8. We also provide a SAGE [35] script
performing those computations in Appendix C. It can also be downloaded from
Github.7 The evaluation of 𝜋(ℓ||𝑟) can be done as follows:

1. (ℓ||𝑟) := 𝛼(ℓ||𝑟)
2. if 𝑟 = 0 then ℓ := 𝜈0(ℓ), else ℓ := 𝜈1

(︀
ℓ⊙ ℐ(𝑟)

)︀
3. 𝑟 := 𝜎

(︀
𝑟 ⊙ 𝜑(𝑙)

)︀
4. return 𝜔(ℓ||𝑟).

4 Studying the Decomposition of 𝜋

4.1 Analyzing the Components

Table 9 summarizes the properties of the non-linear components of our decom-
position. While it is not hard to find 4-bit permutations with a differential uni-
formity of 4, we see that none of the components chosen do except for the inverse
function. We can thus discard the idea that the strength of 𝜋 against differential
and linear attacks relies on the individual resilience of each of its components.

As can be seen in Table 9, there is a probability 1 differential in 𝜈1: 9 2.
Furthermore, a difference equal to 2 on the left branch corresponds to a 1 bit
difference on bit 5 of the input of 𝜔, a bit which is left unchanged by 𝜔.

7 https://github.com/picarresursix/GOST-pi

16

https://github.com/picarresursix/GOST-pi

𝜔

𝜎

𝜑 ⊙

𝜈1𝜈0

ℐ⊙

𝛼

Fig. 10: Our decomposition of 𝜋.

0 1 2 3 4 5 6 7 8 9 a b c d e f

ℐ 0 1 c 8 6 f 4 e 3 d b a 2 9 7 5

𝜈0 2 5 3 b 6 9 e a 0 4 f 1 8 d c 7

𝜈1 7 6 c 9 0 f 8 1 4 5 b e d 2 3 a

𝜑 b 2 b 8 c 4 1 c 6 3 5 8 e 3 6 b

𝜎 c d 0 4 8 b a e 3 9 5 2 f 1 6 7

Table 8: The non-linear functions needed
to compute 𝜋.

1-to-1 Best differentials and their proba-
bilities

Best linear approximations and
their probabilities

𝜑 No 1 d (8/16) 3 8 (2/16), 7 d (2/16)

𝜎 Yes f b (6/16) 1 f (14/16)

𝜈0 Yes 6 c (6/16), e e (6/16) 30 approximations (8± 4)/16

𝜈1 Yes 9 2 (16/16) 8 approximations (8± 6)/16

Table 9: Linear and differential properties of the components of 𝜋.

The structure itself also implies the existence of a truncated differential with
high probability. Indeed, if the value on the left branch is equal to 0 for two
different inputs, then the output difference on the left branch will remain equal
to 0 with probability 1. This explains why the probability that a difference in
𝛥in = {𝛼−1(ℓ||0), ℓ ∈ F4

2, 𝑥 ̸= 0} is mapped to a difference in 𝛥out = {𝜔(ℓ||0), ℓ ∈
F4
2, 𝑥 ̸= 0} is higher than the expected 2−4:

1

24 − 1

∑︁
𝛿∈𝛥in

𝑃 [𝜋(𝑥⊕ 𝛿) ⊕ 𝜋(𝑥) ∈ 𝛥out] =
450

(24 − 1) × 28
≈ 2−3.

4.2 Comments on the Structure Used

We define �̂� as 𝜔−1 ∘ 𝜋 ∘ 𝛼−1, i.e. 𝜋 minus its whitening linear layers.
The structure of �̂� is similar to a 2-round combination of a Misty-like and

Feistel structure where the XORs have been replaced by finite field multipli-
cations. To the best of our knowledge, this is the first time such a structure
has been used in cryptography. Sophisticated lightweight decompositions of the
S-Box of the AES rely on finite field multiplication in F24 , for instance in [36].
However, the high level structure used in this case is quite different. If 𝜋 corre-

17

sponds to such a decomposition then we could not find what it corresponds to.
Recall in particular that 𝜋 cannot be affine-equivalent to a monomial.

The use of finite field multiplication in such a structure yields a problem:
if the output of the “Feistel function” is equal to 0 then the structure is not
invertible. This issue is solved in a different way in each round. During the first
round, a different data-path is used in the case which should correspond to a
multiplication by zero. In the second round, the “Feistel function” is not bijective
and, in particular, has no pre-image for 0.

Our decomposition also explains the pattern in the LAT8 of 𝜋 and 𝜋′ that we
used in Section 3.1 to partially recover the linear layers permutations 𝛼 and 𝜔.
This pattern is made of two parts: the white square appearing at the top-left of
ℒ′
𝜋 and the “stripe” covering the 16 left-most columns of this table (see Figure 4).

In what follows, we explain why the white square and the stripe are present in
ℒ′
𝜋. We also present an alternative representation of �̂� which highlights the role

of the multiplexer.

On the White Square We first define a balanced function and the concept
of integral distinguishers. Using those, we can rephrase a result from [37] as
Lemma 2.

Definition 4 (Balanced Function). Let 𝑓 : F𝑛
2 → F𝑚

2 be a Boolean function.
We say that 𝑓 is balanced if the size of the preimage {𝑥 ∈ F𝑛

2 , 𝑓(𝑥) = 𝑦} of 𝑦 is
the same for all 𝑦 in F𝑚

2 .

Definition 5 (Integral Distinguisher). Let 𝑓 be a Boolean function mapping
𝑛 bits to 𝑚. An integral distinguisher consists in two subsets 𝒞in ⊆ [0, 𝑛− 1] and
ℬout ⊆ [0,𝑚− 1] of input and output bit indices with the following property: for
all 𝑐, the sum

⨁︀
𝑥∈𝒳 𝑓(𝑥) restricted to the bits with indices in ℬout is balanced;

where 𝒳 is the set containing all 𝑥 such that the bits with indices in 𝒞in are fixed
to the corresponding value in the binary expansion of 𝑐 (so that |𝒳 | = 2𝑛−|𝒞in|).

Lemma 2 ([37]). Let 𝑓 be a Boolean function mapping 𝑛 bits to 𝑚 and with
LAT ℒ𝑓 for which there exists an integral distinguisher (𝒞in,ℬout). Then, for all
(𝑎, 𝑏) such that the 1 in the binary expansion of 𝑎 all have indices in 𝒞in and the
1 in the binary expansion of 𝑏 have indices in ℬout, it holds that ℒ𝑓 [𝑎, 𝑏] = 0.

This theorem explains the presence of the white square in ℒ′
𝜋. Indeed, fixing

the input of the right branch of �̂� leads to a permutation of the left branch in
the plaintext becoming a permutation of the left branch in the ciphertext; hence
the existence of an integral distinguisher for �̂� which in turn explains the white
square.

8 Note that the LAT of �̂� is not exactly the same as ℒ′
𝜋 which is given in Figure 4

because e.g. of a nibble swap.

18

On the Stripe Biases in the stripe correspond to approximations (𝑎𝐿||𝑎𝑅
𝑏𝐿||0) in �̂�, where 𝑏𝐿 > 0. We detail the computation of the corresponding biases
in Appendix B. It turns out that the expression of ℒ[𝑎𝐿||𝑎𝑅, 𝑏𝐿||0] is

ℒ[𝑎𝐿||𝑎𝑅, 𝑏𝐿||0] = ℒ0[𝑎𝐿, 𝑏𝐿] + 8 ×
(︀
(−1)𝑏𝐿·𝑦0 − 𝛿(𝑏𝐿)

)︀
,

where ℒ0 is the LAT of 𝜈0, 𝑦0 depends on 𝑎𝑅, 𝑎𝐿 and the LAT of 𝜈1, and 𝛿(𝑏𝐿)
is equal to 1 if 𝑏𝐿 = 0 and to 0 otherwise. Very roughly, 𝜈1 is responsible for the
sign of the biases in the stripe and 𝜈0 for their values.

Since the minimum and maximum biases in ℒ0 are −4 and +4, the absolute
value of ℒ[𝑎𝐿||𝑎𝑅, 𝑏𝐿||0] is indeed in [4, 12]. As we deduce from our computation
of these biases, the stripe is caused by the conjunction of three elements:

– the use of a multiplexer,
– the use of finite field inversion, and
– the fact that 𝜈0 has good non-linearity.

Ironically, the only “unsurprising” sub-component of 𝜋, namely the inverse func-
tion, is one of the reasons why we were able to reverse-engineer this S-Box in
the first place. Had ℐ been replaced by a different (and possibly weaker!) S-Box,
there would not have been any of the lines in the LAT which got our reverse-
engineering started. Note however that the algorithm based on identifying linear
subspaces of zeroes in the LAT of a permutation described in Section 5 would
still work because of the white-square.

Alternative Representation Because of the multiplexer, we can deduce an
alternative representation of �̂�. If the right nibble of the input is not equal to 0
then �̂� can be represented as shown in Figure 11b using a Feistel-like structure.
Otherwise, it is essentially equivalent to one call to the 4-bit S-Box 𝜈0, as shown
in Figure 11a. We also have some freedom in the placement of the branch bearing
𝜑. Indeed, as shown in Figure 11c, we can move it before the call to 𝜈1 provided
we replace 𝜑 by 𝜓 = 𝜑 ∘ 𝜈1.

Note also that the decomposition we found is not unique. In fact, we can
create many equivalent decompositions by e.g. adding multiplication and division
by constants around the two finite field multiplications. We can also change
the finite field in which the operations are made at the cost of appropriate
linear isomorphisms modifying the 4-bit S-Boxes and the whitening linear layers.
However the presented decomposition is the most structured that we have found.

4.3 Hardware Implementation

It is not uncommon for cryptographers to build an S-Box from smaller ones,
typically an 8-bit S-Box from several 4-bit S-Boxes. For example, S-Boxes used
in Whirlpool [21], Zorro [38], Iceberg [39], Khazad [40], CLEFIA [41], and Robin
and Fantomas [42] are permutations of 8 bits based on smaller S-Boxes. In many
cases, such a structure is used to allow an efficient implementation of the S-Box

19

⊕ 0xC𝜈0

(a) �̂� when 𝑟 = 0.

𝜎

𝜑⊙

𝜈1

ℐ⊙

(b) �̂� when 𝑟 ̸= 0.

ℐ

𝜓

⊙

⊙

𝜈1 𝜎

(c) �̂� when 𝑟 ̸= 0.

Fig. 11: Alternative representations of �̂� where 𝜋 = 𝜔 ∘ �̂� ∘ 𝛼.

in hardware or using a bit-sliced approach. In fact, a recent work by Canteaut
et al. [43] focused on how to build efficient 8-bit S-Boxes from 3-round Feistel
and Misty-like structures. Another possible reason behind such a choice is given
by the designers e.g. of CLEFIA: it is to prevent attacks based on the algebraic
properties of the S-Box, especially if it is based on the inverse in F28 like in the
AES. Finally, a special structure can help achieve special properties. For instance,
the S-Box of Iceberg is an involution obtained using smaller 4-bit involutions and
a Substitution-Permutation Network.

As stated in the introduction, hardware optimization was supposed to be
one of the design criteria used by the designers of 𝜋. Thus, it is reasonable to
assume that one of the aims of the decomposition we found was to decrease the
hardware footprint of the S-Box.

To test this hypothesis, we simulated the implementation of 𝜋 in hardware.9

We used four different definitions of 𝜋: the look up table given by the designers,
our decomposition, a tweaked decomposition where the multiplexer is moved
lower10 and, finally, the alternative decomposition presented in Figure 11c. Ta-
ble 10 contains both the area taken by our implementations and the delay, i.e.
the time taken to compute the output of the S-Box. For both quantities, the
lower is the better. As we can see, the area is divided by up to 2.5 and the delay
by 8, meaning that an implementer knowing the decomposition has a significant
advantage over one that does not.

9 We used Synopsys design compiler (version J-2014.09-SP2) along with digital li-
brary SAED EDK90 CORE (version 1.11).

10 More precisely, the multiplexer is moved after the left side is input to 𝜑. This does
not change the output: when the output of 𝜈0 is selected, the right branch is equal
to 0 and the input of 𝜎 is thus 0 regardless of the left side.

20

Structure Area (𝜇𝑚2) Delay (ns)

Naive implementation 3889.6 362.52

Feistel-like (similar to Fig. 11b) 1534.7 61.53

Multiplications-first (similar to Fig. 11c) 1530.3 54.01

Feistel-like (with tweaked MUX) 1530.1 46.11

Table 10: Results on the hardware implementation of 𝜋.

5 Another LAT-Based Attack Against Linear Whitening

Our attack against 𝜋 worked by identifying patterns in a visual representation
of its LAT and exploiting them to recover parts of the whitening linear layers
surrounding the core of the permutation.

It is possible to exploit other sophisticated patterns in the LAT of a per-
mutation. In the remainder of this section, we describe a specific pattern in the
LAT of a 4-round Feistel Network using bijective Feistel functions. We then use
this pattern in conjunction with Theorem 1 to attack the AF4A structure corre-
sponding to a 4-round Feistel Network with whitening linear layers. Note that
more generic patterns such as white rectangles caused by integral distinguish-
ers (see Section 4.2) could be used in a similar fashion to attack other generic
constructions, as we illustrate in Section 5.3. The attack principle is always the
same:

1. identify patterns in the LAT,
2. deduce partial whitening linear layers,
3. recover the core of the permutation with an ad hoc attack.

We also remark that Feistel Networks with affine masking exist in the lit-
erature. Indeed, the so-called FL-layers of MISTY [44] can be interpreted as
such affine masks. Furthermore, one of the S-Box of the stream cipher ZUC is a
3-round Feistel Network composed with a bit rotation [45] — an affine operation.

5.1 Patterns in the LAT of a 4-Round Feistel Network

Let 𝐹0, ..., 𝐹3 be four 𝑛-bit Boolean permutations. Figure 12a represents the 4-
round Feistel Network 𝑓 built using 𝐹𝑖 as its 𝑖-th Feistel function. Figure 12b is
the Pollock representation of the LAT of a 8-bit Feistel Network 𝑓exp built using
four 4-bit permutations picked uniformly at random.

In Figure 12b, we note that the LAT ℒexp of 𝑓exp contains both vertical
and horizontal segments of length 16 which are made only of zeroes. These
segments form two lines starting at (0,0), one ending at (15,255) and another
one ending in (255,15), where (0,0) is the top left corner. The vertical segments
are in columns 0 to 15 and correspond to entries ℒexp[𝑎𝐿||𝑎𝑅, 0||𝑎𝐿] for any
(𝑎𝐿, 𝑎𝑅). The horizontal ones are in lines 0 to 15 and correspond to entries
ℒexp[0||𝑎𝑅, 𝑎𝑅||𝑏𝐿] for any (𝑎𝐿, 𝑎𝑅).

21

𝐹0

𝐹1

𝐹2

𝐹3

⊕

⊕

⊕

⊕

hack

(a) Definition of 𝑓 . (b) The LAT (Pollock repr.) of 𝑓exp.

Fig. 12: A 4-round Feistel Network and its LAT.

Let us compute the coefficients which correspond to such vertical segments
for any 4-round Feistel Network 𝑓 with LAT ℒ. These are equal to

ℒ[𝑎𝐿||𝑎𝑅, 0||𝑎𝐿] =
∑︁

𝑥∈F2𝑛
2

(−1)(𝑎𝐿||𝑎𝑅)·𝑥⊕𝑎𝐿·𝑓(𝑥)

=
∑︁
𝑟∈F𝑛

2

(−1)𝑎𝑅·𝑟
∑︁
ℓ∈F𝑛

2

(−1)𝑎𝐿·
(︀
ℓ⊕𝑓𝑅(ℓ||𝑟)

)︀
,

where 𝑓𝑅(𝑥) is the right word of 𝑓(𝑥). This quantity is equal to ℓ ⊕ 𝐹0(𝑟) ⊕
𝐹2

(︀
𝑟 ⊕ 𝐹1(ℓ⊕ 𝐹0(𝑟))

)︀
, so that ℒ[𝑎𝐿||𝑎𝑅, 0||𝑎𝐿] can be re-written as:

ℒ[𝑎𝐿||𝑎𝑅, 0||𝑎𝐿] =
∑︁
𝑟∈F𝑛

2

(−1)𝑎𝑅·𝑟
∑︁
ℓ∈F𝑛

2

(−1)𝑎𝐿·
(︀
𝐹0(𝑟)⊕𝐹2

(︀
𝑟⊕𝐹1(ℓ⊕𝐹0(𝑟))

)︀)︀
.

Since ℓ ↦→ 𝐹2

(︀
𝑟 ⊕ 𝐹1(ℓ ⊕ 𝐹0(𝑟))

)︀
is balanced for all 𝑟, the sum over ℓ is equal

to 0 for all 𝑟 (unless 𝑎𝐿 = 0). This explains11 the existence of the vertical
“white segments”. The existence of the horizontal ones is a simple consequence
of Remark 2: as the inverse of 𝑓 is also a 4-round Feistel, its LAT must contain
white vertical segments. Since the LAT of 𝑓 is the transpose of the LAT of 𝑓−1,
these vertical white segments become the horizontal ones.

5.2 A Recovery Attack Against AF4A

These patterns can be used to attack a 4-round Feistel Network whitened using
affine layers, a structure we call AF4A. Applying the affine layers before and

11 Note that our proof actually only requires 𝐹1 and 𝐹2 to be permutations. The pattern
would still be present if the first and/or last Feistel functions had inner-collisions.

22

after a 4-round Feistel Network scrambles the white segments in the LAT in a
linear fashion - each such segment becomes an affine subspace. The core idea of
our attack is to compute the LAT of the target and then try to rebuild both
the horizontal and vertical segments. In the process, we will recover parts of
the linear permutations applied to the rows and columns of the LAT of the
inner Feistel Network and, using Theorem 1, recover parts of the actual linear
layers. Then the resulting 4-round Feistel Network can be attacked using results
presented in [31]. By parts of a linear layer we understand the four (𝑛 × 𝑛)-bit
submatrices of the corresponding matrix.

First Step: Using the LAT Let 𝑓 : F2𝑛
2 → F2𝑛

2 be a 4-round Feistel Network
and let 𝑔 = 𝜂 ∘ 𝑓 ∘ 𝜇 be its composition with some whitening linear layers 𝜂
and 𝜇. The structure of 𝑔 is presented in Figure 13a using (𝑛× 𝑛)-bit matrices
𝜇ℓ,ℓ, 𝜇𝑟,ℓ, 𝜇ℓ,𝑟, 𝜇𝑟,𝑟 for 𝜇 and 𝜂ℓ,ℓ, 𝜂𝑟,ℓ, 𝜂ℓ,𝑟, 𝜂𝑟,𝑟 for 𝜂.

𝐹0

𝐹1

𝐹2

𝐹3

⊕

⊕

⊕

⊕

𝜇ℓ,ℓ 𝜇ℓ,𝑟 𝜇𝑟,ℓ 𝜇𝑟,𝑟

⊕ ⊕

𝜂ℓ,ℓ 𝜂ℓ,𝑟 𝜂𝑟,ℓ 𝜂𝑟,𝑟

⊕ ⊕

𝜇
𝑓

𝜂

(a) 𝑔 = 𝜂 ∘ 𝑓 ∘ 𝜇.

𝐹0

𝐹1

𝐹2

𝐹3

⊕

⊕

⊕

⊕

𝑎 𝑏 𝑑

⊕

𝑎′ 𝑏′ 𝑑′

⊕

𝜇
∘
𝜇

𝑓
𝜂
∘
𝜂

(b) 𝑔′′ = 𝜂 ∘ 𝑔 ∘ 𝜇.

𝑎−1∘𝐹0∘𝑎′−1

𝑎′∘𝐹1∘𝑎

𝑎−1∘𝐹2∘𝑎′−1

𝑎′∘𝐹3∘𝑎

𝑎−1∘𝑏∘𝐴−1

𝑏′∘𝑎

⊕

⊕

⊕

⊕

⊕

⊕

𝐴 = 𝑎′∘𝑑

𝐵 = 𝑑′∘𝑎

ℱ

(c) 𝑔′′ (alt. representation).

Fig. 13: The effect of 𝜇 and 𝜂 on 𝑔. Linear layers are in red and inner Feistel
Networks in blue.

Assume that we have the full codebook of 𝑔 and therefore that we can com-
pute the LAT ℒ𝑔 of 𝑔. By Theorem 1, it holds that ℒ𝑔[𝑢, 𝑣] = ℒ𝑓 [(𝜇−1)𝑡(𝑢), 𝜂𝑡(𝑣)]
and, equivalently, that ℒ𝑔[𝜇𝑡(𝑢), (𝜂−1)𝑡(𝑣)] = ℒ𝑓 [𝑢, 𝑣].

We use Algorithm 1 (see next section) to find a linear subspace 𝒮 of F2𝑛
2 such

that |𝒮| = 2𝑛 and such that it has the following property: there exists 2𝑛 distinct
values 𝑐 and some 𝑐 dependent 𝑢𝑐 such that ℒ𝑔[𝑢𝑐 ⊕ 𝑠, 𝑐] = 0 for all 𝑠 in 𝒮. Such
a vector space exists because the row indices (ℓ||𝑟) for 𝑟 in 𝑅 = {(0||𝑟) | 𝑟 ∈ F𝑛

2}

23

and a fixed ℓ of each vertical segment in the LAT of 𝑓 becomes an affine space
𝜇𝑡(ℓ||0) ⊕ 𝜇𝑡(𝑅) in the LAT of 𝑔, so that the image of the row indices of each
of the 2𝑛 vertical segments has an identical linear part. We thus assume that
𝒮 = 𝜇𝑡(𝑅).

Then, we choose an arbitrary bijective linear mapping12 𝜇𝑡 such that 𝜇𝑡(𝒮) =
𝑅. Let 𝑎𝑡, 𝑏𝑡, 𝑐𝑡, 𝑑𝑡 be 𝑛× 𝑛-bit matrices such that

𝜇′𝑡 = 𝜇𝑡 ∘ 𝜇𝑡 =

(︂
𝑎𝑡 𝑐𝑡

𝑏𝑡 𝑑𝑡

)︂
.

Note that 𝜇′𝑡(𝑅) = 𝜇𝑡(𝜇𝑡(𝑅)) = 𝜇𝑡(𝒮) = 𝑅, which implies 𝑐𝑡 = 0.
We then apply 𝜇𝑡 to columns of ℒ𝑔 to obtain a new LAT ℒ′

𝑔 such that
ℒ′
𝑔[𝜇𝑡(𝑢), 𝑣] = ℒ𝑔[𝑢, 𝑣]. Using Theorem 1, we define 𝑔′ = 𝑔 ∘ 𝜇 so that the LAT

of 𝑔′ is ℒ′
𝑔. Note that 𝑔′ can also be expressed using 𝑓 and 𝜇′:

𝑔′ = 𝜂 ∘ 𝑓 ∘ 𝜇 ∘ 𝜇 = 𝜂 ∘ 𝑓 ∘ 𝜇′, with 𝜇′ =

(︂
𝑎 𝑏
0 𝑑

)︂
.

The function 𝑔′ we obtained is such that there is no branch from the left side
to the right side in the input linear layer as the corresponding element of the 𝜇′

matrix is equal to zero. We can apply the same method to the inverse of 𝑔 (thus
working with the transpose of the LAT) and find a linear mapping 𝜂 allowing us
to define a new permutation 𝑔′′ such that:

𝑔′′ = 𝜂 ∘ 𝑔 ∘ 𝜇 where 𝜂 ∘ 𝜂 =

(︂
𝑎′ 𝑏′

0 𝑑′

)︂
.

The resulting affine-equivalent structure is shown in Figure 13b. Note that the
LAT of 𝑔′′ exhibits the patterns described in Section 5.1. This can be explained
using an alternative representation of 𝑔′′ where the Feistel functions are replaced
by some other affine equivalent functions as shown in Figure 13c. It also implies
that we can decompose 𝑔′′, as described in the next sections.

The dominating step in terms of complexity is Algorithm 1, meaning that
building 𝑔′′ from 𝑔 takes time O(26𝑛) (see next section).

Subroutine: Recovering Linear Subpaces Suppose we are given the LAT
ℒ of a 2𝑛-bit permutation. Our attack requires us to recover efficiently a linear
space 𝒮 of size 2𝑛 such that ℒ[𝑠 ⊕ 𝐿(𝑢), 𝑢] = 0 for all 𝑠 in 𝒮, where 𝑢 is in a
linear space of size 2𝑛 and where 𝐿 is some linear permutation. Algorithm 1 is
our answer to this problem.

For each column index 𝑐, we extract all 𝑠 such that |{𝑎,ℒ[𝑎, 𝑐] = 0} ∩
{𝑎,ℒ[𝑎, 𝑐 ⊕ 𝑠] = 0}| ≥ 2𝑛. If 𝑠 is indeed in 𝒮 and 𝑐 is a valid column index,
then this intersection must contain 𝐿(𝑐) ⊕ 𝒮, which is of size 2𝑛. If it is not the
case, we discard 𝑠. Furthermore, if 𝑐 is a valid column index, then there must
be at least 2𝑛 such 𝑠 as all 𝑠 in 𝒮 have this property: this allows us to filter out

12 We make some definitions with transpose to simplify later notations.

24

columns not yielding enough possible 𝑠. For each valid column, the set of offsets
𝑠 extracted must contain 𝒮. Thus, taking the intersection of all these sets yields
𝒮 itself.

To increase filtering, we use a simple heuristic function refine(𝒵, 𝑛) which
returns the subset 𝒵 of 𝒵 such that, for all 𝑧 in 𝒵, |(𝑧 ⊕ 𝒵) ∩ 𝒵| ≥ 2𝑛. The
key observation is that if 𝒵 contains a linear space of size at least 2𝑛 then 𝒵
contains it too. This subroutine runs in time O(|𝒵|2).

Algorithm 1 Linear subspace extraction
Inputs LAT ℒ, branch size 𝑛 — Output Linear space 𝒮

𝒞 := ∅
for all 𝑐 ∈ [1, 22𝑛 − 1] do

𝒵 := {𝑖 ∈ [1, 22𝑛 − 1],ℒ[𝑖, 𝑐] = 0}
if 𝒵 ≥ 2𝑛 then

𝒮𝑐 := ∅ ◁ 𝒮𝑐 is the candidate for 𝒮 for 𝑐.
for all 𝑠 ∈ [1, 22𝑛 − 1] do

if |(𝑠⊕𝒵) ∩ 𝒵| ≥ 2𝑛 then
𝑆𝑐 := 𝑆𝑐 ∪ {𝑠}

end if
end for
𝒮𝑐 := refine(𝒮𝑐, 2

𝑛)
if |𝒮𝑐| ≥ 2𝑛 then

Store 𝒮𝑐 ; 𝒞 := 𝒞 ∪ {𝑐}
end if

end if
end for
𝒞 := refine(𝒞, 2𝑛) ; 𝒮 := [0, 22𝑛 − 1]
for all 𝑐 ∈ 𝒞 do

𝒮 := 𝒮 ∩ 𝒮𝑐

end for
return 𝒮

The dominating step in the time complexity of this algorithm is the com-
putation of |(𝑠 ⊕ 𝒵) ∩ 𝒵| for every 𝑐 and 𝑠. The complexity of this step is
O(22𝑛 × 22𝑛 × |𝒵|). A (loose) upper bound on the time complexity of this algo-
rithm is thus O(26𝑛) where 𝑛 is the branch size of the inner Feistel Network, i.e.
half of the block size.

Second Step: Using a Yoyo Game The decomposition of AF4A has now
been reduced to attacking 𝑔′′, a 2𝑛-bit 4-round Feistel Network composed with
two 𝑛-bit linear permutations 𝐴 and 𝐵. The next step is to recover these linear
permutations. To achieve this, we use a simple observation inspired by the so-
called yoyo game used in [31] to attack a 5-round FN.

Consider the differential trail parametrized by 𝛾 ̸= 0 described in Figure 14.
If the pair of plaintexts (𝑥𝐿||𝑥𝑅, 𝑥′𝐿||𝑥′𝑅) follows the trail (i.e. is connected in 𝛾),

25

then so does (𝑥𝐿⊕𝛾||𝑥𝑅, 𝑥′𝐿⊕𝛾||𝑥′𝑅). Furthermore, if (𝑦𝐿||𝑦𝑅) = 𝑔′′(𝑥𝐿||𝑥𝑅) and
(𝑦′𝐿||𝑦′𝑅) = 𝑔′′(𝑥′𝐿||𝑥′𝑅), then swapping the right output words and decrypting
the results leads to a pair of plaintexts

(︀
𝑔′′−1(𝑦𝐿||𝑦′𝑅), 𝑔′′−1(𝑦′𝐿||𝑦𝑅)

)︀
that still

follows the trail. It is thus possible to iterate the addition of 𝛾 and the swapping
of the right output word to generate many right pairs. More importantly, if 𝑥 and
𝑥′ do follow the trail, iterating these transformation must lead to the difference
on the right output word being constant and equal to 𝐵(𝛾): if it is not the case,
we can abort and start again from another pair 𝑥, 𝑥′.

𝐹 ′
0

𝐹 ′
1

𝐹 ′
2

𝐹 ′
3

⊕

⊕

⊕

⊕

𝐴

𝐵

𝑥𝐿 ⊕ 𝑥′𝐿 𝑥𝑅 ⊕ 𝑥′𝑅

𝑦𝐿 ⊕ 𝑦′𝐿 𝑦𝑅 ⊕ 𝑦′𝑅 = 𝐵(𝛾)

𝛾

0

Fig. 14: The differential trail used to recover 𝐵.

We can thus recover 𝐵 fully by trying to iterate the game described above
for random pairs (𝑥, 𝑥′) and different values of 𝛾. Once a good pair has been
found, we deduce that 𝐵(𝛾) is the difference in the right output words of the
ciphertext pairs obtained. We thus perform this step for 𝛾 = 1, 2, 4, 8, etc., until
the image by 𝐵 of all bits has been found. Wrong starting pairs are identified
quickly so this step takes time O(𝑛22𝑛). Indeed, we need to recover 𝑛 linearly
independent 𝑛-bit vectors; for each vector we try all 2𝑛 candidates and for each
guess we run a Yoyo game in time 2𝑛 to check the guess. The other linear part,
𝐴, is recovered identically by running the same attack while swapping the roles
of encryption and decryption.

Final Step: a Full Decomposition As stated before, we can recover all 4
Feistel functions in 𝑔′′ minus its linear layers in time O(23𝑛/2) using the guess
and determine approach described in [31]. This gives us a 4-round FN, denoted
ℱ , which we can use to decompose 𝑔 like so (where 𝐼 denotes the identity matrix):

𝑔 = 𝜂−1 ∘
(︂
𝐼 0
0 𝐵

)︂
∘ ℱ ∘

(︂
𝐼 0
0 𝐴

)︂
∘ 𝜇−1.

26

5.3 Outline of an Attack Against AF3A

A structure having one less Feistel round could be attacked in a similar fashion.
The main modifications would be as follows.

1. The pattern in the LAT we try to rebuild would not be the one described in
Section 5.1 but a white square similar to the one observed in the LAT of 𝜋′.
Indeed, an integral distinguisher similar to the one existing in 𝜋′ exists for
any 3-round FN when the second Feistel function is a bijection.

2. Recovering the remaining (𝑛×𝑛) mappings with a yoyo game would be much
more efficient since there would not be any need to guess that a pair follows
the trail.

The complexity of such an attack would be dominated as before by the recovery
of the linear subspace embedded in the LAT so that it would take time O(26𝑛).

5.4 Comments on Affine-Whitened Feistel Networks

Table 11 contains a comparison of the complexities of the attack recovering the
Feistel functions of Feistel Networks along with, possibly, the linear layers used
to whiten it.

Target Type Time Complexity Ref.

AF3A LAT-based 26𝑛 Sec. 5.3

F4 Guess & Det. 23𝑛/2 [31]

AF4A LAT-based 26𝑛 Sec. 5.2

F5 Yoyo cryptanalysis 22𝑛 [31]

Table 11: Complexity of recovery attacks against (possibly linearly whitened)
Feistel Networks with 𝑛-bit branches and secret bijective Feistel functions.

The complexities of our attacks against AFkA are dominated by the lin-
ear subspace recovery which is much slower than an attack against as much
as 5 Feistel Network rounds. It seems like using affine whitening rather than a
simpler XOR-based whitening increases the complexity of a cryptanalysis sig-
nificantly. This observation can be linked with the recent attacks against the
ASASA scheme [30]: while attacking SAS is trivial, the cryptanalysis of ASASA
requires sophisticated algorithms.

We note that a better algorithm for linear subspace extraction will straight-
forwardly lead to a lower attack complexity. However, the complexity is lower
bounded by LAT computation which is O(𝑛24𝑛) in our case.

For the sake of completeness, we tried this attack against the “F-Table” of
Skipjack [9]. It failed, meaning that it has neither an AF3A nor an AF4A structure.

27

Note also that, due to the presence of the white square in the LAT of �̂�, running
the linear subspace recovery described in Algorithm 1 on 𝜋 returns the vector
space 𝒱 which allowed to start our decomposition of this S-Box.

We implemented the first step of our attack (including Algorithm 1) using
SAGE [35] and ran it on a computer with 16 Intel Xeon CPU (E5-2637) v3
clocked at 3.50 GHz. It recovers correct linear layers 𝜂 and 𝜇 in about 3 seconds
for 𝑛 = 4, 14 seconds for 𝑛 = 5, 4 minutes for 𝑛 = 6 and 1 hour for 𝑛 = 7. Since
the first step is the costliest, we expect a complete attack to take a similar time.

6 Conclusion

The S-Box used by the standard hash function Streebog, the standard block
cipher Kuznyechik and the CAESAR first round candidate stribobr1 has a
hidden structure. Using the three non-linear 4-bit permutations 𝜈0, 𝜈1 and 𝜎,
the non-linear 4-bit function 𝜑 and the 8-bit linear permutations 𝛼 and 𝜔, the
computation of 𝜋(ℓ||𝑟) can be made as follows:

1. (ℓ||𝑟) := 𝛼(ℓ||𝑟)
2. If 𝑟 = 0 then ℓ := 𝜈0(ℓ), else ℓ := 𝜈1(ℓ⊙ 𝑟14)
3. 𝑟 := 𝜎

(︀
𝑟 ⊙ 𝜑(𝑙)

)︀
4. Return 𝜔(ℓ||𝑟)

How and why those components were chosen remains an open question. In-
deed, their individual cryptographic properties are at best not impressive and,
at worst, downright bad. However, knowing this decomposition allows a much
more efficient hardware implementation of the S-Box.

We also described a decomposition attack against AF4A which uses the same
high level principles as our attack against 𝜋: first spot patterns in the LAT, then
deduce the whitening linear layers and finally break the core.

7 Acknowledgment

We thank Yann Le Corre for studying the hardware implementation of the S-
Box. We also thank Oleksandr Kazymyrov for suggesting this target and the
anonymous reviewers for their helpful comments. The work of Léo Perrin is
supported by the CORE ACRYPT project (ID C12-15-4009992) funded by the
Fonds National de la Recherche (Luxembourg). The work of Aleksei Udovenko is
supported by the Fonds National de la Recherche, Luxembourg (project reference
9037104).

References

1. Daemen, J., Rijmen, V.: The design of Rijndael: AES-the advanced encryption
standard. Springer (2002)

28

2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of CRYPTOLOGY 4(1) (1991) 3–72

3. Tardy-Corfdir, A., Gilbert, H.: A known plaintext attack of FEAL-4 and FEAL-6.
In Feigenbaum, J., ed.: Advances in Cryptology – CRYPTO’91. Volume 576 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg (1992) 172–182

4. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Advances in Cryp-
tology – EUROCRYPT’93, Springer (1994) 386–397

5. Nyberg, K.: Differentially uniform mappings for cryptography. In: Advances in
cryptology — Eurocrypt’93, Springer (1994) 55–64

6. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight
Block Cipher for Multiple Platforms. In: Selected Areas in Cryptography, Springer
(2013) 339–354

7. U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Tech-
nology: Data encryption standard. Federal Information Processing Standards
Publication (1999)

8. Coppersmith, D.: The Data Encryption Standard (DES) and its strength against
attacks. IBM journal of research and development 38(3) (1994) 243–250

9. National Security Agency, N.S.A.: SKIPJACK and KEA Algorithm Specifications
(1998)

10. Biryukov, A., Perrin, L.: On Reverse-Engineering S-Boxes with Hidden Design
Criteria or Structure. In: Advances in Cryptology – CRYPTO 2015. Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2015) (to appear)

11. Federal Agency on Technical Regulation and Metrology: GOST R 34.11-2012:
Streebog hash function (2012) https://www.streebog.net/.

12. Guo, J., Jean, J., Leurent, G., Peyrin, T., Wang, L.: The Usage of Counter Re-
visited: Second-Preimage Attack on New Russian Standardized Hash Function. In
Joux, A., Youssef, A., eds.: Selected Areas in Cryptography – SAC 2014. Volume
8781 of Lecture Notes in Computer Science. Springer International Publishing
(2014) 195–211

13. AlTawy, R., Youssef, A.M.: Watch your constants: Malicious Streebog. IET Infor-
mation Security (2015)

14. Rudskoy, V.: Note on Streebog constants origin (2015) http://www.tc26.ru/en/
ISO_IEC/streebog/streebog_constants_eng.pdf.

15. Shishkin, V., Dygin, D., Lavrikov, I., Marshalko, G., Rudskoy, V., Trifonov, D.:
Low-weight and hi-end: Draft Russian Encryption Standard. CTCrypt’14, 05-06
June 2014, Moscow, Russia. Preproceedings (2014) 183–188

16. Federal Agency on Technical Regulation and Metrology: Block ciphers (2015)
http://www.tc26.ru/en/standard/draft/ENG_GOST_R_bsh.pdf.

17. AlTawy, R., Youssef, A.M.: A meet in the middle attack on reduced round
Kuznyechik. Cryptology ePrint Archive, Report 2015/096 (2015) http://eprint.
iacr.org/.

18. Dolmatov, V.: GOST 28147-89: Encryption, decryption, and message authenti-
cation code (MAC) algorithms. http://www.rfc-editor.org/rfc/rfc5830.txt

(March 2010) RFC 5830.
19. Saarinen, M.J.O.: STRIBOB: Authenticated encryption from GOST R 34.11-2012

LPS permutation. In: Математические вопросы криптографии [Mathematical
Aspects of Cryptography]. Volume 6, No. 2. Steklov Mathematical Institute of
Russian Academy of Sciences (2015) 67–78

20. Saarinen, M.J.O., Brumley, B.B.: WHIRLBOB, the Whirlpool Based Variant of
STRIBOB. In: Secure IT Systems: 20th Nordic Conference, NordSec 2015, Stock-

29

https://www.streebog.net/
http://www.tc26.ru/en/ISO_IEC/streebog/streebog_constants_eng.pdf
http://www.tc26.ru/en/ISO_IEC/streebog/streebog_constants_eng.pdf
http://www.tc26.ru/en/standard/draft/ENG_GOST_R_bsh.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.rfc-editor.org/rfc/rfc5830.txt

holm, Sweden, October 19–21, 2015, Proceedings. Springer International Publish-
ing, Cham (2015) 106–122

21. Barreto, P., Rijmen, V.: The Whirlpool hashing function. In: First open NESSIE
Workshop, Leuven, Belgium. Volume 13. (2000) 14

22. Saarinen, M.J.O.: STRIBOBr2 availability. Mail to the CAESAR mail-
ing list (https://groups.google.com/forum/#!topic/crypto-competitions/
_zgi54-NEFM)

23. Shishkin, V.: Принципы синтеза перспективного алгоритма блочного шиф-
рования с длиной блока 128 бит (2013) http://www.ruscrypto.ru/resource/

summary/rc2013/ruscrypto_2013_066.zip.

24. Knudsen, L.R., Robshaw, M.J., Wagner, D.: Truncated differentials and Skipjack.
In: Advances in Cryptology–CRYPTO’99, Springer (1999) 165–180

25. Biham, E., Biryukov, A., Dunkelman, O., Richardson, E., Shamir, A.: Initial ob-
servations on Skipjack: Cryptanalysis of Skipjack-3xor. In: Selected Areas in Cryp-
tography, Springer (1999) 362–375

26. Knudsen, L., Wagner, D.: On the structure of Skipjack. Discrete Applied Mathe-
matics 111(1) (2001) 103–116

27. Kazymyrov, O., Kazymyrova, V.: Algebraic Aspects of the Russian Hash Standard
GOST R 34.11-2012. IACR Cryptology ePrint Archive 2013 (2013) 556

28. Biryukov, A., Shamir, A.: Structural cryptanalysis of SASAS. In Pfitzmann, B.,
ed.: Advances in Cryptology – EUROCRYPT 2001. Volume 2045 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2001) 395–405

29. Dinur, I., Dunkelman, O., Kranz, T., Leander, G.: Decomposing the ASASA block
cipher construction. Cryptology ePrint Archive, Report 2015/507 (2015) http:

//eprint.iacr.org/.

30. Minaud, B., Derbez, P., Fouque, P.A., Karpman, P.: Key-Recovery Attacks on
ASASA. In: Advances in Cryptology – ASIACRYPT 2015: 21st International
Conference on the Theory and Application of Cryptology and Information Security,
Auckland, New Zealand, November 29 – December 3, 2015, Proceedings, Part II.
Springer Berlin Heidelberg, Berlin, Heidelberg (2015) 3–27

31. Biryukov, A., Leurent, G., Perrin, L.: Cryptanalysis of Feistel networks with secret
round functions. In Dunkelman, O., Keliher, L., eds.: Selected Areas in Cryptog-
raphy – SAC 2015. Lecture Notes in Computer Science. Springer International
Publishing (2015) To appear

32. Daemen, J., Rijmen, V.: Probability distributions of correlation and differentials
in block ciphers. Journal of Mathematical Cryptology JMC 1(3) (2007) 221–242

33. Blondeau, C., Canteaut, A., Charpin, P.: Differential properties of power functions.
International Journal of Information and Coding Theory 1(2) (2010) 149–170

34. Preneel, B.: Analysis and design of cryptographic hash functions. PhD thesis,
Katholieke Universiteit Leuven (1993)

35. The Sage Developers: Sage Mathematics Software (Version 6.8). (2015)
http://www.sagemath.org.

36. Canright, D.: A very compact S-Box for AES. In Rao, J., Sunar, B., eds.: Crypto-
graphic Hardware and Embedded Systems – CHES 2005. Volume 3659 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2005) 441–455

37. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and Multidimensional
Linear Distinguishers with Correlation Zero. In Wang, X., Sako, K., eds.: Advances
in Cryptology – ASIACRYPT 2012. Volume 7658 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2012) 244–261

30

https://groups.google.com/forum/#!topic/crypto-competitions/_zgi54-NEFM
https://groups.google.com/forum/#!topic/crypto-competitions/_zgi54-NEFM
http://www.ruscrypto.ru/resource/summary/rc2013/ruscrypto_2013_066.zip
http://www.ruscrypto.ru/resource/summary/rc2013/ruscrypto_2013_066.zip
http://eprint.iacr.org/
http://eprint.iacr.org/

38. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.X.: Block ciphers that
are easier to mask: how far can we go? In: Cryptographic Hardware and Embedded
Systems-CHES 2013. Springer (2013) 383–399

39. Standaert, F.X., Piret, G., Rouvroy, G., Quisquater, J.J., Legat, J.D.: ICEBERG :
An Involutional Cipher Efficient for Block Encryption in Reconfigurable Hardware.
In Roy, B., Meier, W., eds.: Fast Software Encryption. Volume 3017 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2004) 279–298

40. Barreto, P., Rijmen, V.: The Khazad legacy-level block cipher. Primitive submitted
to NESSIE 97 (2000)

41. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA. In: Fast software encryption, Springer (2007) 181–195

42. Grosso, V., Leurent, G., Standaert, F.X., Varıcı, K.: LS-designs: Bitslice encryption
for efficient masked software implementations. In: Fast Software Encryption. (2014)

43. Canteaut, A., Duval, S., Leurent, G.: Construction of Lightweight S-Boxes using
Feistel and MISTY structures. In Dunkelman, O., Keliher, L., eds.: Selected Ar-
eas in Cryptography – SAC 2015. Lecture Notes in Computer Science. Springer
International Publishing (2015) To appear

44. Matsui, M.: New block encryption algorithm MISTY. In: Fast Software Encryp-
tion: 4th International Workshop, FSE’97 Haifa, Israel, January 20–22 1997 Pro-
ceedings. Springer Berlin Heidelberg, Berlin, Heidelberg (1997) 54–68

45. ETSI/Sage: Specification of the 3GPP Confidentiality and Integrity Algo-
rithms 128-EEA3 & 128-EIA3. Document 4 : Design and Evaluation Report
(http://www.gsma.com/aboutus/wp-content/uploads/2014/12/EEA3_EIA3_
Design_Evaluation_v2_0.pdf). Technical report, ETSI/Sage (September 2011)

A On the Choice of the Round Constants

The round constants of Streebog were chosen by feeding 12 different seeds into a
round-constant-less version of the hash function with a modified linear layer [14].
These seeds are given as hexadecimal strings of varying length which seem at
first glance to lack any justification. However, they correspond to Russian names
written backwards in cyrillic and encoded in cp1251 as described in Table 12.

B Proof of the Value of the Biases in the “Stripe”

Biases in the stripe correspond to approximations (𝑎𝐿||𝑎𝑅 𝑏𝐿||0) in the linear
layer-less version of 𝜋, which is denoted �̂�. These approximations are equal to:

2 × ℒ𝑎𝐿||𝑎𝑅,𝑏𝐿||0 =

255∑︁
𝑥=0

(−1)(𝑎𝐿||𝑎𝑅)·𝑥 ⊕ (𝑏𝐿||0)·�̂�(𝑥),

which we decompose by splitting 𝑥 ∈ F8
2 into (𝑙, 𝑟) ∈ (F4

2)2 to obtain

16∑︁
𝑟=1

16∑︁
𝑙=0

(−1)𝑎𝐿·𝑙 ⊕ 𝑎𝑅·𝑟 ⊕ 𝑏𝑙·𝜈1(𝑙⊙ℐ(𝑟)) +

16∑︁
𝑙=0

(−1)𝑎𝐿·𝑙 ⊕ 𝑏𝐿·𝜈0(𝑙). (5)

31

http://www.gsma.com/aboutus/wp-content/uploads/2014/12/EEA3_EIA3_Design_Evaluation_v2_0.pdf
http://www.gsma.com/aboutus/wp-content/uploads/2014/12/EEA3_EIA3_Design_Evaluation_v2_0.pdf

𝑅 Hexadecimal seed Name

1 e2e5ede1e5f0c3 Гребнев (Grebnev)

2 f7e8e2eef0e8ece8e4e0ebc220e9e5e3f0e5d1 Сергей Владимирович
(Sergej Vladimirovich)

3 f5f3ecc4 Дмух (Dmukh)

4 f7e8e2eef0e4ede0f1eae5ebc020e9e5f0e4edc0 Андрей Александрович
(Andrej Aleksandrovich)

5 ede8e3fbc4 Дыгин (Dygin)

6 f7e8e2eeebe9e0f5e8cc20f1e8ede5c4 Денис Михайлович
(Denis Mihajlovich)

7 ede8f5fef2e0cc Матюхин (Matjuhin)

8 f7e8e2eef0eef2eae8c220e9e8f0f2e8ecc4 Дмитрий Викторович
(Dmitrij Viktorovich)

9 e9eeeaf1e4f3d0 Рудской (Rudskoj)

10 f7e8e2e5f0eee3c820f0e8ece8e4e0ebc2 Владимир Игоревич
(Vladimir Igorevich)

11 ede8eaf8e8d8 Шишкин (Shishkin)

12 f7e8e2e5e5f1eae5ebc020e9e8ebe8f1e0c2 Василий Алексеевич
(Vasilij Alekseevich)

Table 12: The seeds used for each round constant and the corresponding name.

The second term in this sum is equal to 2 × ℒ0[𝑎𝐿, 𝑏𝐿] where ℒ0 is the LAT of
𝜈0. The first term can be simplified using the change of variable 𝑥 = 𝜈1(𝑙⊙ℐ(𝑟)),
i.e. 𝑙 = 𝜈−1

1 (𝑥) ⊙ 𝑟:

16∑︁
𝑙=0

(−1)𝑎𝐿·𝑙 ⊕ 𝑏𝐿·𝜈1(𝑙⊙ℐ(𝑅)) =

16∑︁
𝑥=0

(−1)𝑏𝐿·𝑥 ⊕ 𝑎𝐿·(𝜈−1
1 (𝑥)⊙𝑟).

As a consequence, the first term of Equation (5) can be re-written:

16∑︁
𝑟=1

16∑︁
𝑥=0

(−1)𝑎𝑅·𝑟 ⊕ 𝑏𝐿·𝑥 ⊕ 𝑎𝐿·(𝜈−1
1 (𝑥)⊙𝑟)

=

16∑︁
𝑥=0

(−1)𝑏𝐿·𝑥

(︃
16∑︁
𝑟=0

(−1)𝑎𝑅·𝑟 ⊕ 𝑎𝐿·(𝜈−1
1 (𝑥)⊙𝑟) − 1

)︃
.

First, we note that
∑︀16

𝑥=0(−1)𝑏𝐿·𝑥 is equal to 0 if 𝑏𝐿 ̸= 0 and 16 otherwise. Then,

we remark that
∑︀16

𝑟=0(−1)𝑎𝑅·𝑟 ⊕ 𝑎𝐿·(𝜈−1
1 (𝑥)⊙𝑟) is equal to 2 × ℒ𝑚

𝜈−1
1 (𝑥)

[𝑎𝑅, 𝑎𝐿],

where ℒ𝑚
𝑘 is the LAT of the Boolean linear permutation 𝑟 ↦→ 𝑟⊙𝑘. If we further

replace 𝑥 by 𝑦 = 𝜈−1
1 (𝑥) then Equation (5) can be re-written

2 ×
16∑︁
𝑦=0

(−1)𝑏𝐿·𝜈1(𝑦)ℒ𝑚
𝑦 [𝑎𝑅, 𝑎𝐿] − 16 × 𝛿(𝑏𝐿).

32

where 𝛿(𝑏𝐿) = 1 if and only if 𝑏𝐿 = 0. Besides, by experimentally exhausting all
cases, we can check that the following property holds.

Remark 3. For every pair (𝑎𝑅, 𝑎𝐿) with 𝑎𝑅 > 0 and 𝑎𝐿 > 0, there is exactly one
value 𝑦0 such that ℒ𝑚

𝑦0
[𝑎𝑅, 𝑎𝐿] = 8 and ℒ𝑚

𝑦 [𝑎𝑅, 𝑎𝐿] = 0 for 𝑦 ̸= 𝑦0.

We deduce that the expression of ℒ[𝑎𝐿||𝑎𝑅, 𝑏𝐿||0] is

ℒ[𝑎𝐿||𝑎𝑅, 𝑏𝐿||0] = ℒ0[𝑎𝐿, 𝑏𝐿] + 8 ×
(︀
(−1)𝑏𝐿·𝑦0 − 𝛿(𝑏𝐿)

)︀
.

C Generating 𝜋 from our Decomposition

The following SAGE [35] script generates and prints 𝜋. It can be downloaded on
github: https://github.com/picarresursix/GOST-pi.

from sage.all import *

X = GF(2).polynomial_ring().gen()

F = GF(2**4, name="a", modulus=X**4+X**3+1)

inv = [0x0,0x1,0xc,0x8,0x6,0xf,0x4,0xe,0x3,0xd,0xb,0xa,0x2,0x9,0x7,0x5]

nu_0 = [0x2,0x5,0x3,0xb,0x6,0x9,0xe,0xa,0x0,0x4,0xf,0x1,0x8,0xd,0xc,0x7]

nu_1 = [0x7,0x6,0xc,0x9,0x0,0xf,0x8,0x1,0x4,0x5,0xb,0xe,0xd,0x2,0x3,0xa]

sigma = [0xc,0xd,0x0,0x4,0x8,0xb,0xa,0xe,0x3,0x9,0x5,0x2,0xf,0x1,0x6,0x7]

phi = [0xb,0x2,0xb,0x8,0xc,0x4,0x1,0xc,0x6,0x3,0x5,0x8,0xe,0x3,0x6,0xb]

alpha = Matrix(GF(2), 8, 8, [

0,0,0,0,1,0,0,0, 0,1,0,0,0,0,0,1,

0,1,0,0,0,0,1,1, 1,1,1,0,1,1,1,1,

1,0,0,0,1,0,1,0, 0,1,0,0,0,1,0,0,

0,0,0,1,1,0,1,0, 0,0,1,0,0,0,0,0,

])

omega = Matrix(GF(2), 8, 8, [

0,0,0,0,1,0,1,0, 0,0,0,0,0,1,0,0,

0,0,1,0,0,0,0,0, 1,0,0,1,1,0,1,0,

0,0,0,0,1,0,0,0, 0,1,0,0,0,1,0,0,

1,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,1,

])

def applymat8(x, mat):

y = mat * Matrix(GF(2), 8, 1, map(int, bin(x)[2:].zfill(8)))

return int("".join(map(str, y.T[0][:8])), 2)

def F_mult(x, y):

return (F.fetch_int(x) * F.fetch_int(y)).integer_representation()

pi = []

for x in xrange(256):

x = applymat8(x, alpha)

33

https://github.com/picarresursix/GOST-pi

l, r = x >> 4, x & 0xf

l = (r == 0) * nu_0[l] + (r != 0) * nu_1[F_mult(l, inv[r])]

r = sigma[F_mult(r, phi[l])]

x = applymat8((l << 4) | r, omega)

pi.append(x)

print pi

34

	Reverse-Engineering the S-Box of Streebog, Kuznyechik and STRIBOBr1 (Full Version)

