
Attacking NTP’s Authenticated Broadcast Mode

Aanchal Malhotra
Boston University

aanchal4@bu.edu

Sharon Goldberg
Boston University

goldbe@cs.bu.edu

ABSTRACT
We identify two attacks on the Network Time Protocol (NTP)’s
cryptographically-authenticated broadcast mode. First, we
present a replay attack that allows an on-path attacker to
indefinitely stick a broadcast client to a specific time. Sec-
ond, we present a denial-of-service (DoS) attack that al-
lows an off-path attacker to prevent a broadcast client from
ever updating its system clock; to do this, the attacker
sends the client a single malformed broadcast packet per
query interval. Our DoS attack also applies to all other
NTP modes that are ‘ephemeral’ or ‘preemptable’ (includ-
ing manycast, pool, etc). We then use network measure-
ments to give evidence that NTP’s broadcast and other
ephemeral/preemptable modes are being used in the wild.
We conclude by discussing why NTP’s current implemen-
tation of symmetric-key cryptographic authentication does
not provide security in broadcast mode, and make some rec-
ommendations to improve the current state of affairs.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Time synchronization proto-
cols

Keywords
Network Time Protocol, NTP, broadcast, security

1. INTRODUCTION
The Network Time Protocol (NTP) [11], one of the Inter-

net’s oldest protocols, is used to set time on Internet clocks.
Time places a crucial and often-ignored role in the security
and correctness of computing applications, and especially in
cryptographic protocols. As we discussed in [9], an attacker
that manipulates time using NTP can seriously undermine
the security of key Internet protocols and applications, in-
cluding TLS certificates [7,12,15], DNSSEC, routing security
with the RPKI, authentication with Kerberos, caching, and
bitcoin [3]. NTP operates in several modes including (1)
client/server, (2) symmetric active/passive, and (3) broad-
cast/multicast. Our earlier work [9] considered attacks on
NTP’s client/server mode. In this companion paper, we
consider the security of NTP’s broadcast mode, which is in-
tended for an environment with a few servers and potentially
a large client population.

We use network measurements to give evidence that NTP’s
broadcast mode is used in the wild by thousands of NTP
clients (Section 5). We show that while symmetric-key cryp-
tographic authentication of NTP broadcast traffic is recom-

mended by the NTP specification [11] and required by the
open-source NTP reference implementation ntpd, it does not
provide sufficient protection against attacks on broadcast
mode. We consider both (1) on-path attacks, where the at-
tacker occupies a privileged position on the path between
NTP client and one of its servers, and (2) off-path attacks,
where the attacker can be anywhere on the network and does
not observe the traffic between client and any of its servers.

We present an on-path replay attack on authenticated
broadcast mode (CVE-2015-7973) that causes the NTP client
to get stuck at a particular time (Section 3), and an off-path
denial-of-service attack on authenticated broadcast mode
(CVE-2015-7979) that also applies to all of NTP’s “preempt-
able” and “ephemeral” modes of operation (Section 4). Both
of these attacks exploit issues in the NTP protocol specifica-
tion in RFC5905 [11], and have been experimentally verified
on ntpd v4.2.8p3. We conclude by discussing the inherent
challenges of cryptographically authenticating NTP’s broad-
cast mode, and provide several recommendations for the way
forward (Section 6).

Disclosure. These results were disclosed on October 7,
2015 and made public on January 19, 2016. CVE-2015-7973
and CVE-2015-7979 have been assigned, and patches have
been added to ntpd v4.2.8p6.

2. NTP’S BROADCAST MODE
NTP clients and servers are not configured to operate in

broadcast mode by default. However, there is a configura-
tion option that enables broadcast mode.

Broadcast servers. An NTP broadcast server can be pre-
configured to periodically send ‘persistent ’ broadcast-association
server packets (NTP mode 5 packets) to the clients on the
broadcast network. By persistent, we mean the server mobi-
lizes the broadcast association upon initialization, and never
demobilizes the association [11].

Broadcast clients. An NTP client can be preconfigured
to accept NTP mode 5 packets.1(Figure 1 presents a sample
broadcast packet.) When a broadcast client receives its first
NTP mode 5 packet, the client must first calculate the prop-
agation delay by exchanging a volley of client/server mode
packets with the broadcast server—where the client sends
the server an NTP mode 3 query and the server responds
with an NTP mode 4 response.2 After this, the client reverts

1The configuration option broadcastclient or multicastclient
[address] allows an ntpd client to receive and process mode
5 broadcast packets.
2The server and client also run the Autokey security proto-

to broadcast client mode, and creates an ephemeral associa-
tion with the server upon receipt of further mode 5 broadcast
packets. An ephemeral association is mobilized upon arrival
of a packet and exists until error or timeout [11].

Authenticating an association. How does an NTP
client validate incoming packets before establishing an asso-
ciation with a server? Most NTP traffic (especially client/server-
mode traffic) is not cryptographically authenticated.3 How-
ever, even in the absence of cryptographic authentication,
NTP clients running in client/server mode or symmetric
active/passive mode use a nonce to validate a server’s re-
sponse. The nonce is a field in the NTP packet, called the
origin timestamp; see Figure 1. Upon receipt of an NTP re-
sponse packet, the client checks if the 64-bit transmit times-
tamp field in the most recent query packet it sent the server,
matches the 64-bit origin timestamp field in the incoming
response packet. This is called TEST2 in the NTP specifi-
cations. This non-cryptographic authentication is based on
the premise that the nonce has enough entropy such that
an off-path attacker, who can not see the NTP packets in
transit, cannot guess the nonce. Indeed, as we argued in [9],
we can safely assume that this nonce has about 32 bits of
entropy, and so it is difficult to forge from off path.

Authenticating broadcast. In contrast to the client/server
mode, where the client actively sends a query to the server
to get the response, the broadcast client operates in listen-
only mode. Because the client does not send the server any
queries for broadcast packets, the origin timestamp field in
the broadcast server packet is always set to null. So now
TEST2 that defends NTP’s client-server mode from off-path
attacks does not apply. Moreover, the most recent NTP ref-
erence implementation (ntpd v4.2.8p6) does NOT use UDP
source port randomization [8], and so an off-path attacker
can easily forge an unauthenticated mode 5 packet.

Also, an NTP client preconfigured to run in broadcast
client mode will accept packets from ANY server that sends
it broadcast packets; it is NOT configured to listen only
to one particular broadcast server. So any off-path attacker
can easily send broadcast messages and the client will accept
them. RFC5905 [11, pg 57] says:

Filtering can be employed to limit the access of
NTP clients to known or trusted NTP broadcast
servers. Such filtering will prevent malicious traf-
fic from reaching the NTP clients.

To fill this gap and the lack of nonce check, RFC 5905 [11]
strongly suggests the use of cryptography to authenticate

col, if they are configured to do so. Autokey [6] is public-
key authentication method for NTP, but NTP clients do
not request Autokey associations by default [1], and many
public NTP servers do not support Autokey (e.g., servers in
pool.ntp.org). In fact, a lead developer of the ntpd client
wrote in 2015 [17]: “Nobody should be using autokey. Or
from the other direction, if you are using autokey you should
stop using it.” We therefore do not consider Autokey any
further here.
3As we discussed in [9], NTP’s symmetric-key cryptogra-
phy is not commonly used because the symmetric keys must
be pre-configured manually; this can be quite cumbersome
for public servers that must accept queries from arbitrary
clients. (NIST, for example, distributes symmetric keys
for its public servers via US mail or facsimile [2].) More-
over, NTP’s public-key cryptography (Autokey) is not rec-
ommended for use in the wild, see footnote 2.

v4 IHL TOS Total length

IPID x DF MF Frag Offset

TTL Protocol = 17 IP Header Checksum

Source IP

Destination IP

Source Port = 123 Destination Port = 123

Length UDP Checksum

LI v Mode 5 Stratum Poll Precision

Root Delay

Root Dispersion

Reference ID

Reference Timestamp

Origin Timestamp = NULL

Receive Timestamp = NULL

Transmit Timestamp = Dec 1, 2015, 1:44:55 PM UTC

Key ID = 00000001

Message Digest = 324a4b23130fff3eab4581931ee6fa5d4

IP header

UDP header

NTP data

NTP MAC

Figure 1: Mode 5 NTP Broadcast Packet.

broadcast packets. Indeed, NTP’s current reference imple-
mentation requires symmetric-key cryptography, by default,
for clients listening to broadcast packets. NTP’s symmetric
cryptographic authentication appends an MD5 hash keyed
with symmetric key k of the NTP packet contents m as
MD5(k||m) [12, pg 264] to the NTP packet in Figure 1; au-
thenticated NTP packets also have a key ID that identifies
the key used to authenticate the message.

In this paper, however, we present two attacks that show
that NTP’s symmetric key cryptography does not provide
sufficient protection for broadcast mode.

3. TIMESHIFTING ATTACKS
Should broadcast be robust to replay attacks? Ac-
cording to RFC 5905 [11], NTP’s “on-wire protocol ... resists
replay of a server response packet.” This is supposed to be
accomplished through what is called TEST1 in the protocol
specification: Upon receipt of an NTP response packet, the
NTP client matches the transmit timestamp in the current
packet to that of the last response packet it received; if the
timestamp matches, it marks the packet as duplicate and
drops it. However, we now show that because broadcast
mode does not impose TEST2, then TEST1 cannot provide
sufficient protection against replay attacks, even when NTP
packets are cryptographically authenticated.

Deja Vu: Our on-path time-sticking attack (CVE-
2015-7973). Consider a man-in-the-middle (MiTM) at-
tack, where the attacker is positioned between the server and
the victim client, and can intercept and replay a packet and
prevent onward transmission of the original packet, but does
not possess the symmetric key that authenticates broadcast
messages. We show that the protocol does not resist the fol-
lowing replay attack. The MiTM collects and records a con-
tiguous sequence of server broadcast packets. (The attacker
requires a sufficient number of these packets for the client
to update its clock; this is because NTP requires a client to
obtain between eight to hundreds of messages from a server
before the client’s clock discipline algorithms synchronizes
it to the server [11, Sec. 10-12].) He then replays this se-

pool.ntp.org

quence of packets (while dropping the legitimate packets),
over and over, to the victim client; the victim accepts the
same time over and over, and thus gets stuck at a particular
time. Notice that these are the authenticated packets from
the broadcast server, and so they pass the authentication
check on the client. Moreover, by replaying a sequence of
packets, rather than just one packet, the attacker ensures
that the replayed packets pass TEST1.

Why does this attack work? This attack highlights
a weakness in RFC5905 [11]: In the absence of TEST2,
TEST1 doesn’t actually prevent replay in general—it just
prevents replay of the most recent packet. Our replay attack
passes TEST1 because the client only matches the current
transmit timestamp with that of the last packet. This at-
tack only applies to broadcast mode, since other modes (e.g.,
client/server, symmetric, pool) do apply TEST2.

Experiment. We set up an ntpd v4.2.8p3 broadcast
client and server using the configuration options broadcast-
client and broadcast IP address range respectively. Another
machine on the same network behaves as MiTM and col-
lects 12 mode 5 packets and stores them. The MiTM then
drops the original mode 5 packets to the victim and replays
his previously collected set of mode 5 packets, making sure
to preserve their interarrival time. The victim accepts the
time after getting sufficient samples required for a server to
pass the clock discipline algorithms, gets into the ‘STEP’
mode4and clears the state variables for this association. We
continue this experiment for ≈ 4 hours and observe that the
victim’s system clock is stuck at the same time.

Implications of the attack. A MiTM can use a replay
attack to make the victim client get stuck at a particular
time value forever. Shifting time backwards has severe im-
plications on security guarantees provided by various core
Internet protocols, such as DNSSec, BGP, TLS, and authen-
tication services that use Kerberos; see our earlier paper [9].

Remark: Forging attacks are also possible. If the
attacker is one of the clients on the broadcast network, or on
an adjacent network that also gets broadcast packets from
the same server, it then shares the same symmetric key with
the server as the victim client. As [13, 16] have also noted,
the attacker thus possesses the same key as the server and
therefore can just forge authenticated NTP mode 5 packets
and send them to the victim client. The attacker can then
make the client stick to a particular time, or send the victim
back/forward in time.

Remark: Delay attacks don’t really work. One
might wonder if a delay attack could be used for timeshift-
ing, or to stick a client to a particular time. In a delay
attack, the on-path attacker intercepts packets and delays
them, in hope of pushing the client back in time. However,
NTP has built-in mechanisms (TEST11 [11]) to prevent this
attack; specifically, NTP clients drop packets with a delay
that approaches the ”MAXDISTANCE” which is on the or-
der of 1 second. Note that when an NTP client doesn’t
receive any valid timing information from the network, it
just runs with its local clock. So even if a delay attack were
to work against NTP, it could not do much more than shift
the client back in time by 1 second. Meanwhile, our Deja

4An NTP client enters ‘STEP’ mode whenever it needs to
shift its clock by more than 125ms but less than ≈ 16 min;
our replay attack shifts the client back in time by more than
125ms, causing the client to enter STEP mode.

Vu attack forces the client to get stuck at a particular time
(e.g., Dec 1, 2015, 1:44:55 PM UTC) indefinitely.

4. DENIAL OF SERVICE ATTACKS
We now present an off-path denial-of-service attack that

generically succeeds on any preemptable or ephemeral as-
sociation that is cryptographically authenticated, including
authenticated broadcast mode.

Preemptable and empheremal associations. NTP’s
broadcast clients establish an ephemeral association upon
receipt of an NTP mode 5 from a broadcast server; as dis-
cussed in Section 2, this association is automatically demobi-
lized upon error or timeout. NTP also supports preemptable
associations [10], which are also demobilized upon error or
timeout. Preemptable associations are mobilized if the ntpd
client has the keyword “preempt” to the line in its configu-
ration file that establishes an association with a particular
server. Alternatively, the ntpd client may be preconfigured
with the manycastclient or pool [pool address] options; in
this case, the client establishes a preemptable association
upon receiving a response to a server discovery packet.

Our off-path DoS attack (CVE-2015-7979). An off-
path attacker can easily cause an error by sending a mode 5
packet with bad cryptographic authentication (e.g., wrong
or mismatched key, incorrect message digest, etc.). The at-
tacker sends one such error-causing packet for every legit-
imate response the client receives from the server, so that
the client immediately tears down its association with the
server. This way, the client never collects enough good NTP
responses to allow its clock discipline algorithms to update
its local clock. This is a denial-of-service attack on the client.

The only challenge is to learn the IP of the broadcast
server used by the victim client. However, this turns out to
be trivial as well. As we observed in [9, Sec V.C], the off-path
attacker need only send the victim a timing query (a mode 3
client request), and by default, the victim will respond with
a timing response (a mode 4 server response) that reveals
the IP of the broadcast server in the reference ID field. This
attack therefore exploits two issues in RFC5905 [11]: (1)
the definition of ephemeral associations, and (2) information
leakage in the reference ID field.

Experiment. We set up ntpd v4.2.8p3 broadcast client
and server using the configuration options broadcastclient
and broadcast IP address range respectively. Once the client
is synchronized with the broadcast server, another machine
which behaves as an off-path attacker sends badly-authenticated
mode 5 packet to the client. The client immediately tears
down the association with the server and clears all the state
variables. Next, the client receives the legitimate packet
from the broadcast server and again mobilizes the associa-
tion. The attacker again sends the bad mode 5 packet and
the client again tears down the association. The attacker
keeps repeating this and the client never obtains enough
consistent time samples from the server to allow it to up-
date its system clock.

Implications. a) Even if cryptographic authentication is
used, an off-path attacker can still spoof packets that will
deny NTP service to a broadcast client. b) If the client is
preconfigured to a bad timekeeper, or one of the servers’
that the client is configured to is controlled/compromised
by the attacker, then using this DoS attack, the attacker
can pin the client to bad server that is controlled by him.

5. MEASUREMENT RESULTS
We use NTP’s peers command to check for the presence

of broadcast and other ephemeral and preemptable asso-
ciations in the wild. As shown in Figure 2, NTP’s peers
command returns a list of all associations used by an NTP
client; associations with a broadcast server are marked with
a b or B, client/server associations are marked with a u,
etc.. ‘*’ is used to indicate the association that the client
last took time from, and ‘+’ indicates an association that is
a candidate for synchronization.

While the peers command provides a variety of useful in-
formation for network measurement, it’s also a great tool for
adversarial network reconnaissance and DDoS amplification
attacks [4]; for this reason, network operators commonly
disable remote peers queries, or configure firewalls or other
middleboxes to drop them. Moreover, while we conjecture
broadcast mode is most common when both the clients and
the broadcast server are behind a NAT, we are unable to
scan clients behind a NAT. Therefore, it’s important to re-
member that our measurement results can only provide a
hard lower bound on the number of broadcast/ephemeral/
preemptable associations in the wild, rather than the per-
centage of broadcast-enabled clients. We suspect that even
more broadcast clients are behind NATs and firewalls.

Our scan. We scanned the entire IPv4 address space
using the peers command on 10-11 November 2015, and
obtained responses from 4,443,118 IPv4 addresses. On 16-
21 November 2015 we rescanned only the 4.4M responding
IP addresses with NTP’s peers command, as well the rv
command (which reveals useful information about the NTP
client, including its version, build date, and the operating
system it runs on), and the as command (which has useful
information about each association used by the client). For
this second scan we obtained responses from 3,716,362 IPv4
addresses; we consider only these addresses here.

Results. Of the 3.7M responding IPs, we found that
18,020 IPs have at least one broadcast association, and 1,767
IPs use multicast associations. We see 9,806 IPs that use
broadcast associations exclusively, of which 7,556 IPs were
synchronized to a broadcast server. The remaining 2,250 IP
were unsynchronized and thus likely malfunctioning.

As an aside, we were also surprised to find many sym-
metric associations in the wild; 190,724 of the responding
IPs had at least one symmetric association. Overall, we
found 2,848,238 IPs that have at least one client/server as-
sociations, 77 IPs use multicast exclusively, 67383 IPs use
symmetric associations exclusively, and 9806 use broadcast
exclusively. This is a total of 2,925,504 IPs; for the rest of
the IPs, their association status is “-” which may mean they
are initializing, or using a local clock (e.g., via GPS) rather
than taking time from the Internet using NTP. Thus, while
broadcast is not an especially popular mode of operation for
NTP, we do find thousands of clients in the wild that rely
upon it for time synchronization.

Who are these broadcast clients? Of the 18K IPs
that have at least one broadcast association, 16,552 of them
also responded to NTP’s rv query, and thus reveal informa-
tion about their operating systems, ntpd version, and com-
pile date. Most of these broadcast clients are running on
unix (10,671 IPs) or ‘cisco’ devices (5,135 IPs). Also, out of
16.5K IPs that responded to the rv query, only 326 replied
with the detailed ntpd version and compilation details (the

Figure 2: Sample response to peers query.

rest merely say “ntpd version 4”). Of these, the major-
ity (212 IPs) have been compiled between 2012 and 2015
inclusive. The most popular ntpd version that we found is
4.2.6p5@1.2349 (23%) which was released in December 2011,
closely followed by 4.2.8@1.3265 (20%) which was released
in December 2014, while 4.1.1c-rc1@1.836 (released in 2001)
and 4.2.4p5-a (released in 2008) are 9% each. The bottom
line is that we do find evidence of recently maintained NTP
implementations that use broadcast mode in the wild.

6. RECOMMENDATIONS
1) Ephemeral and pre-emptable associations con-
sidered harmful. Our denial-of-service attack from
Section 4 points to a serious problem with the notion of
ephemeral and preemptable associations; namely, that an
off-path attacker can easily forge a packet that can tear
down an association. Even though an ephemeral associ-
ation can easily be reestablished, the attacker can quickly
tear it down again before the client has the chance to update
its clock. For this reason, we suggest that NTP does NOT
tear down ephemeral associations upon receipt of a mal-
formed packet; instead, the malformed packet should just
be dropped, while the association remains in place. While
this recommendation is fairly easy to implement, it does re-
quire making changes to RFC5905 [11].

2) Prevent replay in broadcast mode. As others have
pointed out [13, 16], NTP’s broadcast mode should contain
a robust mechanism for preventing replay attacks. TEST1
is insufficient, since it only checks if the most recent packet
has been replayed. One solution is to require authenticated
mode 5 NTP packets to include an incrementing counter
(e.g., in the extension field). Alternatively, the MAC com-
puted on the broadcast packet could become a hash chain;
that is, the MAC on packet pi should be computed over the
contents of packet pi concatenated with the MAC on packet
pi−1. The former suggestion, however, requires changes to
the NTP packet formats, while the latter suggestion requires
changes on both the client side and the server side.

Another idea is to use the transmit timestamp field in
the mode 5 packet (Figure 1) as an incrementing counter;
to do this, the broadcast client would need to ensure that
the transmit time is monotonically increasing. This idea has
a nice backwards-compatibility property: only clients that
wish to enforce this check must do so, and no changes are
required on the server side. This recommendation also re-
quires changes to RFC5905 [11], and has been implemented
in ntpd v4.2.8p6 following disclosure of our work.

3) Only the broadcast server should be able to sign
broadcast packets. As others have pointed out [13,16],
the broadcast servers’ symmetric key should NOT be dis-
tributed to all its clients; as we noted in Section 3, this
allows clients to trivially forge packets from the server. In-
stead, the only entity that should be able to sign broadcast
(mode 5) packets is the broadcast server itself. Unlike the

previous two recommendations, however, which are fairly
simple to implement today, some more thought is required
before it becomes clear how to achieve this last recommen-
dation. The crucial issue is that the cryptographic compu-
tations performed on each packet must be sufficiently fast
to avoid harming NTP’s clock synchronization algorithms.
As such, we cannot just digitally sign every NTP broadcast
packet with a standard public-key digital signature scheme
like RSA or ECDSA.

NTS and TESLA. One approach, taken by a new Inter-
net draft for the “Network Time Security protocol (NTS)”,
seeks to implement recommendations (2) and (3) above through
a modified version of TESLA [14]. TESLA uses public-key
cryptography to ensure that a server is the only entity that
can authenticate broadcast messages, but that the authenti-
cators on individual packets can be computed and validated
using fast symmetric cryptography. With TESLA, a packet
containing a message and its MAC, is broadcast to clients
immediately, while the secret key for the MAC is broadcast
after some pre-determined time interval. As such, TESLA
requires loose time synchronization between the broadcast
server and its client. Therefore, using TESLA in the context
of NTP creates a circular dependency on time. NTS suggests
avoiding this circular dependency by using an authenticated
unicast association to achieve the loose synchronization be-
tween the server and each of its clients. This, however, once
again requires pairwise associations between server and each
client, and server and client must also share a symmetric
cryptographic key; this may defeat the purpose of using the
broadcast mode in the first place.

Indeed, as indicated by a recent survey [5], many known
cryptographic techniques for authenticating broadcast com-
munications rely on some sort of time-released key mecha-
nism, and therefore require loose time synchronization.

Recommendations for users. It is evident that signif-
icant effort is required before recommendation (3) can be
implemented. Thus, we currently recommend against the
use of broadcast mode, unless the broadcast server and all
its clients are on a trusted (i.e., firewalled) network.

7. CONCLUSION
Our analysis highlights the difficulty of designing robust

cryptographic authentication for NTP’s broadcast mode.
One might be tempted to dismiss broadcast mode altogether,
by arguing that broadcast mode is a legacy from the past
that is largely unused today. Our measurements, however,
indicate that this is not the case; while broadcast mode is
not especially popular, we do find thousands of NTP clients
in the wild that have broadcast associations. Thus, we be-
lieve that the community should take another careful look
at authentication for NTP’s broadcast mode. Indeed, it re-
mains an interesting open problem to find a scheme that can
cryptographically authenticate NTP’s broadcast mode in a
way that is both fast and secure, and does not introduce a
circular dependency on time.

Acknowledgements
We are especially grateful to Matt Van Gundy for collab-
oration and for leading the disclosure of these results. We
thank Jonathan Gardner, Matthew Street, Stephen Gray
and Hai Li from Cisco’s ASIG team for useful discussions,

Jared Mauch for performing the initial scan of the IPv4 ad-
dress space with NTP’s peers command, David Mills for
suggesting we look into broadcast mode, and the Network
Time Foundation and NTPsec for deploying patches. This
research was supported, in part, by NSF awards 1347525,
1414119, 1012910 and a gift from Cisco.

8. REFERENCES
[1] Autokey Configuration for NTP stable releases. The NTP

Public Services Project: http://support.ntp.org/bin/
view/Support/ConfiguringAutokey (Accessed: July 2015).

[2] The NIST authenticated ntp service.
http://www.nist.gov/pml/div688/grp40/auth-ntp.cfm
(Accessed: July 2015), 2010.

[3] corbixgwelt. Timejacking & bitcoin: The global time
agreement puzzle (culubas blog), 2011. http://culubas.
blogspot.com/2011/05/timejacking-bitcoin_802.html
(Accessed Aug 2015).

[4] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos,
M. Bailey, and M. Karir. Taming the 800 pound gorilla:
The rise and decline of NTP DDoS attacks. In Proceedings
of the 2014 Internet Measurement Conference, pages
435–448. ACM, 2014.

[5] K. Grover and A. Lim. A survey of broadcast
authentication schemes for wireless networks. Ad Hoc
Networks, 24:288–316, 2015.

[6] B. Haberman and D. Mills. RFC 5906: Network Time
Protocol Version 4: Autokey Specification. Internet
Engineering Task Force (IETF), 2010.
https://tools.ietf.org/html/rfc5906.

[7] J. Klein. Becoming a time lord - implications of attacking
time sources. Shmoocon Firetalks 2013:
https://youtu.be/XogpQ-iA6Lw, 2013.

[8] M. Larsen and F. Gont. RFC 6056: Recommendations for
Transport-Protocol Port Randomization. Internet
Engineering Task Force (IETF), 2011.
https://tools.ietf.org/html/rfc6056.

[9] A. Malhotra, I. E. Cohen, E. Brakke, and S. Goldberg.
Attacking the network time protocol. NDSS’16, February
2016.

[10] D. Mills. Association management. https:
//www.eecis.udel.edu/~mills/ntp/html/assoc.html.

[11] D. Mills, J. Martin, J. Burbank, and W. Kasch. RFC 5905:
Network Time Protocol Version 4: Protocol and
Algorithms Specification. Internet Engineering Task Force
(IETF), 2010. http://tools.ietf.org/html/rfc5905.

[12] D. L. Mills. Computer Network Time Synchronization.
CRC Press, 2nd edition, 2011.

[13] T. Mizrahi. RFC 7384 (Informational): Security
Requirements of Time Protocols in Packet Switched
Networks. Internet Engineering Task Force (IETF), 2012.
http://tools.ietf.org/html/rfc7384.

[14] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. The tesla
broadcast authentication protocol. RSA CryptoBytes, 5,
2005.

[15] J. Selvi. Breaking SSL using time synchronisation attacks.
DEFCON’23, 2015.

[16] D. Sibold, S. Roettger, and K. Teichel.
draft-ietf-ntp-network-time-security-10: Network Time
Security. Internet Engineering Task Force (IETF), 2015.
https://tools.ietf.org/html/
draft-ietf-ntp-network-time-security-10.

[17] H. Stenn. Antw: Re: Proposed REFID changes. NTP
Working Group Mailing List http://lists.ntp.org/
pipermail/ntpwg/2015-July/002291.html, July 2015.

http://support.ntp.org/bin/view/Support/ConfiguringAutokey
http://support.ntp.org/bin/view/Support/ConfiguringAutokey
http://www.nist.gov/pml/div688/grp40/auth-ntp.cfm
http://culubas.blogspot.com/2011/05/timejacking-bitcoin_802.html
http://culubas.blogspot.com/2011/05/timejacking-bitcoin_802.html
https://tools.ietf.org/html/rfc5906
https://youtu.be/XogpQ-iA6Lw
https://tools.ietf.org/html/rfc6056
https://www.eecis.udel.edu/~mills/ntp/html/assoc.html
https://www.eecis.udel.edu/~mills/ntp/html/assoc.html
http://tools.ietf.org/html/rfc5905
http://tools.ietf.org/html/rfc7384
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-10
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-10
http://lists.ntp.org/pipermail/ntpwg/2015-July/002291.html
http://lists.ntp.org/pipermail/ntpwg/2015-July/002291.html

	Introduction
	NTP's broadcast mode
	Timeshifting Attacks
	Denial of Service Attacks
	Measurement Results
	Recommendations
	Conclusion
	References

