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Abstract

Functional encryption is a new public key paradigm that solves, in a non-interactive
way, most of the security challenges raised by cloud computing. A recent paper by Abdalla,
Bourse, De Caro, and Pointcheval shows a functional encryption scheme for evaluations of in-
ner products whose security can be proven under simple assumptions. Inner product evalua-
tion is a simple, but quite powerful functionality, that suffices for many concrete applications.
We analyze the different security notions for functional encryption for inner product evalu-
ation and propose a new generic construction that achieves security against adaptive adver-
saries. We show 3 instantiations based on the ElGamal encryption (plain DDH assumption),
Paillier/BCP encryption (DCR assumption), and Regev encryption (LWE assumption). All
of them have different advantages and drawbacks, but with acceptable trade-offs, and rely
on standard assumptions.

Keywords: Functional Encryption, Adaptive Security, Inner-Product, Generic Construc-
tions.
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1 Introduction

Functional Encryption. In traditional encryption schemes, decryption is always all-or-nothing:
either you can recover all data or you can recover none. Functional encryption (FE) [SW05,
BSW11, O’N10] is an emerging paradigm that allows fine-grained control of the information
revealed by a combination of a ciphertext and a secret key. In a functional encryption scheme
for a functionality F : K×X → Σ∩{⊥}, a master authority generates secret keys skk for values
k in the key space K. When using skk on a ciphertext, the key holder only learns F (k, x) and
nothing else, where x ∈ X is the encrypted data.

The concept finds numerous applications. In cloud computing, a user could store his en-
crypted data on an untrusted remote server, and then give secret keys to other users, sharing
with each user a precise amount of the information contained in the data, or he could give
a key to the server to delegate computation on the data while ensuring minimum leakage of
information.

The traditional security requirement is resistance to collusions. Intuitively, an adversary
knowing secret keys skki for a set of values {ki} cannot learn any information other than
{F (ki, x)} if given an encryption of x. There are two security definitions that capture this
idea of collusion-resistance:

indistinguishability-based security (IND). Informally, it requires that an adversary cannot
tell apart which of two message x0, x1 of its choice has been encrypted given the public
key and any secret key skk such that F (k, x0) = F (k, x1). This models the idea that an
individual’s message is still secure even if an arbitrary number of other users of the system
collude against that user.

simulation-based security (SIM). Informally, it requires that the “view” of the adversary
can be simulated by a simulator that is given neither ciphertexts nor keys but only the
corresponding outputs of the functionality on the underlying plaintexts.

Boneh, Sahai, and Waters [BSW11] and O’Neill [O’N10] showed that the IND definition is
weak in the sense that a trivially insecure scheme implementing a certain functionality can be
proved IND-secure anyway. They also show that SIM-security is not always achievable.

In a recent series of outstanding results, [GGH+13, BCP14, Wat14, GGHZ14] proposed
IND-secure FE schemes for general circuits whose security is based either on indistinguishable
obfuscation and its variants or polynomial hardness of simple assumptions on multilinear maps.

Functional Encryption for Inner Product Evaluations. A recent line of work opened by
Abdalla, Bourse, De Caro, and Pointcheval [ABDP15] aims at constructing functional encryption
schemes based on standard assumptions such as the plain decisional Diffie-Hellman assumption.
They proposed a framework to construct IND-secure FE scheme to evaluate inner products from
any PKE scheme with good properties.

More precisely, one knowing a secret key for a vector y can recover 〈x,y〉 given a ciphertext
for the vector x and nothing else. This is different from prior notions of inner product encryption
in [AAB+15, KSW08, LOS+10, AFV11], because here you compute an actual value, instead of
all-or-nothing decryption.

Evaluating inner products is an interesting functionality, because it is sufficient to compute
any polynomial evaluation on the data, by expanding the ciphertext with all monomials appear-
ing in the desired family of polynomials. In addition, functional inner product encryption also
finds direct applications:
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Distance between two points The inner product between two unit vectors is exactly the
cosine of the angle between the two vectors. This can be used as a distance between two
points. Private evaluation of two vectors of same length allows for computation of distance
from a known vector to an unknown vector. One could think of applications such as online
dating, where a user would know his distance to all users without learning any personal
information about them.

Weighted means The inner product corresponds to weighted means, which is one of the main
tools used in statistics. This is a way to derive useful information on a big set of per-
sonal data while leaking no information about the personal data of any particular user.
One could think of application such as course grades online, where teachers, students,
other administrative staff members could access different statistics about the grades while
preserving privacy of others.

This Work. Our work builds on the scheme proposed by [ABDP15] that only reaches security
against a selective adversary, and does not try to hide the function computed with a certain key.
In this paper, we analyze stronger notions of security for a functional encryption scheme for inner
products. We are interested in improving the framework of [ABDP15] to provide security against
adaptive adversary. We also study the relation between indistinguishability-based security and
the stronger simulation-based security. For general functionalities, SIM security (the above
simulation-based security) implies IND-CPA security (indistinguishability under chosen-plaintext
attacks), but nothing can be said about NA-SIM (non-adaptive simulation-based security) and
IND-CPA (indistinguishability under chosen-plaintext attacks). We prove that those two notions
are equivalent in the case of functional encryption for inner products, if the scheme allows key
delegation. This result gives a better understanding of the leakage implied by giving inner
product of a vector with a known vector: a selective adversary has almost the same power as
an adaptive one, given the strong malleability (even linearity) of the functionality.

Next, we proceed with the description of our framework, which constructs an FE scheme
secure against adaptive adversaries, using a PKE having simple properties (the same properties
as those defined by [ABDP15]). The resulting scheme is almost as efficient as the existing one,
adding only one group element. Our proof of security is different from the one in [ABDP15]
in that we do not need to compute a change of basis in the secret key space. This allows us
to present a new instantiation based on the BCP PKE [BCP03], in which the secret key space
order is unknown, and whose security relies on the DCR assumption (Decisional Composite
Residuosity), which is a special case of the EDDH assumption.

Relation to [ALS15, BJK15]. [ALS15][version 20150629:075619] recently gave two con-
structions for FE schemes for inner product evaluations secure against adaptive adversaries.
The first one is based on DDH and the second one on LWE. Our generic construction is inspired
by their construction relying on the DDH assumption and our instantiation based on the El-
Gamal cryptosystem gives the same FE scheme. Our approach was to extract the properties
needed from a PKE scheme to obtain a FE scheme using this method. This allowed us to
prove the security of two new schemes, one based on LWE and one based on DCR. However,
our construction based on LWE is restricted to inner products over Z while the construction of
[ALS15] based on the LWE assumption aimed at evaluating modular inner product. In a new
version, they concurrently proposed one more construction for fully secure functional encryption
for inner product evaluations whose security is based on the DCR assumption, getting 3 different
constructions. Thus, they achieve similar results as we do, and they even construct modular
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ElGamal BCP Regev

mpk (`+ 1) log p 2(`+ 1) logN m(`+ 1) log q

msk 2` log p `(2 logN + λ+ log T ) n(`) log q + ` log T

Ctx (`+ 2) log p 2(`+ 2) logN (n+ `+ 1) log q

Sky 2 log p 2 log `MyN + λ+ log T n log q + log `My + log T

output space computation of DL N `MxMy

Table 1: Parameter Sizes. Here, ` is the length of the vectors encrypted in the ciphertexts and
encoded in the secret keys, T is a parameter that allows some trade-off between security and
efficiency. In ElGamal, p is the size of a group element. In BCP, N is an RSA modulus, the size
of a group element, λ is the security parameter. In Regev, q is the size of a group element, p is
the order of `MxMy, My is a bound on the key space, and Mx is a bound on the message space.

inner product functionality when we only get it over the integers. In fact, their construction
also gives slightly better parameters for the LWE instantiation because they do not need to use
a superpolynomial modulus. However, the biggest advantage of our work is that our approach
is generic. Indeed, the proof can easily be adapted to new schemes, because we extracted the
useful properties from the 3 different constructions, so the result is more flexible.

Another construction that improves the selective security of [ABDP15]’s scheme has been
given by [BJK15]. They construct a private key FE scheme for inner product evaluations and
prove its security against adaptive adversaries, and even hide the function provided by a key.
This security notion can only be achieved in private key setting, so we cannot have a chance
at meeting their security. On the other hand, their construction uses asymmetric pairings,
which reduce the efficiency of the scheme. Finally, as in our ElGamal-based instantiation, their
construction also needs the computation of a discrete logarithm during the decryption.

Parameter Sizes For Our Constructions. In Table 1, we compare the size of the param-
eters and ciphertexts for each concrete functional encryption scheme. Each column refers to an
instantiation of our generic construction and is indexed by its underlying public key encryption
scheme. Each row describes the size of an element of the scheme. The master public key size
does not include public parameters that can be re-used such that (g,N,A). Output space is
the number of different values of inner products that can be decrypted using this instantiation,
it gives a bound on message and key space. The ElGamal instantiation can give short cipher-
texts and keys using elliptic curves. It also allows for modular inner product evaluations, but
requires the computation of a discrete logarithm in the decryption, which makes it usable for
small message space only. The instantiation relying on BCP fixes this problem by having the
message space exponential in the security parameter, but uses RSA moduli, which leads to larger
ciphertexts and keys. Regev enables short ciphertexts and keys together with a message space
that is independent of the security parameter, which allows shorter ciphertexts for a smaller
message space. It is also believed to be secure against adversaries using quantum computers.
BCP and Regev are also unable to evaluate modular inner products, and are only proven secure
when used to compute the inner product over the integers.

Relation to Predicate Encryption. As mentioned above, the notion of functional inner-
product encryption which we use is different from those used in predicate encryption schemes,
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since the user in possession of a secret key for a function f in our case actually obtains the value
of f(m), where m is the message being encrypted.

In contrast, predicate encryption (PE) are defined for functionalities whose message space
X consists of two subspaces I and M called respectively index space and payload space. In
this case, the functionality F is defined in terms of a predicate P : K × I → {0, 1} as follows:
F (k, (ind;m)) = m if P (k, ind) = 1, and ⊥ otherwise, where k ∈ K, ind ∈ I and m ∈M .

Some examples of predicate encryption schemes in which the index ind is kept private
are anonymous identity-based encryption (AIBE) [BF01, ABC+05, Gen06], hidden vector en-
cryption (HVE) [BW07], and predicate inner-product encryption [KSW08, LOS+10, OT12].
On the other hand, the cases where the index ind is easily readable from the ciphertext in-
cludes identity-based encryption (IBE) [Sha84, BF01, Coc01], attribute-based encryption (ABE)
[SW05, GPSW06], and functional encryption for regular languages [Wat12].

2 Basic Tools

In this section, we recall some of the definitions and basic tools that will be used in the remaining
sections, such as the syntax of code-based games, functional encryption, and the assumptions.

2.1 Notation and Conventions

Let N denote the set of natural numbers. If n ∈ N, then {0, 1}n denotes the set of n-bit strings,
and {0, 1}∗ is the set of all bit strings. The empty string is denoted ε. More generally, if S is
a set, then Sn is the set of n-tuples of elements of S, S≤n is the set of tuples of length at most
n. If x is a string then |x| denotes its length, and if S is a set then |S| denotes its size. If S

is finite, then x
R← S denotes the assignment to x of an element chosen uniformly at random

from S. If A is an algorithm, then y ← A(x) denotes the assignment to y of the output of A on

input x, and if A is randomized, then y
R← A(x) denotes that the output of an execution of A(x)

with fresh coins is assigned to y. Unless otherwise indicated, an algorithm may be randomized.
“PT” stands for polynomial time and “PTA” for polynomial-time algorithm or adversary. We
denote by λ ∈ N the security parameter. A function ν : N → [0, 1] is said to be negligible if
for every c ∈ N there exists a λc ∈ N such that ν(λ) ≤ λ−c for all λ > λc, and it is said to be
overwhelming if the function |1− ν(λ)| is negligible.

Code-Based Games. We use the code-based game-playing [BR06] to define the security
notions. In such games, there exist procedures for initialization (Initialize) and finalization
(Finalize) and procedures to respond to adversary oracle queries. A game G is executed with
an adversary A as follows. First, Initialize executes and its outputs are the inputs to A. Then
A executes, its oracle queries being answered by the corresponding procedures of G. When A
terminates, its output becomes the input to the Finalize procedure. The output of the latter,
denoted G(A), is called the output of the game, and “G(A) = y” denotes the event that the
output takes a value y. Boolean flags are assumed initialized to false. Games Gi,Gj are identical
until bad if their code differs only in statements that follow the setting of bad to true.

2.2 Public-Key Encryption

Definition 2.1 [Public-Key Encryption Scheme] A public-key encryption (PKE) scheme E is a
tuple E = (Setup,Encrypt,Decrypt) of 3 algorithms:
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Game Expind-cpa-bE,λ (A)

proc Initialize(λ)

(pk, sk)
R← Setup(1λ)

Return pk

proc Finalize(b′)

Return (b′ = b)

proc LR(m∗0,m
∗
1)

Ct∗
R← Encrypt(mpk ,m∗b)

Return Ct∗

Game Exps-ind-cpa-bE,λ (A)

proc Initialize(λ,m∗0,m
∗
1)

(pk, sk)
R← Setup(1λ)

Return pk

proc LR()

Ct∗
R← Encrypt(pk,m∗b)

Return Ct∗

Figure 1: Games Expind-cpa-bE,λ (A) and Exps-ind-cpa-bE,λ (A) define IND-CPA and s-IND-CPA security
(respectively) of E . The procedure Finalize is common to both games, which differ in their
Initialize and LR procedures.

1. Setup(1λ) outputs public and secret keys (pk, sk) for security parameter λ;

2. Encrypt(pk,m), on input public key pk and message m in the allowed message space,
outputs ciphertext Ct;

3. Decrypt(sk,Ct) on input secret key sk and ciphertext Ct, outputs messages m′.

In addition we make the following correctness requirement: for all (pk, sk) ← Setup(1λ), all
messages m and ciphertexts Ct← Encrypt(pk,m), we have that Decrypt(sk,Ct) = m except with
negligible probability.

We often also allow public-key encryption schemes to additionally depend on explicit public
parameters params (randomly generated in an initial phase and shared across multiple instances
of the PKE scheme) on which all of Setup,Encrypt, and Decrypt are allowed to depend. Examples
include the description of a group G with its generator g. We will often omit them in the
descriptions of generic constructions from PKE schemes.

Indistinguishability-Based Security. We define security against chosen-plaintext attacks
(IND-CPA security, for short) for a PKE scheme E = (Setup,Encrypt,Decrypt) via the security
game depicted on Figure 1. Then, we say that E is secure against chosen-plaintext attacks
(IND-CPA secure, for short) if∣∣∣Pr[Expind-cpa-0E,λ (A) = 1]− Pr[Expind-cpa-1E,λ (A) = 1]

∣∣∣ = negl(λ).

We also define selective security against chosen-plaintext attacks (s-IND-CPA security, for short)
when the challenge messages m∗0 and m∗1 have to be chosen before hand. Actually, in this case,
the procedures Initialize and LR could be merged into an Initialize procedure that outputs
both the public key pk and the challenge ciphertext Ct∗.

2.3 Functional Encryption

Following Boneh et al. [BSW11], we start by defining the notion of functionality and then that
of functional encryption scheme FE for functionality F .

Definition 2.2 [Functionality] A functionality F defined over (K,X) is a function F : K×X →
Σ ∪ {⊥} where K is the key space, X is the message space and Σ is the output space and ⊥ is
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Game Expind-fe-cpa-bFE,λ (A)

proc Initialize(λ)

(mpk ,msk)
R← Setup(1λ)

V ← ∅
Return mpk

proc KeyDer(k)

V ← V ∪ {k}
skk

R← KeyDer(msk , k)
Return skk

proc LR(m∗0,m
∗
1)

Ct∗
R← Encrypt(mpk ,m∗b)

Return Ct∗

proc Finalize(b′)

if ∃k ∈ V such that
F (k,m∗0) 6= F (k,m∗1)
then return false

Return (b′ = b)

Figure 2: Game Expind-fe-cpa-bFE,λ (A) define IND-FE-CPA security of FE .

a special string not contained in Σ. Notice that the functionality is undefined when the key is
not in the key space or the message is not in the message space.

Definition 2.3 [Functional Encryption Scheme] A functional encryption (FE) scheme FE for
functionality F is a tuple FE = (Setup,KeyDer,Encrypt,Decrypt) of 4 algorithms:

1. Setup(1λ) outputs public and master secret keys (mpk ,msk) for security parameter λ;

2. KeyDer(msk , k), on input a master secret key msk and key k ∈ K outputs secret key skk;

3. Encrypt(mpk , x), on input public key mpk and message x ∈ X outputs ciphertext Ct;

4. Decrypt(mpk ,Ct, skk) outputs y ∈ Σ ∪ {⊥}.
We make the following correctness requirement: for all (mpk ,msk)← Setup(1λ), all k ∈ K and
m ∈ M , for skk ← KeyDer(msk , k) and Ct ← Encrypt(mpk ,m), we have that Decrypt(mpk ,Ct,
skk) = F (k,m) whenever F (k,m) 6= ⊥1, except with negligible probability.

Indistinguishability-Based Security. For a functional encryption scheme FE = (Setup,
KeyDer,Encrypt,Decrypt) for functionality F , defined over (K,X), we define security against
chosen-plaintext attacks (IND-FE-CPA security, for short) via the security game depicted on Fig-
ure 2. Then, we say that FE is secure against chosen-plaintext attacks (IND-FE-CPA secure, for
short) if ∣∣∣Pr[Expind-fe-cpa-0FE,λ (A) = 1]− Pr[Expind-fe-cpa-1FE,λ (A) = 1]

∣∣∣ = negl(λ).

Non-Adaptive Simulation-Based Security. For a functional encryption scheme FE =
(Setup,KeyDer,Encrypt,Decrypt) for functionality F , defined over (K,X), we define non-adaptive
simulation security (NA-SIM security, for short) via the security game depicted on Figure 3.
Then, we say that FE is simulation secure against non-adaptive adversaries (NA-SIM secure, for
short) if there exists a PPT simulator S such that∣∣∣Pr[Expna-sim-fe-1

FE,λ (A,S) = 1]− Pr[Expna-sim-fe-0
FE,λ (A) = 1]

∣∣∣ = negl(λ).

1See [BO13, ABN10] for a discussion about this condition.
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Game Expna-sim-fe-b
FE,λ (A)

proc Initialize(λ)

(mpk ,msk)
R← Setup(1λ)

V ← ∅
Return mpk

proc KeyDer(k)

V ← V ∪ {k}
skk

R← KeyDer(msk , k)
Return skk

proc LR(m∗)

Ct∗0
R← Encrypt(mpk ,m∗)

Ct∗1 ← S(mpk , {F (k,m∗), k}k∈V )
Return Ct∗b

proc Finalize(b′)

Return (b = b′)

Figure 3: Game Expna-sim-fe-b
FE,λ (A) define NA-SIM security of FE . The procedure KeyDer can

only be invoked before invoking LR.

Inner-Product Functionality. In this paper we are interested in two different functionalities:

• The inner-product functionality over Zp (IPp, for short) defined in the following way. It
is a family of functionalities with key space K` and message space X` both consisting of
vectors in Zp of length `: for any k ∈ K`, x ∈ X` the functionality IPp,`(k, x) = 〈k, x〉
mod p. When it is clear from the context we remove the reference to the length `.

• And the inner-product functionality over Z (IP, for short), which is the same functionality
but the result is not reduced modulo p. It is a family of functionalities with key space
K` = {0 . . .My}` and message space X` = {0 . . .Mx}` consisting of integer vectors of
length `: for any k ∈ K`, x ∈ X` the functionality IP`(k, x) = 〈k, x〉. When it is clear from
the context we remove the reference to the length `.

3 Relations between Simulation and Indistinguishability

In this section, we compare the two a-priori incomparable security notions of NA-SIM and
IND-FE-CPA. It is a known result that simulation security implies indistinguishability for any
functionality. The next theorem shows that IND-FE-CPA security notion lies somewhere between
SIM security and NA-SIM security for the inner-product functionality. Although we prove this
result from scratch for completeness, we remark that it follows from the work of [O’N10], because
the inner-product functionality is preimage sampleable, as noted in [ALS15].

Theorem 3.1 Let FE be a functional encryption scheme for the inner-product functionality.
If FE is IND-FE-CPA secure, then it is NA-SIM secure.

Proof: We prove this statement by exhibiting a simulator S and showing that if FE is IND-FE-CPA
secure, then S satisfies the properties needed to prove NA-SIM security of FE .
S is given as input mpk and the set of values {〈x,y〉,y}y∈V for some unknown x. It then finds
a vector x′ such that 〈x,y〉 = 〈x′,y〉 for all y ∈ V and encrypts it using mpk . S returns this
new formed ciphertext.
If an adversary A wins Game Expna-sim-fe-b

FE,λ (A), it wins Game Expind-fe-cpa-bFE,λ (A) with challenge
messages x and x′ and without key queries after the challenge.
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The next question is whether NA-SIM security implies IND-FE-CPA security or not. We an-
swer this question in a non-black box manner: We require that the functional encryption scheme
supports key delegation in order to prove equivalence of NA-SIM security and IND-FE-CPA se-
curity.

Definition 3.2 [Key delegation] We say that a functional encryption scheme for the inner-
product functionality FE supports key delegation if sky can be obtained from any set {skz}z∈V
where y ∈ Span(V ).

Note that with this definition, any functional encryption scheme for the inner-product func-
tionality with a deterministic key derivation algorithm supports key delegation.

Theorem 3.3 Let FE be a functional encryption scheme for the inner-product functionality.
If FE is NA-SIM secure and supports key delegation, then it is IND-FE-CPA secure.

Proof: If there weren’t any secret key queries after the challenge ciphertext has been received,
we could use the same argument as for proving that SIM security implies IND-FE-CPA security.
This is a simple argument on games defining the security: the experiment Expind-fe-cpa-0FE,λ (A) with

challenges x0 and x1 is the same experiment as Expna-sim-fe-0
FE,λ (A) with challenge x0, which is indis-

tinguishable from the experiment Expna-sim-fe-1
FE,λ (A) with challenge x0, which is exactly the same

as Expna-sim-fe-1
FE,λ (A) with challenge x1, which is in turn indistinguishable from Expna-sim-fe-0

FE,λ (A)

with challenge x1, or equivalently Expind-fe-cpa-1FE,λ (A) with challenges x0 and x1. From which
IND-FE-CPA security follows.

We now show that given x0 and x1, one can compute a basis {zi}i∈[`] of the orthogonal (x1−x0)⊥.
Given secret keys for this basis, key delegation allows to compute a secret key for any y such
that 〈x0,y〉 = 〈x1,y〉.

This is easy for IPp because Zp is a field. For IP, we want to find a basis {zi}i∈[`−1] of the lattice
orthogonal to a given vector x. We construct one recursively:
First, if the gcd of all coordinates of x is not 1, set x = 1

gcd(xi)
x.

• If ` = 2: z = (−x2, x1) is a basis of (x1, x2)⊥

• If ` > 2: Let {zi}i∈[`−2] be a basis of (x1, · · · , x`−1)⊥. We set z`−1 = (−x` × a1,−x` ×
a2, . . . ,−x` × a`−1, gcd(x1, . . . , x`−1)) where the ai’s come from Bezout’s Identity.

This basis does not generate a sub-lattice of x⊥. Indeed, a vector y orthogonal to x has a last
coordinate which is a multiple of gcd(x1, . . . , x`−1), because x`y` = −

∑
i∈[`−1] xiyi.

To conclude the proof, suppose there is an adversary A that breaks the IND-FE-CPA security.
A simulator S can use this adversary to break the NA-SIM security: Upon reception of x0 and
x1, S queries secret keys for the zi before asking for a challenge ciphertext, thus avoiding the
non-adaptive queries. S can still answer A’s adaptive queries using key delegation.

8



4 A Generic Fully Secure Functional Inner-Product Encryption
Scheme

Our framework constructs functional encryption scheme for the inner-product functionality IP =
(Setup,KeyDer,Encrypt,Decrypt) from a public-key encryption scheme E = (Setup,Encrypt,Decrypt).
In order to prove the correctness and security of the new scheme, we need some structural and
homomorphic properties on E – for correctness – and some security properties – for security.
These properties are similar to the one defined in [ABDP15], and a bit more permissive, thus
allowing for a new instantiation. We define those properties below:

Structure. E ’s secret keys are elements of a group (G,+, 0G), public keys are elements of group
(H, ·, 1H), and the message space isMx ⊆ Z. The secret key group G does not have to be
public, as our proof only requires the operation + to be publicly available. In addition, we
require the ciphertexts to consist of two parts ct0 and ct1. The first part ct0 corresponds
to some commitment C(r) of the randomness r used for the encryption. The second part
ct1 is the encryption E(pk, x; r) in a group (I, ·, 1I) of the message x under public key pk
and randomness r.
We also split the Setup algorithm for convenience in the two following algorithms to sample
secret keys, and to sample corresponding public keys:

• SKGen(1λ) takes in input the security parameter and sample a secret key sk from the
secret key space according to the same distribution induced by Setup.

• PKGen(sk, τ) takes in input a secret key sk and parameters τ , and generates a public
key pk corresponding to sk according to the distribution induced by τ . We will omit
τ when it is clear from the context.

Linear Key Homomorphism. We say that a PKE has linear key homomorphism (LKH, for
short) if for any two secret keys sk1, sk2 ∈ G and any y1, y2 ∈ Zq, the component-wise G-
linear combination formed by y1sk1 + y2sk2 can be computed efficiently only using public
parameters, the secret keys sk1 and sk2 and the coefficients y1 and y2. And this combination
y1sk1+y2sk2 also functions as a secret key to a public key that can be computed as pky11 ·pk

y2
2 ,

where pk1 (resp. pk2) is a public key corresponding to sk1 (resp. sk2).

Linear Ciphertext Homomorphism Under Shared Randomness. We say that a PKE
has linear ciphertext homomorphism under shared randomness (LCH, for short) if it holds
that E(pk1pk2, x1 + x2; r) = E(pk1, x1; r) · E(pk2, x2; r).

And for security, we define two properties via security games. These differ from the one in
[ABDP15] in that the αi’s are taken in T instead of the message space.

`-Public-Key-Reproducibility. For a public-key encryption scheme E we define `-public-key-
reproducibility via the following security game:
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Game Exp`-pk-rep-bE,λ (A)

proc Initialize(λ,M)

(sk, (αi, ski)i∈[`])
R← D(1λ)

if b = 0 then (pki = E .PKGen(αisk + ski, τ))i∈[`]

else pk← E .PKGen(sk, τ ′); (pki = pkαi · E .PKGen(ski, τi))i∈[`]

Return (pki, ski)i∈[`]

proc Finalize(b′)

Return (b′ = b)

with D samples tuples of the form (sk, (αi, ski)i∈[`]) where sk and the ski’s are sampled
from SKGen, and the αi’s are in T .

Then, we say that E has `-public-key-reproducibility if there exists τ, τ ′, (τi)i∈[`] such that∣∣∣Pr[Exp`-pk-rep-0FE,λ (A) = 1]− Pr[Exp`-pk-rep-1FE,λ (A) = 1]
∣∣∣ = negl(λ).

`-Ciphertext-Reproducibility. For a public-key encryption scheme E we define `-ciphertext-
reproducibility via the following security game:

Game Exp`-ct-rep-bE,λ (A)

proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R← D(1λ)

sk← E .SKGen(1λ); pk← E .PKGen(sk, τ ′); (pki ← E .PKGen(ski, τi))i∈[`]

ct0 = E .C(r); ct = E .E(pk, a; r)
if b = 0 then cti = ctαi · E .E(pki, xi; r)
else cti = ctαi · E .E′(ski, xi, ct0, τi)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)

where

• D samples tuples of the form (a, (αi, xi, , ski)i∈[`]), where ski’s are sampled from
SKGen, αi’s are in T and a and the xi’s are in Mx.

• E′ is an algorithm that takes in input a secret key in H, a message in Zq, a first part
ciphertext C(r) for some r in the randomness space, and the parameters needed to
generate public keys, and output a second part ciphertext.

Then, we say that E has `-ciphertext-reproducibility if there exists τ ′, τi’s and algorithm
E′ such that ∣∣∣Pr[Exp`-ct-rep-0FE,λ (A) = 1]− Pr[Exp`-ct-rep-1FE,λ (A) = 1]

∣∣∣ = negl(λ).

We now show two constructions, one for the IPp functionality that requires a public-key
encryption scheme E that has a message space and a key space that have the same order p, and
one for the IP functionality. We only sketch the proof in the first case and detail the proof of
the latter because it is trickier.
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4.1 Inner-Product Modulo p

Here we describe a construction of a functional encryption scheme for the functionality IPp.

Construction 4.1 [Adaptive-PKE-IP-Mod Scheme] Let us consider a PKE scheme E = (Setup,
Encrypt,Decrypt) with the properties defined above. We define our functional encryption scheme
for the inner-product functionality over Zp IP = (Setup,KeyDer,Encrypt,Decrypt) as follows. We
set T = Zp in this case.
• Setup(1λ, 1`) calls E ’s key generation algorithm to generate ` + 1 independent secret keys

pairs s1, . . . , s` and sk sharing the same public parameters params and t = (t1, . . . , t`)
∈ T `. Then, the algorithm sets pk = PKGen(sk) and pki = PKGen(si + tisk), and returns
mpk = (params, pk, pk1, . . . , pk`) and msk = (s1, . . . , s`, t1, . . . , t`).

• KeyDer(msk ,y) on input master secret key msk and a vector y = (y1, . . . , y`) ∈ M`
y,

computes sky as sky = (
∑

i∈[`] yi · si,
∑

i∈[`] yi · ti). The second part is computed over the
integers.

• Encrypt(mpk ,x) on input master public key mpk and message x = (x1, . . . , x`) ∈ M`
x,

chooses shared randomness r in the randomness space of E , and computes ct0 = E .C(r), ct1 =
E .E(pk, 0; r) and ct2,i = E .E(pki, xi; r). Then the algorithm returns the ciphertext Ct =
(ct0, ct1, (ct2,i)i∈[`]).

• Decrypt(mpk ,Ct, sky) on input master public key mpk , ciphertext Ct = (ct0, ct1, (ct2,i)i∈[`]),
and secret key Sky = (Sky,0, Sky,1) for vector y = (y1, . . . , y`), returns the output of

E .Decrypt(Sky,0, (ct0, (
∏
i∈[`] ct

yi
2,i) · ct

−Sky,1
1 )).

Theorem 4.2 If the underlying PKE E has message space and secret key space of same order
p, if it is s-IND-CPA, linear-key homomorphic, linear-ciphertext homomorphic under shared
randomness, `-public-key-reproducible, `-ciphertext-reproducible with coefficients αi ∈ T = Zp,
then Construction 4.1 is IND-FE-CPA.

Proof Sketch. The proof of security can be informally reduced to 2 different ideas:

• First, each master public key corresponds to multiple different master secret keys. This
is due to the fact that we generate `+ 1 public keys from `+ 1 secret keys and ` random
values in Zp.

• Second, we show that we can generate ill-formed ciphertext that encrypts vector x +
t with ct1 = E .E(pk, 1; r) that is indistinguishable from a well-formed ciphertext that
encrypts x. We create it using reproducibility and homomorphic properties, and the
indistinguishability directly comes from the s-IND-CPAsecurity of E .

Now we argue that a public key for (si, ti)i∈[`] is also a public key for (s′i, t
′
i)i∈[`], with t′i =

ti + xb,i − x1−b,i and s′i = si + (x1−b,i − xb,i)sk for all xb and x1−b. So we can show that a
well-formed ciphertext for a vector xb is indistinguishable from an ill-formed ciphertext for the
vector xb + t = x1−b + t′ which is in turn indistinguishablee from a well-formed ciphertext for
the vector x1−b. Moreover, it is easy to see that the secret keys query by the adversary are the
same whether msk = (si, ti)i∈[`] or msk = (s′i, t

′
i)i∈[`]. So the adversary has the same view in

both cases, which concludes the proof.
A more detailed version a the proof can be obtain by reading the proof of the next theorem,

replacing T by Zp. Note that in this case, the simulator never needs to abort, so the proof is
tight.
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4.2 Inner-Product over the Integers

If the message space and the secret key space do not have the same order, we can still construct
a functional encryption scheme for the functionality IP if all the others properties are satisfied.
Note that this functionality is not as simple to implement because security is proven only for
vectors x and y respectively in Mx and My. Nothing is known about the security if one uses
this scheme with too large elements. The construction is basically the same as Construction 4.1,
but T is set to be [0, . . . , T ] and the computations related to t are done over the integers.

Construction 4.3 [Adaptive-PKE-IP Scheme] Let us consider a PKE scheme E = (Setup,
Encrypt,Decrypt) with the properties defined previously. We define our functional encryption
scheme for the inner-product functionality over Z IP = (Setup,KeyDer,Encrypt,Decrypt) as fol-
lows. We set T = [0, . . . , T ] in this case, where T will be set according to the security properties
needed. (T/Mx superpolynomial is needed for security against polynomially bounded adver-
saries. T/Mx exponential provides security against sub exponetially bounded adversaries)

• Setup(1λ, 1`,Mx,My, T ) calls E ’s key generation algorithm to generate ` + 1 independent
secret keys pairs s1, . . . , s` and sk sharing the same public parameters params and t =
(t1, . . . , t`) ∈ T `. Then, the algorithm sets pk = PKGen(sk) and pki = PKGen(si + tisk),
and returns mpk = (params, pk, pk1, . . . , pk`) and msk = (s1, . . . , s`, t1, . . . , t`).

• KeyDer(msk ,y) on input master secret key msk and a vector y = (y1, . . . , y`) ∈ M`
y,

computes sky as sky = (
∑

i∈[`] yi · si,
∑

i∈[`] yi · ti). The second part is computed over the
integers.

• Encrypt(mpk ,x) on input master public key mpk and message x = (x1, . . . , x`) ∈ M`
x,

chooses shared randomness r in the randomness space of E , and computes ct0 = E .C(r), ct1 =
E .E(pk, 0; r) and ct2,i = E .E(pki, xi; r). Then the algorithm returns the ciphertext Ct =
(ct0, ct1, (ct2,i)i∈[`]).

• Decrypt(mpk ,Ct, sky) on input master public key mpk , ciphertext Ct = (ct0, ct1, (ct2,i)i∈[`]),
and secret key Sky = (Sky,0, Sky,1) for vector y = (y1, . . . , y`), returns the output of

E .Decrypt(Sky,0, (ct0, (
∏
i∈[`] ct

yi
2,i) · ct

−Sky,1
1 )).

Theorem 4.4 If the underlying PKE E is s-IND-CPA, linear-key homomorphic, linear-ciphertext
homomorphic under shared randomness, `-public-key-reproducible and `-ciphertext-reproducible
with coefficients αi ∈ T , then Construction 4.3 is IND-FE-CPA.

Proof: We prove security via a sequence of hybrid experiments, and then we show they are
indistinguishable. The techniques used to switch public keys and ciphertext values with repro-
ducibility properties closely follows the work of [ABDP15].

Hybrid H1: This is the IND-FE-CPA game:
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proc Initialize(λ)

(mpk ,msk)
R← Setup(1λ, 1`)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← KeyDer(msk ,y)
Return sky

proc LR(x0,x1)

Ct∗
R← Encrypt(mpk ,xb)

Return Ct∗

proc Finalize(b′)

if ∃y ∈ V such that F (y,x0) 6= F (y,x1)
then return false

Return (b′ = b)

Hybrid H2: This is like H1, except that the simulator raises an abort flag if t+xb+x1−b /∈ T `.

proc Initialize(λ)

(mpk ,msk)
R← Setup(1λ, 1`)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← KeyDer(msk ,y)
Return sky

proc LR(x0,x1)

if t + xb − x1−b /∈ T `
then bad← true

Ct∗
R← Encrypt(mpk ,xb)

Return Ct∗

proc Finalize(b′)

if ∃y ∈ V such that F (y,x0) 6= F (y,x1)
then return false

Return (b′ = b)

H1 and H2 give exactly the same view to the adversary: H2 = H1.

Hybrid H3: This is like H2, except that the simulator do not use bad instances.

proc Initialize(λ)

(mpk ,msk)
R← Setup(1λ, 1`)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← KeyDer(msk ,y)
Return sky

proc LR(x0,x1)

if t + xb − x1−b /∈ T `:
then bad← true

Ct∗
R← Encrypt(mpk ,xb)

Return Ct∗

proc Finalize(b′)

if bad ∨ (∃y ∈ V such that
F (y,x0) 6= F (y,x1))
then return false

Return (b′ = b)

If the adversary has advantage ε in H2, then it has advantage ε − Pr[bad] in H3
2. Note that

Pr[bad] < 1− (1−Mx/T )`, and it is negligible if T/Mx is set to be superpolynomial in λ. Also
note that in the case of the IPp functionality, Pr[bad] = 0 because T = Zp, so t + xb−x1−b ∈ T .

2In a previous version, ε/Pr[bad] was claimed, but this requires the set T to be chosen such that there is no
element t ∈ T , together with a vector x ∈ [−Mx,Mx]

` such that neither t+ x nor t− x is in T

13



Hybrid H4: This is like H3 except that the master public key is generated by invoking the
algorithm H4.Setup defined as follows:

H4.Setup(1λ, 1`): The algorithm samples sk ← E .SKGen(1λ), for i ∈ [`],

PKE secret key si ← E .SKGen(1λ) and uniformly random scalar ti
R← T .

Finally, the algorithm sets:

pk = E .PKGen(sk, τ) ski = si + ti · sk
pksi = E .PKGen(si, τi) pki = pkti · pksi

where τ is the same as used in the Setup algorithm, and τi is such that pksi ·
pkti is close to E .PKGen(ski). The algorithm returns mpk = (pk, (pki)i∈[`])
and msk = (si, ti)i∈[`].

proc Initialize(λ)

(mpk ,msk)
R← H4.Setup(1λ, 1`)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← KeyDer(msk ,y)
Return sky

proc LR(x0,x1)

if t + xb − x1−b /∈ T `:
then bad← true

Ct∗
R← Encrypt(mpk ,xb)

Return Ct∗

proc Finalize(b′)

if bad ∨ (∃y ∈ V such that
F (y,x0) 6= F (y,x1))
then return false

Return (b′ = b)

Under the `-public-key-reproducibility of E , H3 and H4 are indistinguishable.

Hybrid H5: This is like H4 except that the challenge ciphertext is generated by invoking the
algorithm H5.Encrypt defined as follows:

H5.Encrypt(msk , pk,x): The algorithm computes the ciphertext for x in
the following way:

ct0 = E .C(r) ct1 = E .E(pk, 0; r) ct2,i = ctti1 · E .E(pksi , xi; r)

where r is some randomness in the random space of E .

proc Initialize(λ)

(mpk ,msk)
R← H4.Setup(1λ, 1`)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← KeyDer(msk ,y)
Return sky

proc LR(x0,x1)

if t + xb − x1−b /∈ T `:
then bad← true

Ct∗
R← H5.Encrypt(msk , pk,xb)

Return Ct∗

proc Finalize(b′)

if bad ∨ (∃y ∈ V such that
F (y,x0) 6= F (y,x1))
then return false

Return (b′ = b)

By linear ciphertext-homomorphism of E , H4 = H5.
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Hybrid H6: This is like H5 except that the challenge ciphertext is generated by invoking the
algorithm H6.Encrypt defined as follows:

H6.Encrypt(msk ,Ct,x): Let Ct = (ct0, ct1). Then, the algorithm computes
the ciphertext for x in the following way:

ct′0 = ct0 ct′1 = ct1 ct′2,i = ctti1 · E .E
′(si, xi, ct0; r̃)

where E .E′ is the alternative encryption algorithm defined in the `-
ciphertext-reproducibility game, r̃ is some randomness shared among all
the invocation of E .E′.
proc Initialize(λ)

(mpk ,msk)
R← H4.Setup(1λ, 1`)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← KeyDer(msk ,y)
Return sky

proc LR(x0,x1)

if t + xb − x1−b /∈ T `:
then abort← true

Ct = E .E(pk, 0)

Ct∗
R← H6.Encrypt(msk ,Ct,xb)

Return Ct∗

proc Finalize(b′)

if bad ∨ (∃y ∈ V such that
F (y,x0) 6= F (y,x1))
then return false

Return (b′ = b)

Under the `-ciphertext-reproducibility of E , H5 and H6 are indistinguishable.

Hybrid H7: This is like H6 except that Ct encrypts a random value a ∈ Zp.

proc Initialize(λ)

(mpk ,msk)
R← H4.Setup(1λ, 1`)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← KeyDer(msk ,y)
Return sky

proc LR(x0,x1)

if t + xb − x1−b /∈ T `:
then abort← true

Ct = E .E(pk, 1)

Ct∗
R← H6.Encrypt(msk ,Ct,xb)

Return Ct∗

proc Finalize(b′)

if bad ∨ (∃y ∈ V such that
F (y,x0) 6= F (y,x1))
then return false

Return (b′ = b)

Under the s-IND-CPA security of E , H6 and H7 are indistinguishable.

Hybrid H8: This is like H7 except that the challenge ciphertext is generated by invoking the
algorithm H8.Encrypt defined as follows:
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H8.Encrypt(msk , pk,x): The algorithm computes the ciphertext for x
in the following way:

ct0 = E .C(r) ct1 = E .E(pk, 1; r) ct2,i = ctti1 · E .E(pksi , xi; r),

where r is some randomness in the random space of E .

proc Initialize(λ)

(mpk ,msk)
R← H4.Setup(1λ, 1`)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← KeyDer(msk ,y)
Return sky

proc LR(x0,x1)

if t + xb − x1−b /∈ T `:
then abort← true

Ct∗
R← H8.Encrypt(msk , pk,xb)

Return Ct∗

proc Finalize(b′)

if bad ∨ (∃y ∈ V such that
F (y,x0) 6= F (y,x1))
then return false

Return (b′ = b)

Under the `-ciphertext-reproducibility of E , H7 and H8 are indistinguishable.

Hybrid H9: This is like H8 except that the challenge ciphertext is generated by invoking the
algorithm Encrypt.

proc Initialize(λ)

(mpk ,msk)
R← H4.Setup(1λ, 1`)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← KeyDer(msk ,y)
Return sky

proc LR(x0,x1)

if t + xb − x1−b /∈ T `:
then bad← true

Ct∗
R← Encrypt(mpk ,xb + t)

Return Ct∗

proc Finalize(b′)

if bad ∨ (∃y ∈ V such that
F (y,x0) 6= F (y,x1))
then return false

Return (b′ = b)

By linear ciphertext-homomorphism of E , H8 = H9.

Hybrid H10: This is like H9 except that the master public key is generated by invoking the
algorithm Setup.
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proc Initialize(λ)

(mpk ,msk)
R← Setup(1λ, 1`)

V ← ∅
Return mpk

proc KeyDer(y)

V ← V ∪ {y}
sky

R← KeyDer(msk ,y)
Return sky

proc LR(x0,x1)

if t + xb − x1−b /∈ T `:
then bad← true

Ct∗
R← Encrypt(mpk ,xb + t)

Return Ct∗

proc Finalize(b′)

if bad ∨ (∃y ∈ V such that
F (y,x0) 6= F (y,x1))
then return false

Return (b′ = b)

Under the `-public-key-reproducibility of E , H9 and H10 are indistinguishable.

Advantage of any Adversary in H10. As long as t + xb − x1−b ∈ T `, which is always the
case unless bad, the advantage of the adversary in this game is 0. Because there exists (s′i, t

′
i)i∈[`]

equally likely as (si, ti)i∈[`] that gives exactly the same view by replacing xb by x1−b:

t′ = t + xb − x1−b, s′i = si + (x1−b − xb)isk

Moreover, for any vector y satisfying the security game constraints, i.e. 〈y,xb〉 = 〈y,x1−b〉, it
holds that, since xb + t = x1−b + t′,∑

i∈[`]

yiti =
∑
i∈[`]

yit
′
i and

∑
i∈[`]

yisi =
∑
i∈[`]

yis
′
i.

5 Instantiation from ElGamal

In this section, we show that the ElGamal encryption scheme [ElG85] can be used to instantiate
Construction 4.1. Its security is based on the plain DDH assumption. This gives a very simple
functional encryption scheme for the IPp functionality. However, the message space has to be
limited due to the decryption requiring the computation of a discrete logarithm. We propose in
the next sections two other instantiations to overcome this limitation, but they achieve only IP
functionality.

Definition 5.1 [The Decisional Diffie-Hellman Assumption] Let GroupGen be a probabilistic
polynomial-time algorithm that takes as input a security parameter 1λ, and outputs a triplet (G,
p, g) where G is a group of order p that is generated by g ∈ G, and p is an λ-bit prime number.
Then, the Decisional Diffie-Hellman (DDH) assumption states that the tuples (g, ga, gb, gab)
and (g, ga, gb, gc) are computationally indistinguishable, where (G, p, g) ← GroupGen(1λ), and
the scalars a, b, c ∈ Zp are chosen independently and uniformly at random.

Construction 5.2 [ElGamal PKE Scheme] We recall the ElGamal public-key encryption scheme
E = (Setup,Encrypt,Decrypt):
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• Setup(1λ) samples (G, q, g) ← GroupGen(1λ), and s ← Zq and returns the pair (pk =
gs, sk = s).

• Encrypt(pk,m), on input public key pk, and message m ∈ Zq, chooses random r ← Zq and
computes

ct0 = gr and ct1 = pkrgm .

Then the algorithm returns the ciphertext Ct = (ct0, ct1).

• Decrypt(pk,Ct, sk), on input public key pk, ciphertext Ct = (ct0, ct1), and secret key sk,
returns the evaluation

y = logg(ct1 · ct−sk0 ).

Theorem 5.3 Construction 4.1 instantiated with ElGamal is IND-FE-CPA under the DDH as-
sumption.

Proof: We now show that the above scheme possesses the properties stated in Section 4.

Semantic Security. Proof of the semantic security of this encryption scheme under the DDH
assumption can be found in [ElG85].

Linear Key Homomorphism. If s1 and s2 are two secret keys corresponding to the public
keys gs1 and gs2 , then s1 + s2 is a functional secret key for gs1 · gs2 .

Ciphertext Homomorphism Under Shared Randomness. It is easy to verify that:

pkr1g
x1 · pkr2gx2 = (pk1 · pk2)gx1+x2 .

`-Public-Key Reproducibility. This property is perfectly satisfied, since we have PKGen(s1+
s2) = PKGen(s1) · PKGen(s2).

`-Ciphertext Reproducibility. This property is perfectly satisfied as well, since we have
ctsk0 = (gr)s = (gs)r = pkr.

Note that the decryption requires the computation of a discrete logarithm to recover the
final result. So this scheme can only be used if the message distribution has low entropy.

6 Instantiation from BCP

In this section, we show that the BCP encryption scheme, by Bresson, Catalano and Pointcheval
[BCP03], can also be used to instantiate Construction 4.3. It is a combination of Paillier’s
encryption scheme and ElGamal encryption scheme. This instantiation avoids the restriction of
low entropy messages by using a subgroup in which the discrete logarithm is easy to compute.
On the other hand, this construction is only proven secure for the IP functionality and not IPp.
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Definition 6.1 [The Extended DDH Assumption [HO12]] Let GroupGen be a probabilistic
polynomial-time algorithm that takes as input a security parameter 1λ, and outputs a triplet
(G, G,H,K) where G is a group whose order is a λ-bit number, H is a subgroup of G, G ⊂
G and K ⊂ Z. Then, the Extended Decisional Diffie-Hellman (EDDH) assumption states
that the tuples (g, ga, gb, gab) and (g, ga, gb, gabh) are computationally indistinguishable, where
(G, G,H,K) ← GroupGen(1λ), and g ∈ G, a, b ∈ K and h ∈ H are chosen independently and
uniformly at random.

Construction 6.2 [BCP PKE Scheme] We recall the BCP public-key encryption scheme E =
(Setup,Encrypt,Decrypt):

• Setup(1λ) picks two safe primes p and q of λ bits each and sets the public parameters
N = pq and g = g2N

0 mod N2 with g0 ← ZN2 . Then it samples s← ZN and returns the
pair (pk = (N, gs mod N2), sk = s) ∈ Z∗N2 × ZN .

• Encrypt(pk,m) on input public key pk, and message m ∈ ZN , chooses random r ← ZN2

and computes

ct0 = gr mod N2, ct1 = pkr(1 +N)m mod N2 .

Then the algorithm returns the ciphertext Ct = (ct0, ct1).

• Decrypt(pk,Ct, sk) on input public key pk, ciphertext Ct = (ct0, ct1) and secret key sk,
returns the evaluation

y =
(
ct1 · ct−sk0 − 1 mod N2

)
/N.

Theorem 6.3 Construction 4.3 instantiated with BCP, T = {0, . . . , T} where T is superpoly-
nomially (resp. exponentially) bigger than Mx is IND-FE-CPA against polynomially bounded
(resp. sub exponentially bounded) adversaries under the DCR assumption.

Proof: We now show that the above scheme possesses the properties stated in Section 4.

Semantic Security. Proof of the semantic security of this encryption scheme can be found
in [BCP03]. It relies on the DCR assumption, which is a special case of the EDDH
assumption.

Linear Key Homomorphism. If s1 and s2 are two secret keys corresponding to the public
keys gs1 and gs2 , then s1 + s2 is a functional secret key for gs1 · gs2 .

Ciphertext Homomorphism Under Shared Randomness. It is easy to verify that:

pkr1(1 +N)x1 · pkr2(1 +N)x2 = (pk1 · pk2)(1 +N)x1+x2 .

`-Public-Key Reproducibility. This property is perfectly satisfied, because PKGen(s1+s2) =
PKGen(s1) · PKGen(s2).

`-Ciphertext Reproducibility. This property is perfectly satisfied as well, because we have
ctsk0 = (gr)s = (gs)r = pkr.

Note that the secret keys are elements of a group of unknown order. But taking elements
with λ more bits allows for computations over the integers, while falling outside the range of
allowed secret keys with negligible probability.
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7 Instantiation from Regev

In this section, we show that Regev’s public-key encryption scheme [Reg05] can also be used
to instantiate Construction 4.3. It has the same advantages as the instantiation from the BCP
scheme, but its security relies on assumptions that are supposed to be resistant to quantum
attacks.

Definition 7.1 [The LWE Assumption] The learning with errors (LWE) problem was intro-
duced by Regev [Reg05]. Let n, q be integer parameters. For any noise distribution χ on Zq,
and vector s ∈ Znq , the oracle LWEq,n,χ(s) samples a fresh random n-dimensional vector a← Znq ,
as well as noise e← χ, and returns (a, 〈a, s〉+e). The LWE assumption with noise χ states that
for every PPT distinguisher D,

Pr[s← Znq : DLWEq,n,χ(s) = 1]− Pr[s← Znq : DLWEq,n,U (s) = 1] = negl(n),

where U is the uniform distribution on Zq.

Choosing the Parameters. The message space is M = {0, . . . ,Mx} ⊆ Zp for some integer
Mx and prime p > `MxMy. Let q = poly(n) > p be another prime modulus that satisfies
the constraints of the security proof of Section 4. Our public keys and ciphertexts consist of
matrices and vectors over Zq. For every v ∈ Zp (i.e., one entry of a message vector), define the

“center” for v as t(v) =
⌊
v · qp

⌋
∈ Zq. Let χσ denote an integer gaussian distribution over Zq

with standard deviation σ: χσ(x) = ρσ(x)
ρσ(Z) . Let m = m(n), and σ = σ(n) and σ′ = σ′(n) be

positive real Gaussian parameters. The following relations between parameters are required for
correctness and security:

• m ≥ (1 + ε)(`+ n+ 2) log q

• q is a prime number of the size of pn2
√
`MxMy

• σ ≥ (`Mx + 1)σ the standard deviation of the errors in the scheme

• σ′ = o( 1
p`MxMy

√
m log λ

) the standard deviation of the errors in the proof of security

All operations are performed over Zq.

Construction 7.2 [Regev PKE Scheme] We recall the Regev public-key encryption scheme
E = (Setup,Encrypt,Decrypt):

• Setup(1λ): it first generates common parameters. Specifically, the algorithm samples A←
Zm×nq , and returns params = (A, χσ). We always assume that all the other algorithms
take in input params, thus we avoid to include explicitly.

– SKGen(1λ) takes in input the security parameter and samples s from Znq and returns
sk = s.

– PKGen(sk, τ) takes in input secret key s, parameters τ , and samples e from χmσ and
computes pk = As + e ∈ Zmq . Then the algorithm returns pk.

Notice that, if τ describes an error distribution then e is sampled from this latter
distribution.
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• Encrypt(pk, x) on input public key pk, and message x ∈ M , chooses random r ← {0, 1}m
and computes

ct0 = A>r ∈ Znq and ct1 = 〈pk, r〉+ t(x) ∈ Zq

where t(x) = bv · q/pc ∈ Zq. Then the algorithm returns the ciphertext Ct = (ct0, ct1).

• Decrypt(pk,Ct, sk) on input public key pk, ciphertext Ct = (ct0, ct1) and secret key sk,
Compute d = ct1 − 〈ct0, s〉 and output the plaintext x ∈ M , where each x is such that
d− t(x) ∈ Zq is closest to 0 mod q.

Theorem 7.3 Construction 4.3 instantiated with Regev, T = {0, . . . , T} where T is superpoly-
nomially bigger than Mx, is IND-FE-CPA under the LWE assumption with superpolynomial gap
between the error parameter and the modulus.

Proof: We now show that the above scheme possesses the properties stated in Section 4.

Semantic Security. Proof of the semantic security of this encryption scheme can be found in
[Reg05]. It relies on the LWE assumption and on the leftover hash lemma, which is a
statistical argument.

Linear Key Homomorphism. The first property comes from the fact that secret keys are
elements uniformly sampled from the group Znq , so the secret key space is stable under
addition. Moreover,

∑
αisi is a correct secret key for

∑
αi(Asi + ei) as long as

∑
αiei

remains small, which is true for small values of αi.

Ciphertext Homomorphism Under Shared Randomness. It is easy to verify that:

〈pk1, r〉+ t(x1) + 〈pk2, r〉+ t(x2) = 〈pk1 + pk2, r〉+ t(x1 + x2),

by the definition of the function t.

`-Public-Key Reproducibility and `-Ciphertext Reproducibility. For the sake of com-
pleteness, we add proofs of `-Public-Key Reproducibility and `-Ciphertext Reproducibility
in the appendix, but they can be found in [ABDP15]. They are both satisfied under the
LWE assumption, with superpolynomial gap between the error parameter and the modu-
lus.
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A Tools and Assumptions

Gaussians and Lattices. The n-dimensional Gaussian function ρ : Rn → (0, 1] is defined as

ρ(x) = exp(−π · ||x||2) = exp(−π · 〈x,x〉) .

Applying a linear transformation given by a (not necessarily square) matrix B with linearly
independent columns yields the (possibly degenerate) Gaussian function

ρB(x) =

{
ρ(B+x) = exp(−π · x>Σ+x) If x ∈ span(B) = span(Σ)

0 otherwise

where Σ = BB> ≤ 0. Because ρB is distinguished only up to Σ, we usually refer to it as ρ√Σ.

Lemma A.1 Let ρ√Σ(x) be the probability that a gaussian random variables of covariance
matrix Σ is equal to x. Then, for any invertible matrix β,

ρ√Σ(β−1x) = ρβ
√

Σ(x) .

Lemma A.2 Let Λ ⊂ Rn be a lattice. For any Σ ≥ 0 and c ∈ Rn, we have ρ√Σ(Λ+c) ≤ ρ√Σ(Λ).

Moreover, if
√

Σ ≥ ηε(Λ) for some ε > 0 and c ∈ span(Λ), then ρ√Σ(Λ + c) ≥ 1−ε
1+ε · ρ√Σ(Λ).
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Generalized Leftover Hash Lemma. The following text and lemma are taken verbatim
from [DRS04]. The predictability of a random variable A is maxa Pr[A = a], and its min-entropy
H∞(A) is − log(maxa Pr[A = a]). The min-entropy of a distribution tells us how many nearly
uniform random bits can be extracted from it. The notion of nearly is defined as follows. The
statistical distance between two probability distributions A and B is SD(A,B) = 1

2

∑
v |Pr[A =

v]− Pr[B = v]|.
Consider now a pair of (possibly correlated) random variables A,B. If the adversary finds

out the value b of B, then predictability of A becomes maxa Pr[A = a|B = b]. On average, the
adversary’s chance of success in predicting A is then Eb←B[maxa Pr[A = a|B = b]]. Note that
we are taking the average over B (which is not under adversarial control), but the worst case
over A (because prediction of A is adversarial once b is known). Again, it is convenient to talk
about security in log-scale, which is why we define the average min-entropy of A given B as
simply the logarithm of the above:

H̃∞(A|B) = − log
(
Eb←B[max

a
Pr[A = a|B = b]]

)
= − log

(
Eb←B

[
2H∞(A|B=b)

])
.

Lemma A.3 Let A,B,C be random variables. Then If B has at most 2λ possible values, then

H̃∞(A|(B,C)) ≥ H̃∞((A,B)|C)− λ ≥ H̃∞(A|C)− λ ,

In particular, H̃∞(A|B) ≥ H∞((A,B))− λ ≥ H∞(A)− λ.

Lemma A.4 [Generalized Leftover Hash Lemma [DRS04]] Assume {Hx : {0, 1}n → {0, 1}`}x∈X
is a family of universal hash functions. Then, for any random variables W and I,

SD((HX(W ), X, I), (U`, X, I)) ≤ 1

2

√
2−H̃∞(W |I)2` .

B Security properties of Regev’s PKE

`-Public-Key Reproducibility. To show that Construction 7.2 has `-public-key-reproducibility,
for any fixed constant `, it is sufficient to show that there are error distributions with standard
deviations σ, σ′, (σi)i∈[`] such that Exp`-pk-rep-0E,λ (A) is indistinguishable from Exp`-pk-rep-1E,λ (A).

Theorem B.1 Construction 7.2 has `-public-key-reproducibility in a statistical sense.

Proof: Let τ be the description of an error distribution with standard deviation σ, and τ ′ an
error distribution with standard deviation σ′.

Let {τi}i∈[`] describe sampling ` errors with covariance matrix
√

Σ, where Σ = σ2I` − σ′2~α~α>,

where ~α = (α1, . . . , α`). Notice that Σ is positive semi-definite if σ > σ′(1 + T
√
`) because αi is

smaller than T for any i.

Finally, let β =
(
I` ~α

)
and Σ′ =

(
Σ 0

0 σ′2

)
, where I` is the identity matrix.

Then, If b = 0, the errors appearing in pki come from the distribution χσI` . If b = 1, the errors
appearing in pki come from the distribution βχ√Σ′ .
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We show that these two distribution are statistically close if σ > σ′(1 + T
√
`). Let us set β′ =(

I` ~α
~µ> 1 + ~µ>~α

)
for some ~µ. Let Σ0 = β′

√
Σ′(β′

√
Σ′)> be of the target form

(
σ2I` 0

0 γ0
2

)
.

If Σ0 has this form, it means that β′
√

Σ′ gives us ` uncorrelated errors distributed as χσ and
another error distributed as χγ0 which we can drop because it is not correlated to the other.
Then ∀z, ε← χ√Σ′

Pr(βε = z) =
∑
s

Pr

(
β′ε =

(
z

~µ>z + s

))
=
∑
s

Pr

(
ε = β′

−1
(

z
~µ>z + s

))
∝
∑
s

ρ√Σ′

(
β′
−1
(

z
~µ>z + s

))
∝
∑
s

ρβ′
√

Σ′

((
z

~µ>z + s

))
by Lemma A.1

∝
∑
s

ρ√Σ0
(z)ργ0(~µ>z + s)

∝ ρ√Σ0
(z)ργ0(~µ>z + Z)

∝ νρ√Σ0
(z) where ν ∈

[
1− ε
1 + ε

, 1

]
as long as γ0 > 2 by Lemma A.2

`-Ciphertext Reproducibility. We show that Construction 7.2 has `-ciphertext-reproducibility,
for any fixed constant `, by taking error distributions with standard deviations σ′, (σi)i∈[`] as
chosen for the `-public-key-reproducibility, and by the following alternative encryption algorithm

E′((si, ei), xi, ct0; r′) = 〈si, ct0〉+ 〈ei, r′〉+ t(xi) .

as required. This is enough to show that Exp`-ct-rep-0E,λ (A) is indistinguishable from Exp`-ct-rep-1E,λ (A).

Theorem B.2 Under the LWE assumption, Construction 7.2 has `-ciphertext-reproducibility.

Proof: We prove the theorem via a sequence of hybrid experiments.

Hybrid H1 : This is the Exp`-ct-rep-0E,M,λ (A), with the algorithms unfold.
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proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

sk
R← Znq , e← χmσ′ , pk = Ask + e

pki = Aski + ei, for ei ← χmσi
r

R← {0, 1}m
ct0 = A>r, ct = E(pk, a; r)
cti = αict + E(pki, xi; r)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)

Hybrid H2 : This is like H1 except that pk is taken uniformly random in Zmq .

proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

pk
R← Zmq

pki = Aski + ei, for ei ← χmσi
r

R← {0, 1}m
ct0 = A>r, ct = E(pk, a; r)
cti = αict + E(pki, xi; r)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)

The hardness of LWE guarantees that pk looks pseudo-random to the adversary. Moreover
notice that sk is never used.

Hybrid H3 : This is like H2 except that ct0 and 〈pk, r〉 are replaced with uniformly random
values.

proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

pk
R← Zmq , u

R← Zq
pki = Aski + ei, for ei ← χmσi
r

R← {0, 1}m

ct0
R← Zmq , ct = u+ t(a)

cti = αict+ E′((ski, ei), xi, ct0; r)

Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)
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Notice that E′((ski, ei), xi, ct0; r) = E(pki, xi; r) if ct0 = A>r.
Let us define the following random variables:

• X is the random variable that takes uniform values of the form (A ∈ Zm×nq ,b ∈ Znq ).

• W is the random variable that takes uniform values of the form r ∈ {0, 1}m.

• I is the random variable that takes values of the form (〈e1, r〉, . . . , 〈e`, r〉), where ei ← χm,
r ∈ {0, 1}m.

Then, by Lemma A.3, we have that H̃∞(W |I) ≥ H∞(W )− (`−1) log q = m− (`−1) log q. Now,
notice that HX(W ) = H(A,b)(r) = (A>r, 〈b, r〉) is a universal hash function and by applying
the generalized leftover hash lemma (Lemma A.4), we have that:

SD((HX(W ), X, I), (U,X, I)) ≤ 1

2

√
2−H̃∞(W |I)qn+1 .

Then, if m ≥ (n+ `+ 1) log q + 2 log 1
ε + Ω(1), the statistical distance between the two views is

at most ε.

Hybrid H4 : This is like H3 except that r is replaced by another random value r′.

proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

pk
R← Zmq , u

R← Zq
pki = Aski + ei, for ei ← χmσi

r′
R← {0, 1}m

ct0
R← Zmq , ct = u+ t(a)

cti = αict+ E′((ski, ei), xi, ct0; r′)

Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)

These are exactly the same distribution as r is used nowhere else.

Hybrid H5 : This is like H4 except that ct0 is generated as A>r and u is replaced by 〈pk, r〉.
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proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

pk
R← Zmq

pki = Aski + ei, for ei ← χmσi

r
R← {0, 1}m, r′ R← {0, 1}m

ct0 = A>r, ct = E(pk, a; r)

cti = αict + E′((ski, ei), xi, ct0; r′)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)

The change from H5 to H4 is the same as the change from H2 to H3, except that no information
about r is leaked. So Lemma A.3 gives us that the statistical distance between the two views is
at most ε.

Hybrid H6 : This is the Exp`-ct-rep-1E,M,λ (A).

proc Initialize(λ,M)

(a, (αi, xi, ski)i∈[`])
R←M(1λ)

sk
R← Znq , e← χmσ′ , pk = Ask + e

pki = Aski + ei, for ei ← χmσi
r

R← {0, 1}m, r′ R← {0, 1}m
ct0 = A>r, ct = E(pk, a; r)
cti = αict + E′((ski, ei), xi, ct0; r′)
Return (pk, (αi, pki, ski)i∈[`], ct0, (cti)i∈[`])

proc Finalize(b′)

Return (b′ = b)

Once again, the hardness of LWE guarantees that pk looks pseudo-random to the adversary.
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