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Abstract. Over the last twenty years, the research community has
devised sophisticated methods for retrieving secret information from side-
channel emanations, and for resisting such attacks. This paper introduces
a new CPU architecture called the Conjoined Microprocessor (CµP). The
CµP can randomly interleave the execution of two programs at very low
extra hardware cost. We developed for the CµP a preprocessor tool that
turns a target algorithm into two (or more) separate queues like Q0 and
Q1 that can run in alternation. Q0 and Q1 fulfill the same operation
as the original target algorithm. Power-analysis resistance is achieved
by randomly alternating the execution of Q0 and Q1, with different
runs resulting in different interleavings. Experiments reveal that this
architecture is indeed effective against CPA.

1 Introduction

Over the last twenty years, the research community has devised sophisticated
methods for retrieving secret information from side-channel emanations and for
resisting such attacks. We assume that the reader is familiar with side-channel
attacks such as SPA, DPA [11] and CPA [2] that we do not re-describe here.

This paper introduces a new CPU architecture called the Conjoined Microproces-
sor (CµP). The CµP can be seen as the electronic equivalent of conjoined twins.
In biology the term conjoined twins designates identical twins joined in utero.
Conjoined twins usually share a few vital organs such as the heart or the liver.
The CµP has one ALU (Arithmetic and Logical Unit) and one RAM space but
two independent register banks and two independent stack areas. This enables
the CµP to take two queues of codes that modify the same RAM space and
alternate randomly their execution. CµP hardware relies on a preprocessor that
transforms the target algorithm into (at least) two separate code queues like Q0



and Q1 run in alternation. Q0 and Q1 fulfill the same operation as the original
target algorithm. Thus, Q0 and Q1 co-operate to alternatively modify the same
RAM space and perform a specific computational task. The number of queues in
this method is not limited and could be increased with low hardware overhead.

Attacks such as CPA or DPA exploit a device’s power consumption at a specific
clock cycle t0. The statistical exploitation of data-related power variations usually
requires a large number of re-runs. CPA and DPA are based on the observation
that during t0, secret data being processed and power consumption are correlated.
Algorithms are often designed to run in constant time to thwart timing attacks [10],
but constant-time implementations enable attackers to align the power traces of
consecutive runs, focus on t0, and perform statistical analysis. The opponent can
then guess the secret data (usually a byte of it) and check whether this guess
is correct. A correct guess will produce a power trace that resembles the real
consumption at t0.

Random execution of independent instructions or shuffling is a popular category of
SCA prevention methods. There are different methods in hardware and software.
Hardware-only solutions (e.g. [14]) generally do dependency checking and parallel
execution using hardware at run-time which demands for significantly larger
area and run-time costs for wastefully and repetitively checking a deterministic
algorithm which remain fixed forever in a device live cycle (e.g. a smart card) while
it can be done just once. Software-only solutions (e.g. [17, 18,20]) mostly utilize
shuffling approaches for a specific cryptographic algorithm and lack generality.
They also considerably increase code size or diminish system performance.
The rationale of the CµP idea is to check dependency among instructions and code
blocks at compile time, fill two queues Q0 and Q1 with independent instructions
or code blocks which can run in parallel and randomly alternating between them
on the fly. This can prevent SCA by changing the clock cycles at which sensitive
data is being processed between executions. Even if an attacker succeeds in
targeting a given clock cycle t, power consumption at t also depends on the
instructions executed before and after t. Thereby the CµP hinders the attacker’s
efforts at the expense of a small overhead on the device.
We used existing rich previous research in compilers and parallel computing
to find independent instructions and blocks which can be run in parallel as
well as a specific parallelization method that can be applied exclusively for CµP
architecture. A similar method [19] was published when we developing and testing
CµP idea that uses similar compiler approaches to partition a code into several
independent code blocks B1 , ..., Bb all with equal size of S. It uses a custom
”shuffle b,S” instruction which makes the cpu to identify blocks margins. Then
a random number generator generates a sequence of b random numbers between
[1,b] which are used by cpu to randomly shuffle among blocks. This is a flexible
approach as the number of blocks could easily change but this flexibility produce
extra hardware cost as the RNG should be designed to work with variable number
of blocks. In contrast CµP can use a very simple RNG which generates 0 or
1 and pick either Q0 or Q1 for execution. Code blocks in [19] should be equal



size which means compiler should fill up the shorter queues with dummy nop
instructions. In comparison in CµP, Qis could be at any size and there’s no need
for dummy instructions. More over [19] generally relies on block parallelization
because when a block is chosen, it should be run entirely to its end before starting
another block. But CµP can enjoy not only from block-level parallelization but
also from fine grained instruction-level parallelization and on each instruction,
cpu flips a coin and chooses either of Qis. Finally, CµP has a specific architecture
which helps to use an exclusive parallelization method which will be discussed in
Section 3. All of the above mentioned characteristics helped CµP to demand for
more than 2000 times traces to break as this value is 366 for [19].

The advantages of the CµP architecture are the following:

– An opponent trying to exploit side-channel leakage is faced with the problem
of correctly partitioning operations in time. In addition, the power consump-
tion at time t does not only depend on opcodet but also on opcodet−1.
If these opcodes belong to two different Qis, the power traces of the two
processes will influence and blur each other.

– The insertion of random wait-states is a popular countermeasure (e.g. [4–6])
but wait-states impact system performance by slowing down computations
(i.e. when the system marks a halt to mislead the opponent, time is inevitably
lost). Alternating between two fully useful processes does not cause any time
loss and preserves global system determinism. Previous works using shuffling
methods focus on specific algorithms (e.g. [8,13,17]) or demand large runtime
resources such as time and power [14].

– Because conjoining does not duplicate the ALU and the RAM (which are
the most expensive chip parts in terms of surface) but only a few registers,
conjoining is relatively cheap.

– Finally, by turning off one of the two processes, CµP runs code with total
backward compatibility. Conversely, by just skipping the conjoining opcodes,
CµP code is automatically serialized on-the-fly for a non-conjoined µP.

As we will subsequently see, the main challenge in designing the CµP is not that
much the CµP’s hardware design but the compilation of code for the CµP.

Section 2 provides technical background. Section 3 overviews the methods for
alternating code used in the compilation process for the CµP. Section 4 provides
implementation details. Section 5 illustrates the additional resistance to CPA
and DPA brought by the CµP. We did not subject the CµP to higher-order
or non-linear power analyses4. We also expect the CµP to increase resistance
against other side-channels such as EM radiation or heat dissipation, although
we did not perform such experiments as yet.

4 That being said, such advanced methods are usually more sensitive to noise than
CPA or DPA, and require more traces [7].
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2 Technical Background

2.1 Reordering Constraints for Dependent Instructions

The CµP is designed for the interleaved non-deterministic execution of two (or
more) instruction streams5. This requires all possible code interleaving config-
urations to be equivalent. To guarantee the equivalence of two instances of an
algorithm, we use Theorem 1 of [9]:

Theorem 1. Any reordering transformation φ that preserves every dependence
in a program preserves the meaning of that program.

In this theorem the word dependence refers to Write-after-Write (WaW), Write-
after-Read (WaR) or Read-after-Write (RaW) relationships between instructions.
Recall that WaW, WaR and RaW are data hazards that occur when instructions
exhibiting data dependence modify data concurrently. We illustrate these hazards
with simple examples in Table 1 assuming that, to perform correctly a given
computational task, opcode1 must precede opcode2. The problematic variable in
the following three examples is x.

RaW WaR WaW
opcode1 x := a a := x x := a
opcode2 b := x x := b x := b

Table 1: Different types of dependence

There are three situations in which a data hazard can occur:

– RaW (true dependence): opcode2 tries to read a variable before opcode1
could write it. i.e. opcode2 refers to a result that has not been calculated
yet.

In Table 1. opcode1 saves a value in x and opcode2 is expected to move
this value into b. Hence, opcode1 and opcode2 do not commute. This is a
data dependence because opcode2 depends on the successful completion of
opcode1.

5 In the following sections, instruction streams will also be referred to as “queues”,
“programs” or “codes” and will be denoted by Q0 and Q1.



– WaR (anti-dependence): opcode2 tries to write a variable (x) before
opcode1 could read it. A brief look at the WaR column of Table 1 shows
that opcode1 and opcode2 do not commute.

– WaW (output dependence): In this configuration opcode2 tries to write a
variable (x) before opcode1 writes it. Here as well, opcodes do not commute6.

Conversely, a transformation φ does not yield an equivalent program (φ is an
invalid transformation) if φ changes the order of two opcodeis referring to a same
memory location when at least one of these opcodeis is a write. Otherwise φ is
defined as valid.

Kennedy et al. [9] introduced a set of methods for loop dependence testing and
parallelization which are complete and adequate for our purpose. Kotha et al. [12]
applied a subset of these methods to parallelize binary codes. Both approaches
are integrated in the CµP compilation toolkit.

3 Parallelization and Alternation

To recompile a program P into the two alternatable queues of codes Q0 or
Q1, we had plenty of previous research around code compilation methods for
parallel computing except that in our method, parallel codes run interleaved not
simultaneous. We adapted compilation tools [9] to generate code that can be
run safely in alternation, and combined these tools with optimization strategies
in [12] to overcome the lack of symbolic information, missing function indices
and implicit induction variables.

[9] is comprised of various methods for dependency checking in loop iterations7.
For example in AddRoundKey function in AES, all of the 16 iterations are
independent exclusive-or’s between a byte of the key and data. Therefore, first 8
iterations could be run in Q0 and other 8 iterations in Q1. But loop iterations are
not always independent. In this cases methods in [9] generally fails and we use
a specific algorithm to obtain more in parallelization at instruction-level. This
algorithm can be used exclusively for CµP because of its specific architecture
and we will discuss it later in this Section. We integrated all of these methods in
a preprocessor tool.

3.1 Synchronizing Instruction Queues

It is sometimes necessary to pause the execution of one Qi, to make sure that
executing instructions in two queues never violates dependence. This requires
6 The reader may question the usefulness of overwriting x. Such a situation may occur

if x is an I/O port for instance.
7 e.g. SIV and ZIV tests.



adding new synchronization opcodes to the CµP’s instruction-set. Instruction
queues are synchronized using the (new) barrier (brr) and carrier (crr) instruc-
tions. In the following, brr and crr instructions will be referred to by the generic
notation xrr.

– brr is used to enforce the correct order of execution of two instructions
belonging to different Qis. Each brr is followed by a memory address (brr
M). The queue issuing a brr instruction will be stalled until the other queue
executes the instruction at address M. Table 2 gives a 68hc05 example for
brr. Assume the lda mem1 in Q0 must be processed before the sta mem1 in
Q1. brr stalls Q1 until Q0 reaches LABEL1.

– crr is used to transfer a register value from one queue to another. Each
crr is followed by a memory address M and a register name Y (crr M,Y).
The queue Qi issuing the crr instruction will be stalled until Q1−i executes
the instruction at address M, and then the contents of register Y are carried
(copied) from Q1−i to the Qi. Table 3 illustrates the use of crr. Suppose that
the add in Q1 requires the value loaded into register A from mem1 in Q0. crr
waits until lda finished, then it transfers the contents of Q0’s A into Q1’s A.
Then the add instruction is processed. Passing values between Qis could be a
source of power information leakage and we will cover that later in Section 4.

Q0 Q1

. . . . . .
lda mem1 brr LABEL1
LABEL1: sta mem1
. . . . . .

Table 2: Barrier synchronization instruction brr.

Q0 Q1

. . . . . .
lda mem1 crr LABEL2,A
LABEL2: add 0x20
. . . . . .

Table 3: Carrier synchronization instruction crr.



3.2 Algorithm for Instruction-Level Parallelization

The k-th instruction of a program is denoted by opcode[k]. We denote by D[k]
and S[k] the sets of all destination instructions (an instruction that must be
executed after opcode[k]) and source instructions (an instruction that must
be executed before opcode[k]), respectively; Qi[k] is the queue that opcode[k]
belongs to ; n[k] is the number of instructions that must be executed before
instruction opcode[k] can be assigned8.

Finally, we introduce R[k] ∈ {0, 1}, the recommended queue index, which is
determined from the instructions in S[k].

Figure 1 illustrates this process for a short program: seven instructions affect
registers A (accumulator) and X (index). Their dependence graph is illustrated in
Figure 2a. Each node is an instruction and each directed edge is a dependence be-
tween two instructions. The incx at line 4 has the attribute D[4] = {(X, 6), (X, 7)}
because its writing of register X must be executed before line 6 and 7 and the
lda at line 1 has the attribute D[1] = {(mem1, 6), (A, 3)}.

1 lda mem1 ; A ← mem1
2 ldx mem2 ; X ← mem2
3 inca ; A ← A+1
4 incx ; X ← X+1
5 sta mem2 ; mem2 ← A
6 stx mem1 ; mem1 ← X
7 mul ; X:A = 256*X+A ← A*X

Fig. 1: Sample program and opcode attributes.

Now each instruction must be assigned to a queue for the program to be effectively
executed. The assigning process is described in Algorithm 1. Each iteration begins
by selecting a node having no input edge, or having all its adjacent source nodes
assigned. We refer to this node as the current node. The algorithm then assigns
the current node to a queue and ends when all nodes are assigned. Choosing the
appropriate queue is based on two conditions:

1. Already assigned instructions can assign a queue to their destinations. This
is called recommendation.

2. If the node has no recommendation, it is assigned to the shorter queue.

After determining the appropriate queue, and assigning the current node to the
queue, Algorithm 1 updates the nodes that depend on the current node.

8 n[k] is initialized by #S[k] and decremented whenever one of the sources of opcode[k]
is assigned to a queue. When n[k] reaches zero, opcode[k] can be safely assigned.



To find out if a synchronizing instruction xrr is required, the algorithm checks
whether a source instruction of the current node has been assigned to the other
queue or not; if so, it inserts an appropriate brr or crr.
It can be easily proven that if a program can be sequentially run, then a deadlock
in its parallel version is not possible.

3.3 A Toy Example

To show how Algorithm 1 works, we apply it to the code of Figure 1. In Figure
2, bold rectangles show the instruction processed by Algorithm 1 at each step.
Plain arrows represent the analyzed code’s dependences. Bold arrows denote
recommendation paths and gray nodes represent assigned opcodes that will not
be processed again.

Algorithm 1: Generating queues from straight-line target code.
Data: Program P
Result: Queues Q0 and Q1
// Initialization
for k ∈ {1, 2, ..., size of program P} do

D[k]← destinations of opcode[k]
S[k]← sources of opcode[k]
n[k]← #S[k]
Qi[k]← −1 //assigned queue
Ri[k]← −1 //recommendation queue

end for
// Assigning nodes
while there is an unassigned instruction in P do

find k s.t. n[k] = 0 and Qi[k] = −1
if R[k] 6= −1 then
Qi[k]← R[k]

else
Assign opcode[k] to the shortest queue

end if
if ∃(R, J) ∈ S[k] s.t. Qi[J ] 6= R[k] then

Insert required xrr instructions before opcode[k] in R[k]
end if
Recommend Qi[k] to appropriate nodes in D[k]
for (r, `) ∈ D[k] do

n[`]← n[`]− 1
end for

end while

The procedure starts by considering the instruction at line 1, which is assigned
to Q0, while queue Q0 is recommended to the 3rd instruction (Figure 2b). The
algorithm then proceeds to the next sourceless node, which is the 2nd instruction



(Figure 2c). Now the 3rd and 4th instructions have a recommended queue equal
to 0 and 1 respectively, so the algorithm will assign the 3rd instruction to Q0 and
the 4th to Q1. Note that the 3rd instruction and its source (1st inst.) have been
assigned to the same queue, so that no xrr is required (Figure 2d); the same
remark applies to the 4th instruction (Figure 2e).

However, instruction 5 has been sent to Q0, but has a source (2nd inst.) that
is assigned Q1. A brr is therefore inserted to ensure instruction 2 has been
processed on Q1 (Figure 2f). The same reasoning applies to instruction 6 (Figure
2g).

The algorithm proceeds to the 7th and last instruction, which is assigned to Q0.
This instruction requires the content of registers A and X. Since X is affected by
Q1, a crr is necessary to synchronize its value (Figure 2h).

Table 4 illustrates the queues once this procedure has completed. The instruction
brr LABEL 1 1 on Q0 ensures that this queue will be stalled until ldx is processed
by Q1. The brr LABEL 0 1 instruction on Q1 has a comparable effect on Q1.
The crr LABEL 0 2,A instruction will transfer the contents of register A from Q0
after inca has finished.

Instruction Q0 Q1

1 lda mem1 ldx mem2
2 LABEL 0 1: LABEL 1 1:
3 inca incx
4 LABEL 0 2: brr LABEL 0 1
5 brr LABEL 1 1 stx mem1
6 sta mem2 crr LABEL 0 2,A
7 mul

Table 4: Queues after applying Algorithm 1.

4 Implementation

4.1 The CµP Architecture

The CµP (Figure 3) has two separated register banks, an Alternator and a
common core including an ALU and control logic.

Each register bank duplicates registers A, X, the Flags, Stack Pointer and Program
Counter. The Multiplexer can change the data path between the two banks based
on the queue being run. The Alternator is also composed of a Shuffler Switch
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Fig. 2: Iterations of Algorithm 1 on Figure 1.

that randomly shuffles two instruction streams and a Thread Synchronizer that
checks if the fetched instruction is an xrr. The Alternator controls that Q0 and
Q1 are run in correct order using xrrs or carries a register value from one queue
to another. This value might be a secret information which we aim to protect and
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Fig. 2: Iterations of Algorithm 1 on Figure 1 (cont’d).

moving it may lead to information leakage through the device power. In order to
neutralize mentioned effect, we used a leakage model [2, 15] based on Hamming
distance which provides a linear estimation of power consumption. The model
consists in measuring the number of bit flips (transitions from 0 to 1 or vice
versa at the transistor level) from an original (unknown) rest state. Therefore
the power consumption in changing a register from its old value Rold to a new



Fig. 3: CµP architecture.

value Rnew is related to:

HammingDist(Rold, Rnew) (1)

We tried to keep all Hamming distances or bit flips constant in every changes,
regardless of the old and new values. This need a simple circuitry shown in figure 4.
In this figure register R is the register which accept a new value. It is accompanied
by another neutralizer register N. New and old values of R are connected to an
exclusive-or gate and the output is connected to another exclusive-nor gate with
the old value of N. This circuit grantees to keep all accumulated bit changes in
R and N to be constant. In CµP we need only one neutralizer register which is
used to neutralize all values are exchanged by crr.

Fig. 4: Neutralizing effect of value exchange in crr instruction.



4.2 Proportional Shuffling

Algorithm 1 decides to assign instructions with no dependencies to the shorter
queue to strive to keep queues equal in size. But dependencies may affect the
symmetry in queue sizes. So the shuffler must be capable of shuffling in proportion
of queue sizes. Proportional shuffling results in two queues with fair execution
time shares based on their sizes so as to minimize the idle time of short queues.
To that end a random number generator outputs a queue index i ∈ {0, 1} with
probabilities L0/(L0+L1) and L1/(L0+L1) respectively, where Li is the size of Qi.
To construct this dynamically biased generator we used the hardware permutation
technique of [3] and [1]. These keyed hardware permutation generators are fast
enough to produce an element i ∈ {0, 1} at each clock cycle. Using a permutation
function Π(k, L) where k is the key and L = L0 +L1 is the length of permutation,
it is possible to generate a random permutation Π of (1, 2, . . . , L0 + L1) and
then construct a switch S(i,Π) that returns 0 if i appears in Π at a position `i
such that 1 ≤ `i ≤ Li, and returns 1 if L0 + 1 ≤ `i ≤ L0 + L1. In other words
S(i,Π) acts as an oracle informing the CµP which queue must be unleashed to
run instruction i.

4.3 Choosing a CPU Core

The CµP was implemented in VHDL. The design includes a 68hc05 core9, the
Alternator, ROM, two clone register banks and a 32-bit LFSR (as a simple
Shuffler). Since we have simulated the CµP on ModelSim 6.3, no I/O ports
were required. All input and output vectors are stored in files by the VHDL
simulator. The implementation was used to generate the simulated power traces
necessary for side-channel evaluation. We used the Hamming distance variation
of all registers to model dynamic power consumption [16].

We also developed a code splitting tool in C++. The tool accepts a program
in 68hc05 assembly, extracts all dependences into several graphs, applies the
alternation algorithms to these graphs and outputs two binary code streams.
The binary code is then imported into ROM. Our method requires the CµP
to implement the two new xrr opcodes. Luckily the 68hc05 instructions table
has several unused opcodes (e.g. 0x90, 0x91 and 0x92). We hence assigned
0x90, 0x91, 0x92 and 0x93 to brr, crr A, crr X and crr flags instructions
respectively. If Q0 contains an instruction such as brr 0x1234 then Q0 should
be stalled until PC2 reaches 0x1234. Likewise, if Q0 contains an instruction such
as crr A,0x1234 then Q0 should be stalled until PC2 reaches 0x1234 and then
the contents of register A of Q1 would be transferred to the register A of Q0.

9 Recall that the Motorola 68hc05 core has an 8-bit accumulator A, an 8-bit index
register X, a 16-bit Program Counter PC and a few basic flags10. The CPU can address
` ≤ 216 = 64k one-byte memory locations denoted M [0], ...,M [`− 1].



4.4 Area and Speed Penalty

Table 5 compares the simulation results of a standard 68hc05 with those of its
corresponding CµP on Xilinx Spartan-6 FPGA. Adding an extra register bank
and the code alternation circuits increased area by about 2% in terms of registers
and 7% in LUTs and decreased speed by about 4%.

Design Registers LUTs Frequency
Standard 68hc05 137 1288 120 MHz
CµP 68hc05 165 1375 115 MHz
Ratio between designs 1.02 1.07 0.96

Table 5: Performance and Area on a Xilinx xc6slx4-3tqg144 FPGA

5 AES Experiments

To benchmark our CµP design, we developed a naive 128-bit AES in 68hc05
assembly and implemented the cpu core and memory on a Xilinx evaluation board.
AES was recompiled as a parallel program which comprised of 660 instructions
including 64 brrs and no crrs. As AES and other block ciphers usually work
separately on sub-bytes of input data, they are easily parallelized by splitting
round loops into two and hence don’t need any crr instruction. brr is a fast
two-cycle instruction and its overall execution time was only %0.047 of an AES
operation.

We then mounted a simple Correlation Power Attack (CPA) [2] that targets the
AddRoundKey subroutine during the final AES encryption round. In AddRoundKey,
the secret key is exclusive-ored (eor instruction) with data. Knowing imple-
mentation details, spotting this eor is easy. Since the 68hc05 is an eight-bit
microprocessor, the 128-bit final round key is processed by a 16-round loop, each
iteration of which performs an 8-bit eor. We attack the first 8 bits of the key in
the first iteration.

To ensure that the 68hc05 AES implementation is vulnerable to CPA, we
performed the attack with the CµP working as a single queue CPU. We ran
10000 encryptions using random inputs with a fixed key and gathered all power
traces.

The correct key causes a significant spike in correlation coefficient as is shown
in Figure 5 where first four subkeys are shown in different colors. Each spike
represents the most correlated key value for one of the four (8-bit) subkeys.
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Fig. 5: CPA: Correct key guess for four 8-bit subkeys (standard 68hc05)
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Fig. 6: CPA: Correct key attempts for four 8-bit subkeys (CµP 68hc05)

Next, we have run the same attack on the CµP. Figure 6 shows the result of CPA
targeting four bytes of the final sub-keys. Figure 7 illustrates how three eors in
the final round of AES (1st, 2nd and 8th) were scattered over the CPU cycles for
200 execution instances. In this experiment, CPA fails to identify the correct key.

5.1 Analysis for ultimate resistance of CµP

CµP’s effectivness is based on two observations. First, in many runs of AES,
eor take places on cycles other than the target clock cycle t0. Second, in those
executions, other instructions might run on t0 including other eors from other
rounds of the algorithm. These two observations would reduce the correlation
between the data being processed and device power and cause masking noise on
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t0 to hinder the attacker’s effort.
In order to understand ultimate resistance of CµP architecture, we give an
analysis here which is applicable to any other shuffling approach.
First we define device’s power consumption components based on [15]:

Ptotal = Pexp + Psw.noise + Pel.noise + Pconstant (2)

Pexp is the exploitable power consumption which is produced by processing secret
data and is attacker’s source of information for key hypothesis testing. It obviously
has a correlation with the hamming distance of data changes. Psw.noise is the
switching noise of the logical operations in chip which has no dependency with the
secret data being processed. Pel.noise is device’s power leakage independent from
the logical operations and data changes and finally Pconstant which is constant
device’s leakage has no advantage for the attack process. Following equation
describes how signal to noise ratio can negatively affect correlation coefficient
between hamming distances and exploitable power consumption on t0:

ρ(HD,Ptotal) = ρ(HD,Pexp)√
1 + 1

SNR
(3)

which ρ (HD,Ptotal) is the correlation between the hamming distance of plain
and encrypted data and the device’s total power usage at the target moment t0.
In this equation, SNR can be calculated as follows:

SNR = σ2Pexp
σ2 (Psw.noise + Pel.noise)

(4)

Pexp,Psw.noise and Pel.noise could be described as a normal distribution [15]. So
we tried to find couple of mean and standard deviation (µ, σ) for all of them. By



capturing device power in idle time we obtained Pel.noise ∼ N (0, 12.02mV) and
by capturing mean values when it was processing random values we obtained
Psw.noise ∼ N (180.0mV, 2.85mV). To estimate Pexp, device’s power on t0 was
observed by taking mean values of 200 operations. Table 6 illustrates device
power consumption along with hamming distance of the bit flips as well as
number of occurrences. Based on the values in Table 6, Pexp can be described by
N (180.0mV, 1.72mV).

HD 0 1 2 3 4 5 6 7 8
Occurrences 4 6 19 45 51 42 22 8 3
Power 173.1 174.8 176.5 178.3 180.0 181.8 183.5 185.1 186.8

Table 6: Distribution of bit flips hamming distance and power usage

Now we can analyse minimum required power traces to distinguish correct key
guess for both unprotected and CµP system. Based on [15] minimum needed
power trace to mount a successful correlation attack can be calculated as follows:

n = 28
ρ2 (HD,Ptotal)

(5)

For unprotected system all the eors are run on t0 hence we can assume ρ2(HD,Pexp) ≈
1 and Psw.noise ≈ 0 then using (3) and (4):

ρunprot.(HD,Ptotal) = 1√
1 + 12.022

1.722

≈ 0.141 (6)

This value confirms the correlation coefficient which experimentally obtained in
Figure 5. It also implies that at least 1394 traces were enough to achieve the
same result in Figure 5 using (5).

To conduct the same analysis on CµP, we denote exploitable power consumption
of the device by Pexp.CµP . In order to calculate ρCµP (HD,Ptotal) from (3( we
should recalculate ρCµP (HD,Pexp) and SNR. Hence we need mean values and
variances for exploitable power and switching noise E(Pexp.CµP ), E(Psw.CµP ),
var(Pexp.CµP ) and var(Psw.CµP ) on t0. Assume that proportion of traces which
eor run on t0 in CµP be α. This case is like combining two different sets of
events with proportion of α and 1 − α. If we denote mean value and variance
of exploitable or switching power consumption for both sets with (µα, σα) and
(µ1−α, σ1−α), we would have:



E(Pexp.CµP ) = α.n.µα + (1− α).n.µ1−α

α.n+ (1− α).n = α.µα + (1− α).µ1−α

var(Pexp.CµP ) =
α.n.

[
σ2
α +

(
µα − E(Pexp.CµP )

)2
]

α.n+ (1− α).n

+
(1− α).n.

[
σ2

1−α +
(
µ1−α − E(Pexp.CµP )

)2
]

α.n+ (1− α).n
= α.

(
σ2
α +

(
µα − E(Pexp.CµP )

)2)
+ (1− α).

(
σ2

1−α +
(
µ1−α − E(Pexp.CµP )

)2)

(7)

It is obvious that in α.n traces, Pexp.CµP ∼ N (µα, σα) holds the properties
of Pexp ∼ N (180.0mV, 1.72mV) and the (1 − α).n remainder traces have no
exploitable information so µ1−α = 180mV and σ1−α = 0mV. Regarding to the
Figure 7, in 16 traces, eor is run on t0 which mean α = 0.08. Hence E(Pexp.CµP ) =
180.0mV and var(Pexp.CµP ) = 0.236mV2 using (7). With similar reasoning,
in (1 − α).n instructions, Psw.CµP ∼ N (µ1−α, σ1−α) holds the properties of
Psw.noise ∼ N (180.0mV, 2.85mV) and the α.n traces have no switching noise.
Using similar equations E(Psw.CµP ) = 180.0mV and var(Psw.CµP ) = 7.472mV2.
SNRCµP is obtained as follows regarding the independence of Pel.noise and
Psw.noise:

SNRCµP = var(Pexp.CµP )
var(Psw.CµP + Pel.noise)

= var(Pexp.CµP )
var(Psw.CµP ) + var(Pel.noise)

= 0.0015

(8)
If we denote set of (1 − α).n shuffled instructions which has no exploitable
information by S1−α and α.n unshuffled ones by Sα.n then ρCµP (HD,Pexp) can
be calculated by Pearson’s correlation formula:

ρCµP (HD,Pexp.CµP ) =

n∑
i=1

HDi.Pi.exp − n.HD.Pexp

(n− 1).σHD.σPexp

=

∑
i∈Sα

HDi.Pi.exp − α.n.HD.Pexp

(n− 1).σHD.σPexp

+

∑
i∈S1−α

HDi.Pi.exp − (1− α).n.HD.Pexp

(n− 1).σHD.σPexp

=

∑
i∈Sα

HDi.Pi.exp − α.n.HD.Pexp

α.(1/α).(n− 1).σHD.σPexp
= α.1 = α

(9)



Now ρCµP (HD,Ptotal) can be calculated using 8 and 9:

ρCµP (HD,Ptotal) = α√
1 + 1

SNR
= 0.08√

1 + 0.0015
= 0.0031 (10)

which means at least 2813303 power traces is needed to mount same attack on
CµP using (5). In other words, CPA resistance for CµP is 2016 times more than
unprotected version.

Another try to hinder attacker’s effort is to increase the number of code queues
to achieve more parallelization and obfuscation which reduces α and adds more
switching noise. Adding more queue requires a new more register bank and also
modification in shuffler.

6 Conclusion

This paper introduced the use of randomized instruction interleaving as a side-
channel countermeasure. The new CPU architecture interleaves randomly the
execution of two instruction queues. These queues are generated from a single
target algorithm, whose functionality is preserved.

Since the instructions’ execution order varies between runs, fixed patterns in
power consumption vanish, and the device resists side-channel attacks such as
SPA and CPA.
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