Online-Offline Homomorphic Signatures for Polynomial Functions

Kaoutar Elkhiyaoui Melek Önen
Refik Molva

EURECOM, Sophia Antipolis, France

Abstract

The advent of cloud computing has given rise to a plethora of work on verifiable delegation of computation. Homomorphic signatures are powerful tools that can be tailored for verifiable computation, as long as they are efficiently verifiable. The main advantages of homomorphic signatures for verifiable computation are twofold: (i) Any third party can verify the correctness of the delegated computation, (ii) and this third party is not required to have access to the dataset on which the computation was performed. In this paper, we design a homomorphic signature suitable for multivariate polynomials of bounded degree, which draws upon the algebraic properties of eigenvectors and leveled multilinear maps. The proposed signature yields an efficient verification process (in an amortized sense) and supports online-offline signing. Furthermore, our signature is provably secure and its size grows only linearly with the degree of the evaluated polynomial.

1 Introduction

The problem of verifiable computation has attracted increasing interest with the rise of cloud computing. Thanks to the various computational and financial advantages of cloud technology, companies are keen to delegate their computation tasks to powerful servers. Yet, since such servers are considered to be potentially malicious, one major challenge is to empower cloud customers to efficiently verify the correctness of the requested computations. Homomorphic signatures are one of the cryptographic tools that perfectly address this challenge, so long as their underlying verification algorithm is efficient (in the amortized sense) and can be used by lightweight clients. In this paper, we focus on homomorphic signatures that allow the verification of multivariate polynomials of bounded degree. As shown in [7], such signatures could be used to enable verifiable delegation of a wide range of statistical computations: Namely mean, standard deviation or least squares fit. In the same vein, Graepel et al. [33] discussed how some machine learning algorithms
that go beyond mere statistics’ computation can be approximated using polynomial functions.

While all existing homomorphic signature designs rely on the use of either polynomials [15] or lattices [9, 32], in this paper, we propose a new approach that leverages the algebraic properties of eigenvectors to achieve homomorphism in signatures. Within this new solution, a homomorphic signature is mapped to a \((2, 2)\)-matrix admitting a “predefined” eigenvalue with respect to some secret vector \(\vec{u}\) (\(\vec{u}\) defines the signing key). This mapping can be easily shown to be homomorphic: The eigenvalue of the sum (product resp.) of two matrices is equal to the sum (product resp.) of the eigenvalues of each matrix. More specifically, our homomorphic signature encodes each component of the \((2, 2)\)-matrix in the exponent. Since such an encoding preserves the addition operation, this signature is additively homomorphic. On the other hand, in order to support multiplication, the proposed solution uses a \textit{leveled multilinear map}. Thanks to this new design, the signature verification is more efficient and the size of the signature is reduced compared to [15].

Additionally, our solution also features an online/offline signing procedure. By pre-computing “offline” signatures over a pre-defined random dataset, the actual “online” signature operation becomes much cheaper.

The major contributions of this paper are:

- A new and original primitive for homomorphic signatures which combines the use of eigenvectors with leveled multilinear maps to support multivariate polynomials.

- The solution is provably secure under the multilinear Diffie-Hellman inversion (MDHI) assumption [10]: Similarly to existing work, we first propose a weakly sound solution that we later transform into an adaptively sound one. Our transformation consists of replacing the message to be-signed with the evaluation of a one-degree polynomial at a secret point.

- Because the signature is mapped to a matrix, the size of the weakly sound signature is constant. Moreover, our adaptively sound solution results in signatures whose size grows only linearly in the degree of the evaluated polynomial.

- Similarly to previous work, our signature enables online/offline verification. Additionally, it supports online/offline signing: Namely, our solution allows the signer to pre-compute signatures of a random dataset (offline), and whenever the “to-be-signed” dataset is generated, the signer applies cheap transformations over the pre-computed signatures.

The rest of the paper is organized as follows: Section 2 formalizes the definition and the security properties of a homomorphic signature. The main building blocks of the proposed solution are presented in Section 3. Section 4 introduces
a first version of our solution and proves its security using a weak unforgeability experiment. This solution is further transformed in Section 5 to provide adaptive security. Finally, Section 6 reviews related work.

2 Background

2.1 Multi-labeled Programs

We first recall the definition of labeled programs, which by tying program inputs to predefined labels enable the construction of homomorphic signatures (cf. [9, 25]).

Definition 1. A labeled program \(P \) evaluating an \(n \)-variate function \(f : \mathbb{I}^n \rightarrow \mathbb{I} \), is defined by a tuple \((f, \tau_1, \tau_2, ..., \tau_n)\), where \(\tau_i \in \{0, 1\}^* \) is the label associated with the \(i \)th variable of function \(f \) (i.e. the \(i \)th input of program \(P \)).

Given labeled programs \(P_1, ..., P_t \) and a function \(g : \mathbb{I}^t \rightarrow \mathbb{I} \), we define the composed (labeled) program \(P_C = g(P_1, ..., P_t) \) as the evaluation of function \(g \) on the outputs of programs \(P_1, ..., P_t \). In this case, the labeled inputs of program \(P_C \) correspond to the distinctly labeled inputs of programs \(P_1, ..., P_t \). Namely, the inputs of \(P_1, ..., P_t \) associated with the same label will form one single input for the composed program \(P_C \).

If we denote \(I_\tau \) the identity program associated with the canonical identity function \(I \) and label \(\tau \in \{0, 1\}^* \), then any labeled program \(P = (f, \tau_1, \tau_2, ..., \tau_n) \) can be expressed as the composition of identity programs \(I_{\tau_1}, ..., I_{\tau_n} \) and function \(f \), i.e. \(P = f(I_{\tau_1}, ..., I_{\tau_n}) \).

Similarly to the work of [15], in this paper, we focus on multi-labeled programs which give way to the construction of efficiently verifiable homomorphic signatures. In a nutshell, a multi-labeled program assigns labels not only to program inputs, but also to the dataset to which these inputs belong (cf. Definition 2).

Definition 2. A multi-labeled program \(P_\Delta \) is defined by a pair of dataset identifier \(\Delta \in \{0, 1\}^* \) and a labeled program \(P \). As such, \(P_\Delta \) indicates that program \(P \) operates on inputs from dataset \(\Delta \).

Also multi-labeled programs associated with the same dataset identifier support composition. Notably, given multi-labeled programs \((P_1, \Delta), ..., (P_t, \Delta) \) sharing the same dataset identifier \(\Delta \), and a function \(g : \mathbb{I}^t \rightarrow \mathbb{I} \), we define the composed multi-labeled program \(P_C = g((P_1, \Delta), ..., (P_t, \Delta)) \) by the pair \((P_C, \Delta)\), where \(P_C \) is the composed program \(g(P_1, ..., P_t) \).

Moreover, we define the multi-labeled identity program \(I_{(\Delta, \tau)} \) by the pair \((I_\tau, \Delta) \). Consequently, if \(P_\Delta = (P, \Delta) \), where \(P \) is the labeled program defined as \((f, \tau_1, ..., \tau_n)\), then \(P_\Delta \) can be expressed as the composition of function \(f \) and the multi-labeled identities \(I_{(\Delta, \tau_1)}, ..., I_{(\Delta, \tau_n)} \), i.e. \(P_\Delta = (f(I_\tau_1, ..., I_\tau_n), \Delta) \).
2.2 Efficient Homomorphic Signatures for Multi-labeled Programs

According to the work of [15], a homomorphic signature for multi-labeled programs consists of the following algorithms:

- **KeyGen**$(1^κ, L) \to (SK, VK, param)$: It is a randomized algorithm that takes as input a security parameter $1^κ$ and the label space L, and outputs a secret key SK, the matching public verification key VK, and a set of public parameters $param$ describing the set of admissible inputs I and the set of admissible functions F.

- **Sign**$(SK, ∆, τ, m) \to σ$: On inputs of secret key SK, a dataset identifier $∆$, a label $τ ∈ L$, and an input message $m ∈ I$, algorithm Sign outputs a signature $σ$. By definition, signature $σ$ authenticates m as the output of the identity program $(I_τ, ∆)$.

- **Eval**$(VK, f, ⃗σ) \to σ$: On input of verification key VK, an n-variate function $f : I^n → I$, and a vector $⃗σ = (σ^{(1)}, ..., σ^{(n)})$ of n signatures, algorithm Eval outputs a new signature $σ$. If each signature $σ^{(i)}$ authenticates a message $m^{(i)}$ as the output of a multi-labeled program $(P_i, ∆)$, then by definition, signature $σ$ authenticates the output of the composed program $(f(P_1, ..., P_n), ∆)$.

- **Verify**$(VK, P_∆, m, σ) \to b$: It is a deterministic algorithm that takes as inputs public verification key VK, a multi-labeled program $P_∆ = (P, ∆)$, a message $m ∈ I$, and a signature $σ$. It accordingly verifies using signature $σ$, whether m is the output of program P when executed on previously authenticated labeled messages belonging to dataset $∆$; and it outputs $b = 1$, if it decides that m was computed as the output of program P, and $b = 0$ otherwise.

To be deemed secure, a homomorphic signature should ensure the properties of **correctness** and **soundness**.

2.2.1 Correctness

Correctness in homomorphic signatures is captured through two requirements. The first is **authentication correctness** which ensures that the output of a correct execution of algorithm Sign is always accepted by algorithm Verify. The second requirement is **evaluation correctness** which assures that algorithm Eval always yields outputs that are accepted by algorithm Verify.

Definition 3. A homomorphic signature provides authentication correctness iff, for any tuple of keys and public parameters $(SK, VK, param) ← KeyGen(1^κ, L)$ and any signature $σ ← Sign(SK, ∆, τ, m)$:

$$\Pr[Verify(VK, I(∆, τ), m, σ) \rightarrow 1] = 1$$
Definition 4. A homomorphic signature ensures evaluation correctness iff, for any
tuple of keys and public parameters \((SK, VK, param) \leftarrow KeyGen(1^k, \mathcal{L})\), and any
set of tuples \(((\mathcal{P}_i, \Delta), m(i), \sigma(i))\)\(^{\forall i}\) such that \(Verify(VK, (\mathcal{P}_i, \Delta), m(i), \sigma(i)) \rightarrow 1\) (i.e. \(m(i)\) is the output of labeled program \(\mathcal{P}_i\) when executed on inputs from \(\Delta\)),
if we denote \(m\) the output of the composed program \(\mathcal{P}_{\Delta}^C = (f(\mathcal{P}_1, \ldots, \mathcal{P}_n), \Delta)\) (i.e. \(m = f(m(1), \ldots, m(n))\)) and \(\vec{\sigma}\) the vector \((\sigma(1), \ldots, \sigma(n))\), then we get the following equality:

\[
Pr[Verify(VK, \mathcal{P}_{\Delta}^C, m, \sigma) \rightarrow 1 \mid Eval(VK, f, \vec{\sigma}) \rightarrow \sigma] = 1
\]

2.2.2 Soundness

We say that a homomorphic scheme is sound, if the only way to make algorithm
Verify accept a tuple \((\mathcal{P}_\Delta, m, \sigma)\) comprising a multi-labeled program \(\mathcal{P}_\Delta\) evaluating
an \(n\)-variate function \(f\) on dataset \(\Delta\), a message \(m\) and a signature \(\sigma\) (i.e. \(Verify(VK, \mathcal{P}_\Delta, m, \sigma) \rightarrow 1\)), is by computing \(m\) as the outcome of an execution of
program \(\mathcal{P}_\Delta\) on some inputs \(m(1), \ldots, m(n)\) belonging to dataset \(\Delta\), and having \(\sigma\) equal
the output of Eval when called with function \(f\) and vector \(\vec{\sigma} = (\sigma(1), \ldots, \sigma(n))\) composed of the signatures authenticating messages \(m(i)\).

In accordance with previous work on homomorphic signatures [15], we formalize soundness by way of an unforgeability experiment. During this experiment, an adversary \(A\) is allowed not only to run algorithms Verify and Eval, but also to access the output of algorithms KeyGen and Sign through the following oracles:

- \(O_{KeyGen}\): When queried with a security parameter \(1^k\) and a label space \(\mathcal{L}\),
 this oracle generates a set of public parameters \(param\), a secret key \(SK\) and the corresponding verification key \(VK\); and returns the pair \((VK, param)\).

- \(O_{Sign}\): When called with a verification key \(VK\), a dataset identifier \(\Delta \in \{0, 1\}^\ast\), a label \(\tau \in \mathcal{L}\) and a message \(m\), oracle \(O_{Sign}\) retrieves the
 secret key \(SK\) matching verification key \(VK\), executes algorithm \(Sign\) on input
 \((SK, \Delta, \tau, m)\), and finally outputs the resulting signature \(\sigma\).

As depicted in Algorithm 1, adversary \(A\) enters the unforgeability experiment by querying the oracle \(O_{KeyGen}\) with security parameter \(1^k\) and label space \(\mathcal{L}\). In turn, \(O_{KeyGen}\) outputs a verification key \(VK\) and a set of public parameters \(param\) that will be used throughout the experiment. Later, adversary \(A\) adaptively picks \(s\) dataset identifiers \(\Delta_i\). For each dataset identifier \(\Delta_i\), adversary \(A\) submits \(t\) adaptive queries to oracle \(O_{Sign}\): Namely, adversary \(A\), selects \(t\) pairs of label and message \((\tau(i,j), m^{(i,j)})\) such that for all \(l \neq j\), \(\tau(i,j) \neq \tau(i,l)\). Notice that in this manner, we take into account the fact that adversary \(A\) can only submit one signature query per pair of dataset identifier \(\Delta\) and label \(\tau\).

Eventually, adversary \(A\) produces a challenge tuple of multi-labeled program
\(\mathcal{P}_\Delta = (\mathcal{P}, \Delta)\), message \(m\) and signature \(\sigma\). To conclude the experiment, algorithm
Verify is called with the challenge tuple \((\mathcal{P}_\Delta, m, \sigma)\).
Algorithm 1: The unforgeability experiment of homomorphic signatures

\[(\mathcal{VK}, \text{param}) \leftarrow \mathcal{O}_{\text{KeyGen}}(1^\kappa, \mathcal{L}); \]

\# \mathcal{A} can do the following in any interleaved order

\# \mathcal{A} picks up to \(s \) dataset identifiers

\(\mathcal{A} \rightarrow \Delta_i; \)

\# For each dataset \(\Delta_i \), \(\mathcal{A} \) queries \(\mathcal{O}_{\text{Sign}} \) up to \(t \) times

\(\mathcal{A} \rightarrow (\tau_{(i,j)}, m_{(i,j)}); \quad \# \text{if } l \neq j, \text{then } \tau_{(i,j)} \neq \tau_{(i,l)} \)

\(\sigma_{(i,j)} \leftarrow \mathcal{O}_{\text{Sign}}(\mathcal{VK}, \Delta_i, \tau_{(i,j)}, m_{(i,j)}); \)

\# \(\mathcal{A} \) outputs the tuple on which it is going to be challenged

\(\mathcal{A} \rightarrow (\mathcal{P}_\Delta, m, \sigma); \quad \# \mathcal{P}_\Delta = (\mathcal{P}, \Delta) \)

\(b \leftarrow \text{Verify}(\mathcal{VK}, \mathcal{P}_\Delta, m, \sigma); \)

Without loss of generality, we denote \(b \) the output of this execution of algorithm \text{Verify}, and we assume that program \(\mathcal{P} \) evaluates an \(n \)-variate function \(f \) and is associated with labels \((\tau_1, ..., \tau_n)\).

Consequently, we say that adversary \(\mathcal{A} \) succeeds in breaking the unforgeability experiment, \text{iff} \(b = 1 \) and one of the following conditions holds:

- Adversary \(\mathcal{A} \) never submitted a query involving dataset identifier \(\Delta \) to oracle \(\mathcal{O}_{\text{Sign}} \). In this case, we say that the tuple \((\mathcal{P}_\Delta, m, \sigma)\) returned by adversary \(\mathcal{A} \) is a forgery of \textbf{Type I}.

- Adversary \(\mathcal{A} \) submitted signature queries to oracle \(\mathcal{O}_{\text{Sign}} \) for dataset identifier \(\Delta \), namely: \(\Delta = \Delta_i \) for some \(i \in \{1, ..., s\} \), however, \(\{\tau_1, ..., \tau_n\} \not\subseteq \{\tau_{(i,1)}, ..., \tau_{(i,t)}\} \). This case corresponds to a forgery of \textbf{Type III}.

Definition 5. Let \(\Pi^\mathcal{A}_{(s,t)} \) denote the probability that adversary \(\mathcal{A} \) succeeds in the unforgeability experiment.

A homomorphic signature scheme is \((s, t)\)-sound \text{iff} \(\Pi^\mathcal{A}_{(s,t)} \leq \epsilon(\kappa) \), where \(1^\kappa \) is the security parameter and \(\epsilon \) is a negligible function.

2.2.3 Efficiency

In addition to the classical security properties of correctness and soundness, a homomorphic signature should be efficient as well. Namely, in accordance with previous work [15, 32], a homomorphic signature should be \textit{succinct} and support \textit{efficient verification}.
Succinctness Succinctness entails that the size of the signature of a program should not depend on the number of inputs to that program. More precisely, we consider a homomorphic signature succinct if, for a fixed security parameter 1^κ, the output size of algorithm Eval for any function f does not depend on the size of the inputs of f.

Efficient Verification This property can be implemented by dividing the verification algorithm into two phases. An offline phase, during which the verifier is provided with verification key VK and a labeled program P so as to compute a concise verification key VK_P. The computed key is then used in an online phase, to verify signatures involving program P and any dataset Δ efficiently. In the context of this paper, “efficiently” means that the cost of verifying signatures is much less than computing program P, and that concise verification key VK_P is reused indefinitely. This implies that the cost of computing the concise key VK_P is amortized over the unlimited number of verifications that one can carry out for program P on different datasets.

Formally, efficient verification is achieved by dividing the algorithm Verify into two sub-algorithms:

- $\text{OffVerify}(VK, P) \rightarrow VK_P$: This algorithm takes as inputs a verification key VK and a description of labeled program P, and computes a concise verification key VK_P which will be used later to verify signatures related to program P.

- $\text{OnVerify}(VK_P, \Delta, m, \sigma) \rightarrow b$: It is a deterministic algorithm, which given a concise verification key VK_P, a dataset identifier Δ, a message $m \in \mathbb{I}$ and a signature σ, outputs a bit $b \in \{0, 1\}$ such that: $b = 1$, if algorithm OnVerify decides that m is the correct output of multi-labeled program (P, Δ). If not, then $b = 0$.

3 Preliminaries

The starting point of our proposal is the fact that if a vector \vec{u} is an eigenvector of a matrix M, then there exists a scalar λ such that $M\vec{u} = \lambda\vec{u}$. In light of this equality, we can easily show that for any pair of matrices $M^{(1)}, M^{(2)}$ admitting vector \vec{u} as an eigenvector and having λ_1 and λ_2 as the corresponding eigenvalues, the following equalities hold:

- $(M^{(1)} + M^{(2)})\vec{u} = (\lambda_1 + \lambda_2)\vec{u}$, meaning that $(\lambda_1 + \lambda_2)$ is the eigenvalue of matrix $(M^{(1)} + M^{(2)})$ associated with eigenvector \vec{u};

- similarly, $M^{(1)}M^{(2)}\vec{u} = M^{(2)}M^{(1)}\vec{u} = (\lambda_1\lambda_2)\vec{u}$, which entails that $\lambda_1\lambda_2$ is the eigenvalue of matrices $M^{(1)}M^{(2)}$ and $M^{(2)}M^{(1)}$, associated with eigenvector \vec{u};
On account of these two observations, we map the homomorphic signature of a pair of message m and label τ to a matrix M such that:

$$M = \begin{bmatrix} m & \gamma \\ 0 & \lambda \end{bmatrix}$$

where λ is computed as function of τ, and γ is generated in such a way that λ is the eigenvalue of matrix M associated with a secret vector $\vec{u} = (x, y)^T$.

Therefore, the homomorphic signature of $m^{(1)} + m^{(2)}$ is mapped to matrix $M^{(1)} + M^{(2)}$, and the verification of such a signature consists of checking that $\lambda_1 + \lambda_2$ is the eigenvalue of matrix $M^{(1)} + M^{(2)}$ associated with eigenvector \vec{u}. Along the same lines, the homomorphic signature of $m^{(1)}m^{(2)}$ is mapped to matrix $M^{(1)}M^{(2)}$, and the verification of this signature is performed by verifying whether $\lambda_1 \lambda_2$ is the eigenvalue of matrix $M^{(1)}M^{(2)}$ associated with vector \vec{u}. More precisely, we define the homomorphic signature of a pair (m, τ) as a tuple $(m, \Lambda^{(1)}, \Gamma^{(1)})$, where $\Lambda^{(1)} = g_1^\lambda$ and $\Gamma^{(1)} = g_1^\gamma$. It follows that the signature of $m^{(1)} + m^{(2)}$ is straightforward and defined as:

$$(m^{(1)} + m^{(2)}, \Lambda^{(1)}_1 \Lambda^{(2)}_1, \Gamma^{(1)}_1 \Gamma^{(2)}_1)$$

whereas the signature of $m^{(1)}m^{(2)}$ involves a a leveled multilinear map e and corresponds to:

$$(m^{(1)}m^{(2)}, e(\Lambda^{(1)}_1, \Lambda^{(2)}_1), e(g_1^{m^{(1)}}, \Gamma^{(2)}_1), e(\Gamma^{(1)}_1, \Lambda^{(2)}_1)^e)$$

We note that this homomorphic signature is weakly sound against Type II forgeries. Namely, it is secure against adversaries that issue their signature queries before receiving the public verification key (cf. Section 4.3). In order to make this signature adaptively sound against Type II forgeries, the signer is required to do the following whenever she wants to sign a pair (m, τ): (i) Generate a random number θ_1 and evaluate polynomial $T(z) = \theta_1 z + m$ at a secret point α; (ii) sign $(T(\alpha), \tau)$ using the weakly secure signature to get the tuple $(T(\alpha), \Lambda_1, \Gamma_1)$; (iii) set the homomorphic signature of (m, τ) to $([m, \theta_1], \Lambda_1, \Gamma_1)$.

Finally, the signer thwarts Type I forgeries by signing dataset identifiers using a digital signature, while she counters Type III forgeries by using aggregate signatures to authenticate input labels.

Before moving on to the description of our signature, we first provide a short overview on multilinear maps and aggregate signatures.

3.1 Leveled Multilinear Maps

Definition 6. Let \mathbb{G}_1, \mathbb{G}_2, ..., and \mathbb{G}_d be d groups of large prime order p, generated on input of a security parameter 1^κ ($p > 2^\kappa$) and d. Let P_i be a canonical generator of group \mathbb{G}_i.

A d-leveled multilinear map is a set of bilinear maps $e_{i,j} : \mathbb{G}_i \times \mathbb{G}_j \rightarrow \mathbb{G}_{i+j}$ whereby $i \geq 1$, $j \geq 1$ and $i + j \leq d$, with the following property:

$$\forall \alpha, \beta \in \mathbb{F}_p, e_{i,j}(P_{\alpha i}, P_{\beta j}) = P_{\alpha \beta i+j}$$

For the sake of better readability, we omit the indices i and j from $e_{i,j}$. We also assume that all generators P_i are computed from P_1 using bilinear maps repeatedly:

$$P_i = e(P_1, P_{i-1}).$$

We hereby state the assumption on which the security of our solution relies.

Definition 7 (MDH Inversion Assumption [10]). Let $\mathbb{G}_1, \mathbb{G}_2, ..., \mathbb{G}_{d+1}$ be $d + 1$ groups of large prime order p, generated on input of a security parameter κ ($p > 2^\kappa$) and d.

Let P_1 be a canonical generator of group \mathbb{G}_1, e a $(d+1)$-leveled multilinear map, and $\forall 1 \leq i \leq d, P_{i+1} = e(P_1, P_i)$.

We say that multilinear Diffie-Hellman inversion (MDHI) assumption holds, if given $(P_1, P_\alpha^1) \in \mathbb{G}_1 \times \mathbb{G}_1$, where $\alpha \in \mathbb{F}_p^*$, the probability of finding $P_{\alpha^{-1}}^{d+1}$ is negligible, that is:

$$\Pr[A \rightarrow P_{\alpha^{-1}}^{d+1} | (P_1, P_\alpha^1)] \leq \epsilon(\kappa)$$

where ϵ is a negligible function.

Security of Multilinear Maps Boneh and Silverberg [10] were the first to illustrate the great interest of multilinear maps as a cryptographic tool. Namely, they showed that in case a secure multilinear map exists, then as a by-product one can easily implement one-round multipartite Diffie-Hellman key exchange and efficient broadcast encryptions. This result led to a few attempts to design secure multilinear maps, with the first plausible construction being proposed by [23]. This construction is a leveled multilinear map that uses ideal lattices. More precisely, it works in the polynomial ring $R = \mathbb{Z}[X]/(X^n + 1)$ and yields noisy encodings for the elements in a quotient ring R/I where I is a principal ideal. This means that contrary to bilinear pairings where an encoding of an element $a \in \mathbb{Z}_p$ is deterministic and corresponds to g^a, the encoding of an element $A \in R/I$ in this scheme is randomized with a small noise. This noise is added using subset sum of encodings of 0 and is chosen in such a way that does not deter the computation of the multilinear map. Given the randomized nature of the encoding, the solution of [23] comes with a zero test parameter that allows verifying whether two encodings refer to the same element in R/I or not.

Capitalizing on the same ideas, Coron et al. [18] proposed a leveled multilinear map that has as a setting the ring of integers instead of the ring of polynomials. By working in the ring of integers, this scheme promises better performance and simpler instantiation. Also, Gentry et al. [31] proposed a construction of Graph-induced multilinear maps from standard lattices in which the authorized operations on the encodings are restricted using a directed acyclic graph.
Unfortunately, all these schemes are prone to zeroizing attacks [17, 20, 35], in which the attacker exploits the (public) parameters such as the zero test parameter and encodings of zeros to either break multilinear Diffie-Hellman assumption in the case of [23] and [31], or recover the secret parameters and hence fully break the multilinear map in the case of [18] and the follow-up fix [20].

Luckily, Albrecht et al. [1] proposed a multilinear map based on indistinguishability obfuscation (iO) and proved its security using standard assumptions. With this positive result, the work of Albrecht et al. [1] paved the way for a new line of research that envisages designing multilinear maps from iO schemes. Nevertheless, existing iO candidates themselves rely on leveled multilinear maps, which raises the legitimate question of how much trust can be placed in these constructions. This question was discussed in [19] in which the authors show that when iO is based on the Barrington’s theorem or dual-input straddling sets, zeroizing attacks seem not to be applicable [19]. However, in a more recent work, Miles et al. [38] introduce a new class of attacks termed “annihilation attacks” and demonstrate how these attacks can be leveraged to break some of the proposed iO schemes. On the upside, they proved that the iO candidate presented in [24] withstands their attacks; yet as rightly pointed out by the authors, further cryptanalysis is needed to establish whether [24] is actually secure and cannot be broken in the future.

In view of the foregoing discussion, it can be concluded that the design of multilinear maps is still in its infancy, and the most promising avenue to implement our homomorphic signature is the constructions based on iO, notably the work of [1].

3.2 Aggregate Signatures

We provide herein a quick overview of a simplified variant of the aggregate signature proposed in [11]. Similarly to the signature of [11], this simplified variant comprises four algorithms:

KeyGen\textsubscript{Agg}(1^n) → (SK\textsubscript{Agg}, PK\textsubscript{Agg}, \text{param}\textsubscript{Agg}) On input of a security parameter 1^n, algorithm KeyGen\textsubscript{Agg} proceeds as follows:

- It picks two groups \(G \) and \(G_T \) of a large prime order \(p \) that admit a bilinear pairing \(\hat{e} : G \times G \rightarrow G_T \).
- It selects a secret key \(SK\textsubscript{Agg} \in \mathbb{F}_p^* \), chooses a random generator \(P \) of group \(G \), and sets public key \(PK\textsubscript{Agg} \) to \(P^{SK\textsubscript{Agg}} \).
- It selects a cryptographic hash function \(H : \{0,1\}^* \rightarrow G \) and defines \(\text{param}\textsubscript{Agg} \) as \((p, H, G, G_T, \hat{e}, P)\).

Sign\textsubscript{Agg}(SK\textsubscript{Agg}, \mu) → \Psi Given a message \(\mu \in \{0,1\}^* \), algorithm Sign\textsubscript{Agg} outputs a signature \(\Psi = H(\mu)^{SK\textsubscript{Agg}} \).

Aggregate\textsubscript{Agg}(\vec{\Psi}) → \Psi Given a vector of \(n \) signatures \(\vec{\Psi} = (\Psi^{(1)}, ..., \Psi^{(n)}) \), algorithm Aggregate\textsubscript{Agg} outputs aggregate signature \(\Psi = \prod_{i=1}^{n} \Psi^{(i)} \).
When provided with public key PK_{Agg}, a vector of messages $\vec{\mu} = (\mu^{(1)}, ..., \mu^{(n)})$, and an aggregate signature Ψ, $\text{Verify}_{\text{Agg}}$ checks whether the following equality holds:

$$
\hat{e}(\Psi, P) = \hat{e}(\prod_{i=1}^{n} H(\mu^{(i)}), PK_{\text{Agg}})
$$

If so, then $\text{Verify}_{\text{Agg}}$ accepts the aggregate signature and accordingly outputs $b = 1$; otherwise, it rejects the signature and outputs $b = 0$.

Using a similar argument to [11]'s, one can easily show that this variant of aggregate signatures is adaptively secure in the random oracle model, under the co-CDH assumption in G.

4 A Weakly Secure Homomorphic Signature

The homomorphic signature we propose in this paper is suitable for programs that evaluate multivariate polynomials over a finite field \mathbb{F}_p. Such programs can be expressed using arithmetic circuits. An arithmetic circuit is composed of addition and multiplication gates, such that each addition (multiplication resp.) gate takes two inputs and returns the sum (the product resp.) of these two inputs. Furthermore, we recall that arithmetic circuits have a measure called degree that is assigned to the inputs/outputs of their gates. Namely, constants in the circuit are assigned a degree 0, whereas initial inputs of the circuits has a degree 1. Moreover, the degree of an addition gate (resp. multiplication gate) is defined as the maximum of the degree of its inputs (resp. the sum of the degree of its inputs). Accordingly, the degree of an arithmetic circuit is defined as the degree of the output gate of the circuit. This entails that the degree of an arithmetic circuit evaluating a d-degree polynomial is d.

4.1 Description

In this section, we provide the detailed description of the algorithms underlying our weakly secure homomorphic signature.

$\text{KeyGen}(1^\kappa, d, \mathcal{L}) \rightarrow (SK, VK, \text{param})$ Given a security parameter 1^κ, an upper-bound d of the degree of circuits supported by the signature, and a set of admissible labels $\mathcal{L} = \{\tau_1, ..., \tau_N\}$ in $\{0, 1\}^*$, algorithm KeyGen proceeds as follows:

- It selects $(d + 1)$-leveled linear groups $G_1, ..., G_{d+1}$ of prime order p. We denote elements lying in group G_i with capital letters and subscript i. Moreover, for any element $P_i \in G_1$, we denote by P_i the element

\footnote{Since $|\mathcal{L}| = N$, the size of datasets supported by our signature cannot exceed N.}
\(e(P_i, P_{i-1}) \in \mathbb{G}_i, 2 \leq i \leq d + 1 \), and namely, for all \(i, j \geq 1 \) and \(i + j \leq d + 1 \), we let \(e(P_i, P_j) = P_{i+j} \).

- It selects a random key \(K \in \mathbb{F}_p^* \) and a keyed hash function \(F : \mathbb{F}_p^* \times \{0, 1\}^* \times \{0, 1\}^* \rightarrow \mathbb{F}_p^* \).
- It picks a random generator \(P_1 \) in \(\mathbb{G}_1 \), generates \(N \) random numbers \(\lambda_i = F(K, \tau_i, 0), 1 \leq i \leq N \) and computes \(\Lambda_1^{(\tau_i)} = P_1^{\lambda_i} \).
- It selects a pair of secret and public keys \((SK_{\text{Dig}}, PK_{\text{Dig}}) \) for a digital signature \(\Sigma_{\text{Dig}} \).
- It selects two groups \(\mathbb{G} \) and \(\mathbb{G}_T \) of the same prime order \(p \) that admit a bilinear pairing \(\hat{e} : \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{G}_T \). Then it picks a random generator \(P \) of \(\mathbb{G} \) and a cryptographic hash function \(H : \{0, 1\}^* \rightarrow \mathbb{G} \). This generator and cryptographic hash function will be used to implement an aggregate signature \(\Sigma_{\text{Agg}} \) as depicted in Section 3.2.
- Finally, it outputs the following:

\[
\begin{align*}
SK &= (F, K, SK_{\text{Dig}}) \\
VK &= (PK_{\text{Dig}}, \{ \Lambda_1^{(\tau_i)} \}_{i=1}^N) \\
\text{param} &= (p, \{ \tau_i \}_{i=1}^N, H, \hat{e}, \{ \mathbb{G}_i \}_{i=1}^{d+1}, \mathbb{G}, \mathbb{G}_T, P_1, P)
\end{align*}
\]

Note that public parameters \(\text{param} \) implicitly specify the set of admissible inputs \(\mathcal{I} \) and the set of admissible functions \(\mathcal{F} \), which are respectively the finite field \(\mathbb{F}_p \) and the set of \(n \)-variate functions \(n \leq N \) that can be implemented using circuits of degree \(k \leq d \).

\(\text{Sign}(SK, \Delta, \tau, m) \rightarrow \sigma \) In a nutshell, algorithm \(\text{Sign} \) computes three types of signatures: A digital signature \(\Sigma_{\text{Dig}} \) to counter \text{Type I} forgery, an aggregate signature \(\Sigma_{\text{Agg}} \) to circumvent \text{Type III} forgery, and finally, a homomorphic signature \(\Sigma_{\text{Hom}} \) to preclude \text{Type II} forgery. Indeed, given secret key \(SK = (F, K, SK_{\text{Dig}}) \), dataset identifier \(\Delta \), a label \(\tau \in \mathcal{L} \), and a message \(m \in \mathbb{F}_p \), algorithm \(\text{Sign} \) runs four subroutines:

- \(\Delta\text{KeyGen}(F, K, \Delta) \): Given keyed hash function \(F \), secret key \(K \), and dataset identifier \(\Delta \), \(\Delta\text{KeyGen} \) proceeds as follows:
 - It generates a secret key \(SK_{\text{Agg}} \in \mathbb{F}_p^* \) for aggregate signature \(\Sigma_{\text{Agg}} \) by computing \(F(K, \Delta, 1) \). Once secret key \(SK_{\text{Agg}} \) is produced, \(\Delta\text{KeyGen} \) computes the corresponding public key \(PK_{\text{Agg}} = P^{SK_{\text{Agg}}} \).
 - It computes \(F(K, \Delta, 2) \) and \(F(K, \Delta, 3) \) to generate the secret key \(SK_{\text{Hom}} = (x, y) \in \mathbb{F}_p^* \times \mathbb{F}_p^* \) for a homomorphic signature \(\Sigma_{\text{Hom}} \). After the generation of this secret key, \(\Delta\text{KeyGen} \) computes \(X_1 = P_1^x \) and \(Y_1 = P_1^y \) and defines the public key of homomorphic signature \(\Sigma_{\text{Hom}} \) as \(PK_{\text{Hom}} = (X_1, Y_1) \).
• $\Sigma_{\text{Dig}}(SK_{\text{Dig}}, \Delta, PK_{\text{Agg}}, PK_{\text{Hom}})$: On inputs of secret key SK_{Dig}, dataset identifier Δ, public key PK_{Agg}, and public key PK_{Hom}, this subroutine computes a digital signature Ω of tuple $(\Delta, PK_{\text{Agg}}, PK_{\text{Hom}})$.

• $\Sigma_{\text{Agg}}(F, K, SK_{\text{Agg}}, \tau)$: This subroutine uses secret key SK_{Agg} to compute signature $\Psi = H(\Lambda_1)_{SK_{\text{Agg}}} \in \mathbb{G}$, for $\Lambda_1 = P_{1^\lambda}$ where $\lambda = F(K, \tau, 0)$.

• $\Sigma_{\text{Hom}}(SK_{\text{Hom}}, \Lambda_1, m)$: Given $SK_{\text{Hom}} = (x, y)$, this subroutine computes

$$\Gamma_1 = \left(\frac{\Lambda_1}{P_{1^m}} \right)^{xy^{-1}}$$

and finally, defines the homomorphic signature of tuple (m, τ, Δ) as $T = (m, \Lambda_1, \Gamma_1)$.

Remark 1. Assume that $\Lambda_1 = P_{1^\lambda}$ and $\Gamma_1 = P_{1^\gamma}$, for $(\lambda, \gamma) \in \mathbb{F}_p^* \times \mathbb{F}_p$.

Since $\Gamma_1 = \left(\frac{\Lambda_1}{P_{1^m}} \right)^{xy^{-1}}$, we can easily show that λ is an eigenvalue of matrix

$$M = \begin{bmatrix} m & \gamma \\ 0 & \lambda \end{bmatrix}$$

associated with vector $\vec{u} = (x, y)^T$, that is:

$$M \vec{u} = \lambda \vec{u}$$

This remark comes in handy when we prove evaluation correctness in the following section.

Algorithm Sign terminates by outputting a signature $\sigma = (\text{param}_\Delta, \Omega, \Psi, \Upsilon)$, where

$\text{param}_\Delta = (\Delta, PK_{\text{Agg}}, PK_{\text{Hom}})$

Eval$(VK, f, \vec{\sigma}) \rightarrow \sigma$ On inputs of public verification key VK, an n-variate function f, and a vector $\vec{\sigma}$ of n homomorphic signatures $\sigma^{(l)} = (\text{param}_\Delta, \Omega, \Psi^{(l)}, \Upsilon^{(l)})$ whereby each signature $\sigma^{(l)}$ authenticates a message $m^{(l)}$ for all $1 \leq l \leq n$, algorithm Eval computes signature $\sigma = (\text{param}_\Delta, \Omega, \Psi, \Upsilon)$ in two steps:

Computation of homomorphic signature Υ: Eval computes Υ by evaluating the arithmetic circuit C_f of function f on input $(\Upsilon^{(1)}, ..., \Upsilon^{(n)})$. This evaluation of circuit C_f is achieved by running the following subroutines:

• GateEval$_+$($\Upsilon^{(1)}, \Upsilon^{(2)})^2$: Without loss of generality, we assume that $\Upsilon^{(1)} = (m^{(1)}, \Lambda_i^{(1)}, \Gamma_i^{(1)}) \in \mathbb{F}_p \times \mathbb{G}_i$ and $\Upsilon^{(2)} = (m^{(2)}, \Lambda_i^{(2)}, \Gamma_i^{(2)}) \in \mathbb{F}_p \times \mathbb{G}_i$.

For ease of exposition, we abuse the notations here and we denote by $\Upsilon^{(1)}$ and $\Upsilon^{(2)}$ the inputs of GateEval$_+$. x, x.
\[F_p \times G_i^2. \] In other words, we assume that \(\Upsilon^{(1)} \) and \(\Upsilon^{(2)} \) are inputs to GateEval\(_+ \) of the same degree \(i \).

Algorithm Eval invokes GateEval\(_+ \) when it encounters an addition gate. Therefore, given \((\Upsilon^{(1)}, \Upsilon^{(2)}) \), GateEval\(_+ \) computes \(m = m^{(1)} + m^{(2)} \) and

\[
\Lambda_i = \Lambda_i^{(1)} \Lambda_i^{(2)}; \quad \Gamma_i = \Gamma_i^{(1)} \Gamma_i^{(2)}
\]

At the end of its execution, GateEval\(_+ \) outputs \(\Upsilon = (m, \Lambda_i, \Gamma_i) \).

- **GateEval\(_c (\Upsilon^{(1)}, c) \):** Algorithm Eval calls GateEval\(_c \) when it wants to evaluate a gate for multiplication by a constant. On inputs of a homomorphic signature \(\Upsilon^{(1)} = (m^{(1)}, \Lambda_i^{(1)}, \Gamma_i^{(1)}) \in F_p \times G_i^2 \) and a constant \(c \), GateEval\(_c \) computes \(m = cm^{(1)} \) and

\[
\Lambda_i = (\Lambda_i^{(1)})^c; \quad \Gamma_i = (\Gamma_i^{(1)})^c
\]

Later, GateEval\(_c \) returns \(\Upsilon = (m, \Lambda_i, \Gamma_i) \).

- **GateEval\(_\times (\Upsilon^{(1)}, \Upsilon^{(2)}) \):** Here we assume that \(\Upsilon^{(1)} = (m^{(1)}, \Lambda_i^{(1)}, \Gamma_i^{(1)}) \in F_p \times G_i^2 \) and \(\Upsilon^{(2)} = (m^{(2)}, \Lambda_j^{(2)}, \Gamma_j^{(2)}) \in F_p \times G_j^2 \). This means that \(\Upsilon^{(1)} \) and \(\Upsilon^{(2)} \) are inputs of degree \(i \) and \(j \) respectively to GateEval\(_\times \). Algorithm Eval executes GateEval\(_\times \) when it wants to evaluate a multiplication gate. Hence, given \((\Upsilon^{(1)}, \Upsilon^{(2)}) \), GateEval\(_\times \) computes \(m = m^{(1)} m^{(2)} \) and

\[
\Lambda_{i+j} = e(\Lambda_i^{(1)}, \Lambda_j^{(2)})
\]
\[
\Gamma_{i+j} = e(P_i^{m^{(1)}}, P_j^{m^{(2)}}) e(\Gamma_i^{(1)}, \Lambda_j^{(2)})
\]

GateEval\(_\times \) then outputs \(\Upsilon = (m, \Lambda_{i+j}, \Gamma_{i+j}) \).

Computation of aggregate signature \(\Psi \): Algorithm Eval computes the aggregate signature \(\Psi \) corresponding to function \(f \) by evaluating a modified circuit \(\tilde{C}_f \) on inputs of aggregate signatures \((\Psi^{(1)}, \ldots, \Psi^{(n)}) \). The modified circuit \(\tilde{C}_f \) is generated from circuit \(C_f \) as follows:

- Each multiplication and addition gate in circuit \(C_f \) is transformed into a multiplication operation in \(G \) in circuit \(\tilde{C}_f \);
- a multiplication by a constant in circuit \(C_f \) is omitted in circuit \(\tilde{C}_f \).

\[^3 \text{Note that } \Upsilon^{(1)} \text{ and } \Upsilon^{(2)} \text{ could be inputs of different degrees } i \text{ and } j \text{ respectively, that is, } \Upsilon^{(1)} = (m^{(1)}, \Lambda_i^{(1)}, \Gamma_i^{(1)}) \in F_p \times G_i^2 \text{ and } \Upsilon^{(2)} = (m^{(2)}, \Lambda_j^{(2)}, \Gamma_j^{(2)}) \in F_p \times G_j^2 \text{ respectively. Still, if we assume that } j < i, \text{ we can transform } \Upsilon^{(2)} \text{ into an input of degree } i \text{ by computing } \Lambda_j^{(2)} = e(\Lambda_j^{(2)}, P_{-j}) \text{ and } \Gamma_j^{(2)} = e(\Gamma_j^{(2)}, P_{-j}). \]
Algorithm Eval concludes its work by outputting
\[\sigma = (\text{param}_\Delta, \Omega, \Psi, \Upsilon)\]

OffVerify(VK, P) → VK_P This algorithm takes as inputs verification key VK = (PK_{Dig}, {\Lambda_1^{(\tau_1)}, ..., \Lambda_1^{(\tau_n)}}) and labeled program P = (f, \tau_1, ..., \tau_n). Here we assume that function f is implemented as a circuit \(C_f\) of degree k.

Algorithm OffVerify first evaluates the arithmetic circuit \(C_f\) on tuple \((\Lambda^{(\tau_1)}, ..., \Lambda^{(\tau_n)})\).

More precisely, OffVerify transforms \(C_f\) into a circuit \(\bar{C_f}\) that operates on elements from \(G_i, 1 \leq i \leq d + 1\), as follows:

- Addition gates of degree \(i\) in circuit \(C_f\) are replaced by multiplications in \(G_i\) in circuit \(\bar{C_f}\);
- gates of degree \(i\) for multiplication by a constant in circuit \(C_f\) are transformed in circuit \(\bar{C_f}\) into exponentiations in \(G_i\) by the same constants;
- finally, multiplication gates with inputs of degree \(i\) and degree \(j\) in circuit \(C_f\) are expressed in circuit \(\bar{C_f}\) as bilinear maps between elements lying in \(G_i\) and \(G_j\).

In the rest of the paper, we denote by \(f(\Lambda^{(\tau_1)}, ..., \Lambda^{(\tau_n)})\) the output of circuit \(\bar{C_f}\) when evaluated on tuple \((\Lambda^{(\tau_1)}, ..., \Lambda^{(\tau_n)})\).

Next, algorithm OffVerify evaluates the modified circuit \(\bar{C_f}\) (cf. Algorithm Eval) on inputs \((H(\Lambda^{(\tau_1)}), ..., H(\Lambda^{(\tau_n)})) \in G^n\). This yield an aggregated hash \(H_P\).

At the end of its execution, algorithm OffVerify outputs concise verification key
\[\text{VK}_P = (PK_{Dig}, H_P, f(\Lambda^{(\tau_1)}, ..., \Lambda^{(\tau_n)}))\]

OnVerify(VK_P, \(\Delta\), m, \(\sigma\)) → b On input of concise verification key VK_P, dataset identifier \(\Delta\), message m ∈ \(F_p\), and signature \(\sigma = (\text{param}_\Delta, \Omega, \Psi, \Upsilon)\), OnVerify proceeds as follows:

- It parses VK_P as (PK_{Dig}, \(H_P, f(\Lambda^{(\tau_1)}, ..., \Lambda^{(\tau_n)})\)), homomorphic signature \(\sigma\) as (param_\(\Delta\), \(\Omega, \Psi, \Upsilon\)), and dataset parameters param_\(\Delta\) as (\(\Delta, PK_{Agg}, PK_{Hom}\)).
- Using public key PK_{Dig}, algorithm OnVerify checks whether \(\Omega\) is a valid signature of message param_\(\Delta\). If not, then OnVerify returns \(b = 0\).
- Otherwise, given public key PK_{Agg}, algorithm OnVerify checks whether the following equality holds:
\[\hat{e}(H_P, PK_{Agg}) = \hat{e}(\Psi, P)\] (1)
If the above equality is not satisfied, then OnVerify returns $b = 0$. Otherwise, it moves on to the next step.

- Since program P is implemented as a circuit of degree k, algorithm OnVerify parses homomorphic signature Υ as a tuple $(m, \Lambda_k, \Gamma_k) \in \mathbb{F}_p \times G_k^2$, and given public key $PK_{\text{Hom}} = (X_1, Y_1) \in G_k^2$, it verifies whether the following equalities are true:

$$\Lambda_k = f(\Lambda_1^{(\tau_1)}, \ldots, \Lambda_n^{(\tau_n)})$$

$$(2)$$

$$e(X_1, \Lambda_k) = e(X_1, P_k)^{m} e(Y_1, \Gamma_k)$$

$$(3)$$

If both equalities hold, then OnVerify outputs $b = 1$; otherwise it outputs $b = 0$.

4.2 Correctness

In this section, we demonstrate that our solution satisfies the properties of authentication correctness and evaluation correctness.

Theorem 1. The homomorphic signature described above ensures authentication and evaluation correctness.

Sketch. Since authentication correctness directly follows from the description of the signature, we only focus here on showing evaluation correctness.

Let $\tilde{\sigma} = (\sigma^{(1)}, \ldots, \sigma^{(n)})$ be a vector of n homomorphic signatures, such that each signature $\sigma^{(l)}$ successfully authenticates a message $m^{(l)} \in \mathbb{F}_p$ as the output of some multi-labeled program (P_l, Δ), $1 \leq l \leq n$. For ease of exposition, we assume that $P_l = (f_l, \tau_1, \ldots, \tau_n)$ for all $1 \leq l \leq n$. That is, each P_l evaluates an n-variate function f_l and is associated with n labels (τ_1, \ldots, τ_n). We also assume that function f_l is a circuit C_{f_l} of degree k, and we let:

$$\sigma^{(l)} = (\text{param}_\Delta, \Omega, \Psi^{(l)}, \Upsilon^{(l)})$$

$$\Upsilon^{(l)} = (m^{(l)}, \Lambda_k^{(l)}, \Gamma_k^{(l)}) \in \mathbb{F}_p \times G_k^2$$

Since $\sigma^{(l)}$ successfully authenticates message $m^{(l)}$, we conclude the following:

- Ω is a valid digital signature of param_Δ.
- $\Psi^{(l)}$ is a valid aggregate signature for program P_l, and thereby verifies the equation $\tilde{e}(H_{P_l}, PK_{\text{Agg}}) = \tilde{e}(\Psi^{(l)}, P)$, where H_{P_l} is the aggregate hash of program P_l (cf. Algorithm OnVerify, Section 4.1).
- Finally, $\Upsilon^{(l)}$ is a correct homomorphic signature, namely:

$$\Lambda_k^{(l)} = f_l(\Lambda_1^{(\tau_1)}, \ldots, \Lambda_n^{(\tau_n)})$$

$$e(X_1, \Lambda_k) = e(X_1, P_k)^{m^{(l)}} e(Y_1, \Gamma_k)$$
We demonstrate now that if algorithm Eval is executed correctly on inputs $(VK,f,\tilde{\sigma})$, then the output $\sigma = (\text{param}_\Delta,\Omega,\Psi,\Upsilon)$ returned by algorithm Eval is going to be accepted by algorithm Verify (i.e. the combination of algorithms OnVerify and OffVerify).

Correctness of digital signature Ω: Since algorithm Eval does not change signature Ω, the latter will always verify as a valid signature for the tuple $\text{param}_\Delta = (\Delta, PK_{\text{Agg}}, PK_{\text{Hom}})$.

Correctness of aggregate signature Ψ: We remind the reader that aggregate signature Ψ is obtained by evaluating a modified circuit \tilde{C}_f on input $(\Psi^{(1)}, \ldots, \Psi^{(n)})$.

From the preceding equation, we deduce that Equality 1 always holds for the modified circuit \tilde{C}_f. Hence, if we assume that $\Upsilon^{(l)} = \Gamma^{(l)}, \text{ and } \Lambda^{(l)} = \Lambda^{(l)}$, for all $1 \leq l \leq n$.

From the preceding equation, we deduce that Equality 1 always holds for the aggregate signature Ψ returned by algorithm Eval.

Correctness of homomorphic signature Υ: We prove here that the output Υ of $\text{GateEval}^{+c,\times}$ always verifies Equations 2 and 3. We only show here the correctness of GateEval^{+c}. A similar argument can be used to prove the correctness of GateEval^{+} and GateEval^{\times}.

Let $\Upsilon^{(1)} = (m^{(1)}, \Lambda_i^{(1)}, \Gamma_i^{(1)}) \in \mathbb{F}_p \times \mathbb{G}^2_i$ and $\Upsilon^{(2)} = (m^{(2)}, \Lambda_j^{(2)}, \Gamma_j^{(2)}) \in \mathbb{F}_p \times \mathbb{G}^2_j$.

Our goal is to show that the output $\Upsilon = (m, \Lambda_{i+j}, \Gamma_{i+j})$ of GateEval^{\times} satisfies Equations 2 and 3. Accordingly, we remind the reader that: $m = m^{(1)} m^{(2)}$, $\Lambda_{i+j} = e(\Lambda_i, \Lambda_j)$, and $\Gamma_{i+j} = e(P_i^{m^{(1)}}, P_j^{m^{(2)}}) e(\Gamma_i^{(1)}, \Gamma_j^{(2)})$.

Correctness of Λ_{i+j}. GateEval^{\times} computes Λ_{i+j} as a bilinear map $e(\Lambda_i^{(1)}, \Lambda_j^{(2)})$, which matches the evaluation of a multiplication gate in the modified circuit \tilde{C}_f (cf. Algorithm OffVerify, Section 4.1). Hence, if we assume that $\Lambda_i^{(1)}$ and $\Lambda_j^{(2)}$ satisfy Equation 2, then Λ_{i+j} will also satisfy that equation.

Correctness of Γ_{i+j}. Assume that $\Gamma_i^{(1)} = P_i^{\gamma_1}, \Gamma_j^{(2)} = P_j^{\gamma_2}, \Lambda_i^{(1)} = P_i^{\lambda_1}$, and $\Lambda_j^{(2)} = P_j^{\lambda_2}$, for $\gamma_1, \gamma_2, \lambda_1, \lambda_2 \in \mathbb{F}_p$.

If we assume that $\Upsilon^{(l)}, l \in \{1, 2\}$, verifies Equation 3, then λ_l is an eigenvalue of matrix M_l associated with eigenvector $\vec{u} = (x, y)^T$ (cf. Remark 1), where

$$M_l = \begin{bmatrix} m^{(l)} & \gamma_l \\ 0 & \lambda_l \end{bmatrix}$$
Algorithm 2: The weak unforgeability experiment of homomorphic signatures

\[
\text{param} \leftarrow \mathcal{O}_{\text{KeyGen}}(1^\kappa, L); \\
\# A picks up to s dataset identifiers \\
A \rightarrow \Delta_i; \\
For each dataset \(\Delta_i\), A generates t signature queries \\
A \rightarrow (\tau_{(i,j)}, m^{(i,j)}); \quad \# \text{if } l \neq j, \text{then } \tau_{(i,j)} \neq \tau_{(i,l)} \\
\# \mathcal{O}_{\text{KeyGen}} returns the verification key \\
VK \leftarrow \mathcal{O}_{\text{KeyGen}}(1^\kappa, L); \\
\# \mathcal{O}_{\text{Sign}} generates the signatures for A’s queries \\
\sigma^{(i,j)} \leftarrow \mathcal{O}_{\text{Sign}}(VK, \Delta_i, \tau_{(i,j)}, m^{(i,j)}); \\
\# A outputs the tuple on which it is going to be challenged \\
A \rightarrow (\mathcal{P}_\Delta, m, \sigma); \quad \# \mathcal{P}_\Delta = (\mathcal{P}, \Delta) \\
b \leftarrow \text{Verify}(VK, \mathcal{P}_\Delta, m, \sigma);
\]

and consequently, \(\lambda_1 \lambda_2\) is also an eigenvalue of matrix

\[
M = M_1 M_2 = \begin{bmatrix} m^{(1)} m^{(2)} & m^{(1)}\gamma_2 + \gamma_1 \lambda_2 \\ 0 & \lambda_1 \lambda_2 \end{bmatrix}
\]

and it is associated with vector \(\vec{u} = (x, y)^T\). This implies that \(M \vec{u} = \lambda_1 \lambda_2 \vec{u}\).

Namely, we have \(x(m^{(1)} m^{(2)}) + y(m^{(1)} \gamma_2 + \gamma_1 \lambda_2) = x(\lambda_1 \lambda_2)\), and Equality 3 ensues as a result.

4.3 Soundness

We first define our experiment of weak unforgeability in Algorithm 2.

The difference between this experiment and the experiment depicted in Algorithm 1 is that adversary \(A\) receives the verification key \(VK\) after submitting its signature queries \((\Delta_i, \tau_{(i,j)}, m^{(i,j)})\).

We say that adversary \(A\) breaks the weak unforgeability experiment if it provides a successful forgery of either Type I, Type II, or Type III (cf. Section 2.2.2).

Similarly to Definition 5, we say that a homomorphic scheme is \((s,t)\)-weakly sound if, the probability that adversary \(A\) succeeds in breaking the weak unforgeability experiment is negligible.

Theorem 2. If the digital signature \(\Sigma_{\text{Dig}}\) and the aggregate signature \(\Sigma_{\text{Agg}}\) are secure, then the homomorphic signature introduced in Section 4.1 is \((s,t)\)-weakly sound under the MDHI assumption.

Proof. Assume there is an adversary \(A\) that breaks the \((s,t)\)-weak soundness of our homomorphic signature with a non-negligible advantage \(\epsilon_A\). In the following, we demonstrate that given the security of digital signature \(\Sigma_{\text{Dig}}\) and aggregate signature \(\Sigma_{\text{Agg}}\), there exists another adversary \(B\) that breaks the MDHI assumption, with a non-negligible advantage \(\epsilon_A/s\).
Indeed, to break the soundness of our scheme, adversary \(A \) might output either a forgery of \textbf{Type I}, a forgery of \textbf{Type II} or finally a forgery of \textbf{Type III}.

If digital signature \(\Sigma_{\text{Dig}} \) is secure, then it is infeasible for adversary \(A \) to successfully provide a valid \textbf{Type I} forgery. Similarly, the security of aggregate signature \(\Sigma_{\text{Agg}} \) assures that it is infeasible for adversary \(A \) to output a valid \textbf{Type III} forgery. These two facts entail that \(A \) breaks the \((s, t)\)-weak soundness of our signature by providing a \textbf{Type II} forgery.

Below, we show how adversary \(B \) exploits the \textbf{Type II} forgery returned by adversary \(A \) to break the MDHI assumption:

First \(B \) queries the oracle \(O_{\text{MDHI}} \) with security parameter \(\kappa \) and a degree \(d + 1 \) of multilinear map \(e \). Upon query, oracle \(O_{\text{MDHI}} \) returns the description of \(d + 1 \) multilinear groups \(G_1, \ldots, G_{d+1} \) of prime order \(p \), a leveled multilinear map \(e : G_i \times G_j \rightarrow G_{i+j}, i, j \geq 1 \) and \(i + j \leq d + 1 \), and a pair \((P_1, P_1^\alpha) \in G_1^2 \) for some randomly chosen \(\alpha \in \mathbb{F}_p^* \).

We recall that the goal of \(B \) is to output \((P_{d+1})^{\alpha^{-1}} \in G_{d+1}\). To this effect, \(B \) simulates the weak unforgeability experiment depicted in Algorithm 2 as shown below:

- \(B \) simulates oracle \(O_{\text{KeyGen}} \) and publishes the public parameters
 \[
 \text{param} = (p, \{\tau_i\}_{i=1}^N, H, e, \hat{e}, \{G_i\}_{i=1}^{d+1}, G, G_T, P_1, P)
 \]

- \(A \) submits \(st \) signature queries \(\langle \Delta_i, \tau_{i,j}, m^{(i,j)} \rangle, 1 \leq i \leq s, 1 \leq j \leq t, \) such that \(\Delta_i \in \{0, 1\}^*, \tau_{i,j} \in \{\tau_1, \ldots, \tau_N\}, \tau_{i,j} \neq \tau_{i,l} \) for \(l \neq j \), and \(m^{(i,j)} \in \mathbb{F}_p \).

- After receiving the signature queries \(\langle \Delta_i, \tau_{i,j}, m^{(i,j)} \rangle \), \(B \) computes secret key \(\text{SK} \) and verification key \(\text{VK} \) as follows:
 - It selects a pair of secret and public keys \((\text{SK}_{\text{Dig}}, \text{PK}_{\text{Dig}}) \) for digital signature \(\Sigma_{\text{Dig}} \). Then it chooses a keyed hash function \(F \) and a secret key \(K \).
 - It randomly picks a dataset identifier \(\tilde{\Delta} \) from \(\{\Delta_i\}_{i=1}^t \). Without loss of generality, we denote \(\langle \tilde{\Delta}, \tau_j, m^{(j)} \rangle_{j=1}^t \) the signature queries corresponding to dataset identifier \(\tilde{\Delta} \). Next \(B \) generates \(\gamma_j \equiv F(K, \tilde{\Delta}, \tau_j) \), \(1 \leq j \leq t \), and defines the generators \(\Lambda^{(\tau_j)}_1 \) as:
 \[
 \Lambda^{(\tau_j)}_1 = P_1^{(m^{(j)})}(P_1^\alpha)^{\gamma_j} \tag{4}
 \]

Later, it picks \(N - t \) random generators \(\Lambda^{(\tau_j)}_1 \in G_1, t + 1 \leq j \leq N \).

\footnote{Note that the probability that \(\Lambda^{(\tau_j)}_1 = 1 \) is equal to \(\frac{1}{p} \), which is negligible. Still, in the unlikely event of \(\Lambda^{(\tau_j)}_1 = 1 \), adversary \(B \) computes \(\alpha = -\frac{m^{(j)}}{\gamma_j} \).}
Finally, it defines SK and VK as:

$$SK = (F, K, SK_{\text{Dig}})$$
$$VK = (PK_{\text{Dig}}, \{\Lambda_1^{(\tau_1)}, \ldots, \Lambda_1^{(\tau_N)}\})$$

- After determining the pair (SK, VK), \mathcal{B} returns verification key VK to \mathcal{A}.

- Afterwards, on a query $\langle \Delta_i, \tau_{(i,j)}, m^{(i,j)} \rangle$, \mathcal{B} simulates the responses of oracle $\mathcal{O}_{\text{Sign}}$ as follows:

 If $\Delta_i \neq \tilde{\Delta}$, then \mathcal{B} follows the signing algorithm Sign depicted in Section 4.1.

 If $\Delta_i = \tilde{\Delta}$, then $\langle \Delta_i, \tau_{(i,j)}, m^{(i,j)} \rangle = \langle \Delta, \tau_j, m^{(j)} \rangle$ and \mathcal{B} acts as following:

 - It generates the pair of keys $(SK_{\text{Agg}}, PK_{\text{Agg}})$ as explained in algorithm Sign.
 - It computes digital signature Ω of $\text{param}_{\Delta} = (\tilde{\Delta}, PK_{\text{Agg}}, PK_{\text{Dig}})$, and aggregate signature $\Psi^{(j)}$ of the generator $\Lambda_1^{(\tau_j)}$ associated with label τ_j.
 - It generates $x = F(K, \tilde{\Delta}, 1)$ in \mathbb{F}_p^*, computes $X_1 = P_1^x$ and $Y_1 = (P_1^{\alpha x})^2$, and lets $PK_{\text{Hom}} = (X_1, Y_1)$.
 - It sets homomorphic signature Υ to $\langle m^{(j)}, \Lambda_1^{(\tau_j)}, \Gamma_1^{(j)} \rangle$, where $\Gamma_1^{(j)} = P_1^{\gamma_j}$ and $\gamma_j = F(K, \tilde{\Delta}, \tau_j)$.

 Note that by construction $\Lambda_1^{(\tau_j)} = (P_1)^{m^{(j)}}(\Gamma_1^{(j)})^\alpha$ (cf. Equation 4), therefore Υ is a valid signature as it verifies equation 3 for $(X_1, Y_1) = (P_1^x, P_1^{\alpha x})$.

 - Finally, \mathcal{B} returns homomorphic signature $\sigma^{(j)} = (\text{param}_{\Delta}, \Omega, \Psi^{(j)}, \Upsilon^{(j)})$.

At the end of the weak unforgeability experiment, \mathcal{A} outputs a multi-labeled program $\mathcal{P}_{\Delta} = (\mathcal{P}, \Delta)$, and a Type II forgery σ. Without loss of generality, we assume that $\mathcal{P} = (f, \tau_1, \ldots, \tau_l)$ and that f is a t-variate arithmetic circuit of degree $k \leq d$.

On receiving the description of \mathcal{P}_{Δ}, \mathcal{A} checks whether $\Delta = \tilde{\Delta}$. If not, \mathcal{A} aborts the experiment.

If $\Delta = \tilde{\Delta}$ and \mathcal{A} succeeds in breaking the weak unforgeability experiment, then $\sigma = (\text{param}_{\Delta}, \Omega, \Psi, \Upsilon)$ such that:

$$\Upsilon = (m, \Lambda_k, \Gamma_k) \in \mathbb{F}_p \times \mathbb{G}_k^2$$
$$\Lambda_k = f(\Lambda_1^{(\tau_1)}, \ldots, \Lambda_1^{(\tau_l)})$$
$$e(X_1, \Lambda_k) = e(X_1, P_k)^m e(Y_1, \Gamma_k) \quad (5)$$

Hence, to break the MDHI assumption, \mathcal{B} first runs algorithm Eval on input of $(f, \bar{\sigma})$, where $\bar{\sigma} = (\sigma^{(1)}, \ldots, \sigma^{(t)})$, and for all $1 \leq j \leq t$, $\sigma^{(j)}$ is the homomorphic
signature of message $m^{(j)}$ belonging to dataset $\tilde{\Delta}$ under label τ_j. In turn, algorithm Eval outputs a tuple $(\text{param} \tilde{\Delta}, \Omega, \Psi, \tilde{\Upsilon})$. If we let $\tilde{\Upsilon} = (\tilde{m}, \Lambda_k, \tilde{\Gamma}_k) \in F_p \times G_k^2$, then by definition $
abla m = f(m^{(1)}, \ldots, m^{(t)})$ and

$$e(X_1, \Lambda_k) = e(X_1, P_k)\tilde{m}e(Y_1, \tilde{\Gamma}_k)$$

(6)

Since (m, σ) is a forgery of Type II, then $m \neq \nabla m$ and \mathcal{B} breaks the MDHI assumption by outputting:

$$(P_{d+1})^{\alpha^{-1}} = e \left(\frac{\Gamma_k}{\Gamma_k}, P_{d+1-k} \right)$$

Indeed, from Equation 5 and Equation 6, we deduce the following:

$$e(X_1, P_k)^{\tilde{m}}e(Y_1, \tilde{\Gamma}_k) = e(X_1, P_k)^m e(Y_1, \Gamma_k) = e(X_1, \Lambda_k)$$

$$e(X_1, P_k)^{\tilde{m}} = e \left(Y_1, \frac{\Gamma_k}{\Gamma_k} \right)$$

$$e(P_1^{\alpha x}, P_k)^{\tilde{m}} = e \left(P_1^{\alpha x}, \frac{\Gamma_k}{\Gamma_k} \right)$$

$$e(P_1^{\alpha x}, P_k) = e \left(P_1^{\alpha x}, \frac{\Gamma_k}{\Gamma_k} \frac{1}{\tilde{m} - m} \right)$$

Since $x \in F_p^*$, $e(P_1, P_k) = e \left(P_1^{\alpha}, \frac{\Gamma_k}{\Gamma_k} \frac{1}{\tilde{m} - m} \right)$, which means that $\left(\frac{\Gamma_k}{\Gamma_k} \frac{1}{\tilde{m} - m} \right) = P_k^{\alpha^{-1}}$.

We thus conclude that if adversary \mathcal{A} breaks the weak unforgeability experiment with a non-negligible advantage $\epsilon_\mathcal{A}$, then adversary \mathcal{B} breaks the MDHI assumption as long as it does not stop the unforgeability experiment.

We now quantify the advantage $\epsilon_\mathcal{B}$ of adversary \mathcal{B}.

Let $E_\mathcal{B}$ be the event that adversary \mathcal{B} succeeds in breaking the MDHI assumption, and let E be the event that adversary \mathcal{B} does not stop the unforgeability experiment.

We know that $\Pr(E) = \frac{1}{s}$ and $\Pr(E_\mathcal{B} | E) = \epsilon_\mathcal{A}$, and also that:

$$\epsilon_\mathcal{B} = \Pr(E_\mathcal{B}) = \Pr(E_\mathcal{B} \cap E) + \Pr(E_\mathcal{B} \cap \bar{E})$$

$$= \Pr(E_\mathcal{B} | E) \Pr(E) + \Pr(E_\mathcal{B} | \bar{E}) \Pr(\bar{E})$$

$$= \frac{\epsilon_\mathcal{A}}{s} + \Pr(E_\mathcal{B} | \bar{E}) \Pr(\bar{E}) \geq \frac{\epsilon_\mathcal{A}}{s}$$

Therefore, the advantage $\epsilon_\mathcal{B}$ of adversary \mathcal{B} in breaking the MDHI assumption is greater than $\frac{\epsilon_\mathcal{A}}{s}$ and thus non-negligible, which leads to a contradiction.
5 An Adaptively Secure Homomorphic Signature

We hereby transform the solution described in Section 4.1 into an adaptively secure signature. This transformation is performed in three steps: (i) generate a one-degree polynomial T whose free coefficient is m, i.e. the original message to be signed; (ii) evaluate polynomial T at a secret point α; (iii) and finally, sign $T(\alpha)$ using the weakly secure signature. In Section 5.3, we show that this simple transformation yields an adaptively secure fully homomorphic signature under the MDHI assumption.

5.1 Description

KeyGen*($1^n, d, \mathcal{L}$) \rightarrow $(SK^*, VK^*, \text{param})$ Given a security parameter 1^n, an upper bound d of the degree of circuits supported by the signature, and the set of labels $\mathcal{L} = \{\tau_1, ..., \tau_N\} \subset \{0, 1\}$, algorithm KeyGen* first runs KeyGen which in turn yields a tuple (SK, VK, param). Algorithm KeyGen* additionally selects a secret key $\alpha \in \mathbb{F}_p^*$, computes $A_1 = P_1^\alpha$ and outputs the following:

$$SK^* = (SK, \alpha) = (F, K, SK_{\text{Dig}}, \alpha)$$
$$VK^* = (VK, A_1) = (PK_{\text{Dig}}, \{\Lambda_i^{\tau_i}\}_{i=1}^N, A_1)$$
$$\text{param} = (p, \{\tau_i\}_{i=1}^N, H, e, \hat{e}, \{G_i\}_{i=1}^{d+1}, \mathcal{G}, \mathcal{G}_T, P_1, P)$$

Sign*(SK^*, Δ, τ, m) \rightarrow σ^* On input of signing key $SK^* = (SK, \alpha)$, dataset identifier Δ, a label $\tau \in \mathcal{L}$, and a message $m \in \mathbb{F}_p$, algorithm Sign* generates a random number $\theta_1 \in \mathbb{F}_p^*$, and computes the polynomial $T(z) = m + \theta_1 z$. Using secret key SK, this algorithm executes algorithm Sign over the tuple $(\Delta, \tau, T(\alpha))$, i.e. algorithm Sign signs message $T(\alpha))$. This results in a signature $\sigma = (\text{param}_\Delta, \Omega, \Psi, \Upsilon)$ with $\Upsilon = (T(\alpha), \Lambda_1, \Gamma_1)$. Thereafter, algorithm Sign* defines the homomorphic signature Υ^* of tuple (m, τ, Δ) as:

$$\Upsilon^* = ([m, \bar{\theta}], \Lambda_1, \Gamma_1)$$

whereby $[m, \bar{\theta}] = [m, \theta_1, ..., \theta_d]$ represents an at most d-degree polynomial $T(z) = m + \sum_{r=1}^{d} \theta_r z^r$ (i.e. the free coefficient is m). In the current setting, the degree of T is 1 and hence: $\Upsilon^* = ([m, \theta_1, 0, ..., 0], \Lambda_1, \Gamma_1)$. At the end, Sign* returns the homomorphic signature:

$$\sigma^* = (\text{param}_\Delta, \Omega, \Psi, \Upsilon^*)$$

Eval*($VK^*, f, \bar{\sigma}^*$) \rightarrow σ^* When provided with an n-variate function f and a vector $\bar{\sigma}^*$ of n homomorphic signatures $\sigma^{*(l)} = (\text{param}_\Delta, \Omega^{*(l)}, \Psi^{*(l)}, \Upsilon^{*(l)})$, such that each signature $\sigma^{*(l)}$ authenticates a message $m^{(l)}$ for $1 \leq l \leq n$, algorithm Eval* proceeds – similarly to Eval – in two steps:
Computation of aggregate signature Ψ. This aggregate signature is obtained by evaluating the same circuit \mathcal{C}_f defined in algorithm Eval, on inputs of aggregate signatures $(\Psi^{(1)}, ..., \Psi^{(n)})$ (see Section 4.1).

Computation of homomorphic signature Υ^*. In this step, algorithm Eval* evaluates the circuit \mathcal{C}_f of function f on inputs $(\Upsilon^{*(1)}, ..., \Upsilon^{*(n)})$ using the following subroutines:

- **GateEval*$_i^v$ ($\Upsilon^{*(1)}$, $\Upsilon^{*(2)}$):** Without loss of generality, let assume that for $l \in \{1, 2\}$, $\Upsilon^{*(l)} = ([m^{(l)}], \Lambda^{(l)}, \Gamma^{(l)}) \in \mathbb{F}_{p^{d+1}} \times \mathbb{G}_i$. Accordingly whenever, an addition gate is encountered, GateEval*$_i$ outputs $T^* = ([m, \bar{\theta}], \Lambda_i, \Gamma_i)$ such that:

$$[m, \bar{\theta}] = [m^{(1)}, \bar{\theta}^{(1)}] + [m^{(2)}, \bar{\theta}^{(2)}]$$

$$\Lambda_i = \Lambda_i^{(1)} \Lambda_i^{(2)} ; \Gamma_i = \Gamma_i^{(1)} \Gamma_i^{(2)}$$

- **GateEval*$_i^c$ ($\Upsilon^{*(1)}$, c):** This subroutine is called in order to evaluate a gate for multiplication by a constant. Accordingly, on inputs of a homomorphic signature $\Upsilon^{*(1)} = ([m^{(1)}], \bar{\theta}^{(1)}), \Lambda_i^{(1)}, \Gamma_i^{(1)}) \in \mathbb{F}_{p^{d+1}} \times \mathbb{G}_i$ and a constant c, GateEval*$_i$ outputs $\Upsilon^* = ([m, \bar{\theta}], \Lambda_i, \Gamma_i)$ where:

$$[m, \bar{\theta}] = c[m^{(1)}, \bar{\theta}^{(1)}]$$

$$\Lambda_i = (\Lambda_i^{(1)})^c ; \Gamma_i = (\Gamma_i^{(1)})^c$$

- **GateEval*$_i^x$ ($\Upsilon^{*(1)}$, $\Upsilon^{*(2)}$):** Assume here that $\Upsilon^{*(1)} = ([m^{(1)}], \bar{\theta}^{(1)}), \Lambda_i^{(1)}, \Gamma_i^{(1)}) \in \mathbb{F}_{p^{d+1}} \times \mathbb{G}_i$, and $\Upsilon^{*(2)} = ([m^{(2)}], \bar{\theta}^{(2)}), \Lambda_j^{(2)}, \Gamma_j^{(2)}) \in \mathbb{F}_{p^{d+1}} \times \mathbb{G}_j$. This means that (i) $\Upsilon^{*(1)}$ and $\Upsilon^{*(2)}$ are inputs of degree i and j respectively; and that (ii) $\bar{\theta}^{(1)} = [\bar{\theta}_i^{(1)}, ..., \bar{\theta}_i^{(i)}], 0, ..., 0]$ and $\bar{\theta}^{(2)} = [\bar{\theta}_j^{(1)}, ..., \bar{\theta}_j^{(j)}], 0, ..., 0]$. To multiply message $m^{(1)}$ with message $m^{(2)}$ and produce the matching homomorphic signature, GateEval*$_i$ first generates an $(i+j)$-degree polynomial T by multiplying the two polynomials $T^{(1)}(z) = m^{(1)} + \sum_{r=1}^{i} \theta_r^{(1)} z^r$ and $T^{(2)}(z) = m^{(2)} + \sum_{r=1}^{j} \theta_r^{(2)} z^r$. The coefficients of the resulting polynomial T are denoted by vector $[m^{(1)}m^{(2)}], \bar{\theta}] \in \mathbb{F}_{p^{d+1}}$, and $\bar{\theta}$ is denoted by vector $[\theta_1, ..., \theta_{i+j}, 0, ..., 0]$. GateEval*$_i$ then evaluates:

$$\Lambda_{i+j} = e(\Lambda_i^{(1)}, \Lambda_j^{(2)})$$

and recursively computes the parameters A_{r+1} and $B_{i,r}$, for all $1 \leq r \leq i - 1$, as follows:

$$A_{r+1} = e(A_r, A_1) ; B_{i,r} = e(P_{i-r}, A_r)$$

23
OnVerify

OffVerify

OnVerify

identifier

\[\Delta \]

Finally, algorithm OffVerify* outputs: $\mathcal{Y}^* = (|m, \vec{\theta}|, \Lambda_{i+j}, \Gamma_{i+j})$.

Algorithm Eval* concludes its execution by outputting:

$\sigma^* = (\text{param}_\Delta, \Omega, \Psi, \mathcal{Y}^*)$

OffVerify*(VK*, \mathcal{P}) \rightarrow VK**_p. We assume here that \mathcal{P} evaluates an n-variate function f whose circuit is of degree k. Hence, given VK* = (VK, A_i), algorithm OffVerify* first computes VK*$_p$ using OffVerify (i.e. VK*_p \leftarrow OffVerify(VK, \mathcal{P})), and generates the parameters:

\[A_{r+1} = e(A_r, A_1); \quad B_{k,r} = e(P_{k-r}, A_r) \quad 1 \leq r \leq k - 1 \]

Finally, algorithm OffVerify* outputs:

\[\text{VK}^*_p = (\text{VK}^*_p, A_k, \{B_{k,1}, \ldots, B_{k,k-1}\}) \]

where $\text{VK}^*_p = (\text{PK}_{\text{Dig}}, H_p, f(\Lambda_1^{(\tau_1)}, \ldots, \Lambda_n^{(\tau_n)}))$.

OnVerify*(VK*$_p$, Δ, m, σ^*) \rightarrow b On input of concise verification key VK*$_p$, dataset identifier Δ, message m and signature $\sigma^* = (\text{param}_\Delta, \Omega, \Psi, \mathcal{Y}^*)$, algorithm OnVerify* proceeds as following:

- It parses VK*$_p$ as $(\text{VK}^*_p, A_k, \{B_{k,1}, \ldots, B_{k,k-1}\})$, dataset parameters param* as $(\Delta, \text{PK}_{\text{Agg}}, \text{PK}_{\text{Hom}})$, and signature σ^* as $(\text{param}_\Delta, \Omega, \Psi, \mathcal{Y}^*)$.
- Similarly to OnVerify, it uses VK$_p$ to incrementally check the validity of digital signature Ω and aggregate signature Ψ. If any of these signatures is not valid, then OnVerify* returns $b = 0$.
- Finally, it parses homomorphic signature \mathcal{Y}^* as a tuple $(|m, \vec{\theta}|, \Lambda_k, \Gamma_k) \in \mathbb{F}_{p}^{d+1} \times \mathbb{G}_k^2$, and given the value $f(\Lambda_1^{(\tau_1)}, \ldots, \Lambda_n^{(\tau_n)})$, public key PK$_{\text{Hom}} = (X_1, Y_1) \in \mathbb{G}_k^2$ and $(A_k, \{B_{k,1}, \ldots, B_{k,k-1}\}) \in \mathbb{G}_k^k$ verifies whether the following equalities hold:

\[\Lambda_k = f(\Lambda_1^{(\tau_1)}, \ldots, \Lambda_n^{(\tau_n)}) \quad (7) \]

\[e(X_1, \Lambda_k) = e(X_1, P^m_k A_k^{\theta_k} \prod_{r=1}^{k-1} B_{k,r}^{\theta_r}) e(Y_1, \Gamma_k) \quad (8) \]

If both equalities hold, then OnVerify* outputs $b = 1$; otherwise it outputs $b = 0$.

24
5.2 Correctness

Theorem 3. The adaptively secure homomorphic signature described above ensures authentication and evaluation correctness.

Sketch. Due to the close similarity with the proofs of correctness of the weakly secure homomorphic signature, we only provide a proof sketch for evaluation correctness. A similar argument can be used to prove authentication correctness.

Let the inputs of algorithm Verify be:

- A multi-labeled program \(P_\Delta = (P, \Delta) \) evaluating \(f(P_1, ..., P_n) \) using a circuit of degree \(k \);
- a message \(m = f(m^{(1)}, ..., m^{(n)}) \), whereby \(m^{(l)} \) is the output of program \(P_l \);
- and a signature \(\sigma^* = (\text{param}_\Delta, \Omega, \Psi, \Upsilon^*) \) such that \(\Upsilon^* = ([m, \vec{\theta}], \Lambda_k, \Gamma_k) \) and \(\vec{\theta} = [\theta_1, ..., \theta_k, 0, ..., 0] \).

Also, let \(\sigma^{\ast(l)} \) be the signature corresponding to message \(m^{(l)} \) and \([m^{(l)}, \vec{\theta}^{(l)}] = [m^{(l)}, \theta_1^{(l)}, ..., \theta_i^{(l)}, 0, ..., 0] \) be the vector from signature \(\sigma^{\ast(l)} \).

Finally, let \(T = m + \sum_{r=1}^{k} \theta_r z^r \) denote the polynomial associated with vector \([m, \vec{\theta}]\), and \(T^{(l)}(z) = m^{(l)} + \sum_{r=1}^{i} \theta_r^{(l)} z^r \) the polynomial associated with vector \([m^{(l)}, \vec{\theta}^{(l)}]\).

To show evaluation correctness, we rely on two observations:

(i) The first is that \(f(T^{(1)}(\alpha), ..., T^{(n)}(\alpha)) = f(T^{(1)}(\alpha), ..., T^{(n)}(\alpha)) = m + \sum_{r=1}^{k} \theta_r \alpha^r = T(\alpha) \).

(ii) The second is that \((T(\alpha), \Lambda_k, \Gamma_k)\) is a valid weakly secure signature. More precisely, it can be viewed as the output of algorithm Eval (from Section 4.1) on inputs of \((T^{(l)}(\alpha), \Lambda_i^{(l)}, \Gamma_i^{(l)})\).

Thus by correctness of our weakly homomorphic signature, Equation 3 is verified for signed message \(T(\alpha) \). From this we can see that Equation 8 holds for vector \([m, \vec{\theta}]\). Indeed, we have for all \(k \geq 2 \) and for all \(1 \leq r \leq k - 1 \):

\(A_k = P_k^\alpha \) and \(B_{k,r} = P_k^\alpha \). Hence, Equation 8 could be rewritten as \(e(X_1, \Lambda_k) = e(X_1, P_k T(\alpha)) e(Y_1, \Gamma_k) \), which corresponds to Equation 3 when the signed message is \(T(\alpha) \).

5.3 Soundness

Theorem 4. If the digital signature \(\Sigma_{\text{Dig}} \) and the aggregate signature \(\Sigma_{\text{Agg}} \) are secure, then our homomorphic signature is \((s, t)\)-sound under the MDHI assumption.
Sketch. Assume there is an adversary \mathcal{A} that breaks the (s,t)-soundness of our homomorphic signature with a non-negligible advantage ϵ. Similarly to the proof of Theorem 2, since Σ_{Dig} and Σ_{Agg} are secure, the only way \mathcal{A} can succeed in breaking the (s,t)-soundness is through a Type II forgery. Given the existence of a Type II forgery by \mathcal{A}, we show that either there exists an adversary \mathcal{B} that breaks our weakly secure homomorphic signature, or that adversary \mathcal{A} breaks the MDHI assumption.

To break our weakly secure homomorphic signature, adversary \mathcal{B} simulates the unforgeability experiment as follows:

- First, \mathcal{B} enters the learning phase of Algorithm 2 and receives public parameters param whereby

$$\text{param} = (p, \{\tau_i\}_{i=1}^N, H, e, \hat{e}, \{G_i\}_{i=1}^{d+1}, G, G_T, P_1, P)$$

Further, it submits a N signature queries $\langle \Delta_i, \tau_{(i,j)}, m^{(i,j)} \rangle$ for randomly generated and pairwise distinct messages $m^{(i,j)}$, $1 \leq i \leq s$ and $1 \leq j \leq N$, so that to receive verification key VK and signatures $\sigma^{(i,j)}$ such that:

$$\text{VK} = (\text{PK}_{\text{Dig}}, \{\Lambda_1^{(\tau_1)}, ..., \Lambda_1^{(\tau_N)}\})$$

$$\sigma^{(i,j)} = (\text{param}_{\Delta_i}, \Omega^{(i)}, \Psi^{(i,j)}, \Upsilon^{(i,j)})$$

$$\text{param}_{\Delta_i} = (\Delta_i, \text{PK}_{\text{Agg}}^{(i)}, \text{PK}_{\text{Hom}}^{(i)})$$

$$\Psi^{(i,j)} = H(\Lambda_1^{(\tau_{(i,j)})})^{\text{SK}_{\text{Agg}}^{(i)}}$$

$$\Upsilon^{(i,j)} = (m^{(i,j)}, \Lambda_1^{(\tau_{(i,j)})}, \Gamma_1^{(i,j)})$$

\mathcal{B} keeps these signatures in a table T to further use them during its simulation.

- When \mathcal{A} queries oracle $\mathcal{O}_{\text{KeyGen}}$, \mathcal{B} generates $(\alpha, A_1 = P_{1}^{\alpha}) \in \mathbb{F}_p^s \times G_1$, sets $\text{VK}^* = (\text{PK}_{\text{Dig}}^*, \{\Lambda_1^{(\tau_i)}\}_{i=1}^N, A_1)$ where PK_{Dig}^* is its own public key, and finally returns $(\text{param}, \text{VK}^*)$.

- When \mathcal{A} calls oracle $\mathcal{O}_{\text{Sign}}$ with tuple $\langle \Delta_i^*, \tau_{(i,j)}^*, m^{*(i,j)} \rangle$, \mathcal{B} first fetches the public parameters $(\Delta_i, \text{PK}_{\text{Agg}}^{(i)}, \text{PK}_{\text{Hom}}^{(i)})$ of dataset Δ_i in table T, and signs $\text{param}_{\Delta_i} = (\Delta_i^*, \text{PK}_{\text{Agg}}^{(i)}, \text{PK}_{\text{Hom}}^{(i)})$ using secret key SK_{Dig}^* matching public key PK_{Dig}^*. This results in a signature $\Omega^{*(i)}$.

Further, \mathcal{B} finds in table T the message in dataset Δ_i that was signed under label $\tau_{(i,j)}^*$. Here, we assume that this message corresponds to $m^{(i,j)}$ (i.e. $\tau_{(i,j)}^* = \tau_{(i,j)}$). \mathcal{B} then retrieves signature $\sigma^{(i,j)} = (\text{param}_{\Delta_i}, \Omega^{(i)}, \Psi^{(i,j)}, \Upsilon^{(i,j)})$, and lets $\Upsilon^{*(i,j)} = ([m^{*(i,j)}, \theta_{1}^{(i,j)}], \Lambda_1^{*(i,j)}, \Gamma_1^{(i,j)})$, whereby $\theta_{1}^{(i,j)}$ is computed so that $m^{(i,j)} = m^{*(i,j)} + \theta_{1}^{(i,j)} \alpha$. Finally, \mathcal{B} returns $\sigma^{*(i,j)} = (\text{param}_{\Delta_i}, \Omega^{*(i)}, \Psi^{(i,j)}, \Upsilon^{*(i,j)})$.

26
Eventually, \(\mathcal{A} \) outputs a multi-labeled program \(\mathcal{P}_{\Delta^{*}_i} = (\mathcal{P}, \Delta^{*}_i) \) for \(1 \leq i \leq s \), and a pair \((m^{*}, \sigma^{*})\).

We suppose here that \(\mathcal{P} = (f, \tau_{(i,1)}, \ldots, \tau_{(i,t)}) \), with \(f \) being a \(t \)-variate function of degree \(k \).

Accordingly, \(\sigma^{*} = (\text{param}_{\Delta^{*}_i}, \Omega^{(i)}, \Psi^{(i)}, \Upsilon^{(i)}) \) where
\[
\Upsilon^{(i)} = ([m^{*}, \tilde{\theta}], \Lambda_k, \Gamma_k)
\]
\[
\tilde{\theta} = [\theta_1, \ldots, \theta_k, 0, \ldots, 0]
\]

In order to break our weakly secure signature, \(\mathcal{B} \) runs \(\text{Eval}^{*} \) on inputs of function \(f \) and signatures \(\sigma^{*(i,j)} \) with \(1 \leq j \leq t \).

This results in a vector \([\tilde{m}^{*}, \tilde{\theta}] \in \mathbb{F}_p^{d+1} \), where
\[
\tilde{m}^{*} = f(m^{*(i,1)}, \ldots, m^{*(i,t)})
\]
\[
\tilde{\theta} = [\tilde{\theta}_1, \ldots, \tilde{\theta}_k, 0, \ldots, 0]
\]

Since \(\mathcal{A} \)'s output is a Type II forgery, we know that \(m^{*} \neq \tilde{m}^{*} \). Now depending on whether \(m^{*} + \sum_{r=1}^{k} \theta_r \alpha^r \) equals \(\tilde{m}^{*} + \sum_{r=1}^{k} \tilde{\theta}_r \alpha^r \), we show that either \(\mathcal{B} \) breaks the weak unforgeability of our scheme, or that \(\mathcal{A} \) is able to break the MDHI assumption.

- If \(m^{*} + \sum_{r=1}^{k} \theta_r \alpha^r \neq \tilde{m}^{*} + \sum_{r=1}^{k} \tilde{\theta}_r \alpha^r \), then adversary \(\mathcal{B} \) breaks our weakly secure signature by outputting multi-labeled program \(\mathcal{P}_{\Delta_i} = (\mathcal{P}, \Delta_i) \) and the pair \((m, \sigma)\) whereby:
\[
m = m^{*} + \sum_{r=1}^{k} \theta_r \alpha^r
\]
\[
\sigma = (\text{param}_{\Delta_i}, \Omega^{(i)}, \Psi^{(i)}, \Upsilon^{(i)})
\]
\[
\Upsilon^{(i)} = (m, \Lambda_k, \Gamma_k)
\]

Indeed, by construction:
\[
\tilde{m}^{*} + \sum_{r=1}^{k} \tilde{\theta}_r \alpha^r = f(m^{*(i,1)}, \alpha \tilde{\theta}_1^{(i,1)}, \ldots, m^{*(i,t)}, \alpha \tilde{\theta}_1^{(i,t)})
\]
\[
= f(m^{(i,1)}, \ldots, m^{(i,t)})
\]
and thus, \(m \neq f(m^{(i,1)}, \ldots, m^{(i,t)}) \).

- If \(m^{*} + \sum_{r=1}^{k} \theta_r \alpha^r = \tilde{m}^{*} + \sum_{r=1}^{k} \tilde{\theta}_r \alpha^r \), then we can show that \(\mathcal{A} \) breaks the MDHI assumption. Namely, it can compute \(P_k^{-1} \) from \((P_1, A_1 = P_\alpha)\).

\[\text{5}\] Since the messages \(m^{(i,j)} = m^{*(i,j)} + \theta_r^{(i,j)} \alpha \) are randomly generated and pairwise distinct, we can safely assume that vectors \([m^{*(i,j)}, \theta_r^{(i,j)}] \) provided by adversary \(\mathcal{B} \) during the simulation leaks no information to adversary \(\mathcal{A} \) about \(\alpha \) beyond \((P_1, A_1)\).
\[P_k^{m^* - \tilde{m}^*} = P_k^{\sum_{r=1}^k \theta_r \alpha^r} - \sum_{r=1}^k \theta_r \alpha^r \]

For the sake of clarity, we simplify the formula by replacing the subtraction of the two polynomials with one polynomial:

\[P_k^{m^* - \tilde{m}^*} = P_k^{\sum_{r=1}^k \hat{\theta}_r \alpha^r} - \sum_{r=1}^k \hat{\theta}_r \alpha^r \]

This implies that \(\mathcal{A} \) breaks the MDHI assumption by first computing \(P_k^{\alpha^r-1} \), \(1 \leq r \leq k \), using \(P_1, A_1 \) and bilinear pairing \(e \), and then outputting:

\[P_k^{\alpha^r-1} = \left(\prod_{r=1}^k P_k^{\hat{\theta}_r \alpha^r-1} \right)^{(m^* - \tilde{m}^*)^{-1}} \]

Consequently, if our weakly secure signature is sound under the MDHI assumption, so is our adaptively secure solution.

5.4 Efficiency

In the following, we briefly discuss the efficiency of our homomorphic signature.

Online-Offline Signing. We point out that the signature we describe in Section 5 supports online-offline signatures. Similarly to previous work on online-offline signatures [34], the signer could sign a random and secret dataset \(\tilde{\Delta} = (\tilde{m}^{(1)}, \ldots, \tilde{m}^{(n)}) \) offline, using the weakly secure signature. This yields \(\text{param}_{\tilde{\Delta}} = (\tilde{\Delta}, \tilde{PK}_{\text{Agg}}, \tilde{PK}_{\text{Hom}}) \), a digital signature \(\tilde{\Omega} \), \(n \) aggregate signatures \(\tilde{\Psi}^{(i)} \) and \(n \) homomorphic signatures \(\tilde{\Upsilon}^{(i)} = (\tilde{m}^{(i)}, \tilde{\Lambda}_1^{(i)}, \tilde{\Gamma}_1^{(i)}) \). Later when a dataset \(\Delta = (m^{(1)}, \ldots, m^{(n)}) \) is available, the signer proceeds as following:

- The signer uses secret key \(\alpha \) to find for each message \(m^{(i)} \) the coefficient \(\theta_1^{(i)} \) verifying: \(\tilde{m}^{(i)} = \alpha \theta_1^{(i)} + m^{(i)} \), and sets the corresponding homomorphic signature \(\tilde{\Upsilon}^{(i)} \) to \(([m^{(i)}, \theta_1^{(i)}], \tilde{\Lambda}_1^{(i)}, \tilde{\Gamma}_1^{(i)}) \);
- she defines aggregate signature \(\tilde{\Psi}^{(i)} \) of message \(m^{(i)} \) as \(\tilde{\Psi}^{(i)} \);
- she defines the public parameters of dataset \(\Delta \) as \(\text{param}_{\Delta} = (\Delta, \tilde{PK}_{\text{Agg}}, \tilde{PK}_{\text{Hom}}) \) and signs these public parameters using her public key \(PK \).

It should be noted however that for the scheme to remain secure, we should ensure that the elements of the randomly generated datasets are kept secret and that they are pairwise distinct with all but a negligible probability; otherwise the secret value \(\alpha \) can be retrieved. In order to counter this issue, we suggest that for all \(\tilde{m}^{(i)} \in \Delta \), \(\tilde{m}^{(i)} \) be computed as \(F(K', \Delta, i) \) where \(F \) is the keyed hash function in the public parameters and \(K' \) is a component of the signer’s secret key.
Table 1: Complexity of the algorithms OnSign, OffSign and Eval given a dataset of size n and a program that is implemented using r addition gates, s multiplication-with-a-constant gates and t multiplication gates.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Sign</th>
<th>OffSign</th>
<th>Eval</th>
</tr>
</thead>
<tbody>
<tr>
<td>OnSign</td>
<td>$O(1)$ digital signatures</td>
<td>$O(n)$ aggregate signatures</td>
<td>$O(r + t)$ multiplications in G</td>
</tr>
<tr>
<td></td>
<td>$O(n)$ subtractions in F_p</td>
<td>$O(n)$ exponentiations in G_1</td>
<td>$O(r)$ multiplications in G_d</td>
</tr>
<tr>
<td></td>
<td>$O(n)$ inversions in F_p</td>
<td>$O(n)$ PRF evaluations</td>
<td>$O(s + d)$ exponentiations in G_{d}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$O(d^2 + t)$ bilinear pairings</td>
</tr>
</tbody>
</table>

Adaptive Security Transformation. Authors in [15] and [32] independently proposed generic transformations that make any weakly secure homomorphic signature into an adaptively secure one. While it is possible to leverage any of these transformations to define our adaptively secure signature, it was more practical and more simple to opt for a dedicated transformation. For instance, compared to what is proposed in [15], our transformation yields shorter signatures: The evaluation of a circuit C_f of degree k results in a signature of size $\simeq k$ when using our transformation, rather than a signature of size $\simeq 3(d + 1)^6$ in the case of the transformation in [15]. Additionally, we note that if we use any of these transformations, then we lose the online-offline signing feature.

Finally, it is worth mentioning that although our transformation is not generic, it can be used to make the weakly secure signature of [15] adaptively secure and as a by product make it online-offline. On the other hand, our transformation as is cannot be applied to the signature in [32] since the latter operates in standard lattices.

Performance Figures. As discussed previously, our scheme benefits from the features of online-offline signing and online-offline verification. These two features render the scheme more attractive performance-wise: The online-offline signing is particularly useful in scenarios in which the signer has to sign large datasets, whereas the online-offline verification enables the verifier not only to compute the most expensive operation beforehand – which consists of computing for each program P the matching verification key VK_P – but to reuse that key indefinitely.

Tables 1 and 2 depict the performances of the algorithms composing our signature. The reader can see that the online algorithms at the signer and the verifier are more lightweight compared to their offline counterparts.

Without loss of generality, we assume that the signer signs a dataset of size n and that the verifier wishes to check the correctness of a program P that can be evaluated using a circuit composed of r addition gates, s multiplication-with-a-constant gates and t multiplication gates7.

6We recall here that d is the upper bound of the degree of the arithmetic circuits supported by the homomorphic signature.

7Here we consider the worst-case scenario in which the computations are performed in the bilinear group G_d.

29
Table 2: Complexity of the algorithms OnVerify and OffVerify given a program that can be evaluated using r addition gates, s multiplication-with-a-constant gates and t multiplication gates.

<table>
<thead>
<tr>
<th>Verify</th>
<th>OnVerify</th>
<th>OffVerify</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$O(1)$ digital signature verifications</td>
<td>$O(r + t)$ multiplications in G</td>
</tr>
<tr>
<td></td>
<td>$O(1)$ aggregate signature verifications</td>
<td>$O(r)$ multiplications in G_d</td>
</tr>
<tr>
<td></td>
<td>$O(1)$ bilinear pairings</td>
<td>$O(s)$ exponentiations in G_d</td>
</tr>
<tr>
<td></td>
<td>$O(d)$ multiplications in G_d</td>
<td>$O(t + d)$ bilinear pairings</td>
</tr>
<tr>
<td></td>
<td>$O(d)$ exponentiations in G_d</td>
<td></td>
</tr>
</tbody>
</table>

6 Related Work

Eigenvalues and Eigenvectors in Cryptography. Gentry et al. [30] propose a fully-homomorphic encryption in standard lattices that is based on eigenvalues and eigenvectors. Roughly speaking, the encryption of a message is a square matrix that accepts that message as an eigenvalue associated with an eigenvector that defines the encryption secret key. It should be precised however that for security purposes the size of the encryption matrix depends on the security parameter and that Gentry et al. [30] do not use eigenvectors per se but what they term approximate eigenvector which could be seen as noisy eigenvectors. While our signature as well leverages the algebraic properties of eigenvalues and eigenvectors to get additive and multiplicative homomorphisms, it is compact in the sense that the size of the matrix does not depend on the security parameter and it uses actual eigenvectors instead of noisy ones.

Verifiable Delegation of Computation. The advent of cloud computing has spurred interest in verifiable delegation of computation [21, 27, 39, 40]. The main concern of this line of work is to ensure that the verification of computation calls for less computational resources than the delegated function. However, verifiable computation requires a preprocessing stage that depends on the delegated function; homomorphic signatures on the other hand, are to some extent\(^8\) agnostic to the function to be computed.

Succinct Non-interactive ARguments of Knowledge. SNARKs [5, 6, 28] are a powerful tool to verify computation correctness. Generally speaking, SNARKs allow anyone to generate a proof for any NP statement. In particular, given a value y and a function f, one can employ SNARKs to prove that there exists a witness x that verifies $y = f(x)$. While SNARKs give way to relatively efficient verification procedures, their soundness is only ensured under non-falsifiable assumptions [5, 29].

Additively Homomorphic Signatures. First attempts to design homomorphic signatures focused on authenticating linear functions, cf. [2, 4, 8, 12, 22, 37]. The motivating applications for this type of homomorphic signatures are namely:

\(^8\)We recall that while our homomorphic signature supports only polynomial functions, it is still more flexible than verifiable computation schemes.
secure network coding [3, 12, 26, 36] which enables the authentication of messages forwarded in the network, and proofs of retrievability [2, 41] which provide means to efficiently verify the availability of data stored at untrusted servers.

Homomorphic MACs. Gennaro and Wichs [25] proposed one of the first homomorphic symmetric authenticators dedicated to Boolean circuits. The proposed solution builds upon homomorphic encryption and assumes that the adversary does not have access to the results of the MAC verification (i.e. an adversary cannot know whether a pair of message and signature is valid or not). To overcome this caveat, Catalano and Fiore [13] introduced a solution that leverages the algebraic properties of the ring of polynomials to homomorphically authenticate messages. Briefly, the idea of [13] is to represent the MAC as a polynomial of degree 1 in which the free term corresponds to the signed message. In this manner, the proposed MAC is much more efficient than the work of [25] and is suitable for arithmetic circuits. The issue however with this solution is that program composition yields MACs whose size grows with the degree of the circuit. As a followup, Catalano et al. [14] exploited multilinear maps to devise a homomorphic MAC that supports efficient program composition.

Homomorphic Signatures. One of the first solutions for homomorphic signatures was devised by [9]. The proposed solution uses ideal lattices to authenticate the evaluation of multivariate polynomials. However, this scheme is shown to be secure in the random oracle model only. To address this shortcoming, Catalano et al. [15] build upon their previous work [13, 14] and design a homomorphic signature that is suitable for multi-variate polynomial functions and secure in the standard model. Similarly to the work presented here, the signature in [15] relies on multilinear maps, however our solution outperforms it in terms of both size and computation. In a more recent work, Gorbunov et al. [32] introduced leveled fully-homomorphic signatures from standard lattices, which contrary to our signature and the signatures in [9, 15], authenticate arbitrary functions. The proposed signature relies on dedicated homomorphic trapdoor functions and is shown to be adaptively secure in the standard model. Nevertheless, the signature in [32] does not take Type III forgeries into account.

Note that if similarly to [15], we consider in our soundness definition only multivariate polynomials of degree d verifying $d/p < 1/2$, then the signature presented in 4.1 can be shown to be weakly-secure in the standard model. Indeed, according to Proposition 2 in [14], Type II and Type III forgeries are equivalent for polynomial functions of degree d so long as $d/p < 1/2$. This entails that there is no need for aggregate signatures whose security is proved in the random oracle model. Still, we emphasize that using aggregate signatures to thwart Type III forgeries is of independent interest as it can be employed in other more generic homomorphic signatures to resist Type III forgeries (for e.g. [32]).

Finally, we remark that our solution is the first homomorphic signature for polynomial functions that features an online-offline signing process. This capability is advantageous especially in contexts where mobile devices (smart-phones, tablets...etc.) are prevalent. Although not explicitly mentioned, both Freeman
[22] and Catalano et al. [16] propose linearly-homomorphic signatures that support online-offline signing.

7 Conclusion

In this paper, we introduced a new construction for homomorphic signatures suitable for multivariate polynomials of bounded degree. By tailoring the algebraic properties of eigenvectors and leveled multilinear maps, the proposed construction allows efficient verification in the amortized model and enables online-offline signing. Besides, our solution yields signatures whose size grows only linearly in the degree of evaluated polynomials, and we show it to be provably secure under the MDHI assumption.

Bibliography

