
Masking Large Keys in Hardware:
A Masked Implementation of McEliece

Cong Chen1, Thomas Eisenbarth1, Ingo von Maurich2, and Rainer Steinwandt3

1 Worcester Polytechnic Institute, Worcester, MA, USA
{cchen3,teisenbarth}@wpi.edu

2 Ruhr-Universität Bochum, Germany
ingo.vonmaurich@rub.de

3 Florida Atlantic University, USA
rsteinwa@fau.edu

Abstract. Instantiations of the McEliece cryptosystem which are considered computationally secure
even in a post-quantum era still require hardening against side channel attacks for practical applications.
Recently, the first differential power analysis attack on a McEliece cryptosystem successfully recovered
the full secret key of a state-of-the-art FPGA implementation of QC-MDPC McEliece. In this work
we show how to apply masking countermeasures to the scheme and present the first masked FPGA
implementation that includes these countermeasures. We validate the side channel resistance of our
design by practical DPA attacks and statistical tests for leakage detection.

Keywords: Threshold Implementation, McEliece Cryptosystem, QC-MDPC Codes, FPGA

1 Motivation

Prominent services provided by public-key cryptography include signatures and key encapsulation,
and their security is vital for various applications. In addition to classical cryptanalysis, quantum
computers pose a potential threat to currently deployed asymmetric solutions, as most of these
have to assume the hardness of computational problems which are known to be feasible with large-
scale quantum computers [18]. Given these threats, it is worthwhile to explore alternative public-
key encryption schemes that rely on problems which are believed to be hard even for quantum
computers, which might become reality sooner than the sensitivity of currently encrypted data
expires [5]. The McEliece cryptosystem [12] is among the promising candidates, as it has withstood
more than 35 years of cryptanalysis. To that end, efficient and secure implementations of McEliece
should be available even nowadays. The QC-MDPC variant of the McEliece scheme proposed in [13]
is a promising efficient alternative to prevailing schemes, while maintaining reasonable key sizes.
The first implementations of QC-MDPC McEliece were presented in [10], and an efficient and small
hardware engine of the scheme was presented in [19]. However, embedded crypto cores usually
require protection against the threat of physical attacks when used in practice. Otherwise, side
channel attacks can recover the secret key quite efficiently, as shown in [6].

Our contribution. In this work we present a masked hardware implementation of QC-MDPC
McEliece. Our masked design builds on the lightweight design presented in [19]. We present several
novel approaches of dealing with side channel leakage. First, our design implements a hybrid masking
approach, to mask the key and critical states, such as the syndrome and other intermediate states.
The masking consists of Threshold Implementation (TI) based Boolean masking for bit operations
and arithmetic masking for needed counters. Next, we present a solution for efficiently masking long
bit vectors, as needed to protect the McEliece keys. This optimization is achieved by generating
a mask on-the-fly using a LFSR-derived PRG. Through integration of PRG elements, the amount



of external randomness needed by the engine is considerably reduced when compared to other TI-
based implementations. Our design is fully implemented and analyzed for remaining side channel
leakage. In particular, we validate that the DPA attack of [6] is no longer feasible. We further show
that there are also no other remaining first-order leakages nor other horizontal leakages as exploited
in [6].

After introducing necessary background in Section 2, we present the masked McEliece engine
in Sections 3 and 4. Performance results are presented in Section 5. A thorough leakage analysis is
presented in Section 6.

2 Background

In the following we introduce moderate-density parity-check (MDPC) codes and their quasi-cyclic
(QC) variant with a focus on decoding since we aim to protect the secret key. Afterwards we
summarize how McEliece is instantiated with QC-MDPC codes as proposed in [13]. As our work
extends an FPGA implementation of QC-MDPC McEliece that is unprotected against side channel
attacks [19], we give a short overview of the existing implementation and summarize relevant works
on the masking technique of threshold implementations.

2.1 Moderate-Density Parity-Check Codes

MDPC codes belong to the family of binary linear [n, k] error-correcting codes, where n is the
length, k the dimension, and r = n−k the co-dimension of a code C. Binary linear error-correcting
codes are equivalently described either by their generator G or by their parity-check matrix H. The
rows of generator matrix G ∈ Fk×n

2 form a basis of C while H ∈ Fr×n
2 describes the code as the

kernel C = {c ∈ Fn
2 |HcT = 0⊥} where 0⊥ represents an all-zero column vector. The syndrome of

any vector x ∈ Fn
2 is defined as s = HxT ∈ Fr

2. Hence, the code C is comprised of all vectors x ∈ Fn
2

whose syndrome is zero for a particular parity-check matrix H. MDPC codes are defined by only
allowing a moderate Hamming weight w = O(

√
n log(n)) for each row of the parity-check matrix.

By an (n, r, w)-MDPC code we refer to a binary linear [n, k] code with such a constant row weight
w.

A code C is called quasi-cyclic (QC) if for some positive integer n0 > 0 the code is closed under
cyclic shifts of its codewords by n0 positions. Furthermore, it is possible to choose the generator
and parity-check matrix to consist of p× p circulant blocks if n = n0 · p for some positive integer p.
This allows to completely describe the generator and parity-check matrices by their first row. If an
(n, r, w)-MDPC code is quasi-cyclic with n = n0 · r, we refer to it as an (n, r, w)-QC-MDPC code.

Several t-error-correcting decoders have been proposed for (QC-)MDPC codes [1,8,10,11,13,21].
The implementation that we base our work on implements the optimized decoder presented in [10],
which in turn is an extended version of the bit-flipping decoder of [8]. Decoding a ciphertext x ∈ Fn

2 ,
is achieved by:

1. Computing the syndrome s = HxT .
2. Computing the number of unsatisfied parity checks #upc for every ciphertext bit.
3. If #upc exceeds a precomputed threshold b, invert the corresponding ciphertext bit and add the

corresponding column of the parity-check matrix to the syndrome.
4. In case s = 0⊥, decoding was successful, otherwise repeat Steps 2/3.
5. Abort after a defined maximum of iterations with a decoding error.

2



2.2 McEliece Public Key Encryption with QC-MDPC Codes

The McEliece cryptosystem was introduced using binary Goppa codes [12]. Instantiating McEliece
with t-error-correcting (QC-)MDPC codes was proposed in [13], mainly to significantly reduce the
size of the keys while still maintaining reasonable security arguments. The proposed parameters
for an 80-bit security level are n0 = 2, n = 9602, r = 4801, w = 90, t = 84, which results in a much
more practical public key size of 4801 bit and a secret key size of 9602 bit compared to binary
Goppa codes which require around 64 kByte for public keys at the same security level.

The main idea of the McEliece cryptosystem is to encode a plaintext into a codeword using the
generator matrix of a code selected by the receiver and to add a randomly generated error vector
of weight t to the codeword which can only be removed by the intended receiver. We summarize
QC-MDPC McEliece in the following by introducing key-generation, encryption and decryption.

Key-Generation. The parity-check matrixH is the secret key in QC-MDPC McEliece. As the code
is quasi-cyclic, the parity-check matrix consists of n0 concatenated r×r blocksH = (H0 | . . . |Hn0−1).
We denote the first row of each of these blocks by h0, . . . , hn0−1 ∈ Fr

2. The public key in QC-MDPC
McEliece is the corresponding generator matrix G, which is computed from H in standard form as
G = [Ik |Q] by concatenation of the identity matrix Ik ∈ Fk×k

2 with

Q =


(H−1n0−1 ·H0)

T

(H−1n0−1 ·H1)
T

· · ·
(H−1n0−1 ·Hn0−2)

T

 .

The key generation starts by randomly selecting first row candidates h0, . . . , hn0−1 ∈R Fr
2 such

that the overall row weight (wt) sums up to w =
∑n0−1

i=0 wt(hi). Since we intend to generate a code
which is quasi-cyclic, the n0 blocks of the parity-check matrix are generated from the first rows
by cyclic shifts. The resulting parity-check matrix belongs to an (n, r, w)-QC-MDPC code with
n = n0 · r. If the last block Hn0−1 is non-singular, i. e., if H−1n0−1 exists, the public key is computed
as G = [Ik |Q]. Otherwise new candidates for hn0−1 are generated until a non-singular Hn0−1 is
found.

Encryption. A plaintext m ∈ Fk
2 is encrypted by encoding it into a codeword using the recipient’s

public key G and by adding a random error vector e ∈ Fn
2 of weight wt(e) ≤ t to it. Hence, the

ciphertext is computed as x = (m ·G⊕ e) ∈ Fn
2 .

Decryption. Given a ciphertext x ∈ Fn
2 , the intended recipient removes the error vector e from x

using the secret code description H and a QC-MDPC decoding algorithm ΨH yielding mG. Since
G = [Ik |Q], the first k positions of mG are equal to the k-bit plaintext.

2.3 FPGA Implementation of QC-MDPC McEliece

Our work extends on the lightweight implementation of McEliece based on QC-MDPC code for
reconfigurable devices by [19]. Their resource requirements are 64 slices and 1 block RAM (BRAM)
to implement encryption and 159 slices and 3 BRAMs to implement decryption on a Xilinx Spartan-
6 XC6SLX4 FPGA. The goal of our work is to protect the secret key. Hence, only the decryption
engine is discussed in this paper. From a high-level point of view, decryption works as follows: at first
the syndrome of the ciphertext is computed. Then for each ciphertext bit the number of unsatisfied
parity-checks #upc are counted and if they exceed a defined threshold, the ciphertext bit is inverted.

3



When a ciphertext bit is inverted, the corresponding row of the parity-check matrix is added to
the syndrome. The DPA presented in [6] shows that the described architecture is vulnerable to an
efficient horizontal key recovery attack, since neither the key nor internal states are masked.

2.4 Threshold Implementation

Threshold implementation (TI) is a masking-based technique to prevent first order and higher or-
der side channel leakage. Since its introduction in [15], many symmetric cryptosystems have been
implemented in TI [2,3,4,14,17]. More importantly, most of these works have performed thorough
leakage analysis and have shown that TI actually prevents the promised order leakage (if carefully
implemented). Even higher-order leakage, while not prevented, usually comes at a highly increased
cost of needed observations. TI performs Boolean secret sharing on all sensitive variables. Compu-
tations on the shares are then performed in a way that ensures correctness, maintains uniformity
of the shares, and ensures non-completeness of the computation, that is, each sub-operation can
only be performed on a strict sub-set of the inputs. A detailed description of TI is available in [15].

We choose TI for McEliece because TI is fairly straightforward to apply and to implement, yet it
is effective. Furthermore, large parts of McEliece are linear, and hence cheap to mask using TI. The
decoder part, while not linear, is also fairly efficient to mask using TI, as shown in Section 4. At the
same time, our implementation avoids several of the disadvantages of TI: Unlike [16], we convert our
addition to arithmetic masking once the values get larger, yielding a much more efficient addition
engine than one solely relying on TI. By including the pseudorandom mask generation in the crypto
core, we significantly cut both the required memory space usually unavoidably introduced by TI
as well as the required overhead of random bits consumed by TI engines. Note that the TI-AES
engines presented in [3,14] consume about 8000 bits of randomness per encryption, while our engine
only consumes 160 bits per decryption.

3 Masking QC-MDPC McEliece

An effective way to counteract side channel analysis is to employ masking. Masking schemes aim to
randomize sensitive intermediate states such that the leakage is independent of processed secrets. In
QC-MDPC McEliece, the key bits and the syndrome are sensitive values that need to be protected
and therefore they must be masked whenever they are manipulated. Similarly, since the decoding
operation processes the sensitive syndrome, leakage of the decoder needs to be masked as well.

3.1 Masked Syndrome Computation

As described in Section 2.1, the decoding algorithm begins with the syndrome computation s =
HxT . Both the parity-check matrix H and the syndrome s are sensitive values and can cause
side channel leakage. However, since the syndrome computation is a linear operation, masking this
operation is simple and efficient. Intuitively, H can be split into two shares, Hm and M such that
H = Hm ⊕M , by Boolean masking. The mask matrix M is created in correspondence to H, by
first generating uniformly distributed random masks for hi, m0, . . . ,mn0−1 ∈ Fr

2 of the n0 blocks,
which then comprise the first row of mask matrix M . Each bit in the mi is uniformly set to 0 or
1. Next, the remaining rows of the mask matrix M are obtained by quasi-cyclic shifts of the first
row, according to the construction of H. The masked syndrome sm and the syndrome mask ms can
be computed independently as sm = Hmx

T and ms = MxT . The syndrome s is available as the
combination of the two shares s = sm ⊕ms.

4



Algorithm 1 Masked Error Correction Decoder
Input: Hm, M1, M2, sm, ms1 , ms2 , x, B = b0, ..., bmax−1, max
Output: Error free codeword x or DecodingFailure

1: for i = 0 to max−1 do
2: for every ciphertext bit xj do
3: #upc = SecHW(SecAND(sm,ms1 ,ms2 , Hm,j ,M1,j ,M2,j))
4: d = (#upc > bi) , d ∈ {0, 1}
5: x = x⊕ (d · 1j) . Flip the jth bit of x
6: sm = sm ⊕ (d ·Hm,j ⊕ d̄ ·M2,j) . Update syndrome
7: ms1 = ms1 ⊕M1,j . Update masks
8: ms2 = ms2 ⊕M2,j ⊕ (d̄ ·M1,j)
9: end for

10: if SecHW(sm,ms1 ,ms2) == 0 then . Check for remaining errors
11: return x
12: end if . For constant run time, this if-statement can be moved after the for-loop
13: end for
14: return DecodingFailure

3.2 Masked Decoder

After syndrome computation, the error correction decoder computes the number of unsatisfied
parity check equations between the sensitive syndrome and one row of the sensitive parity check
matrix. By comparing that number with a predefined threshold (usually denoted b), the decoder
decides whether to flip the corresponding bit in the ciphertext. Masking the actual decoding steps is
more complex, since both inputs, namely the syndrome and the parity check matrix, as well as the
control flow of the decoder can leak sensitive information and thus need to be protected. Unlike the
syndrome computation, the decoder performs a binary AND and a Hamming weight computation
on sensitive data. Both operations are non-linear and thus need more elaborate protection than
just a straightforward Boolean masking. In the following we explain how these operations can be
implemented. Algorithm 1 describes the masked version of the decoder. Note that the algorithm
has been formulated with a constant execution flow to better represent the intended hardware
implementation. Further note that the algorithm and its FPGA implementation exhibit a constant
timing behavior (except the number of decoder iterations) and that all key-related variables are
masked. The number of decoder iterations can be set to maximum by simply moving the if-statement
out of the loop. For the chosen 9602/4801 parameter set, max would be set to 5, increasing the
average run time roughly by a factor 2 (cf. [21]).

In Algorithm 1, we make use of two special functions. Function SecAND computes the bitwise
AND operation between syndrome s and secret key H in a secure way without leaking any sensitive
information. The other function SecHW computes the Hamming Weight of a given vector. Both
functions are explained in detail in the following. An all-zero vector with the jth bit equal to 1 is
indicated by 1j .

Secure AND Computation. One important step when decoding a QC-MDPC code is to com-
pute the unsatisfied parity-check equations which starts with a non-linear bitwise AND operation
between the syndrome and one row of the secret key matrix. Our function SecAND performs a bit-
wise AND operation between two bit vectors, namely s∧h. Since the AND is a non-linear operation,
simple two-share Boolean masking is not applicable. Instead, we follow the concept of Threshold
Implementation as described in Section 2.4. We adopt the bitwise AND operation from [15], which
provides first-order security when applied to three Boolean shares. This means that the two-share

5



representations of the two inputs, i. e., the syndrome and parity check matrix, need to be extended
to a three-share representation.

To achieve a three-share representation of both syndrome and parity check matrix, the masking
is expanded in the following way: After syndrome computation as explained in Section 3.1, the
syndrome is represented as sm ⊕ ms and the secret key is represented as Hm,j ⊕Mj . Next, the
syndrome representation is extended as sm ⊕ms1 ⊕ms2 and the key as Hm,j ⊕M1,j ⊕M2,j . Here,
ms2 and M2,j are two new uniformly distributed random mask vectors and ms1 is derived as
ms1 = ms⊕ms2 and M1,j = Mj ⊕M2,j . The following equations show how to achieve a TI version
of s ∧ h that satisfies correctness and non-completeness, but not uniformity.

s ∧ h =(sm ⊕ms1 ⊕ms2) ∧ (Hm,j ⊕M1,j ⊕M2,j)

=(sm ∧Hm,j)⊕ (sm ∧M1,j)⊕ (Hm,j ∧ms1)⊕
(ms1 ∧M1,j)⊕ (ms1 ∧M2,j)⊕ (M1,j ∧ms2)⊕
(ms2 ∧M2,j)⊕ (ms2 ∧Hm,j)⊕ (M2,j ∧ sm)

(1)

As pointed out in [15], in order to fulfill uniformity, one can introduce additional uniform random
masks to mask each share. By introducing two more uniformly random vectors r1 and r2, the three
output shares can be computed as follows. Let sh denote the result of the TI version of the AND
operation. Using the equations above, sh can be split into three shares shi, which are now uniformly
distributed thanks to the ri and are given as:

sh1 =(sm ∧Hm,j)⊕ (sm ∧M1,j)⊕ (Hm,j ∧ms1)⊕ r1
sh2 =(ms1 ∧M1,j)⊕ (ms1 ∧M2,j)⊕ (M1,j ∧ms2)⊕ r2
sh3 =(ms2 ∧M2,j)⊕ (ms2 ∧Hm,j)⊕ (M2,j ∧ sm)⊕ r1 ⊕ r2

(2)

Secure Hamming Weight Computation. In the unprotected FPGA implementation of [19],
the Hamming weight computation of sh is performed by looking up the weight of small chunks
of sh from a precomputed table and then accumulating those weights to get the Hamming weight
of sh. However, the weight of a chunk is always present in plain and the computation of it can
result in side channel leakage that will lead to the recovery of the Hamming weight. Even though
the knowledge of the weight does not necessarily recover the chunk value, it still yields information
about sh and thus the secret key h.

For a side-channel secure implementation, both the input and the output of a Hamming weight
computation for each chunk must be masked. Since the weight of all chunks needs to be accumulated,
it is preferable to use Arithmetic masking instead of Boolean masking. For example, the Hamming
weight of sh can be calculated using the following equation:

wt(sh) =

|sh|∑
i=1

sh1,i ⊕ sh2,i ⊕ sh3,i (3)

where subscript i refers to the i-th bit of each share and |sh| is the length of sh in bits. Using a
secure conversion function from Boolean masking to Arithmetic masking [7], each Boolean mask
tuple (sh1,i, sh2,i, sh3,i) can be converted to an Arithmetic mask pair (A1,i, A2,i) such that sh1,i ⊕
sh2,i ⊕ sh3,i = A1,i +A2,i. Then, the Hamming weight of sh can be computed as:

wt(sh) =

|sh|∑
i=1

A1,i +A2,i =

|sh|∑
i=1

A1,i +

|sh|∑
i=1

A2,i (4)

6



LO
G

IC

LFSR m1,h1

LFSR m1,h0

LFSR m2,h1

LFSR m2,h0

LFSR syn

h1m

h0m

BRAMkey

sm

ms

BRAMsyn

ct1

ct0

BRAMct

f1

f2

f3

Syndrome computation

Decoding

Fig. 1. Abstract block diagram of the masked QC-MDPC McEliece decryption implementation.

According to Equation (4), we only accumulate A1 =
∑|sh|

i=1A1,i and A2 =
∑|sh|

i=1A2,i, respectively,
and sum them up in the end to obtain the total Hamming weight wt(sh) = A1 +A2.

Secure Syndrome Checking. In order to test whether decoding of the input vector was successful,
the syndrome has to be tested for zero. If the Hamming weight of the syndrome is zero, then all
bits of the syndrome must be zero. Otherwise, there must be some bits set as 1 and the number of
set bits equals the Hamming weight of the syndrome. Note that we perform SecHW operation over
the three shares of syndrome s in order to prevent the leakage.

4 Implementing a Masked QC-MDPC McEliece

This section presents more details of the masked FPGA implementation of QC-MDPC McEliece
decryption based on the unprotected one in [19]. We follow the structure of the original design,
including the same security parameters, but replace vulnerable logic circuits with masked circuits.

4.1 Overview of the Masked Implementation

Each time before the decryption is started, both the ciphertext and the masked secret keys h0m, h1m
are written into the BRAMs of the decryption engine. As shown in Figure 1, one BRAM stores the
2 ·4801-bit ciphertext, the second BRAM stores the 2 ·4801-bit masked secret key and third BRAM
stores the 4801-bit masked syndrome and the 4801-bit syndrome mask. Note that the secret keys are
masked before being transferred to the crypto core. The seeds for the internal PRG are transferred
with the masked key. Each BRAM is dual-ported, offers 18/36 kBit, and allows to read/write two
32-bit values at different addresses in one clock cycle.

Computations are performed in the same order as in [19]: To compute the masked syndrome
sm, set bits in the ciphertext x select rows of the masked parity-check matrix blocks that are
accumulated. In parallel, the syndrome mask ms is computed in the same manner. Rotating the
two parts of the secret key is implemented in parallel, as in the unprotected implementation.
Efficient rotation is realized using the Read First mode of Xilinx’s BRAMs which allows to read

7



the content of a 32-bit memory cell and then to overwrite it with a new value, all within one clock
cycle.

An abstraction of this implementation is depicted in Figure 1. The three block RAMs are used
to store the masked keys (h0m and h1m), the shared syndrome (sm and ms) and the ciphertext (ct0
and ct1). The LFSR blocks are used to generate the missing masks on-the-fly. The logic blocks for
the two phases of the McEliece decryption are shown on the left side of Figure 1.

4.2 Masking Syndrome Computation

The syndrome computation is a linear operation and requires only two shares for sensitive variables.
Once the decryption starts, 32-bit blocks of the masked secret keys h0m, h1m are read from the secret
key BRAM at each clock cycle and are XORed with the 32-bit block of sm read from the syndrome
BRAM depending on whether the corresponding ciphertext bits are 1. Then the result will be
written back into the syndrome BRAM at the next clock cycle and at the same time the rotated
32-bit blocks of the masked keys will be written back into the secret key BRAM. Meanwhile, we
need to keep track of the syndrome mask ms. Since syndrome computation is a linear operation,
we can similarly add up the secret key masks synchronously to generate the syndrome mask. In our
secure engine, we use two 32-bit leap forward LFSRs to generate random 32-bit secret key masks
each clock cycle which are XORed with the 32-bit block of ms read from the syndrome BRAM
depending on the ciphertext.

Cyclic Rotating LFSRs. Our 32-bit leap forward LFSRs not only generate a 32-bit random
mask at each clock cycle but also rotate synchronously with the key. For example, the LFSR for
h0m first needs to generate the 4801-bit mask mh0 in the following sequence: mh0 [0 : 31],mh0 [32 :
63], . . . ,mh0 [4767 : 4799],mh0 [4800]. This is done in 150 clock cycles. In the next round, the se-
cret key is rotated by one bit as h0m ≫ 1 and hence the mask sequence should be: mh0 [4800 :
30],mh0 [31 : 62], . . . ,mh0 [4766 : 4798],mh0 [4799]. After 4801 rounds of rotation, the LFSR ends
up with its initial state. In order to construct a cyclic rotating PRG with a period of 4801 bits,
we combine a common 32-bit leap forward LFSR with additional memory and circuits, based on
the observation that the next state of the LFSR either completely relies on the current state or
actually sews two ends of the sequence together, e. g., mh0 [4800 : 30]. As shown in Figure 2, five
32-bit registers are employed instead of just one. The combinational logic circuit computes the
next 32-bit random mask given the input stored in IntStateReg. The following steps describe
the functionality of our LFSR:

1. Initially, the 32-bit seed seed[0 : 31] of the sequence is stored in register IvReg and the first 32
bits of the sequence, e. g., mh0 [0 : 31] are stored in the other registers.

2. During the rotation, the combinational logic circuits output the new 32-bit result and feed
it back. If the new result is part of the 4801-bit sequence, then it will go through the Mux,
overwriting the current state registers IntStateReg and ExtStateReg at the next clock
cycle.

3. If the new result contains bits that are not part of the sequence, then those bits will be replaced.
For example, when mh0 [4767 : 4799] is in IntStateReg, the new result will be mh0 [4800 : 4831]
in which only bit mh0 [4800] is in the mask sequence and mh0 [4801 : 4831] will be dropped. The
Mux gate will only let mh0 [4800] go through together with mh0 [0 : 30] stored in ExtBit0 31

and the concatenation mh0 [4800 : 30] will overwrite register ExtStateReg.

8



  

Combinational
Logic

  

INTSTATEREG

EXTSTATEREG

  

IVREG

  

INTBIT0_31

M
U

X

  

EXTBIT0_31

M
U

X 32-bit LFSR Output

Fig. 2. The structure of the cyclic rotating LFSR that is
used to generate the masks on-the-fly.

h0m

m1,h0

m2,h0

sm

ms1

ms2

f1

f2

f3

>>>

>>>

sh1

sh2

sh3

…… 

Bool_to_Arith Logic

share1

share2

Su
m

_
sh

a
re

1

Su
m

_
sh

a
re

2

+

sum

Fig. 3. Layout of our pipelined QC-MDPC McEliece de-
coder for the first part of the secret key, h0.

4. mh0 [4800 : 30] will not be written into register IntStateReg because given mh0 [4800 : 30] as
input, the combinational logic circuit will not output the next valid state mh0 [31 : 62]. Therefore,
we concatenate part of the seed in IvReg and part of the first 32-bits in IntBit0 31, e. g.,
{seed[31],mh0 [0 : 30]} and overwrite IntStateReg. Then, the new output will be mh0 [31 : 62].
The concatenation is implemented as a cyclic bit rotation as shown in Figure 2. After 32
rotations, the seed is rotated to IntBit0 31 and the first 32-bit mh0 [0 : 31] is rotated to IvReg.
Hence, they will be swapped back in the next clock cycle.

To sum up, ExtStateReg always contains the valid 32-bit mask while IntStateReg always
contains 32-bit input that results in the next valid state. The rotated secret key is generated in 150
clock cycles. After 4801× 150 clock cycles, the LFSR returns to its initial state and idles.

4.3 Masking the Decoder

As mentioned in Section 3, the masked secret keys and the syndrome are extended to three shares.
Hence, more LFSRs are instantiated to generate the additional shares as shown in Figure 1. Two
LFSRs generate the third shares of h0 and h1, another LFSR generates the third share of the
syndrome.

We use h0 as example to describe the decoder, since h1 is processed in parallel using identical
logic circuits. We split h0 into three shares: h0m stored in the BRAM and m1,h0 and m2,h0 generated
by two LFSRs. The syndrome is split into sm and ms1 which are stored in BRAM and ms2 which
is generated by an LFSR. After decoding is started, each 32-bit share is read or generated at each
clock cycle and then SecAND and SecHW are performed. This is implemented using a pipelined
approach as shown in Figure 3.

The left part of Figure 3 illustrates the bitwise SecAND operation using Equation (2). The
32-bit shares are fed into shared functions f1, f2, f3, and the outputs are three 32-bit shares of the
result. As mentioned before, two additional random vectors r1, r2 are required to mask the outputs
in order to achieve uniformity. Our design uses only two fresh random bits b1, b2 together with the
shifted input shares as the random vectors because the neighboring bits are independent of each
other. That is r1 = {b1,m1,h0 [0 : 30]} and r2 = {b2,m2,h0 [0 : 30]}. Both m1,h0 [31] and m2,h0 [31] are
shifted out and are used as b1 and b2 in the next clock cycle. The right part shows the structure of
SecHW. To compute the Hamming weight of the unmasked result sh1 ⊕ sh2 ⊕ sh3 without leaking
side channel information, a parallel counting algorithm is applied to accumulate the weight of each

9



Table I. Resources usage comparison between the unprotected and masked implementations on Xilinx Virtex-5
XC5VLX50 FPGAs.

Implementation FFs LUTs Slices BRAMs Frequency

Unprotected [19] 412 568 148 3 318 MHz
Masked 3045 4672 1549 3 73 MHz

Overhead Factor 7.4x 8.2x 10.5x 1x 4.3x

bit position of the word. We use 32 × 2 6-bit Arithmetic masked counters1 and each bit in the
word sh1 ⊕ sh2 ⊕ sh3 will be added into the corresponding counter during each clock cycle. More
specifically, the three shares of each bit of sh are converted and added into the two Arithmetic
masked counters. After 150 clock cycles, we sum the overall Arithmetic masked Hamming weight.
To convert and accumulate the masked weights, we employ the secure conversion method developed
in [7].

5 Implementation Results

The masked design is implemented in VHDL and is synthesized for Xilinx Virtex-5 XC5VLX50
FPGA which holds the crypto engine in the side channel evaluation board SASEBO-GII. The
implementation results are listed in Table I in comparison with the unprotected implementation
of [19]. In terms of Flip-Flops (FFs) and Look-Up Tables (LUTs), the masked implementation
uses 8 times as many resources as the unprotected implementation. The increase is mainly due to
the masked Hamming weight computation which requires many registers to store the Hamming
weights of small chunks. Moreover, the leap forward LFSR also utilizes many Flip-Flops and has
to be instantiated five times in our design. The number of occupied BRAMs remains constant,
only the occupied memory within the syndrome BRAM increases by a factor of 2 in the masked
implementation because the syndrome masks are also stored in this BRAM. The performance of the
masked design is compromised for security and the maximum clock frequency is reduced by a factor
of 4.3. This is mainly because the addition of 32 6-bit weight registers in SecHW is done in one clock
cycle resulting a long critical path and in turn a low clock frequency. Shortening the critical path
can be an interesting goal in future work. Note that the number of clock cycles remains the same
as for the unprotected implementation, unless the early termination of the decoder is disabled, in
which case the average run time doubles compared to [19] (assuming that the maximum number
of iterations is set to 5 similarly to [20], with early termination enabled the decoder requires 2.4
iterations on average as was shown in [10,21]). The resulting mean overhead of our implementation
is 4, which is in line with other masked implementations2. The TI AES engine in [14] introduces an
area overhead of a factor 4 as well, but that implementation does not include the pseudorandom
generators needed to generate the 48 bits of randomness consumed per cycle, while ours does.

1 Note that the Hamming weight of s ∧ H is bounded to the weight of hi, i. e., wt(s ∧ hi) ≤ w/2 = 45, i. e., 6-bit
registers are always sufficient.

2 When computing the geometric mean of the overhead of the three hardware components (LUTs, FFs, and BRAMs),
the resulting area overhead is actually 3.9.

10



6 Leakage Analysis

Next we analyze the implementation for remaining leakage. We first apply the DPA presented
in [6] on the protected implementation. Next we use the leakage detection methodology developed
in [9] to detect any other potentially exploitable leakages. The evaluated implementation is placed
on the Xilinx Virtex-5 XC5VLX50 FPGA of the SASEBO-GII board. The power measurements
are acquired using a Tektronix DSO 5104 oscilloscope. The board was clocked at 3 MHz and the
sampling rate was set to 100 M samples per second. In order to quantify the resilience of our
masked implementation to power analysis attacks, we collected 10, 000 measurements using the
same ciphertext but two different sets of secret keys. The first set is actually 5, 000 repetitions of
a fixed key while the second set contains 5, 000 random keys. The two sets of keys are fed into the
decryption engine alternatingly.

6.1 Differential Power Analysis

A Differential Power Analysis on the FPGA implementation of QC-MDPC McEliece of [19] was
presented in [6]. The attack exploits the leakage caused by the key rotation in the syndrome
computation phase. The 4801-bit keys h0 and h1 rotate in parallel for 4801 rounds, each round
lasts for 150 clock cycles. Thus during one decryption, each key bit is rotated into the one bit
carry register 150 times which results in a strong leakage. By averaging the 150 leakage samples
for each key bit, one can generate the 4801-sample differential trace which contains features caused
by the set key bits and then one can recover the value of the key bits by interpreting the features.
For the unprotected implementation, the secret key can be completely recovered using the average
differential trace of only 10 measurements. For more details about the key recovery we refer to [6].
In contrast to the unprotected implementation, no features are present in the differential trace of
the fixed secret key (red line) even with 500 times more traces, as shown in Figure 4. Hence, the
key bit value cannot be recovered. The peaks in the trace are not the features caused by set key
bits because in the differential trace of the random secret keys where the key bits are randomly set
as 1 the same peaks appear. Thus, they cannot be used as features to recover secret key bits as
done in [6]. The two differential traces almost overlap, showing that the leakage is indistinguishable
between fixed key and random key when using a masked implementation.

6.2 Leakage Detection

We employ Welch’s T-test suite to quantify the leakage indistinguishability between two sets of
secret keys. Welch’s T-test is a statistical hypothesis test used to decide whether the means of two
distributions are the same. T-statistic t can be computed as:

t =
X − Y√
sX2

NX
+ sY 2

NY

(5)

where X,Y are the sample means of random variables X,Y , sX , sY are the sample variances and
NX , NY are the sample sizes. The pass fail criteria is defined as [-4.5, 4.5] as developed in [9]. In
our case, we obtained two groups of leakage samples, one for the fixed key set and the other for
the random key set. Each group has 5, 000 power traces as well as 5, 000 derived differential traces.
We first performed the T-test using the original power traces and Figure 5.1 shows the t-statistics

11



500 1000 1500 2000 2500 3000 3500 4000 4500

0.4

0.5

0.6

0.7

0.8

0.9

1

key bits

∆ c

 

 

Differential trace of fixed secret key
Differential trace of random secret keys

Fig. 4. Comparison between two differential traces of two sets of secret keys.

along the whole decryption. The t-statistics are within the range of [-4.5, 4.5] which implies a
confidence of more than 99.999% for the null hypothesis showing that the two sample groups are
indistinguishable.

To assess the vulnerability to first-order horizontal attacks, we also performed a T-test on the
derived differential traces. The results are shown in Figure 5.2. Similarly, the t-statistics are also
within the predefined range and it validates the indistinguishability between the two sets of secret
keys. Hence, it can be concluded that the design does not contain any remaining first-order leakage
of the key.

6.3 Masking the Ciphertext?

The decoder corrects errors in the ciphertext x, eventually yielding the plaintext derived value m ·G
and thereby implicitly the error vector e. Similarly, the values d and #upc assigned in line 3 and
4 of Algorithm 1 are not masked and can potentially reveal the error locations, hence e. In either
case, the equivalent leakage of information of e or m ·G is possible. In our implementation, we chose
not to mask x and its intermediate state, nor d and #upc. This choice is justifiable for two reasons.
First, both e or m · G are key-independent and will not reveal information about the secret key.
Furthermore, e or m ·G are ciphertext dependent, that is, any information that can be revealed will
be only valid for the specific encrypted message. Hence, if such information is to be discovered, it
must be recovered using SPA-like approaches. More explicitly, the only possible attack is a message
recovery attack, and that requires SPA techniques, as, e. g., applied in [20]. Nevertheless, d and
#upc are variables that have dependence on both the ciphertext and the key, just as the number
of decoding iterations that might be revealed by a non-constant time implementation, i. e., if the
decoding algorithm tests the syndrome for zero after each decoding iteration and exits when this
condition is reached. However, up to now there is no evidence suggesting that their information can
be used to perform key recovery attacks. We leave this as an open question for future research.

7 Conclusion

This work presents the first masked implementation of a McEliece cryptosystem. While masking the
syndrome computation is straightforward and comes at a low overhead, the decoding algorithm re-

12



1 2 3 4 5 6 7

x 10
4

−8

−6

−4

−2

0

2

4

6

8

Time samples

t−
st

at
is

tic

5.1: Results of original traces

500 1000 1500 2000 2500 3000 3500 4000 4500
−8

−6

−4

−2

0

2

4

6

8

key bits

t−
st

at
is

tic

5.2: Results of differential traces

Fig. 5. T-test between the two groups of original power traces (5.1) and differential power traces (5.2) corresponding
to the two sets of secret keys. Both cases indicate the absence of leakage for the given number of traces.

quires more involved masking techniques. Through on-the-fly mask generation, the area overhead is
limited to a factor of approximately 4. While the maximum clock frequency of the engine decreases,
the number of clock cycles for the syndrome computation and each decoder run is unaffected by
the countermeasures. The effectiveness of the applied masking has been analyzed by leakage de-
tection methods and by showing that previous attacks do not succeed anymore. Exploring if any
information about the secret key can be derived from the number of decoding iterations leaves an
interesting challenge for future work.

13



Acknowledgments. This work is supported by the National Science Foundation under grant CNS-
1261399 and grant CNS-1314770. IvM was supported by the European Union H2020 PQCrypto
project (grant no. 645622) and the German Research Foundation (DFG). RS is supported by
NATO’s Public Diplomacy Division in the framework of “Science for Peace”, Project MD.SFPP
984520.

14



References

1. E. R. Berlekamp, R. J. McEliece, and H. C. van Tilborg. On the Inherent Intractability of Certain Coding
Problems (Corresp.). IEEE Transactions on Information Theory, 24(3):384–386, May 1978.

2. B. Bilgin, J. Daemen, V. Nikov, S. Nikova, V. Rijmen, and G. Van Assche. Efficient and First-Order DPA
Resistant Implementations of Keccak. In A. Francillon and P. Rohatgi, editors, Smart Card Research and
Advanced Applications, LNCS, pages 187–199. Springer, 2014.

3. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. A More Efficient AES Threshold Implementation. In
D. Pointcheval and D. Vergnaud, editors, Progress in Cryptology –AFRICACRYPT 2014, volume 8469 of LNCS,
pages 267–284. Springer, 2014.

4. B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. Higher-order threshold implementations. In P. Sarkar
and T. Iwata, editors, Advances in Cryptology — ASIACRYPT 2014, volume 8874 of LNCS, pages 326–343.
Springer, 2014.

5. J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for the TLS protocol from the
ring learning with errors problem. In 36th IEEE Symposium on Security and Privacy, 2015.

6. C. Chen, T. Eisenbarth, I. von Maurich, and R. Steinwandt. Differential Power Analysis of a McEliece Cryp-
tosystem. International Conference on Applied Cryptography and Network Security – ACNS 2015, 2–5 June
2015. http://eprint.iacr.org/2014/534.

7. J.-S. Coron, J. Großschädl, and P. Vadnala. Secure Conversion between Boolean and Arithmetic Masking of
Any Order. In L. Batina and M. Robshaw, editors, Cryptographic Hardware and Embedded Systems CHES 2014,
volume 8731 of Lecture Notes in Computer Science, pages 188–205. Springer Berlin Heidelberg, 2014.

8. R. Gallager. Low-density Parity-check Codes. Information Theory, IRE Transactions on, 8(1):21–28, 1962.
9. B. J. Gilbert Goodwill, J. Jaffe, P. Rohatgi, et al. A testing methodology for side-channel resistance validation.

In NIST Non-invasive attack testing workshop, 2011.
10. S. Heyse, I. von Maurich, and T. Güneysu. Smaller Keys for Code-Based Cryptography: QC-MDPC McEliece

Implementations on Embedded Devices. In G. Bertoni and J.-S. Coron, editors, Cryptographic Hardware and
Embedded Systems – CHES 2013, volume 8086 of Lecture Notes in Computer Science, pages 273–292, Berlin
Heidelberg, 2013. Springer.

11. W. C. Huffman and V. Pless. Fundamentals of Error-Correcting Codes. Cambridge University Press, United
Kingdom, 2010.

12. R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep Space Network Progress
Report, 44:114–116, Jan. 1978.

13. R. Misoczki, J.-P. Tillich, N. Sendrier, and P. S. L. M. Barreto. MDPC-McEliece: New McEliece variants from
Moderate Density Parity-Check codes. In Proceedings of the 2013 IEEE International Symposium on Information
Theory (ISIT), pages 2069–2073. IEEE, 2013.

14. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the Limits: A Very Compact and a Threshold
Implementation of AES. In K. G. Paterson, editor, Advances in Cryptology — EUROCRYPT 2011, volume 6632
of LNCS, pages 69–88. Springer, 2011.

15. S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against side-channel attacks and glitches.
In P. Ning, S. Qing, and N. Li, editors, Information and Communications Security, volume 4307 of Lecture Notes
in Computer Science, pages 529–545. Springer Berlin Heidelberg, 2006.

16. T. Schneider, A. Moradi, and T. Gneysu. Arithmetic addition over boolean masking - towards first- and second-
order resistance in hardware. International Conference on Applied Cryptography and Network Security – ACNS
2015, 2–5 June 2015.

17. A. Shahverdi, M. Taha, and T. Eisenbarth. Silent simon: A threshold implementation under 100 slices. In 2015
IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pages 1–6, May 2015.

18. P. W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms On a Quantum
Computer. SIAM J. Comput., 26(5):1484–1509, 1997.

19. I. von Maurich and T. Güneysu. Lightweight Code-based Cryptography: QC-MDPC McEliece Encryption on
Reconfigurable Devices. In Design, Automation and Test in Europe – DATE 2014, pages 1–6. IEEE, 2014.

20. I. von Maurich and T. Güneysu. Towards Side-Channel Resistant Implementations of QC-MDPC McEliece
Encryption on Constrained Devices. In M. Mosca, editor, Post-Quantum Cryptography, volume 8772 of Lecture
Notes in Computer Science, pages 266–282. Springer, 2014.

21. I. von Maurich, T. Oder, and T. Güneysu. Implementing QC-MDPC McEliece Encryption. ACM Trans. Embed.
Comput. Syst., 14(3):44:1–44:27, Apr. 2015.

15

http://eprint.iacr.org/2014/534

	Masking Large Keys in Hardware:A Masked Implementation of McEliece

