
Comparison of cube attacks over different vector
spaces

Richard Winter1, Ana Salagean1, and Raphael C.-W. Phan2

1 Department of Computer Science, Loughborough University, Loughborough, UK
{R.Winter, A.M.Salagean}@lboro.ac.uk

2 Faculty of Engineering, Multimedia University, Malaysia
raphael@mmu.edu.my

Abstract. We generalise the cube attack of Dinur and Shamir (and the
similar AIDA attack of Vielhaber) to a more general higher order differ-
entiation attack, by summing over an arbitrary subspace of the space of
initialisation vectors. The Moebius transform can be used for efficiently
examining all the subspaces of a big space, similar to the method used
by Fouque and Vannet for the usual cube attack.
Secondly we propose replacing the Generalised Linearity Test proposed
by Dinur and Shamir with a test based on higher order differentiation/
Moebius transform. We show that the proposed test provides all the
information provided by the Generalised Linearity Test, at the same
computational cost. In addition, for functions that do not pass the lin-
earity test it also provides, at no extra cost, an estimate of the degree of
the function. This is useful for guiding the heuristics for the cube/AIDA
attacks.
Finally we implement our ideas and test them on the stream cipher
Trivium.

Keywords: Cube/AIDA attack, Trivium, Linearity testing, Moebius
transform, higher order differentiation

1 Introduction

The cube attack introduced by Dinur and Shamir [3] and the similar AIDA
attack introduced by Vielhaber [11] have received much attention over the last
few years. They can be viewed as higher order differential attacks (see [5] and [9]).
The idea of higher order differentials was introduced in cryptography by Lai [10]
and was used in many different attacks, most of them being statistical attacks,
whereas the cube/AIDA attacks are primarily algebraic.

Several techniques were proposed in order to make the cube attack more
efficient. Of particular interest to the present work are the Moebius transform
used by Fouque and Vannet [7] and the Generalised Linearity Test introduced
by Dinur and Shamir [4].

We propose generalising the cube attack by using using higher order differen-
tiation in its general form. In other words, rather than summing over a “cube”,

2

we sum over an arbitrary subspace of the space of public (tweakable) variables.
The usual cube attack becomes then the particular case where the subspace is
generated by vectors from the canonical basis. The Moebius transform can again
be used to make computations more efficient, by reusing values to compute the
summations over many subspaces at once.

Secondly we propose an alternative to the Generalised Linearity Test pro-
posed by Dinur and Shamir [4]. Given a set of t linearly independent keys, our
linearity test computes the higher order derivatives of order 2, 3, . . . , t with re-
spect to any subset of keys and then checks whether all the results are zero. If
a function fails this linearity test, the lowest order of a non-zero derivative gives
a lower bound for the degree of the function, so we obtain extra information at
no extra cost. We show that the set of functions that pass the General Linearity
Test in [4] is exactly the same as the set of functions that pass our proposed
test. The extra information about the degree is useful for guiding the heuristics
in the cube attack, as it gives us information as to whether we are close or not to
obtaining a linear function. Also, in some implementations of the cube attack,
quadratic equations are used if insufficient linear equations are found.

We implemented our ideas and tested the implementation on the stream
cipher Trivium [1], which is a popular candidate for testing cube attacks. We
looked at between 640 and 703 initialisation rounds. We tested several spaces
of initialisation vectors of dimension 28 (including the space corresponding to a
usual cube attack), and all their subspaces, using the Moebius transform. We
estimated the degrees of the results using our proposed linearity test.

We found one particular vector space which, compared to the usual cube
attack, produces significantly more linear equations, but at a slightly higher di-
mension of subspaces. However for most vector spaces the results are significantly
worse than the usual cube attack, which leads us to believe that the success of
the usual cube attack on Trivium is not only due to the relatively low degree of
the polynomial, but also to the fact that the monomials of that polynomial are
not uniformly distributed, as would be expected if it was a random polynomial.
In other words, the polynomials in Trivium are “aligned” with the canonical ba-
sis rather than being in a generic position. We suggest therefore that preceding
Trivium by a (secret) linear change of coordinates on the initialisation vectors
would improve its resistance to cube attacks. We did some preliminary exper-
imental testing of this idea, but a full exploration would be a topic of future
work.

2 Preliminaries

2.1 Cube Attack

The Cube attack was originally proposed by Dinur and Shamir in [3] and is
closely related to the AIDA attack introduced by Vielhaber in [11].

Let f : Fn
2 → F2 be a Boolean function in variables x1 . . . xn. Any Boolean

function can be written in Algebraic Normal Form, i.e. as a polynomial func-
tion of degree at most one in each variable. Choosing a subset of indices I =

3

{i1 . . . ik} ⊆ {1, 2, . . . , n}, the “cube” CI is defined by choosing the 2k possible
0/1 combinations for the variables with indices in I, with the other variables left
undetermined. Summing over all vectors in CI we obtain a function

fI =
∑
v∈CI

f(v).

which depends only on the variables which are not in I.
Factoring out the term tI = xi1 · · ·xik , we can write f as

f(x1, . . . , xn) = tIfS(I) + r(x1, . . . , xn).

where fS(I) is a polynomial that shares no common variables with tI , whereas r
is a polynomial in which each term misses at least one variable in tI . The main
results on which the cube attack is based are:

Theorem 1. ([3, Theorem 1]) For any polynomial f and subset of variables I,
fI ≡ fS(I) (mod 2).

Corollary 1. If deg(f) = d and I contains d − 1 elements, then fI has degree
at most one.

When mounting an actual attack, we have two types of variables, the secret
variables x1, . . . , xn and the public, or “tweakable” variables v1, . . . , vm, which
the attacker can control. The cipher consists of a “black box” function g : Fn

2 ×
Fm
2 → F2. The attacker chooses a set I of indices of the public variables, sets the

other public variables to constant values (usually zero) and computes gI , which
will now only depend on the secret variables. In the preprocessing phase, the
attacker studies the cipher, so they can evaluate gI for any chosen values of the
secret variables. It is hoped that, for suitable choices of I (particularly the ones
of cardinality approaching deg(g) − 1, assuming deg(g) ≤ m), gI is linear (but
not constant) in the secret variables. Linearity tests are discussed in the next
section.

If the preprocessing phase found a large number of sets I for which gI is
linear and non-constant (ideally n linearly independent gI), one can then use
this information in the online phase. Now the secret variables are unknown, but
the attacker can still control the public variables. The attacker computes gI for
the values of I identified in the preprocessing phase, and then they can determine
the secret variables by solving a system of linear equations.

2.2 Generalised Linearity Test

Consider a function f : Fn
2 → F2. We want to decide whether f is an affine

function, i.e. it is a polynomial of degree one or less. We assume n is large and
evaluations of f are costly, so we cannot evaluate f for all its inputs. We are
looking therefore for a probabilistic test.

In the original cube attack paper [3], Dinur and Shamir used the BLR test, i.e.
the textbook definition of linearity: test whether f(a) +f(b) = f(a + b) +f(0).

4

If f fails this test, then it is not an affine function. If it passes the test for
“sufficiently many” pairs a,b, then we conclude that f is probably affine.

Since the test above needs 3 evaluations of f for each test (assuming we store
and reuse f(0)), in [4, Section 4], Dinur and Shamir proposed the following Gen-
eralised Linearity Test, which has the advantage that it reuses many evaluations
of f so it is overall much more computationally efficient.

Consider a set {b1, . . . ,bt} ⊆ Fn
2 of linearly independent elements. The Gen-

eralised Linearity Test consists of the following set of 2t − t− 1 equations:{
f(

t∑
i=0

cibi) +

t∑
i=0

cif(bi) + ((w(c)− 1)) mod 2)f(0) = 0|c ∈ Fn
2 ,w(c) ≥ 2

}
(1)

where w() denotes the Hamming weight. Again, if there are equations which are
not satisfied by f , then f is not affine, otherwise we conclude that f is probably
affine (assuming t is “large enough”). Note that here we need 2t evaluations of
f for 2t − t − 1 tests, so an amortised cost of just over one evaluation per test,
compared to 3 evaluations for the previous test.

Remark 1. In the original description of this test in [4] there is a mistake, in
that the term (w(c) − 1) mod 2 is missing. This would make the test incorrect
whenever the weight is odd, so affine functions with non-zero constant term
would wrongly fail the test.

2.3 Moebius Transform

Let f : Fn
2 → F2. The Moebius transform of f is a function fM : Fn

2 → F2 defined
as fM (y) =

∑
x�y f(x) where x = (x1, . . . , xn) and the partial order relation

� is defined as (x1, . . . , xn) � (y1, . . . , yn) iff xi ≤ yi for all i = 1, . . . , n. It is
well known that the Moebius transform has the property that for any a ∈ Fn

2 ,
fM (a) equals the coefficient of the term xa1

1 . . . xan
n in f . Further details about

the Moebius transform can be found, for example, in [8]. An efficient algorithm
which, given the truth table of f computes the truth table of fM in-place in
n2n−1 operations is also given in [8].

In connection with the cube attack, note that when choosing a set of variable
indices I = {i1, . . . , ik}, if we define a as having ones in the positions in I and
zeroes elsewhere, we have fI(0) = fM (a). Hence the algorithm for computing
the Moebius transform can also be used for efficiently computing fJ for all the
subsets J of a large set I.

The idea of making the cube attack more efficient by reusing computations
for cubes which are all subcubes of a very large cube was sketched by Dinur and
Shamir [4]. Fouque and Vannet [6] fully developed this powerful technique via
Moebius transforms, thus obtaining results for Trivium for a larger number of
initialisation rounds than previous cube attacks.

5

2.4 Higher order differentiation

The notion of higher order derivative (or higher order differentiation) was intro-
duced in the cryptographic context by Lai [10].

Definition 1. Let f : Fn
2 → F2 be a function in n variables x1, . . . , xn. Let

a = (a1, . . . , an) ∈ Fn
2 \ {0}. The differentiation operator (or finite difference

operator) along a vector a associates to each function f the function ∆af (the
derivative of f) defined as

∆af(x1, . . . , xn) = f(x1 + a1, . . . , xn + an) + f(x1, . . . , xn).

Denoting x = (x1, . . . , xn) we can also write ∆af(x) = f(x + a) + f(x).

Higher order differentiation (higher order derivative) refers to repeated applica-
tion of this operator and will be denoted as:

∆(k)
a1,...,ak

f = ∆a1∆a2 . . . ∆ak
f

where a1, . . . ,ak ∈ Fn
2 \ {0} are linearly independent. An explicit expression for

computing higher order derivatives follows directly from the definition:

∆(k)
a1,...,ak

f =
∑

(c1,...,ck)∈{0,1}k
f(x + c1a1 + . . .+ ckak) (2)

Differentiation decreases the degree of polynomials:

Theorem 2. [10] Let f : Fn
2 → F2 and a ∈ Fn

2 \{0}. Then deg(∆af) ≤ deg(f)−
1.

The main construction of the cube attack can be reformulated in terms of higher
order differentiation, see [5] and [9]. Namely for a set of indices I = {i1, . . . , ik}

fI = ∆(k)
ei1

,...,eik
f

where ei are the vectors of the canonical basis, i.e. they have a one in position i
and zeroes elsewhere.

3 General differentiation attack

As in Subsection 2.1 we assume the cipher consists of a “black box” function
g(x,v) with g : Fn

2 × Fm
2 → F2 and x denoting secret variables and v denoting

public variables. We generalise the cube/AIDA attacks by choosing an arbitrary
subspace V ⊆ Fm

2 of the space of public variables and defining a function gV as

gV (x) =
∑
v∈V

g(x,v).

Denote by k the dimension of V and let {v1, . . . ,vk} be a basis for V . Using
equation (2) we can give an equivalent formula for gV using higher order differ-

entiation, namely gV (x) = (∆
(k)
v1,...,vkg)(x,0). Note that the usual cube attack

6

becomes a particular case of this attack, for V = 〈ei1 , . . . , eik〉, where ei are the
vectors of the canonical basis, and I = {i1, . . . , ik} are the positions chosen for
the usual cube attack.

Using Theorem 2 we have that deg(gV) ≤ deg(g)− dim(V). Hence, as in the
cube attack (see Corollary 1), if the dimension of V is k = deg(g) − 1 we are
guaranteed that gV is linear or constant.

We can therefore search for spaces V such that the resulting gV is a linear
function in the secret variables. Linearity tests can detect whether the result is
linear, like in the usual cube attack. This search space is a superset of the search
space of the usual cube attack.

Moebius transform can be used here again for improved efficiency. Namely we
start with a large vector space V = 〈v1, . . . ,vk〉 For any fixed value x of the secret
variables we compute the truth table of the function h(y1, . . . , yk) = g(x, y1v1 +
. . . + ykvk). We then apply the Moebius transform to h. For any subspace
V ′ = 〈vi1 , . . . ,vij 〉 of V let a be the vector with ones in exactly the positions
i1, . . . , ij and zeroes elsewhere. We have hM (a) =

∑
(c1,...,cj)∈{0,1}j g(x, c1vi1 +

. . .+ cjvij) =
∑

v′∈V ′ g(x,v′) = gV ′(x,0). Hence, again, the Moebius transform
hM computes simultaneously all the gV ′(x,0) for all subspaces V ′ of V .

Remark 2. In [3] Dinur and Shamir also consider the possibility of setting some
of the non-cube public variables to 1 rather than zero. That is not the same as
our approach, as the set to sum over in that case is no longer a vector space. We
can include that generalisation in our approach as follows. Let c be a fixed vector
of public variables and V a vector space. Instead of computing fV as before, we
can compute instead the sum ∑

v∈V
g(x, c + v)

which, using equation (2), can be proved to equal (∆
(k)
v1,...,vkg)(x, c). The attack

can work equally well in this scenario.

4 Proposed linearity test

We propose an alternative to the Generalised Linearity Test presented in Sub-
section 2.2. Again, let f : Fn

2 → F2 and let {b1, . . . ,bt} ⊆ Fn
2 be a set of t

linearly independent elements. (The question of how to choose a suitable value
for t is, as we shall see, exactly the same as in [3], and a further discussion of
this choice is beyond the scope of this paper.) For each d with 1 ≤ d ≤ t consider
the following set of equations:

Ld =

∑
u�c

f(

t∑
i=0

uibi) = 0|c ∈ Ft
2,w(c) = d

 (3)

where u � c means ui ≤ ci for all i = 1, . . . , t, as defined in Section 2.3. Each
Ld has

(
t
d

)
equations. Each equation can alternatively be written using higher

7

order derivatives:

Ld =
{
∆

(d)
bi1

,...,bid
f(0) = 0|{i1, . . . , id} ⊆ {1, . . . , t}

}
.

Note that the equations in L2 correspond to the usual (BLR) linearity tests.
The equations in L3 have been proposed for testing whether the function is
quadratic in [4, Section 4]. The following result is quite straightforward but we
prove it for completeness.

Proposition 1. If f has degree d, then it satisfies all the equations in the sets
Ld+1, . . . , Lt.

Proof. By Theorem 2, deg(∆
(j)
bi1

,...,bij
f) ≤ deg(f)−j = d−j. Hence for all j > d

we have ∆
(j)
bi1

,...,bij
f ≡ 0, so the equations Lj are satisfied for all j > d.

One can give an alternative proof of this result using the Moebius transform.

Based on the result above we propose an alternative to the Generalised Linearity
Test. Namely we test whether a function f has degree one or less by testing
whether it satisfies the equations in the sets L2, . . . , Lt. An advantage of this
test is that if a function fails the test (i.e. has degree more than one), we can
get, at no additional cost, an indication of its degree. Namely, if d is the highest
number for which some equations in Ld are not satisfied, then we know that
deg(f) ≥ d. We will estimate the degree of f as being d.

The proposed test contains the same number of equations (namely 2t− t−1)
and needs the same number of evaluations of f (namely 2t) as the Generalised
Linearity Test. If the function f is affine (has degree at most one), then it passes
both types of test, so there are no false negatives. If f has degree 2 or more it
might still pass one of the types of tests (i.e. we can have false positives). We
can ask ourselves whether some functions can pass our proposed test but fail the
Generalised Linearity Test or vice-versa. We show that this is not possible, in
other words the tests are equivalent. More precisely:

Proposition 2. A function f satisfies the Generalised Linearity Test (1) iff it
satisfies the sets of equations L2, L3, . . . Lt.

Proof. We rename y{i1,...,ij} = f(bi1 + . . .+bij). Both the Generalised Linearity
Test and the set of equations L2, L3, . . . Lt can be rewritten as homogeneous sys-
tems of 2t − t− 1 linear equations in the 2t unknowns yJ for all J ⊆ {1, . . . , t}.
Both sets of equations are in triangular form, so both solution spaces have di-
mension t+1. To prove that the two solution spaces are equal, it suffices therefore
to prove one inclusion. We show that a solution of the first set of equations is
also a solution for the second. The first system gives immediately the solution

y{i1,...,ij} =

j∑
`=1

y{i`} + ((j − 1) mod 2)y∅. (4)

Consider now an equation from the second set corresponding to a vector c of
weight d ≥ 2. Let I = {i1, . . . , id} be the positions of the non-zero entries of c.

8

The equation becomes
∑

J⊆I yJ = 0. Substituting the solution (4) of the first
system of equations in this equation we obtain an equation that only contains
the variables y{i1}, . . . , y{id} and y∅. We count how many times each of these
variables appears: y{i1} will appear a number of times equal to the number of

subsets J of I that contain y{i1}; this is half of the subsets, i.e. 2d−1 times.
The variable y∅ appears once for each subset J ⊆ I of even cardinality, i.e.∑bs/2c

`=0

(
s
2`

)
= 2d−1 times. Hence the left hand side of the equation becomes

2d−1(y{i1}+ . . .+ y{i1}+ y∅). Since d ≥ 2 and we are in F2, we have 2d−1 = 0 so
the equation is satisfied.

Finally note that the Moebius transform can again be used for efficiency. Namely
putting h(y1, . . . , yt) = f(y1b1 + . . .+ ytbt) and computing the Moebius trans-
form hM of h, the set of equations Ld are precisely the equations hM (y1, . . . , yt) =
0 for all (y1, . . . , yt) of weight d. Moreover we obtain automatically the sets of
equations L1 and L0. If f satisfies L1 then f is a constant, which is another test
needed in the cube attack.

5 Implementation

We implemented our ideas and tested them on the stream cipher Trivium [1]. The
public variables are in this case the initialisation vector and the secret variables
are the key.

To test the cube attack over different vector spaces, as described in Sec. 3 we
generated a large vector space V of initialisation vectors of dimension 28 giving
us
(
28
k

)
subspaces of each dimension k = 0, . . . , 28. Linearity testing is performed

as described in Section 4 using a basis of 6 linearly independent keys, meaning
we evaluate at 26 keys for a total of 26 − 6− 1 evaluations. This will allow us to
detect results that are constant, of estimated degree 1 to 5 or degree 6 or more.

We utilised a 64-bit parallelised implementation of Trivium in order to anal-
yse 64 rounds simultaneously. The first bit of output represents round 640, with
the 64th bit of output representing round 703. This allows us to compare our
results with the results presented by Dinur and Shamir in their original cube
paper [3] which found cubes of size 12 between 672 and 680 rounds. We also
used parallelisation to implement the preprocessing phase of the cube attack.
We utilised a multicore machine so that each core receives one of the 26 keys
and runs Trivium for the given key and all the 228 initialisation vectors in the
large vector space. Each core then applies the Moebius transform on the data it
computed. This significantly improved the efficiency of the preprocessing phase.

The vector space V is specified by a basis of 28 vectors, and it will be helpful
to think of them as the rows of a 28 × 80 matrix A. The implementation can
run the standard cube attack, by choosing 28 variable indices i1, . . . , i28 and
setting the entries of A so that columns i1, . . . , i28 form a diagonal matrix and
the remaining columns are all zero. When running the attack on an arbitrary
vector space, we again choose 28 variable indices i1, . . . , i28, set the columns
i1, . . . , i28 to form a diagonal matrix, but specify two probabilities p and q which
define whether the entries in the remaining 80− 28 = 52 columns set to 0 or 1.

9

We define q as the probability that a column in matrix A will follow the
probability p or be set to all zeroes. The probability p defines the probability
that an entry will be set to 1 in matrix A. This means that when p is set to 0,
q becomes irrelevant and when q is set to 0, p becomes irrelevant. Setting either
p or q to 0 is the equivalent of running the standard cube attack.

We run the attack where q = 1 and p = 0, 0.03, 0.5, 0.97, 1, meaning that all
columns in the basis which don’t correspond to any of the i1, . . . , i28 indices are
chosen according to the probability p (for p = 1, all the remaining 52 columns
are set to all ones in the basis). A further test is run where q = 0.0625 and
p = 0.5 which generates a fairly sparse matrix A as the probability of a column
of variables being chosen using probability p is low therefore most variables are
set to 0. We kept the choice of i1, . . . , i28 the same in all cases.

6 Discussion

Figs. 1 and 2 show how many subspaces of each dimension (as a percentage of all
subspaces of that dimension) were found to return constant results where q = 1
and p = 0 or p = 1

Multiple lines show the results over different numbers of rounds, from 641
to 703. Predictably there are fewer constant results found at smaller dimensions
as the number of rounds increases, indicating that the degree of the underlying
polynomial is increasing.

Fig. 1. Percentage of Constant Vector Spaces where p = 0, q = 1 for selected rounds

When comparing the two figures, it is clear that constant results are found
at smaller dimensions when p = 0 compared to p = 1. There were no constant
results found for 703 rounds when p = 1 whereas constant results were found in
cubes as small as 19 when p = 0. This shows that changing the vector space can
have a negative effect on an attacker’s ability to find linear results.

This result is confirmed by Fig. 3 and Fig. 4, which are similar to Fig. 1 and
Fig. 2 but show the percentages of subspaces that produce linear (rather than

10

Fig. 2. Percentage of Constant Vector Spaces where p = 1, q = 1 for selected rounds

Fig. 3. Percentage of Linear Vector Spaces where p = 0, q = 1 for selected rounds

Fig. 4. Percentage of Linear Vector Spaces where p = 1, q = 1 for selected rounds

11

Fig. 5. Percentage of Degree 2 Vector Spaces where p = 0, q = 1 for selected rounds

Fig. 6. Percentage of Degree 2 Vector Spaces where p = 1, q = 1 for selected rounds

12

constant) results. For each of the rounds presented, the peak dimension where
linear results are most frequent is slightly larger (by 3 to 5 units) when p = 1
(Fig. 4) compared to where p = 0 (Fig. 3).

There are however some benefits to changing the vector space, as shown in
Fig. 7. When analysed on the same scale, we can see that a higher percentage of
subspaces produce linear results when we increase the search space by changing
the vector space of the cube attack. Across all rounds, the test where p = 1
consistently showed a 3 to 4 times higher percentage of linear results being
found as compared to where p = 0.

Furthermore, the percentage of subspaces found at dimension 14 where p = 1
in Fig. 7 is equivalent to the percentage of cubes found at cube size 12 and 13
where p = 0. While again reinforcing the result that the required dimension does
increase, this shows that it is not always of significant detriment to the attacker.

The trend of increasing the required vector space dimension continues when
we test using a small value for q. Fig. 7 shows a large increase in the percentage of
linear cubes found when p = 0.5, q = 0.0625 compared to p = 1, q = 1 although
these linear results are found at a significantly higher dimension.

Fig. 7. Percentage of Linear Vector Spaces where q = 1 when p = 0 and p = 1, and
q = 0.0625 when p = 0.5

When the value of p is set to a value other than 0 or 1 while q = 1, the attack
becomes significantly less effective. We tested with both very dense set of basis
vectors (p = 0.97) and very sparse (p = 0.03) as well as uniform (p = 0.5) and
the results were nearly identical in all cases. Tab. 1 shows that in these cases
there were no constant, linear or degree 2 results found, as well as an insignificant
number of degree 3 results using 641 rounds. The similar behaviour between all
values of p in this range when q = 1 could be due to the fact that although we
controlled the density of the basis vectors, the rest of the vectors in the space
will have quite high density irrespective of the density of the basis vectors due

13

to the high value of q. This is in contrast to the result presented in Fig. 7 which
showed a significant number of linear results when p = 0.5 and q is small.

Table 1. Percentage of Vector Spaces of degree 0 to 6 when 0 < p < 1 and q = 1

Degree 0 1 2 3 4 5 6

Percentage 0 0 0 < 0.001% 0.78% 49.21% 50%

The fact that for Trivium the cube attack over arbitrary vector spaces V
performs in general worse than the usual cube attack when q is large is, on
one hand, disappointing from an attacker’s point of view. However on the other
hand it offers insights into the properties of Trivium. Namely it shows that
cube attacks work for Trivium not only because the degree increases relatively
slowly through the rounds, but also because for the degree that is achieved, the
distribution of the monomials is not uniform, as would be expected for a random
function. This phenomenon has been observed in other contexts, for example the
density of terms of each degree is estimated by Fouque and Vannet [6]. Another
manifestation of this phenomenon is that out of all the linear equations that
were found by different cube attacks on Trivium reported in the literature, the
vast majority contain only one or two secret key variables, instead of around 40
variables as would be expected.

An alternative way to look at this would be to create a new, enhanced “black
box” for Trivium, which contains a multiplication of the vector of public IV
variables by an arbitrary fixed invertible matrix. The result of the multiplication
is fed into the usual Trivium black box function. It is expected that the usual
cube attack on this enhanced black box would have a much reduced chance of
success, as it would be, in effect, equivalent to running our generalised cube
attack on the usual Trivium black box. Obviously, the matrix needs to be secret,
as otherwise the attacker could undo its effect. Preliminary tests on small cubes
seem to confirm this idea, but a full investigation will be the subject of future
work.

Acknowledgements The authors would like to thank the referees for useful
comments. One of the referees brought to our attention the recent paper [2] that
we had not been aware of, and in which higher order derivatives with respect to
an arbitrary vector space (as explored in Sec. 3) were used for statistical attacks
on the NORX cipher.

References

1. Christophe De Cannière. Trivium: A stream cipher construction inspired by block
cipher design principles. In Information Security, 9th International Conference, ISC
2006, Samos Island, Greece, August 30 - September 2, 2006, Proceedings, pages 171–
186, 2006.

2. Sourav Das, Subhamoy Maitra, and Willi Meier. Higher order differential analysis
of NORX. IACR Cryptology ePrint Archive, 2015:186, 2015.

14

3. Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polynomials. In
EUROCRYPT, pages 278–299, 2009.

4. Itai Dinur and Adi Shamir. Applying cube attacks to stream ciphers in realistic
scenarios. Cryptography and Communications, 4(3-4):217–232, 2012.

5. Ming Duan and Xuejia Lai. Higher order differential cryptanalysis framework and
its applications. In International Conference on Information Science and Technology
(ICIST), pages 291–297, 2011.

6. Pierre-Alain Fouque and Thomas Vannet. Improving key recovery to 784 and 799
rounds of trivium using optimized cube attacks. In Fast Software Encryption - 20th
International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected
Papers, pages 502–517, 2013.

7. Pierre-Alain Fouque and Thomas Vannet. Improving key recovery to 784 and 799
rounds of trivium using optimized cube attacks. IACR Cryptology ePrint Archive,
2015:312, 2015.

8. Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall/CRC, 1st edition, 2009.
9. S. Knellwolf and W. Meier. High order differential attacks on stream ciphers. Cryp-
tography and Communications, 4(3-4):203–215, 2012.

10. Xuejia Lai. Higher order derivatives and differential cryptanalysis. In Richard E.
Blahut, Daniel J. Costello, Jr., Ueli Maurer, and Thomas Mittelholzer, editors, Com-
munications and Cryptography, volume 276 of The Springer International Series in
Engineering and Computer Science, pages 227–233. Springer Verlag, 1994.

11. M. Vielhaber. Breaking ONE.FIVIUM by AIDA an algebraic IV differential attack.
Cryptology ePrint Archive, Report 2007/413, 2007. urlhttp://eprint.iacr.org/.

