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Abstract

The notion of group signatures was introduced to allow group members to sign anonymously on behalf
of a group. A group manager allows a user to join a group, and another will be able to open a signature
to revoke its anonymity. Several schemes have already been proposed to fulfil these properties, however
very few of them are proven in the standard model. Of those proven in the standard model, most schemes
rely on a so-called q-assumptions. The underlying idea of a q-assumptions is that to prove the security
of the scheme, we are given a challenge long enough to allow the simulator to answer queries. Another
common solution is to rely on an interactive hypothesis. We provide one of the first schemes proven in
the standard model, requiring a constant-size non-interactive hypothesis. We then compare its efficiency
to existing schemes, and show that this trade-off is acceptable as most schemes with better efficiency rely
on either an interactive or a q-hypothesis. The exception to this is the recent independent work Libert,
Peters and Yung (CRYPTO 2015), who presented an efficient group signature scheme in the standard
model relying on standard assumptions.

1 Introduction

A group signature scheme [Cv91] is a protocol which lets a member of a group individually issue signatures
on behalf of the group, in an anonymous but traceable way. To this end, we have a trusted manager, called
the Opener, who can revoke anonymity of the actual signer in case of abuse. Group signatures primarily
guarantee anonymity, which means that nobody (except the Opener) can link the signature to the signer,
but also unlinkability, which means that one cannot two signatures were produced by the same user or not.
One application Group Signature use case is anonymous auction, where users are interested in knowing what
the best offer is. Additionally, no bid (except the winning one) should be linkable to its owner.

Several steps have been made in the study of those protocols: Bellare, Micciancio and Warinschi [BMW03]
gave formal definitions of the security properties of group signatures (the BMW model) and proposed a
(impractical proof of concept) scheme under general assumptions. However, this model required that the
size of the group be fixed a priori and may not change and are known as static groups. Later, Bellare, Shi and
Zhang [BSZ05], and independently Kiyias and Yung [KY06], extended this model to dynamic groups (the
BSZ model), which allows the group to grow arbitrarily large, emphasizing the importance of unforgeability
and anonymity. To allow for this another group manager, called the Issuer, is required.

1.1 Previous Work

The first efficient proposed group signature schemes were proven in the Random Oracle Model [ACJT00,
AST02, BBS04, BS04]. Camenisch and Lysyanskaya [CL04] proposed one of the first standard model schemes.

*The 1st author was supported by the French ANR project ID-FIX (ANR-16-CE39-0004).
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Despite being fairly efficient, these schemes suffered from the drawback that the signatures were non-constant
and would grow related to either the size of the group or the number of revoked users.

The first group signature with constant size was due to Groth [Gro06], but the constant exceptionally large
and impractical. Soon after, another scheme was proposed by Boyen and Waters [BW06], with more plausible
sizes. Groth then improved on the scheme of [Gro06] in [Gro07] and provided not only an efficient group
signature scheme, but also presented a generic approach consisting in using a re-randomizable certificate
to produce a certified signature. Kakvi then proposed in [Kak10] some improvements that lead to a more
efficient SXDH instantiation. In another line of work, Delerablée and Pointcheval [DP06] proposed another
short scheme based, which was improved and extended by Blazy and Pointcheval in [BP12]. However, one
critical flaw shared by all these schemes was that they relied on q-type assumptions. We attempt to overcome
this, by presenting a scheme without relying on q-type assumptions.

q-type assumptions are a common type of assumption in modern cryptographic schemes, due to their
powerful nature. A large number of these are used due to the fact that we are unable to compute responses to
oracle queries by adversaries in our reductions. In these, one must rely upon parametrized or so-called q-type
assumption families. In these types of assumptions, we are given q intermediate values to aid in answering
oracle queries. These assumptions tend to be quite bespoke assumptions for the scheme in question and may
not be useful for anything else, which in turn means they will probably not be well studied. On occasion,
authors will provide a proof in the generic group model of the hardness of an assumption; this is neither
standard practice nor guarantee of the actual security of the assumption. This has also lead to “a dizzying
array of tailor-made complexity assumptions.” [Boy08].

As a result of this, several researchers have asked if it is at all possible to do away with q-type assumptions,
or if there is some property in them that makes them indispensable. A study of sub-class of these assumptions,
known as the “one-more” assumptions was undertaken by Bellare et al. [BNPS02] and later by Bresson et
al. [BMV08]. The later framework of Boneh, Boyen and Goh [BBG05] which was later dubbed the “Uber-
Assumption” [Boy08], the coining of which is attributed to Dan Boneh [Boy08, Footnote 1]. This framework
for a unified description of all q-type assumptions was the first step in a full classification of q-type assumption.

There have been other works looking at removing q-type assumptions from cryptographic primitives. The
question of generically removing q-assumptions was studied by Chase and Meiklejohn [CM14]. The approach
of Chase and Meiklejohn [CM14] transforms schemes in a prime order pairing groups to schemes in composite
order groups. This work was further extended by Chase, Maller and Meiklejohn [CMM16], covering more
assumptions and having a better security loss, however, they still require composite order groups. In the
other direction, Bresson, Monnerat and Vergnaud [BMV08] showed separation between q-type assumptions
and their non-q or simple variants, using algebraic reductions.

In a recent independent work, Libert, Peters and Yung [LPY15] have proposed a group signatures scheme,
which is secure without any q-type assumptions. They use the recent advances in structure preserving
signatures [AFG+10] as a principal building block. However, the drawback of this construction, as also
noted by Libert, Peters and Yung, is that their scheme is not modular and cannot be easily adapted with
new building blocks. In contrast, our construction is highly modular and achieves similar efficiency to the
of Libert, Peters and Yung [LPY15].

Apart from the group signature schemes we discuss, there have been some advances in other directions
regarding group signatures. There have been efficient schemes suggested in the Generic Group Model [CS18],
the Random Oracle Model [OEH+19, GL19, DS18] or based on other assumptions, such as lattices [GKV10,
dLS18, LNWX18, KY19, LNWX17, LLM+17] and code-based assumptions [ABCG16]. Additionally, Bootle
et al. [BCC+16] presented a model for fully dynamic group signatures, i.e. signatures that can not only grow
but also shrink in size. We do not compare our scheme to any of these, as they are in a different setting to
the one we consider.

1.2 Our Contribution.

In this paper, we present a simple and efficient construction of group signatures. In independent work,
Libert, Peters and Yung [LPY15] recently presented a compact groups signature scheme based on standard,

2



or “simple”, assumptions1, parallel to our work [BK15]. We note that our signatures are of comparable
size to that of Libert, Peters and Yung, but we have a stronger security notion. Where as the underlying
signature scheme in [LPY15] is proven to be F-CMA secure, we prove full UF-CMA security. Note that both
schemes have a loss linear in the number of signing queries.

We present simple and efficient constructions of group signatures. They can be proven under reasonable
assumptions (variations of the SDH) and prove the security of both schemes in the standard model. In this
paper we combine the use of a Delerablée-Pointcheval [DP06] certificate for Waters’ signature [Wat05], and
the Groth-Sahai [GS08] methodology. We describe our instantiation through the framework of Groth [Gro06,
Gro07] for generic group signatures.

1.3 Organization

In the next section, we present the primitive of group signature and the security model, due to Bellare, Shi
and Zhang [BSZ05]. Then, we present the basic tools upon which our instantiations rely. Eventually, we
describe our schemes, in the SXDH setting, with the corresponding assumptions for the security analysis that
is provided. For the sake of consistency, we then explain the results with the (intuitive) DLin instantiations
of this scheme in Section 4. This scheme requires roughly the same number of group elements and, based on
the chosen elliptic curve and the way one wants to verify the signatures, one may prefer one instantiation to
the other. It also allows us to compare our signature with the previous one, and show that we are roughly as
efficient as most of the modern schemes, even though we require neither a q-assumption nor an interactive
one.

2 Preliminaries

2.1 Computational Assumptions.

Our protocols will work with a pairing-friendly elliptic curve, of prime order:

� G1,G2 and GT are multiplicative cyclic groups of finite prime order p, and g1, g2 are generators of
G1,G2;

� e is a map from G1×G2 to GT , that is bilinear and non-degenerated, such that e(g1, g2) is a generator
of GT .

In particular, we consider Type 3 group, as per the definitions of Galbraith, Paterson and Smart [GPS08].
For our purposes, we will need the following assumptions.

Definition 1 (Symmetric eXternal Diffie-Hellman [BBS04]). Let G1,G2 be cyclic groups of prime order,
e : G1 ×G2 → GT be a bilinear map. The SXDH assumption states that the DDH assumption holds in both
G1 and G2.

Definition 2 (q-Strong Diffie-Hellman Assumption in G [BB04]). Let G be a cyclic group of order p generated

by g. The q-SDH problem consists, given (g, gγ , gγ
2

, . . . , gγ
q

), in computing a pair (x, g1/γ+x).

Definition 3 (Decision Linear Assumption in G [BBS04]). Let G be a cyclic group of prime order, with
generator g. The DLin assumption states that given (g, gx, gy, gax, gby, gc), it is hard to decide if c = a + b
or not, for random a, b, x, y ∈ Zp.

Definition 4 (eXternal Decision Linear 2 Assumption [AFG+10]). Let G1,G2 be cyclic groups of prime
order, with generators (g1, g2), and e : G1 ×G2 → GT be a bilinear map.The XDLin2 assumption states that

given a tuple of the form (g1, g
x
1 , g

y
1 , g

ax
1 , gby1 , g2, g

x
2 , g

y
2 , g

ax
2 , gby2 , g

c
2), it is hard to decide if c = a + b or not,

for random a, b, x, y ∈ Zp.
1While q-assumptions are more and more common, they require a polynomial number of inputs and thus should be avoided

to provide a drastic improvement in security.
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Definition 5 (Advanced Computational Diffie-Hellman [BFPV11]).
Let us be given two cyclic groups (G1,G2) of prime order p with (g1, g2) as respective generators and e an
admissible bilinear map G1 × G2 → GT . The CDH+ assumption states that given (g1, g2, g

a
1 , g

a
2 , g

b
1), for

random a, b ∈ Zp, it is hard to compute gab1 .

Definition 6 (q-Double Hidden Strong Diffie-Hellman [FPV09]). Let G1,G2 be multiplicative cyclic groups
of order p generated by g1, g2 respectively. The q-DHSDH problem consists given (g1, k1, g2, g

γ
2 ) and several

tuples of the form (gxi1 , g
xi
2 , g

yi
1 , g

yi
2 , (k1g

yi
1 )1/(γ+xi))i∈[1,q] in computing a tuple

(gx1 , g
x
2 , g

y
1 , g

y
2 , (k1g

y
1 )1/γ+x) for a new pair (x, y).

For completeness, we state the non-q (q = 0) version of this assumption, which we will need for our
security proof.

Definition 7 (Double Hidden Strong Diffie-Hellman in G1,G2). Let G1,G2 be multiplicative cyclic groups of
order p generated by g1, g2 respectively. The DHSDH problem consists of, given (g1, k1, g2, g

γ
2 ) in computing

a tuple of the form (gx1 , g
x
2 , g

y
1 , g

y
2 , (k1g

y
1 )1/γ+x) for any pair (x, y).

It is critical to note that the DHSDH is not a q-type assumption. The q-DHSDH is an extension of the
DHSDH assumption to a q-type assumption. Our goal is to remove any dependencies of number of queries
from our assumptions, which is exactly was using the DHSDH instead of the q-DHSDH achieves. Additionally,
the DHSDH is a strictly stronger problem that the q-DHSDH, as any algorithm that can solve the DHSDH
problem can also solve the q-DHSDH problem.

2.2 Dynamic Group Signatures

We prove our scheme secure in the growing group security model of Bellare, Shi and Zhang [BSZ05], here
on in referred to as the BSZ model. The model implicitly requires that all users have their own personal
signing/verification key pairs, which are all registered in a Public Key Infrastructure(PKI). We thus assume
that any user Ui wishing to join the group owns a public-secret key pair (usk[i], upk[i]), certified by the PKI.
Within our group signature setting, we have two distinct2 authorities or managers, namely:

� The Issuer who adds new uses to the group and issues them with a group signing key and the corre-
sponding certificate,

� The Opener, it is able to “open” any signature and extract the identity of the signer.

A group signature scheme is defined by a sequence of (interactive) protocols, GS = (Setup, Join,Sig,Verif,
Open, Judge), which are defined as follows:

� Setup(1λ): Generates the group public key gpk, the issuer key ik for the Issuer, and the opening key
ok for the Opener.

� Join(Ui): This is an interactive protocol between a user Ui (who has their secret key usk[i]) and the
Issuer (using his private key ik). At the end of the protocol, the user obtains their group signing key
sk[i], and the group manager adds the user to the registration list, Reg. We denote the set of registered
users by I.

� Sig(gpk, ,m, sk[i]): Produces a group signature σ on the message m, under user Ui’s group signing key
sk[i].

� Verif(gpk,m, σ): Verifies the validity of the group signature σ, with respect to the public key gpk. This
algorithm thus outputs 1 if and only if the signature is valid.

2The BSZ model requires that both authorities must be distinct for certain notions of security. However, one could have
them as the same entity in a relaxed version of the BSZ security model.
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Issuer Opener
Traceability Uncorrupted Partially Corrupted
Anonymity Fully Corrupted Uncorrupted

Non-Frameabiity Fully Corrupted Fully Corrupted

Table 1: Maximum corruption level of managers allowed.

� Open(gpk,m, σ, ok): If σ is valid, the Opener, using ok, outputs a user identity i assumed to be the
signer of the signature with a proof τ of this accusation.

� Judge(gpk,m, σ, i, τ): Verifies that the opening of σ to the identity i was indeed correctly done.

We now recall the BSZ security model for group signatures. As stated before, group signatures guarantee
anonymity, unlinkability and non-frameability, which we will explain below. We require that we have two
group authorities, namely the Issuer, who will issue certificates to grant access to the group, and an Opener
who will be able to revoke anonymity, and thus trace back the actual signers. For different security notions,
we allow each authority to be independently corrupted to some extent. We say an authority is fully corrupted
if it reveals its key and potentially deviates from its algorithm. We say an authority is partially corrupted if
it reveals its key but does not deviate from its algorithm. An uncorrupted authority neither reveals its key
nor deviates from its algorithm. We give the maximum corruption levels allowed for each security property
in the table below

Additionally, we assume that each user Ui owns a pair (usk[i], upk[i]) certified by a Public Key Infras-
tructure (PKI). We now recall the security notions.

2.3 Correctness

The correctness notion guarantees that honest users should be able to generate valid signatures, and the
Opener should then be able to get the identity of the signers, and provide a convincing proof for the Judge.
In the following experiments that formalize the security notions, the adversary can run the Join protocol:

� Either through the joinP-oracle (passive join), which means that it creates an honest user for whom it
does not know the secret keys: the index i is added to the HU (Honest Users) list. The adversary gets
back the public part of the certificate pk[i];

� or through the joinA-oracle (active join), which means that it interacts with the group manager to
create a user it will control: the index i is added to the CU (Corrupted Users) list. The adversary gets
back the whole certificate pk[i], and sk[i].

For users whose secret keys are known to the adversary, we let the adversary play on their behalf. For honest
users, the adversary can interact with them, granted some oracles:

� corrupt(i), if i ∈ HU, provides the secret key sk[i] of this user. The adversary can now control it. The
index i is then moved from HU to CU;

� Sig(i,m), if i ∈ HU, plays as the honest user i would do in the signature process. Then i is appended
to the list §[m].

2.4 Traceability

Traceability asserts that nobody should be able to produce a valid signature that cannot be opened in a
valid and convincing way. We detail the traceability experiment in Figure 1 below.

We define the advantage of an adversary against traceability as:

AdvtrGS,A(λ) = Pr[ExptrGS,A(λ) = 1]

and we say that a group signature scheme is traceable if, for any polynomial adversary A, the advantage
AdvtrGS,A(λ) is negligible.
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Experiment ExptrGS,A(λ)
1. (pk,msk, skO)← Setup(1λ)
2. (m,σ)← A(pk : joinA, joinP, corrupt,Sig, open)
3. IF Verif(pk,m, σ) = 0, RETURN 0
4. IF ∃j 6∈ CU ∪ §[m],

Open(pk,m, σ, skO) = (j,Π)
RETURN 1

5. ELSE RETURN 0

Figure 1: Traceability Experiment

2.5 Non-Frameability

Non-frameability guarantees that no dishonest player (even the authorities, i.e. the Issuer and the Opener,
hence the keys msk and skO provided to the adversary) will be able to frame an honest user. That is to say
an honest user that does not sign a message M should not be convincingly declared as a possible signer. We
detail the non-frameability experiment in Figure 2 below.

Experiment ExpnfGS,A(λ)
1. (pk,msk, skO)← Setup(1λ)
2. (m,σ)← A(pk,msk, skO : joinP, corrupt,Sig)
3. IF Verif(pk,m, σ) = 0 RETURN 0
4. IF ∃i ∈ HU \ §[m],

Open(pk,m, σ, skO) = (i,Π)
RETURN 1

5. ELSE RETURN 0

Figure 2: Non-Frameability Experiment

We define the advantage of an adversary against non-frameability as

AdvnfGS,A(λ) = Pr[ExpnfGS,A(λ) = 1]

and we say a group signature scheme is non-frameable if, for any polynomial adversary A, the advantage
AdvnfGS,A(λ) is negligible.

2.6 Anonymity

Anonymity states that the signer of a message remains anonymous. In particular, given two of honest users
i0 and i1, the adversary should not have any significant advantage in guessing which one of them have issued
a valid signature. The adversary can interact with honest users as before (with Sig and corrupt), but the
challenge signature is generated using the interactive signature protocol Sign, where the adversary plays the
role of the corrupted users, but honest users are activated to play their roles.

We define the advantage of an adversary against anonymity as:

AdvAnGS,A(λ) = Pr[ExpAn−1GS,A (λ) = 1]− Pr[ExpAn−0GS,A (λ) = 1]

and we say that a group signature scheme is anonymous for any polynomial adversary A, the advantage
AdvAnGS,A(λ) is negligible.

6



Experiment ExpAn−bGS,A (λ)

1. (pk,msk, skO)← Setup(1λ)
2. (m, i0, i1)← A(FIND, pk,msk : joinP, corrupt,Sig)
3. σ ← Sign(pk, ib,m, sk[i])
4. b′ ← A(GUESS, σ : joinP, corrupt,Sig)
5. IF i0 6∈ HU OR i1 6∈ HU RETURN 0
6. RETURN b′

Figure 3: Anonymity Experiment

2.7 Certified Signatures

We use a primitive known as a certified signature scheme which was introduced by Boldyreva et al. [BFPW07].
A certified signature scheme is a signature scheme where the well-formedness of the public key is verifiable
due to an additional certificate.

We use the BBS-like certification [BBS04] proposed by Delerablée and Pointcheval [DP06] to certify a
Waters public key [Wat05]. When a receiver wishes to verify a certified signature, he will not only verify the
signature, as per usual, but also verify the certificate of the well-formedness of the public key.

The security requirements for certified signatures is that we should neither be able to create a signature
using a faked certificate key nor forge a signature for an already issued certificate. Although Boldyreva et
al. provide more general security requirements, we use slightly simpler definitions, as in previous works.
For a certified signature scheme to be secure, we require it to satisfy the following conditions:

� Unfakeability: No adversary should be able to produce a valid certificate for a key pair generated of
his choice, even after having seen a polynomial number of certificates

� Unforgeablity: We require that the basic signature scheme satisfies at least the notion of existential
unforgeability under weak message attack.

2.8 Groth-Sahai Commitments.

We will follow the Groth-Sahai methodology for SXDH-based commitment in the SXDH setting. The
commitment key consists of u ∈ G 2×2

1 and v ∈ G 2×2
2 . There exist two initializations of the parameters; either

in the perfectly binding setting, or in the perfectly hiding one. Those initializations are indistinguishable
under the SXDH assumption which will be used in the simulation. We denote by C(X) a commitment of a
group element X. An element is always committed in the group (G1 or G2) it belongs to. If one knows the
commitment key in the perfectly binding setting, one can extract the value of X, else it is perfectly hidden.
We note C(1)(x) a commitment of a scalar x embedded in G1 as gx1 . If one knows the commitment key in
the perfectly binding setting, on can extract the value of gx1 else x is perfectly hidden. The same things can
be done in G2, if we want to commit a scalar, embedding it in G2.

Proofs. Under the SXDH assumption, the two initializations of the commitment key (perfectly binding
or perfectly hiding) are indistinguishable. The former provides perfectly sound proofs, whereas the latter
provides perfectly witness hiding proofs. A Groth-Sahai proof, is a pair of elements (π, θ) ∈ G2×2

1 × G2×2
2 .

These elements are constructed to help in verifying pairing relations on committed values. Being able to
produce a valid pair implies knowing plaintexts verifying the appropriate relation.

We will use three kinds of relations:

� pairing products equation which requires 4 extra elements in each group;

� multi-scalar multiplication which requires 2 elements in one group and 4 in the other;
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� quadratic equations which only requires 2 elements in each group.

If some of these equations are linear, some of the extra group elements are not needed, which leads to
further optimizations.

In the following, we will generate two Common Reference Strings to handle commitments and proofs
under this methodology through the following algorithm:

� GS.KeyGen(gk): generates two commitment keys, and the associated extraction key xk if it exists. In
our protocol, ckB will provide perfectly binding commitments in both group and while ckH will provide
perfectly hiding commitments in G2.Both commitment keys are added to the Common Reference String
crs.

� C.Commit(ck∗, A): allows to commit to an element A under the key ck∗, this produces a commitment,
and the randomness r used for the commitment.

� GS.Prove(E, (C, ck∗)): generates a Zero-Knowledge Groth-Sahai Proof of
Knowledge π, that the plaintexts committed in C under ck∗ satisfy the equation E. Such proofs require
the commitment randomness r, and can only be done directly if the elements are committed under the
same key 3.

� GS.Verify(π): verifies the validity of the proof π. To lighten the notation, we assume that a proof
π implicitly contains the equation E and the commitment (C, ck∗). Additionally, we will denote by
GS.Verify(π1, π2, . . .) the verification of several proofs, this can be done sequentially or using a batch
technique, as presented in [BFI+10].

� GS.Re-Randomize(C, ck∗, π): re-randomizes the commitment C, using
C.Re-Randomize(C, ck∗), and then adapts the proof π. This step does not require the knowledge of the
commitment randomness.

� C.Extract(C, xk): extracts the plaintext A from C if A was committed in C under a binding key. The
soundness of proof generated by Groth and Sahai methodology implies that if GS.Verify(E, (C, ckB), π)
holds, then we have that C.Extract(C, xk) verifies the equation E.

2.9 A Classical Trick

Our construction will rely on a classical trick used on Groth-Sahai proofs; in several e-cash papers [CG07,
BCKL09, LV09, FV10, BCF+11], the construction needs an anonymity property where the adversary should
not be able to get any information on a coin while a judge should be able to extract the information while
in the same CRS. Another application around this idea was presented by Fischlin, Libert and Manulis in
[FLM11] where the authors used it to provide a non-interactive technique to commit to elements in the UC
framework.

In those cases, the solution proposed, is to commit twice to the value X, once with a perfectly binding
commitment key, and once with a perfectly hiding key, and then proving the committed value X is the same
in both. (While this is necessarily true because of the perfectly hiding commitment, under the Co-Soundness
of Groth-Sahai proof, this is hard to do without the knowledge of trapdoors in the commitment key). To
then use this X in the rest of the scheme, one simply builds proof using the perfectly hiding commitment.

We will employ exactly this trick in the context of group signatures. Most schemes rely on a q-assumption,
or even an interactive assumption, to prove anonymity of the scheme. We use this trick to be able to prove
anonymity without using either, thus achieving our goal.

3This means that we have to be careful that, for a given equation, our commitments in G2 are done solely with ckH or solely
with ckB .

8



algorithm KeyGen(1k) algorithm Issue

gk = (p,G1,G2,GT , g1, g2, e)←$ Gen(1k)
` = poly(λ)
γ ∈

R
Zp, Γ = gγ2

k1 ∈R G1

u ∈
R
G`1 //description of F

return (ak, ck) = ((gk,Γ, k1,F), (ak, γ))

User Issuer

y′ ∈
R
Zp

gy
′

1 ,gy
′

2→
x, y′′ ∈

R
Zp

A = (k1g
y′

1 g
y′′

1 )
1

x+γ

cert = (gx1 , g
x
2 , A)

sk = y′ + y′′
y′′,cert←

pk = (gsk1 , g
sk
2 )

return (pk, cert, sk) return (pk, cert)
algorithm Sign(pk, sk,m) algorithm Verify(pk, ak, cert,m, σ)

s ∈
R
Zp

σ1 = hskF(m)s

σ2 = gs1
σ3 = gs2
return σ = (σ1, σ2, σ3)

return 1 if
e(cert1, g2) = e(g1, cert2)∧
e(cert3, ak2pk2) = e(k1, g2)e(g1, pk2)∧
e(cert2, g2) = e(g1, σ3)∧
e(σ2, g2) = e(g1, σ3)∧
e(σ1, g2) = e(h1, pk2)e(F(m), σ3)

else return 0

Figure 4: The Delerablée-Pointcheval Certified Waters Signature Scheme.

3 Group Signature without q-Assumptions

3.1 Asymmetric Waters Signature Scheme

We briefly recall the asymmetric Waters signature scheme, which is a core building block in our scheme
[Duc10, BFPV11].

� Setup(1k): The scheme needs a (asymmetric) pairing-friendly environment (p,G1,G2,GT , e, g1, g2),
where e : G1 × G2 → GT is an admissible bilinear map, for groups G1,G2 and GT , of prime order p,
generated by g1, g2 and gt = e(g1, g2) respectively. We will sign messages M = (M1, . . . ,Mk) ∈ {0, 1}k.

To this aim, we need a vector ~u = (u0, . . . , uk)
$← Gk+1

1 , and for convenience, we denote the Waters

Hash as F(M) = u0
∏k
i=1 u

Mi
i . We also need an additional generator h1

$← G1. The global parameters
param consist of all these elements (p,G1,G2,GT , e, g1, g2, h1, ~u).

� KeyGen(param): Chooses a random scalar x
$← Zp, which defines the public key as (X1, X2) = (gx1 , g

x
2 ),

and the secret key as sk = Y = hx1 .

� Sign(sk = Y,M ; s): For some random s
$← Zp, define the signature as σ =

(
σ1 = Y (F(M))s, σ2 =

g−s1 , σ3 = g−s2 ).

� Verif((X1, X2),M, σ): Checks whether e(σ1, g2) · e(F(M), σ3) = e(h1, X2), and e(σ2, g2) = e(g1, σ3).

3.2 Certified Signature Scheme

We will use a slight variant of the signature scheme due to Waters [Wat05] using certificates as described by
Delerablée and Pointcheval [DP06], which we refer to as the DPW scheme from here on. We describe the
scheme in Figure 4

The DPW Scheme was shown to be secure under the q-DHSDH, and CDH+ assumptions. In Section 3.2,
we will present a modification of this scheme so that we can prove the security under the DHSDH and CDH+

assumptions.
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algorithm KeyGen(1k)
gk = (p,G1,G2,GT , g1, g2, e)←$ Gen(1λ)
γ ∈

R
Zp, Γ = gγ2

k1 ∈R G1, h2,F ∈R G`+2
2

(ckB , ckH , xk)←$ GS.KeyGen(gk)
(ak) = (gk,Γ, k,F , ckB , ckH , crs)
(ck) = (ak, γ)
return (ak, ck)
algorithm Sign(pk, sk,m)
s ∈

R
Zp

σ1 = hsk2 F(m)s

σ2 = gs1
σ3 = gs2
return σ = (σ1, σ2, σ3)
algorithm Verify(pk, ak, cert,m, σ)
return 1 if

GS.Verify(π) == 1 ∧
e(σ2, g2) == e(g1, σ3) ∧
e(g1, σ1) == e(pk1, h2)e(σ2,F(m))

return 0 else

algorithm Join/Issue
User Issuer

y′ ∈
R
Zp

gy
′

1→
y′′, x ∈

R
Zp

A = (k1g
y′

1 g
y′′

1 )
1

x+γ

α = C.Commit(ckB , A)
χ = C.Commit(ckH , g

x
2 )

X1 = C.Commit(ckB , g
x
1 )

X2 = C.Commit(ckB , g
x
2 )

π1 = GS.Prove(α, χ)
π2 = GS.Prove(X1, χ)
π3 = GS.Prove(X1, X2)
X = (X1, X2)
π = (π1, π2, π3)
cert = (α, χ,X, π)

y′′,pk,cert←− pk = (g
y′i
1 g

y′′i
1 , g

y′i
2 g

y′′i
2 )

sk = y′ + y′′

if pk 6= (gsk1 , g
sk
2 )

return ⊥
if GS.Verify(π) 6= 1

return ⊥
else

return (pk, cert, sk) return (pk, cert)

Figure 5: The Delerablée-Pointcheval Certified Waters Signature Scheme with Commitments.

We now present our variant of the Delerablée-Pointcheval Certified Waters Signature Scheme, using
commitments, which we will call the DPWC scheme from here on. In the DPWC scheme, instead of
sending the certificate, the certificate authority will send commitments to the certificate, and a proof that
the certificate is well-formed. The receiver must now verify the proof of well-formedness instead of the
certificate. We can now show that the hardness of forging a certificate can be reduced to the soundness of
the commitment scheme, which in turn is based upon the SXDH. Due to technical reasons, we need two
common reference strings, one which is perfectly hiding and one which is perfectly binding. We present the
DPWC scheme in Figure 5.

Theorem 1. The DPWC scheme is a certified signature scheme with perfect correctness for all messages
m ∈ {0, 1}`. It is unfakeable under the DHSDH assumption and unforgeable under the CDH+ assumption.

Proof. The correctness of the scheme follows from the correctness of the Waters signatures, the Delerablée-
Pointcheval certification and the correctness of the Groth-Sahai NIZK scheme.

Lemma 1. If an adversary can (q′, t′, ε′)-break the unfakeability of the scheme, then we can (t, ε)-solve the
Double Hidden Strong Diffie-Hellman (DHSDH) problem, with

t ≈ t′ and ε = ε′.

Proof. We receive as an initial input the DHSDH challenge of the form (p,G1,G2,GT , g1, k1, g2, gγ2 , e). We
then generate new commitment keys and keys for the proof system, thus giving us the extraction keys for
the commitments and the ability to simulate the proofs, using the CRS trapdoor. We send the challenge
along with the commitment keys and public parameters for the proof system to the adversary. Note that
these form a valid DPWC public key. The adversary will then make q queries to the KeyReg oracle, which
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will allow it to act as a user and receive a key and certificate. We pick random values y′′, x as before. Now
since we do not possess a valid certification key, we must simulate the certificate.

To simulate a certificate, we pick a random value A and commit to it. We then simulate the zero-
knowledge proofs of well-formedness using the simulation trapdoor. Since we never send the A values in the
clear, under the indistinguishability of the commitments, the adversary will not distinguish the difference.
Hence, we have a perfect simulation of the scheme. The adversary will then submit a forged certificate
cert∗, a public key pk∗, message m∗, signature σ∗. We first verify the certified signature. If the adversary
has produced a valid certified signature, then both the certificate and signature must be correctly formed.
Using the extraction key on the binding commitments, we are able to extract the value A∗ from the forged

certificate, along with the values gx
∗

1 , gx
∗

2 , gy
∗

1 , gy
∗

2 . We then submit (gx
∗

1 , gx
∗

2 , gy
∗

1 , gy
∗

2 , A∗) our solution to the
DHSDH problem. We note that we win with exactly the same probability as the adversary. �

The unforgeability of the DPW scheme was shown to hold by Blazy et al. in [BFPV11]. We include their
statement in here for completeness.

Lemma 2. Given an adversary can (q′, t′, ε′)-break the unforgeability of the scheme, then we can (t, ε)-solve
the Advanced Computational Diffie-Hellman (CDH+) problem, with

t ≈ t′ and ε = Θ(ε′/q′
√
`)

where ` is the length of our messages.

Proof. The proof can be found in [BFPV11, Appendix D]. �
This completes the proof. �

3.3 Our Group Signature Construction

Now that we have the DPWC scheme, we can begin to construct our group signature scheme. The näıve
approach would be to simply to provide each user with a DPWC certificate and key pair and use those
to produce in the normal manner. However, we can immediately see that these signatures are no longer
unlinkable, as a all the signatures from any user would have their DPWC certificate attached to it, along
with the corresponding public key. This is remedied by treating the DPWC public key as part of the certificate
and committing it as well during the Join/Issue protocol. When signing the user will re-randomize these
commitments and the proofs.

However, the signatures are still linkable. This is due to the fact that given a pair of Waters signatures,
one can check if they are signed using the same key or not. To resolve this problem, we use an idea due
to Fischlin [Fis06] that a commitment to a signature and proof of well-formedness implies a signature. We
apply this idea to the Waters signature and hence get commitments of our signature elements and proofs
of their well-formedness. This “committed” signature and our re-randomized committed certificate and the
relevant proofs are then sent as the group signature.

The Open procedure will use the extraction key xk to extract the certificate from a signature and then
check if there is a registry entry with the same certificate. If a matching certificate is found, we know that
this user must have made that signature and thus it can be opened to their index. To prove that the opening
was done correctly, we simply prove that the commitment stored in the registry and the one commitment
from the signature contain the same certificate.

Theorem 2. The scheme described in Figure 6 is a group signature scheme with perfect correctness. The
scheme satisfies anonymity, traceablity and non-frameability under the SXDH,DHSDH and CDH+ assump-
tions.

Proof. We will now provide proof sketches of the statements individually. We omit correctness, as it is
clear.
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algorithm KeyGen(1k) algorithm Issue(usk[i], ik)

gk = (p,G1,G2,GT , g1, g2, e)←$ Gen(1k)
γ ∈

R
Zp, Γ = gγ2

k1 ∈R G1, h2,F ∈R G`+2
2

(ckB , ckH , xk)←$ GS.KeyGen(gk)
(ak) = (gk,Γ, k,F , ckB , ckH , crs)
(ck) = (ak, γ)
return (ak, ck)

algorithm Sign(gpk, sk,m)
s ∈

R
Zp

cert′i ←$ GS.Re-Randomize(certi)
Y1 = GS.Re-Randomize(ckB , g

ski
1 , π′i,1)

Y2 = C.Commit(ckB , g
ski
2 )

σ1 = C.Commit(hski2 F(m)s)
σ2 = gs1
σ3 = gs2
π̃1 = GS.Prove(Y1, Y2)
π̃2 = GS.Prove(σ1, σ2, Y2)
return σ = (σ1, σ2, σ3, cert

′
i, Y1, Y2, π̃1, π̃2)

User Issuer

y′i ∈R Zp
gy
′
i

→
y′′i , xi ∈R Zp
Ai = (k1g

y′

1 g
y′′

1 )
1

xi+γ

αi = C.Commit(ckB , Ai)
χi = C.Commit(ckH , g

xi
2 )

Xi,1 = C.Commit(ckB , g
xi
1 )

Xi,2 = C.Commit(ckB , g
xi
2 )

πi,1 = GS.Prove(αi, χi)
πi,2 = GS.Prove(Xi,1, χi)
πi,3 = GS.Prove(Xi,1, Xi,2)
Xi = (Xi,1, Xi,2)
πi = (πi,1, πi,2, πi,3)
certi = (αi, χi, Xi, πi)

ski = y′i + y′′i
certi,y

′′
i←−

if GS.Verify(πi) 6= 1
return ⊥

si = Sign(usk[i], certi)
si→

return (certi, ski) Reg[i] = (i, pk[i], certi, si)
algorithm Open(gpk, ok, σ) algorithm Verify(gpk,m, σ)
cert∗ ← C.Extract(xk, cert′i)
for(i ∈ [1, n])

ĉert← C.Extract(ok, certi)
x̂← C.Extract(ok,Reg[i]4)
if ĉert == cert∗1

τ = GS.Prove(cert, cert∗)
return (i, τ)

endfor
return (0,⊥)

return GS.Verify(π′i, π̃1, π̃2) ∧ e(σ2, g2) == e(g1, σ3)

algorithm Judge(pk, ak, cert,m, σ, τ)

return GS.Verify(τ)

Figure 6: The Group Signature Scheme.

Lemma 3. The scheme described in Figure 6 is a group signature scheme with (t, ε)-anonymity, assuming
the Symmetric External Diffie-Hellman Assumption is (t′, ε

SXDH
)-hard, with

t′ ≈ t and ε 6 ε
SXDH

.

Proof. For the anonymity game, we that the issuer is fully corrupted, but the Opener is uncorrupted. This
means that we give full control of the issuer, including the secret key to the adversary. However, the Opener
is uncorrupted, thus we maintain full control of the opening key. In the initial game, we generate both ik
and ok honestly. We give the adversary control of ik.

We now modify our game such that the Opener’s key is no longer binding but in fact, hiding. This
is indistinguishable to the adversary under the SXDH assumption. In particular, this means that any
information contained in the certificates is hidden. This means that the game where the challenge bit
b = 0 gives the adversary the same information as when b = 1. Thus, the adversary has no advantage. As
the advantage in this game differs from the previous game by at most the advantage of an adversary against
the SXDH, the adversary has a total advantage ε 6 εSXDH. �

Lemma 4. The scheme described in Figure 6 is a group signature scheme with (t, ε)-traceability, assuming
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the Symmetric External Diffie-Hellman Assumption is (t′, ε
SXDH

)-hard and the Double Strong Hidden Diffie-
Hellman Assumption is (t′, ε

DHSDH
)-hard, with

t′ ≈ t and ε 6 2 · ε
SXDH

+ ε
DHSDH

.

Proof. In the traceability game, we have a partially corrupted Opener and an uncorrupted Issuer. Thus,
the adversary will know ok but the Issuer, will still behave in the prescribed manner. Initially we set up the
game such that all keys are generated as expected, and we give the issuer key to the adversary. Since we
have all the requisite keys, we can execute the requisite oracles in the standard manner.

Since the Opener is only partially corrupted, they will still perform all the openings faithfully and generate
valid proofs of that. If a signature opens and is traced to a user, then the proof produced will be accepted by
the Judge algorithm. If the adversary can produce a false proof, then they will have broken the soundness
of the proof scheme. They can do this with an advantage at most ε

SXDH
. Thus, the adversary must produce

a false certificate.
Our next modification is the CRS generation. We switch now to a simulating CRS which provides

perfectly hiding commitments. The difference in advantage the adversary has in this game and the previous
game is at most ε

SXDH
. As before, we execute all the oracles in the normal manner.

For our final game, we now simulate our issue protocol in the same manner as we did for the unfakeability
proof of the DPWC scheme in Lemma 1. Thus, we have that any adversary that can produce a fake certificate
will break the DHSDH, which he can do with advantage at most ε

DHSDH
.

Combining these gives us ε 6 2 · ε
SXDH

+ ε
DHSDH

, as required. �

Lemma 5. The scheme described in Figure 6 is a group signature scheme with (t, ε)-non-frameability,
assuming the Symmetric External Diffie-Hellman problem is (t′, ε

SXDH
)-hard, the Double Strong Hidden Diffie-

Hellman problem is (t′, ε
DHSDH

)-hard and the Advanced Computational Diffie-Hellman problem is (t′, ε
CDH+ )-

hard, with
t ≈ t′ and ε 6 ε

SXDH
+ ε

DHSDH
+ ε

CDH+

Proof. For an adversary to win the non-framebility game, they must produce a signature which will be
correctly attributed to an honest user who did not produce this signature. To achieve this, an adversary
must provide:

1. A valid signature under the user’s public key

2. A valid proof that the signature is valid under the public key in the committed certificate

3. A valid committed certificate, with proofs

Item 3 can be easily obtained by the adversary as he is able to fully corrupt both the Opener and Issuer
and obtain the correct certificates and the corresponding proof from there. Thus we now need to only
consider how the Adversary produces the other two components. To this end, we consider two types of
Adversaries, namely Type I and Type II adversaries, which win by generating item 1, respectively item 2,
listed above.

Type I Non-Frameability Adversaries The first type of adversary, which we call NF1, is an adversary
who wins in the non-frameability game by forging a signature for an honest user. Once the adversary has
a valid forgery, he can easily obtain a committed certificate and re-randomize that. Having both these, the
adversary can then honestly generate a proof that the signature is valid. We see that this signature is a valid
group signature and will indeed be attributed to the targeted user. If a NF1 to succeeds, it can be turned
into and adversary against the unforgeability of the DPWC signature scheme. We are able to generate all
the keys, except for the signing keys. We use the oracle from the unforgeability game to produce the required
signatures. We can simply use the adversary’s forgery as our own and thus win the DPWC unforgeability
game, which in turn would break the Advanced Computational Diffie-Hellman Assumption.
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Component σ1 σ2 α χ X1 X2 π1 π2 π3 Y1 Y2 π̃1 π̃2 TOTAL
G 3 1 3 3 3 3 ≈ 13 ≈ 13 2 3 3 2 3 ≈ 55

Component σ1 σ2 σ3 α χ X1 X2 π1 π2 π3 Y1 Y2 π̃1 π̃2 TOTAL
G1 0 1 0 2 0 2 0 2 2 2 2 0 2 4 19
G2 2 0 1 0 2 0 2 4 2 2 0 2 2 4 23

Type II Non-Frameability Adversaries The second type of adversary, which we call NF2, is an
adversary who wins in the non-frameability game by creating a false proof for an incorrect signature. The
adversary will try to prove that an arbitrary invalid signature is actually a correct signature and then
proceeds to produce a proof that this invalid “signature” is indeed valid. If an NF2 adversary succeeds,
they will have produced a NIZK proof on a false statement, which breaks the Soundness of the Groth-Sahai
proof system, and thus the Symmetric External Diffie-Hellman Assumption.

In addition to the above types of adversary, we must also consider an adversary who fakes a certificate
for the targeted user and then performs a Type I or Type II attack. The adversary in this game has the
capability to write to the registry and hence can replace the user’s old certificate with their faked one. After
this, the user must perform a Type I or Type II attack as described above. Here we see that the adversary
must first fake a certificate, hence breaking the unfakeability of the DPWC certified signature scheme, and
thus the Double String Hidden Diffie-Hellman Assumption. After this, the adversary will proceed as a
NF1 or NF2 and thus additionally break the Advanced Computational Diffie-Hellman Assumption or the
Symmetric External Diffie-Hellman Assumption.
Thus, we get that ε 6 ε

SXDH
+ ε

CDH+ + ε
DHSDH

, as required. �
This completes the proof. �

4 A Linear Version of Our Construction

Our previous scheme can be directly transposed in a symmetric group, with Linear Commitments.

Theorem 3. The scheme described in Figure 6 is a group signature scheme with perfect correctness. The
scheme satisfies anonymity, traceability and non-frameability under the DHSDH,DLin and CDH assumptions.

This can be proven following the idea of the asymmetric instantiations. We omit the proofs, as they are
of minimal interest.

On the efficiency of this scheme There is always a trade-off in efficiency while instantiating on a
symmetric group a scheme designed for an asymmetric one. Verifying that two elements have the same
discrete logarithm is way more efficient in a DLin setting because this becomes a linear equation while being
a quadratic one in SXDH. However we will have equations with two CRS involved for the same group, and
that is quite inefficient (approximately 13 elements for each proof).

The table above gives a rough estimation of the cost of the symmetric instantiation of our scheme, while
not being so efficient it is still in the same order of magnitude as existing group signatures schemes. Once
again our hypotheses are neither interactive nor relying on q-assumptions.

5 Efficiency Comparison and Conclusions

We now look at the efficiency of our scheme in comparison to the state of the art in signature schemes. We
begin with a look at the exact size of our signatures. We list the size of each component of our signature in
the table below.
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algorithm KeyGen(1k) algorithm Issue

gk = (p,G,GT , g, e)←$ Gen(1k)
γ ∈

R
Zp, Γ = gγ

k, h, g2 ∈R G,F ∈
R
G`+1

(ckB , ckH , xk)←$ GS.KeyGen(gk)
(ak) = (gk,Γ, k, h, g2,F , ckB , ckH , crs)
(ck) = (ak, γ)
return (ak, ck)

algorithm Sign(gpk, sk,m)

s ∈
R
Zp

cert′i ←$ GS.Re-Randomize(certi)
Y1 = GS.Re-Randomize(ckB , g

ski , π′i,1)

Y2 = C.Commit(ckB , g
ski
2 )

σ1 = C.Commit(hyF(m)s)
σ2 = gs

π̃1 = GS.Prove(Y1, Y2)
π̃2 = GS.Prove(σ1, σ2, Y2)
return σ = (σ1, σ2, cert

′
i, Y1, Y2, π̃1, π̃2)

User Issuer

y′1 ∈R Zp
gy
′
1

→
y′′i , xi ∈R Zp
Ai = (k1g

y′

1 g
y′′

1 )
1

xi+γ

αi = C.Commit(ckB , Ai)
χi = C.Commit(ckH , g

xi)
Xi,1 = C.Commit(ckB , g

xi)
Xi,2 = C.Commit(ckB , g

xi
2 )

πi,1 = GS.Prove(αi, χi)
πi,2 = GS.Prove(Xi,1, χi)
πi,3 = GS.Prove(Xi,1, Xi,2)
Xi = (Xi,1, Xi,2)
πi = (πi,1, πi,2, πi,3)
certi = (αi, χi, Xi, πi)

ski = y′ + y′′
certi,y

′′
i←−

if GS.Verify(πi) 6= 1
return ⊥

si = Sign(sk[i], certi)
si→

return (certi, ski) Reg[i] = (i, pk[i], certi, si)
algorithm Open(gpk, ok, σ) algorithm Verify(gpk,m, σ)
cert∗ ← C.Extract(xk, cert′i)
for(i ∈ [1, n])

ĉert← C.Extract(ok, certi)
x̂← C.Extract(ok,Reg[i]4)
if ĉert == cert∗1

τ = GS.Prove(cert, cert∗)
return (i, τ)

endfor
return (0,⊥)

return GS.Verify(π′i, π̃1, π̃2)

algorithm Judge(pk, ak, cert,m, σ, τ)

return GS.Verify(τ)

Figure 7: The Symmetric Group Signature Scheme.

Similar to the work of Libert, Peters and Yung [LPY15], we compare not only the number of group elements,
but the bit sizes, assuming classical instantiations on Barreto-Naehrig Curves [BN06], (one group of size
256 bits, and one of size 512 bits), we consider the smaller group to be the one with more elements. In our
comparison, we only consider the schemes in Type 3 groups.

As we can see from the table, our signature sizes are comparable to that of the other schemes, but
under standard assumptions. In particular, we have fewer elements than the scheme of Libert, Peters and
Yung [LPY15], with the same final signature size. Our signatures are slightly larger than the schemes based
on q-assumption one, but not by a large margin. Additionally, this does not take into account that we rely
on simpler assumptions. Hence, we do not have the same overheads to achieving higher levels of security.
We believe that overall this technique allows quick and efficient transformation at minimal cost, and quite
likely be extended to other protocols.

3The scheme in [LPY15] requires a chameleon hash function. For simplicity, we assume the DLin-based chameleon hash due
to Hofheinz and Jager [HJ12], explicitly stated by Blazy et al. [BKKP15, Appendix A]
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Total Signature Size
Scheme Assumptions G1 G2 Total Elements Bitsize

Adapted Groth [Gro07, LPY15] SXDLin, q-SDH, q-U′ 27 12 39 13056
Kakvi [Kak10] (Scheme 3) SXDLin, q-SDH, q-U3a 24 15 39 13824
Kakvi [Kak10] (Scheme 4) SXDLin, q-SDH, q-U3b 16 23 39 14080

Blazy and Pointcheval [BP12] CDH+, q-DDHI, q-DHSDH 21 16 37 13568
Libert, Peter and Yung [LPY15] SXDH, XDLin2, DLin3 33 14 47 15616

This Work CDH+, DHSDH 19 23 42 15616

Table 2: Comparison of Group Signature Schemes secure in the Standard Model.
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