
Efficiently Obfuscating Re-Encryption Program
under DDH Assumption

Akshayaram Srinivasan1 ? and C. Pandu Rangan2??

1 University of California, Berkeley
2 Indian Institute of Technology, Madras

Abstract. A re-encryption program (or a circuit) transforms a cipher-
text encrypted under Alice’s public key pk1 to a ciphertext of the same
message encrypted under Bob’s public key pk2. Hohenberger et al. (TCC
2007) constructed a pairing-based obfuscator for a family of circuits im-
plementing the re-encryption functionality under a new notion of obfus-
cation called as average-case secure obfuscation. Chandran et al. (PKC
2014) proposed a lattice-based construction for the same.
The construction given by Hohenberger et al. could only support encryp-
tions of messages from a polynomial space and the decryption algorithm
may have to perform a polynomial number of pairing operations in the
worst case. Moreover, the proof of security relies on strong assumptions.
On the other hand, the construction given by Chandran et al. relies on
standard assumptions on lattices but could only satisfy a relaxed notion
of correctness.
In this work we propose a simple and efficient obfuscator for the re-
encryption functionality which doesn’t suffer from any of the above men-
tioned drawbacks. In particular, our construction satisfies the strongest
notion of correctness, supports encryption of messages from an exponen-
tial sized domain and relies on the standard DDH-assumption. We also
strengthen the black-box security model for encryption - re-encryption
system proposed by Hohenberger et al. and prove the average-case vir-
tual black box property of our obfuscator as well as the security of our
encryption - re-encryption system (in the strengthened model) under the
DDH-assumption. All our proofs are in the standard model.

Keywords: Re-encryption circuit, Average-case secure obfuscation, DDH
Assumption, Standard Model

1 Introduction

A program obfuscator [Had00,BGI+01] is a compiler that takes as input a de-
scription of a program and outputs a description of an equivalent program which
is “unintelligible.” The notion of program obfuscation was formalized in the

? Work partially done while author was a student at IIT-Madras. Email: ak-
shayram1993@gmail.com

?? Email: prangan55@gmail.com

seminal work of Barak et al. [BGI+01]. The strongest notion of obfuscation
considered in their work is known as the predicate black-box obfuscation (also
known as virtual black-box). The predicate black-box property stipulates that
any predicate which is computable when given access to the obfuscated program
must also be efficiently computable when given black-box access to the same
program. Barak et al. showed that a general program obfuscator satisfying the
predicate black-box property does not exist. In spite of the impossibility result,
program obfuscators satisfying the strong security notion have been constructed
for simple function families in [CD08],[Wee05],[CRV10].

Average-case Secure Obfuscation. Hohenberger, Rothblum, shelat and Vaikun-
tanathan [HRsV07] noted that predicate black-box property [BGI+01] does not
give a meaningful security guarantee when the obfuscated functionality (like
re-encryption) is a part of a larger cryptographic system (like the underlying en-
cryption scheme protecting Alice and Bob’s privacy). They discussed a scenario
where having access to the obfuscated program could compromise the security
of the larger cryptographic system even if the obfuscator satisfied the predicate
black-box property.

To address the above issue, Hohenberger et al. proposed a new definition of
obfuscation which they termed as Average-case Secure Obfuscation. This defini-
tion guarantees that any adversary against a cryptographic scheme having access
to an obfuscated program (where the program itself is sampled from an appropri-
ate distribution) can be transformed into an adversary against the cryptographic
scheme with only black box access to the sampled program assuming the scheme
has distinguishable attack property. Informally, a cryptographic scheme is said
to have distinguishable attack property if there exists a distinguisher which can
“test” if a given algorithm can break the security of the scheme with just the
public information and oracle access to the obfuscated program. Hohenberger
et al. showed that several natural cryptographic functionalities like semantically
secure encryption and re-encryption have this property.

An informal template for proving the security of a scheme in this paradigm
is as follows:

1. Prove that the scheme is secure against adversaries with black box access to
a circuit C chosen uniformly at random from a circuit family C .

2. Prove that the scheme has distinguishable attack property.
3. Design an average-case secure obfuscator for the circuit family C .

1.1 Prior Work

Hohenberger et al. [HRsV07] designed an average case secure obfuscator for
the re-encryption functionality under Decision Linear and a strong variant of
3-party Decisional Diffie-Hellman assumptions. The construction has a couple
of drawbacks which we now elaborate. The first drawback is that it could only
support a message space of polynomial size. Their decryption algorithm does an
exhaustive search on the message space by computing a pairing operation on

2

each message and tests the output of the pairing against a specific value. Thus,
it has to compute a polynomial number of pairing operations in the worst case.
Moreover, the security of their construction is based on a strong assumption
namely, Strong 3-party DDH.

Remark 1. We note that it is possible to extend the system of [HRsV07] to
message space of arbitrary size by using their construction for the message space
{0, 1}. For an arbitrary message space M, one can encrypt each message bit by
bit and thus incurring a O(log(|M|)) overhead on encryption and decryption. For
an exponential sized (in the security parameter λ) message space, the overhead
on encryption and decryption algorithms would be poly(λ). But it is desirable to
have a system which performs constant number of operations (i.e have a constant
overhead) in every algorithm.

Chandran, Chase, Liu, Nishimaki and Xagawa [CCL+14] designed average
case secure obfuscators for the re-encryption circuit assuming interactability of
certain lattice problems. But their construction could only satisfy relaxed notions
of correctness. In particular, they considered three relaxations of the correctness
property. The first relaxation guarantees that the output of the original circuit
and the obfuscated circuit are statistically close only on a subset of the actual in-
puts. The next relaxation guarantees that the output of the obfuscated program
on a subset of inputs is correct with respect to some algorithm (like decryption).
The final relaxation guarantees that the output of the obfuscated circuit and the
original circuit are computationally indistinguishable.

A natural question that arises from the prior work is:

Is there an efficient obfuscator for re-encryption program under milder
assumptions that satisfies the strongest notion of correctness, has a constant

overhead in every algorithm and supports an exponential sized message space?

1.2 Our Contributions

We highlight the main contributions of this work.

Main Result. In this work we propose a new encryption - re-encryption sys-
tem that supports encryption of messages from an exponential (in security pa-
rameter) space, involves a constant number of group exponentiation operations
in all algorithms. We also design an average-case secure obfuscator for the re-
encryption program which achieves the strongest notion of correctness (as in
[Had10] and [HRsV07]). We prove the average case secure obfuscator property
of our obfuscator and the security of our encryption - re-encryption sustem sys-
tem under the standard DDH assumption. All our proofs are in the standard
model. Informally, the main result in this work is:

Informal Theorem 1 Under the DDH-assumption, there exists an average-
case secure obfuscator for the family of circuits implementing the re-encryption
functionality.

3

Remark 2. We observe that our construction of obfuscator for the re-encryption
program is not secure when Bob has access to the obfuscated circuit. This is
the case with all prior constructions of average-case secure obfuscators for re-
encryption [HRsV07],[CCL+14] as well as encrypted signatures [Had10]. The
construction is secure as long as the obfuscated circuit is run by some (possi-
bly malicious) party other than Bob. It would be interesting to investigate the
possibility of constructing average-case secure obfuscators which have “insider
security.” That is, they remain secure even when Bob has access to the obfus-
cated circuit. We leave this as an open problem.

Strengthening the Black-box Security model. Recall that in order to design an ob-
fuscator for the re-encryption program in the average-case obfuscation paradigm,
we must first design an encryption - re-encryption system that is secure against
adversaries given black box access to the re-encryption program. The security
model considered by Hohenberger et al. [HRsV07] for this purpose is as follows:
the challenger samples two public key-secret key pairs (pk1, sk1) and (pk2, sk2)
and then provides pk1, pk2 to the adversary. The adversary (with oracle access to
re-encryption program from pk1 to pk2) chooses two messages m0 and m1 and
also gives information about the public key as well as the ciphertext level on
which it wishes to be challenged. More precisely, the adversary can choose either
to be challenged on a first level ciphertext 3 under pk1 or a first level ciphertext
under pk2 or a second level ciphertext 4 under pk2. The scheme is secure if the
adversary is unable to distinguish between the corresponding encryptions of m0

and m1.
We observe that the above security model is insufficient in capturing the full

security notion of encryption - re-encryption system (See Remark 4). In particu-
lar, the above security model allows the following trivial but insecure encryption
- re-encryption system to be secure. Consider any semantically secure encryption
scheme Π = (KeyGen,Encrypt,Decrypt). To obtain a first level ciphertext of a
message m under a public key pk, run the Encrypt algorithm on m and pk. The
re-encryption program from pk1 to pk2 has sk1, pk1 and pk2 hardwired into its de-
scription. When it is run with a first level ciphertext c← Encrypt(m, pk1), it de-
crypts the ciphertext using sk1 and outputs (Encrypt(m, pk1)||Encrypt(sk1, pk2))
where || denotes concatenation. In order to decrypt a second level ciphertext,
one can first decrypt the second component using sk2 to obtain sk1 using which
one can decrypt the first component to obtain m. This system has an obvious
drawback as it reveals sk1 to the user with secret key sk2. But one can prove
that this system is secure under the security model considered in [HRsV07]. We
also observe that it is possible to construct an average-case secure obfuscator for
the above re-encryption program when one instantiates Π with a semantically
secure encryption system which allows re-randomization of ciphertexts (e.g. the
standard El-Gamal encryption).

3 A first level ciphertext is the one which has not been re-encrypted. In other words,
a first level ciphertext is given as input to the re-encryption program.

4 A second level ciphertext under pk2 is the output of re-encryption program from pk1
to pk2 on a first level ciphertext under pk1

4

We strengthen the security model for encryption - re-encryption system as
follows. We consider the security of the system under two different security
games. The first game called as Original Ciphertext Security proceeds exactly
as in [HRsV07] but the adversary is either challenged on a first level ciphertext
under pk1 or a first level ciphertext under pk2. In the second game called as
the Transformed Ciphertext Security, in addition to (pk1, pk2) the adversary is
also provided with sk1. In the challenge phase, the adversary obtains a second
level ciphertext under pk2 as the challenge ciphertext. The goal of the adversary
in both the games is to distinguish between encryptions of messages from en-
cryptions of junk values. Additionally, we require the encryption - re-encryption
system to satisfy a special property called as statistical independence. Statistical
independence requires that the output distribution of the re-encryption program
(i.e. the distribution of the second level ciphertext) to be statistically indepen-
dent of sk1. Note that the above trivial encryption - re-encryption system is not
transformed ciphertext secure as the adversary with access to sk1 can directly
decrypt the first component of the challenge ciphertext to obtain the hidden mes-
sage. We also stress that statistical independence property guarantees that the
second level ciphertext cannot “leak” any information (in an information theo-
retic sense) regarding sk1. This in particular, disallows other contrived examples
which may reveal the secret key sk1 to Bob but possibly is still transformed
ciphertext secure.5

Remark 3. Though this security model was not explicitly considered, all prior
works [HRsV07], [CCV12], [CCL+14] satisfy this security notion.

Remark 4. We consider a stronger model for encryption - re-encryption secu-
rity since the output of the re-encryption program (which we obfuscate in this
work) does not have the same probability distribution as a fresh encryption of
the message m under pk2 (i.e as an output of another encryption algorithm
Encrypt2(m, pk2) as in [HRsV07]). If the output was distributed identically to a
fresh encryption under pk2 then the security model given by Hohenberger et al.
is sufficient for our purposes.6 The above discussion regarding the issues with the
security model is for the generalized case where the output distribution of the
re-encryption program and distribution of a freshly encrypted ciphertext under
pk2 are not identical.

5 For example, we could consider the output of the re-encryption functionality to be
(Encrypt(C, pk2)||Encrypt(sk1, pk2)) where C is the input ciphertext. This is trans-
formed ciphertext secure. We thank an anonymous CT-RSA 2016 referee for pointing
out this deficiency in the security model. However, the output of the re-encryption
functionally is dependent on sk1.

6 The counter example discussed above will not work since the output of the re-
encryption program is not identically distributed to a freshly generated ciphertext
under pk2

5

1.3 Related Work

Proxy Re-Encryption. A paradigm in cryptography which is closely related to
re-encryption is proxy re-encryption. In a proxy re-encryption system, a semi-
trusted proxy transforms ciphertexts intended for Alice (delegator) to a cipher-
text of the same message for Bob (delegatee). Specifically, Alice provides the
proxy with a re-key RKA→B which is a function of her secret key sk1 and Bob’s
public key pk2. The proxy runs a specific algorithm (called as the re-encryption
algorithm in literature) which takes the ciphertext encrypted under Alice’s public
key and the re-key and outputs a ciphertext under Bob’s public key. A (non-
exhaustive) list of proxy re-encryption schemes under different notions of secu-
rity can be found in [BBS98], [AFGH06], [CH07], [LV08] and [CWYD10]. But
as noted in the work of Hohenberger et al. [HRsV07], the above works cannot
be considered as an obfuscation of the re-encryption circuit. In particular, ob-
fuscation of re-encryption circuit guarantees that no non-black-box information
about the re-encryption circuit is “leaked” to the proxy. On the other hand, it
is not directly evident if such guarantees can be given from proxy re-encryption
systems as it may be possible that the re-key could leak some non-black-box
information. We leave the possibility of strengthening the security definition of
proxy re-encryption to guarantee that no non-black-box information is leaked as
an interesting open problem.

Indistinguishability Obfuscation. Since the strongest notion of program obfus-
cation (namely, predicate black-box obfuscation) was shown to be impossible,
Barak et al. [BGI+01] proposed a weakened notion of obfuscation called as indis-
tinguishability obfuscation or iO. Indistinguishability obfuscation guarantees that
for any two functionally equivalent circuits having the same size, obfuscations
of the circuits are indistinguishable. The first candidate construction of iO was
given in the recent breakthrough work of Garg et al. [GGH+13]. Subsequently,
several cryptographic primitives like functional encryption [GGH+13], deniable
encryption [SW14], non-interactive key exchange without a trusted setup [BZ14],
two-round multiparty computation protocols [GGHR14] and trapdoor permuta-
tions [BPW16] (to name a few) were constructed from iO and other assumptions
like one-way functions. We note that indistinguishability guarantee provided by
iO is strictly weaker than the security guarantee needed in this work. In addi-
tion, our goal is to obfuscate a specific functionality namely, the re-encryption
functionality.

1.4 Organization

We give the standard definitions in Section 2 and recall the definition of average-
case secure obfuscation in Section 2.1. We give the construction of encryp-
tion - re-encryption functionality and the construction of the obfuscator for
re-encryption circuit in Section 3. We discuss the new (strengthened) black-box
model for proving security of the encryption - re-encryption program in Sec-
tion 4 and the prove the security of our construction in the same model. Finally,

6

in Section 5 we show that the obfuscator described in Section 3 is average-case
secure.

2 Preliminaries

A function µ(·) : N → R+ is said to be negligible, if for every positive poly-
nomial p(·), there exists an N such that for all n ≥ N , µ(n) < 1/p(n). Given a
probability distribution D on a universe U , we denote x ← D as the operation
of sampling an element x from U according to the distribution D. Given a finite

set X, we use the notation x
$← X for denoting the operation of sampling x

from the set X uniformly. If two probability distributions D and D′ defined on
a set X are identical, we denote it by D ≈ D′. If A is any probabilistic machine
then A(x1, · · · , xn) denotes the output distribution of A. Given n probability
distributions D1, · · · , Dn, let {x1 ← D1; · · · ;xn ← Dn : f(x1, ..., xn)} be the
probability distribution of a (possibly randomized) function f . PPT machines
refer to Probabilistic Polynomial Time Turing machines. All PPT machines run
in time polynomial in the security parameter denoted by λ. Sometimes, we also
consider a non-uniform model of computation where the PPT machines may
take an additional auxiliary input z of length polynomial in λ. If p is a prime
number then let Z∗p denote the set {1, 2, ..., p− 1}.

We assume familiarity with the notion of computational indistinguishability
and statistical distance (a.k.a. variation distance) and skip the standard defi-
nitions. We state and prove this following simple Lemma which will be used
through out the work.

Lemma 1. For all distributions Xn and Yn, for all PPT distinguishers D and
for all z ∈ {0, 1}poly(n) we have,

∆(D(Xn, z), D(Yn, z)) =
∣∣Pr[b← D(Xn, z) : b = 1]− Pr[b← D(Yn, z) : b = 1]

∣∣
Proof. The lemma directly follows from the following observation that,

∣∣Pr[b←
D(Xn, z) : b = 1] − Pr[b ← D(Yn, z) : b = 1]

∣∣ and
∣∣Pr[b ← D(Xn, z) : b =

0] − Pr[b ← D(Yn, z) : b = 0]
∣∣ are equal since D(Xn, z) and D(Yn, z) are

distributions on {0, 1}. The statement of the lemma can then be derived using
the definition for statistical distance. ut

This lemma implies that {Xn}n
c
≈ {Yn}n if and only if D(Xn, z) and D(Yn, z)

are statistically close for all PPT distinguishers D and for all auxiliary input z.

We now recall the Decisional Diffie-Hellman (DDH) assumption on prime
order groups. Let Gen be an algorithm which takes 1λ as input and randomly
generates the parameters (p,G, g) where p is a λ bit prime, G is a multiplicative
group of order p and g is a generator for G.

7

Definition 1 (DDH assumption). The DDH assumption states that the fol-
lowing distribution ensembles are computationally indistinguishable:

{(p,G, g)← Gen(1λ); a, b
$← Z∗p : (g, ga, gb, gab)}λ

c
≈

{(p,G, g)← Gen(1λ); a, b, c
$← Z∗p : (g, ga, gb, gc)}λ

We recall the syntax and security notion (multi message security) for a Public
Key Encryption (PKE) system in Appendix A. We formally describe the El-
Gamal encryption system and its variant in Appendix B. We recall the theorem
regarding the multi-message security of El-Gamal encryption system and its
variant.

Theorem 1 (Multi message security). Assuming the DDH-assumption holds
in the group G, both El-Gamal encryption and its variant are multi-message se-
cure.

We assume familiarity with of the concept of Pseudo Random Generator
(PRG) and refer the reader to [Gol01] for a formal definition.

2.1 Average-case Secure Obfuscation

Let C = {Cλ}λ∈N be a family of polynomial sized circuits. For a length parameter
λ, let Cλ be the set of circuits in C with input length pin(λ) and output length
pout(λ) where pin(·) and pout(·) are polynomials. The circuit family C has an
associated sampling algorithm Samp which takes 1λ as input and outputs a
circuit C chosen uniformly at random from Cλ. We also assume that there exists
efficient (Encode,Decode) algorithms which encodes and decodes a given circuit
C into binary strings when used as input/output of Turing machines. We make
implicit use of such encoding and decoding algorithms and do not mention them
explicitly.

We use similar notations (with some minor changes) as in [Had10] to de-
note probabilistic circuits. A probabilistic circuit C(x; r) takes two inputs. The
first input is called as the regular input and the second input is termed as the
random input. The output of a probabilistic circuit on a regular input (denoted
by C(x; ·)) can be viewed as a probability distribution where the randomness in
the distribution comes from the random choice of r. We say that a machine A
has oracle access to a probabilistic circuit C (denoted by AO(C)) if during the
oracle queries, A can only specify the regular input x to the circuit and the
random input r is chosen uniformly at random from the corresponding sample
space by the oracle O. The output of a probabilistic machine A having oracle
access to a probabilistic circuit C (denoted by AO(C)(x1, · · · , xn)) is a probability
distribution where the randomness in the distribution comes from the random
coins used by A as well as the random coins used by O in answering A’s oracle
queries. We say that B evaluates a probabilistic circuit C (or in other words, B
is an evaluator of C) on regular input x, if B supplies the regular input as well as

8

the random input r chosen uniformly at random from the corresponding sample
space and outputs C(x; r). We use |C| to denote the size of a circuit C.

We recall the notion of average case secure obfuscation given in [HRsV07].

Definition 2 ([HRsV07],[Had10]). A PPT machine Obf that takes as input
a (probabilistic) circuit and outputs a new (probabilistic) circuit is an average-
case secure obfuscator for the circuit family C = {Cλ}λ∈N with an associated
sampling algorithm Samp if it satisfies the following properties:

1. Preserving Functionality: For all length parameter λ ∈ N and for all C ∈ Cλ:

Pr[C′ ← Obf(C) : ∃x ∈ {0, 1}pin(λ), ∆
(
C′(x; ·), C(x; ·)

)
6= 0] = 0

2. Polynomial Slowdown: There exists a polynomial p(·) such that for suffi-
ciently large length parameters λ, for any C ∈ Cλ, we have

Pr[C′ ← Obf(C) : |C′| ≤ p(|C|)] = 1

3. Average-case Secure Virtual Black Box: There exists a PPT machine (sim-
ulator) Sim such that for every PPT distinguisher D, there exists a negli-
gible function neg(·) such that for every length parameter λ and for every
z ∈ {0, 1}poly(λ):

|Pr[C ← Samp(1λ); C′ ← Obf(C); b← DO(C)(C′, z) : b = 1]−

Pr[C ← Samp(1λ); C′ ← SimO(C)(1λ, z); b← DO(C)(C′, z) : b = 1]| ≤ neg(λ)

Remark 5. [Had10] The definition given in [HRsV07] considers a relaxed notion
of correctness. Specifically, it allows a the output distribution of the obfuscated
circuit and the original circuit to have a negligible statistical distance with a
negligible probability. Here, we consider a stronger notion of correctness where
we require that the output distribution of the original circuit and the obfuscated
circuit to be identical.

3 Obfuscator for Re-encryption Functionality

In this section, we describe our new encryption system, the re-encryption func-
tionality which is to be obfuscated and finally the construction of an average
case secure obfuscator for the functionality.

New Encryption Scheme. The new encryption system under consideration is
same as the El-Gamal system variant described in Appendix B with some minor
modifications in the Setup algorithm.

New Encryption Scheme

– Setup(1λ) : Let (p,G, g)← Gen(1λ). Let H be a pseudo random gener-
ator which takes as input an element from G and outputs an element
in Z∗p.a Output the public parameters as params = (p, g,G, H) with
message space M = G.

9

– KeyGen(1λ, params) : Choose x
$← Z∗p and set the public key pk to be

(g, gx) and the secret key sk = x.

– Encrypt1(m, pk) : Parse pk as (g, gx). Choose a random r
$← Z∗p and

output (m · gr, (gx)r).
– Decrypt1(sk, [C1, C2]) : Parse the secret key sk as x. Output m = (C1) ·

((C2)1/x)−1.

a The standard definition of pseudo random generator assumes the domain and
the range to be bit strings. We note that it can be extended to any domain and
range assuming efficient encoding and decoding functions from the domain to
bit strings and from bit strings to range. The expansion factor of H depends
on the actual encoding and decoding schemes used.

Re-encryption functionality. Let (pk1, sk1) and (pk2, sk2) be two key-pairs which
are obtained by running the KeyGen algorithm with independent random tapes.

Let h
$← G be an element chosen uniformly and independently at random from

the group G. The PPT algorithm performing re-encryption from pk1 to pk2
(denoted by Re− Enc1→2) is described below.

Re− Enc1→2

Input: c1 = [C1, C2] or special symbol denoted by keysa

Constants:b sk1 = x, pk1 = (g, gx), pk2 = (g, gy) and h

1. If input = keys, output (pk1, pk2).
2. Else,

– Compute m = Decrypt1(sk1, c1).

– Choose r′, v, s
$← Z∗p.

– Output [C ′1, C
′
2, C

′
3, C

′
4, C

′
5] = [m·gr′ , (gH(h))r

′ ·(gy)s, h·(gy)v, gv, gs].

a keys 6∈ G×G. We need this for a technical part in the proof.
b Constants in a program denotes those values which are hardcoded in the pro-

gram description

Re-encryption Circuit Family. Let Csk1,pk1,pk2,h be the description of a proba-
bilistic circuit implementing the program Re− Enc1→2. We note that the con-
stants in the above program are hardwired in the circuit description. These
constants can be extracted when given access to the description of the circuit.
Formally, the class of circuits implementing the re-encryption functionality for
a given length parameter λ is,

Cλ = {Csk1,pk1,pk2,h : (pk1, sk1)← KeyGen(1λ), (pk2, sk2)← KeyGen(1λ), h
$← G}

The circuit family implementing the re-encryption functionality is given by
C = {Cλ}λ∈N. The associated sampling algorithm Samp which samples a circuit
C uniformly at random from Cλ proceeds by choosing (p,G, g,H) ← Setup(1λ).

10

It then samples (pk1, sk1)← KeyGen(1λ), (pk2, sk2)← KeyGen(1λ) and h
$← G.

It finally outputs the circuit description of Csk1,pk1,pk2,h.
The evaluator of the circuit Csk1,pk1,pk2,h supplies the regular input which is

either the ciphertext c1 = [C1, C2] or the special symbol keys and also supplies
the random input rand chosen uniformly at random from {0, 1}3λ to the circuit
for sampling r′, v, s uniformly from Z∗p.

Decrypting the Circuit Output. We note that decrypting the circuit output is
straightforward and describe the actual decryption procedure in Appendix C.

Obfuscator construction. We now present the construction of an average-case
secure obfuscator (denoted by Obf) for the re-encryption circuit family defined
in Section 3.

Obf
Input: Csk1,pk1,pk2,h

1. Read sk1 = x, pk1 = (g, gx) , pk2 = (g, gy) and h from the description
of the circuit Csk1,pk1,pk2,h.

2. Select v
$← Z∗p.

3. Compute (Z1, Z2, Z3) = (h · (gy)v, gv, H(h)/x).
4. Output the description of a circuit implementing the program Re− Enc′1→2

described below with pk1, pk2, Z1, Z2, Z3 as the constants in the pro-
gram.

Re− Enc′1→2

Input: c1 = [C1, C2] or special symbol denoted by keys.
Constants: pk1, pk2, Z1, Z2, Z3.

1. If input = keys, output (pk1, pk2).
2. Else,

– Choose two re-randomization values r′, v′
$← Z∗p.

– Re-randomize the input as C ′1 = C1 · gr
′
, C2 = (C2 · (gx)r

′
) and the

hardwired values as C ′3 = Z1 · (gy)v
′
, C ′4 = Z2 · gv

′
.

– Compute C2 = (C2)Z3 .

– Choose s
$← Z∗p.

– Compute C ′2 = C2 · (gy)s and C ′5 = gs

– Output [C ′1, C
′
2, C

′
3, C

′
4, C

′
5].

Let C′ denote the circuit implementing Re− Enc′1→2. The evaluator for the
circuit C′ provides either c1 = [C1, C2] or special symbol keys as the regular input

and rand
$← {0, 1}3λ as the random input for sampling r′, v′, s uniformly from

Z∗p.

11

Remark 6. The obfuscated circuit C′ is generated by the owner of sk1 but can be
evaluated by anyone. We assume (as described in Remark 2) that the evaluator
of C′ and the owner of sk2 do not collude.

4 Security of New Encryption Scheme

We now describe the security model for semantic security of the encryption
scheme when the adversary is given black box access to re-encryption function-
ality. In view of discussion presented in Section 1.2, we modify the security model
given in [HRsV07] as follows.

4.1 Security Model

Let C ← Samp(1λ) 7 be the re-encryption circuit from pk1 to pk2.

Original Ciphertext Security. Let A = (A1,A2) be an adversary against the
original ciphertext security.

Definition 3. Let Π be an encryption scheme and let INDb,ori(Π,A = (A1,A2), λ, i)
where b ∈ {0, 1} and i ∈ {1, 2}, denote the following experiment:

INDb,ori(Π,A = (A1,A2), λ, i)

1. params ← Setup(1λ). (pk1, sk1) ← KeyGen(params) and (pk2, sk2) ←
KeyGen(params). Choose h

$← G. Set C = Csk1,pk1,pk2,h a.

2. (m0,m1, state)← AO(C)
1 (pk1, pk2, params).

3. C∗ ← Encrypt1(mb, pki, params).

4. b′ ← AO(C)
2 (C∗, state). Output b′

a Note that setting C in this way is equivalent to sampling C using the Samp
algorithm

The scheme Π is said to be original ciphertext secure with respect to the
oracle access to C if for all PPT adversaries A = (A1,A2) and for all i ∈ {1, 2},
there exists a negligible function µ(·) such that for all λ ∈ N,

∆
(
IND0,ori(Π,A, λ, i), IND1,ori(Π,A, λ, i)

)
≤ µ(λ)

Transformed Ciphertext Security. Let A = (A1,A2) be an adversary against the
transformed ciphertext security.

Definition 4. Let Π be an encryption scheme and let INDb,tran(Π,A = (A1,A2), λ)
where b ∈ {0, 1} denote the following experiment:

7 For the ease of exposition, we drop the subscripts sk1, pk1, pk2, h.

12

INDb,tran(Π,A = (A1,A2), λ)

1. params ← Setup(1λ). (pk1, sk1) ← KeyGen(params) and (pk2, sk2) ←
KeyGen(params). Choose h

$← G. Set C = Csk1,pk1,pk2,h.

2. (m0,m1, state)← AO(C)
1 (params, pk1, pk2, sk1).

3. rand
$← {0, 1}3λ. Compute C∗ ← C(Encrypt1(mb, pk1, params); rand).

4. b′ ← AO(C)
2 (C∗, state). Output b′

The scheme Π is said to be transformed ciphertext secure with respect to
the oracle access to C if for all PPT adversaries A = (A1,A2), there exists a
negligible function µ(·) such that for all λ ∈ N,

∆
(
IND0,tran(Π,A, λ), IND1,tran(Π,A, λ)

)
≤ µ(λ)

Statistical Independence. Let us consider the following experiment.

Stat(Π, λ,m)

1. params ← Setup(1λ). (pk1, sk1) ← KeyGen(params) and (pk2, sk2) ←
KeyGen(params). Choose h

$← G. Set C = Csk1,pk1,pk2,h.

2. rand
$← {0, 1}3λ. Compute C∗ ← C(Encrypt1(m, pk1, params); rand).

3. Output C∗

We require the output of Stat(Π, λ,m) to be statistically independent of sk1.

4.2 Security Proof

We now show that the New Encryption Scheme is original ciphertext secure (in
Theorem 4), transformed ciphertext secure (in Theorem 5) and has statistical
independence property (in Lemma 2).

Theorem 2. The New Encryption Scheme is original ciphertext secure with
respect to the oracle Csk1,pk1,pk2,h under the DDH-assumption.

Proof. We show the proof of Theorem in Appendix E.

We now show the transformed ciphertext security of our construction.

Theorem 3. The New Encryption Scheme is transformed ciphertext se-
cure with respect to the oracle Csk1,pk1,pk2,h under the multi-message security (2
messages) of El-Gamal encryption system (Theorem 1).

Proof. We give the proof in Appendix F.

We note that the statistical independence property of the re-encryption func-
tionality directly follows from inspection of the output distribution of the re-
encryption circuit. We record the following lemma.

Lemma 2. The output distribution of Csk1,pk1,pk2,h where (pk1, sk1)← KeyGen

(params), (pk2, sk2)← KeyGen(params) and h
$← G is statistically independent

of sk1.

13

5 Average-case Virtual Black Box Property

We show that obfuscator construction preserves functionality in Appendix D. We
note that the polynomial slowdown property of our construction can be easily
verified. It is interesting to note that the obfuscated circuit computes seven
exponentiations whereas the original circuit computes eight exponentiations.

We now show that Obf satisfies the average-case virtual black box property.

Lemma 3. Obf satisfies the average case secure virtual black-box property.

Proof. The proof techniques used here are similar to that of Hohenberger et al.
in [HRsV07] and the details follow.

Let C ← Samp(1λ) be a circuit chosen randomly from the set Cλ using the
Samp algorithm. Let D be any distinguisher with oracle access to C.

We first describe the simulator Sim which has oracle access to the circuit C
and takes as input the security parameter in unary form and auxiliary informa-
tion string denoted by z.

SimO(C)

Input: 1λ, z

1. Query the oracle O(C) with the special symbol keys and obtain pk1 and
pk2.

2. Parse pk2 as (g, gy).

3. Choose h
$← G, v

$← Z∗p and compute (Z ′1, Z
′
2) = (h · (gy)v, gv). Choose

Z ′3 uniformly at random from Z∗p.
4. Construct a circuit C′ implementing the program Re− Enc′1→2 with val-

ues (pk1, pk2, Z
′
1, Z

′
2, Z

′
3) hardcoded in the program description.

5. Output the circuit description of C′.

It remains to show that the output distribution of the simulator is computa-
tionally indistinguishable to the output distribution of Obf even to distinguishers
having oracle access to C.

We define two distributions Nice(DO(C), λ, z) and Junk(DO(C), λ, z) as follows:

Nice(DO(C), λ, z)

– (p, g,G, H) ← Setup(1λ). Choose x, y
$← Z∗p. Set pk1 = (g, gx) and

pk2 = (g, gy).

– Choose h
$← G and v

$← Z∗p.
– Compute Z1 = h · (gy)v, Z2 = gv and Z3 = H(h)/x.
– Output DO(C)(pk1, pk2, Z1, Z2, Z3, z).

14

Junk(DO(C), λ, z)

– (p, g,G, H) ← Setup(1λ). Choose x, y
$← Z∗p. Set pk1 = (g, gx) and

pk2 = (g, gy).

– Choose h
$← G and v

$← Z∗p.

– Compute Z ′1 = h · (gy)v, Z ′2 = gv and Z ′3
$← Z∗p.

– Output DO(C)(pk1, pk2, Z
′
1, Z

′
2, Z

′
3, z).

We first observe that for all z ∈ {0, 1}poly(λ) and for all distinguishers D,{
C → Samp(1λ); C′ ← Obf(C) : DO(C)(C′, z)

}
≈ Nice(DO(C), λ, z)

{
C → Samp(1λ); C′ ← SimO(C)(1λ, z) : DO(C)(C′, z)

}
≈ Junk(DO(C), λ, z)

In order to show that Obf satisfies the average case virtual black box property
it is enough to show that (from Lemma 1), for all PPT distinguishers D, there
exists a negligible function µ(·) such that for all z ∈ {0, 1}poly(λ),

∆
(
Nice(DO(C), λ, z)}, Junk(DO(C), λ, z)

)
≤ µ(λ)

We show this in Appendix G.

ut

Since Obf satisfies the three requirements given in Definition 2, we conclude
that Obf is an average-case secure obfuscator.

5.1 Acknowledgements

We would like to thank the anonymous reviewers of PKC, 2015 for insightful
reviews.

References

[AFGH06] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Im-
proved proxy re-encryption schemes with applications to secure distributed
storage. ACM Transactions on Information and System Security (TIS-
SEC), 9(1):1–30, 2006.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and
atomic proxy cryptography. In Advances in Cryptology-EUROCRYPT’98,
pages 127–144. Springer, 1998.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (im) possibility of obfuscating
programs. In Advances in Cryptology-CRYPTO 2001, pages 1–18. Springer,
2001.

15

[BPW16] Nir Bitansky, Omer Paneth, and Daniel Wichs. Perfect structure on the
edge of chaos - trapdoor permutations from indistinguishability obfusca-
tion. In Theory of Cryptography - 13th International Conference, TCC
2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, pages
474–502, 2016.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor
tracing, and more from indistinguishability obfuscation. In Advances in
Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages 480–
499, 2014.

[CCL+14] Nishanth Chandran, Melissa Chase, Feng-Hao Liu, Ryo Nishimaki, and
Keita Xagawa. Re-encryption, functional re-encryption, and multi-hop re-
encryption: A framework for achieving obfuscation-based security and in-
stantiations from lattices. In Public-Key Cryptography–PKC 2014, pages
95–112. Springer, 2014.

[CCV12] Nishanth Chandran, Melissa Chase, and Vinod Vaikuntanathan. Functional
re-encryption and collusion-resistant obfuscation. In Theory of Cryptogra-
phy, pages 404–421. Springer, 2012.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with
multibit output. In Advances in Cryptology–EUROCRYPT 2008, pages
489–508. Springer, 2008.

[CH07] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-
encryption. In Proceedings of the 14th ACM conference on Computer and
communications security, pages 185–194. ACM, 2007.

[CRV10] Ran Canetti, Guy N Rothblum, and Mayank Varia. Obfuscation of hy-
perplane membership. In Theory of Cryptography, pages 72–89. Springer,
2010.

[CWYD10] Sherman SM Chow, Jian Weng, Yanjiang Yang, and Robert H Deng.
Efficient unidirectional proxy re-encryption. In Progress in Cryptology–
AFRICACRYPT 2010, pages 316–332. Springer, 2010.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In Foundations of Computer Science
(FOCS), 2013 IEEE 54th Annual Symposium on, pages 40–49. IEEE, 2013.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round
secure MPC from indistinguishability obfuscation. In Theory of Cryptog-
raphy - 11th Theory of Cryptography Conference, TCC 2014, San Diego,
CA, USA, February 24-26, 2014. Proceedings, pages 74–94, 2014.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Tech-
niques. Cambridge University Press, 2001.

[Had00] Satoshi Hada. Zero-knowledge and code obfuscation. In Advances in Cryp-
tology - ASIACRYPT 2000, 6th International Conference on the Theory
and Application of Cryptology and Information Security, Kyoto, Japan,
December 3-7, 2000, Proceedings, pages 443–457, 2000.

[Had10] Satoshi Hada. Secure obfuscation for encrypted signatures. In Advances in
Cryptology–EUROCRYPT 2010, pages 92–112. Springer, 2010.

[HRsV07] Susan Hohenberger, Guy N Rothblum, abhi shelat, and Vinod Vaikun-
tanathan. Securely obfuscating re-encryption. In Theory of Cryptography,
pages 233–252. Springer, 2007.

16

[LV08] Benôıt Libert and Damien Vergnaud. Unidirectional chosen-ciphertext se-
cure proxy re-encryption. In Public Key Cryptography–PKC 2008, pages
360–379. Springer, 2008.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation:
deniable encryption, and more. In Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484,
2014.

[Wee05] Hoeteck Wee. On obfuscating point functions. In Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing, pages 523–532.
ACM, 2005.

A Public Key Encryption

A PKE scheme consists of four algorithms: (Setup,KeyGen,Enc,Dec). Setup takes
the unary encoding of the security parameter (1λ) and outputs the set of public
parameters denoted by params. The public parameters also describes the mes-
sage space denoted byM. KeyGen is a probabilistic algorithm which takes pub-
lic parameters params as input and outputs public key-secret key pair (pk, sk).
The encryption algorithm Enc is a probabilistic algorithm that takes a message
m ∈M, a public key pk and public parameters params as input and outputs a
ciphertext c. The decryption algorithm Dec is a deterministic algorithm which
takes a ciphertext c, secret key sk and public parameters params and outputs a
message m. Dec outputs a special symbol denoted by ⊥ when it is run on an in-
valid ciphertext. Any PKE system must satisfy the following correctness guaran-
tee: for every params← Setup(1λ), every (pk, sk)← KeyGen(params) and every
m ∈M, we have Pr[c← Enc(m, pk, params) : Dec(c, sk, params) = m] = 1.

We define the standard multi-message security for an encryption scheme.

Definition 5. Let Π = (Setup,KeyGen,Enc,Dec) be a PKE system. Let us de-
fine an experiment
IND− CPAmany,b

(
Π,λ,A = (A1,A2), q(·), z

)
as follows:

IND− CPAmany,b
(
Π,λ,A, q(·), z

)
1. params← Setup(1λ).
2. (pk, sk)← KeyGen(params).
3. (M0,M1, state) ← A1(1λ, params, pk, q(·)) where |M0| = |M1| =

q(λ).
4. C∗ ← {Enc(m, pk, params)}m∈Mb .
5. b′ ← A2(C∗, state, z).
6. Output b′

We say that Π is multi message secure if for all polynomials q(·), for all
non-uniform polynomial time adversaries A = (A1,A2), there exists a negligible
function µ(·) such that for all z ∈ {0, 1}poly(λ) and for all λ ∈ N,

∆
(
IND− CPAmany,0

(
Π,λ,A, q(·), z

)
, IND− CPAmany,1

(
Π,λ,A, q(·), z

))
≤ µ(λ)

17

B El-Gamal Encryption System

B.1 El-Gamal Encryption System

El-Gamal Encryption System

– Setup(1λ) : Let (p,G, g) ← Gen(1λ). Output params = (G, p, g) as the
public parameters with the message space M = G.

– KeyGen(params) : Choose x
$← Z∗p and set public key pk = gx and the

secret key sk = x.

– Enc(m, pk, params) : Parse the public key as pk = gx. Choose r
$← Z∗p

and output the ciphertext c = (m · (gx)r, gr).
– Dec(c, sk, params) : Parse the secret key sk = x and c = (C1, C2).

Output the message m = C1 · (Cx2)−1.

B.2 Variant of El-Gamal Encryption System

El-Gamal Variant

– Setup(1λ) : Let (p,G, g) ← Gen(1λ). Output params = (G, p, g) as the
public parameters with the message space M = G.

– KeyGen(params) : Choose x
$← Z∗p and set public key pk = gx and the

secret key sk = x.

– Enc(m, pk, params) : Parse the public key as pk = gx. Choose r
$← Z∗p

and output the ciphertext c = ((gx)r, gr ·m).
– Dec(c, sk, params) : Parse the secret key sk = x and c = (C1, C2).

Output the message m = C2 · (C1/x
1)−1.

It is easy to see that El-Gamal encryption variant is both single and multi
message secure under the DDH-assumption.

C Correctness

The output of Re− Enc1→2 can be decrypted using the following algorithm
Decrypt2:

Decrypt2

Input: sk2, [C
′
1, C

′
2, C

′
3, C

′
4, C

′
5] :

1. Parse sk2 as y.
2. Compute h = C ′3 · (C ′4

y
)−1.

3. Compute C ′′2 = C ′2 · ((C ′5)y)−1

4. Output m = (C ′1) · ((C ′′2)1/(H(h)))−1.

18

We observe that correctness of Decrypt1 algorithm directly follows from the
correctness of El-Gamal encryption scheme.

We now show the correctness of Decrypt2 algorithm. The input to Decrypt2
algorithm is given by [C ′1, C

′
2, C

′
3, C

′
4, C

′
5] = [m·gr, (gH(h))r ·(gy)s, h·(gy)v, gv, gs]

and the secret key y. It first computes C ′3 · (C ′4
y
)−1 = h · (gy)v · ((gv)y)−1 = h

and C ′′2 = C ′2 ·((C ′5)y)−1 = (gH(h))r ·(gy)s ·((gs)y)−1 = (gH(h))r. It then outputs
(C ′1) · ((C ′′2)1/(H(h)))−1 = (m · gr) · (((gH(h))r)1/(H(h)))−1 = m.

D Preserving Functionality

The lemma stated below shows that the Obf(C)(c; ·) is identically distributed to
C(c, ·) where c← Encrypt1(m, pk1, params).

Lemma 4. Let C be a any circuit in Cλ. Then, Obf(C)(c; ·) and C(c, ·) are iden-
tically distributed where c← Encrypt1(m, pk1, params).

Proof. We prove this by considering the output distributions of C and Obf(C)
on an input ciphertext c = (m · gr, (gx)r).

Let us first consider the distribution C(c). It is given by,

(m · gr
′
, (gr

′
)H(h) · (gy)s, h · (gy)v, gv, gs)

where r′, v, s are independently chosen random values from Z∗p.
When the same input is fed into Obf(C) the output is given by,

(m · gr+r
′
, (gr+r

′
)H(h) · (gy)s, h · (gy)v+v

′
, gv+v

′
, gs)

where r′, v′, s are uniformly and independently chosen values from Z∗p.
Let us denote r+ r′ as r and v+ v′ as v. We note that r and v are uniformly

distributed and are independent since r′ and v′ are independently chosen random
values. Rewriting the above tuple we get,

(m · gr, (gr)H(h) · (gy)s, h · (gy)v, gv, gs)

which is identically distributed as the output of C since r, v, s are uniformly and
independently distributed in Z∗p. ut

E Original Ciphertext Security

Theorem 4. The New Encryption Scheme is original ciphertext secure with
respect to the oracle Csk1,pk1,pk2,h under the DDH-assumption.

Proof. We will consider the cases i = 1 and i = 2 separately.
Case-I: i = 1.

Assume for the sake of contradiction that there exists an adversary A =
(A1,A2) against the original ciphertext security of the New Encryption System
such that,

∆
(
IND0,ori(Π,A, λ, 1), IND1,ori(Π,A, λ, 1)

)
= δ

19

where δ is non-negligible. We now construct a polynomial time algorithm B that
solves the DDH problem with non-negligible advantage.
B receives the tuple (g, gx, gr, Q) from the DDH-challenger. It chooses a ran-

dom y
$← Z∗p and sets pk1 = (g, gx) and pk2 = (g, gy). B chooses h

$← G and

v
$← Z∗p and computes Z1 = h · (gy)v, Z2 = gv and Z ′3

$← Z∗p. B provides
(pk1, pk2, params) to A1.
B simulates the oracle access of Csk1,pk1,pk2,h to A1 and A2 as follows: B runs

the program Re− Enc′1→2 described in Section 3 with the values pk1, pk2, Z1, Z2,
Z ′3 as constants. It remains to show that A1 and A2 would not be able to
distinguish B’s simulation and that of the original circuit. This follows directly
from the following Lemma.

Lemma 5.

(p, g,G, H)← Setup(1λ);

x, y
$← Z∗p;

pk1 = (g, gx);
pk2 = (g, gy);

h
$← G;

Z ′3, v
$← Z∗p :(

pk1, pk2, h · (gy)v, gv, Z ′3
)

λ

c
≈

(p, g,G, H)← Setup(1λ);

x, y
$← Z∗p;

pk1 = (g, gx);
pk2 = (g, gy);

h
$← G;

v
$← Z∗p :(
pk1, pk2, h · (gy)v, gv, H(h)/x

)

λ

Proof. We show that the Hyb0 is computationally indistinguishable to Hyb1
which is in turn indistinguishable to Hyb2.

Hyb0 ≈

(p, g,G, H)← Setup(1λ);

x, y
$← Z∗p;

pk1 = (g, gx);
pk2 = (g, gy);

h
$← G;

Z ′3, v
$← Z∗p :(

pk1, pk2, h · (gy)v, gv, Z ′3
)

λ

Hyb1 ≈

(p, g,G, H)← Setup(1λ);

x, y
$← Z∗p;

pk1 = (g, gx);
pk2 = (g, gy);

h, h′
$← G;

v
$← Z∗p :(
pk1, pk2, h · (gy)v, gv, H(h′)/x

)

λ

Hyb2 ≈

(p, g,G, H)← Setup(1λ);

x, y
$← Z∗p;

pk1 = (g, gx);
pk2 = (g, gy);

h
$← G;

v
$← Z∗p :(
pk1, pk2, h · (gy)v, gv, H(h)/x

)

λ

Claim. Assuming that H is a pseudo random generator, Hyb0 and Hyb1 are
computationally indistinguishable.

20

Proof. Suppose there exists an polynomial time adversary A distinguishing Hyb0
from Hyb1 with a non-negligible advantage, we construct a polynomial time
adversary B distinguishing the output of the pseudo random generator H from

the uniform distribution. B chooses x, y
$← Z∗p and sets pk1 = (g, gx), pk2 =

(g, gy). It chooses h
$← G and v

$← Z∗p. It computes h · (gy)v and gv. It receives
the challenge Q and auxiliary information z from the challenger for the pseudo
random generator game. B runs A with

(
pk1, pk2, h · (gy)v, gv, Q/x, z

)
as input.

We can easily see that if Q was the output of the pseudo random generator on a
random group element then the input distribution to A is identically distributed
as that of Hyb1. Else, it is identically distributed as in Hyb0. B outputs the same
bit as A does. Hence, the advantage of B in the game against the pseudo random
generator challenger is same as the advantage A has in distinguishing between
the two hybrids. Hence, Hyb0 and Hyb1 are computationally indistinguishable.

ut

Claim. Assuming the single message security (Theorem 2) of El-Gamal encryp-
tion scheme, Hyb1 and Hyb2 are computationally indistinguishable.

Proof. Suppose there exists an algorithm A that can distinguish with non-
negligible advantage between Hyb1 and Hyb2, we construct an adversary B
against the single message security of the El-Gamal encryption with the same
non-negligible advantage.

B receives the public key gy from the El-Gamal challenger. It chooses x
$← Z∗p

and sets pk1 = (g, gx) and pk2 = (g, gy). It chooses random h, h′
$← G (inde-

pendently) and gives h, h′ as the challenge messages to the El-Gamal challenger.
It receives a challenge ciphertext C∗ = (C∗1 , C

∗
2) and auxiliary information z.

It then runs A with
(
pk1, pk2, C

∗
1 , C

∗
2 , H(h)/x, z

)
as input. It is easy to the see

that when the challenge ciphertext is an encryption of h, the input to A is iden-
tically distributed to Hyb2 and when it is an encryption of h′, the input to A is
identically distributed to Hyb1.
B outputs the same bit as A outputs. It is easy to see that the advantage

that B has in distinguishing between the ciphertexts of the challenge messages
is same as the advantage that A has in distinguishing between the two hybrids.
Hence, by assumption B has a non-negligible advantage in the El-Gamal security
game which is a contradiction. ut

From the above two claims, we can infer that Hyb0 and Hyb2 are computa-
tionally indistinguishable. ut

The above lemma shows that any polynomial time adversary would not be
able to distinguish between the cases when Z ′3 is chosen uniformly at random and
the case when it is set to H(h)/x. We observe that the Re− Enc′1→2(pk1, pk2, Z1,
Z2, H(h)/x) preserves the same functionality as that of the original circuit
(proved in Appendix 4). Note that the functionality of Re− Enc′1→2 is depen-
dent only on the constants which are hardcoded. That is, given the constants,

21

Re− Enc′1→2 can be run by a PPT machine on various inputs producing iden-
tical output distribution as that of the original program. The lemma states
that no adversary would be able to distinguish between the constants which
are hardcoded in the original and the simulated program. This implies that
no adversary would be able to distinguish the outputs of the original and the
simulated programs on specific inputs. Hence, as a consequence of the above
lemma A1 or A2 would not be able to distinguish between oracle access to
Re− Enc′1→2(pk1, pk2, Z1, Z2, H(h)/x) and Re− Enc′1→2(pk1, pk2, Z1, Z2, Z

′
3) ex-

cept with negligible probability. Let that negligible probability be denoted by
δ′.
A1 outputs two messages m0 and m1. B tosses a random coin β ∈ {0, 1} and

gives the challenge ciphertext C∗ = (mβ · gr, Q). A2 finally outputs its guess β′

of β. If β = β′ then B outputs 1 meaning that Q is a DDH-instance. Else, B
outputs 0.

We first observe that if Q was a DDH-instance then, B outputs the challenge
ciphertext which is identically distributed to the original ciphertext. Also it gives
a simulation of the re-encryption oracle which is computationally indistinguish-
able from the original oracle. Hence, the probability that β = β′ in this case is
given by 1/2 + δ − δ′.

If Q was not a DDH instance, then due to random choice of Q and the random
choice of r the probability that β′ = β is 1/2.

Hence, the advantage of B against the DDH game is given by δ − δ′. We
have assumed δ to be non-negligible and by the above lemma δ′ is negligible.
Therefore, B has a non-negligible advantage against the DDH challenger which
is a contradiction. This completes the proof for case i = 1.

Case-II: i = 2.
Let us assume for the sake of contradiction that there exists PPT algorithms

A = (A1,A2) such that:

∆
(
IND0,ori(Π,A, λ, 2), IND1,ori(Π,A, λ, 2)

)
= δ

where δ is non-negligible. We now construct a polynomial time algorithm B that
solves the DDH problem with non-negligible advantage.
B receives the tuple (g, gy, gr, Q) from the DDH-challenger. It chooses a ran-

dom x
$← Z∗p and sets pk1 = (g, gx) and pk2 = (g, gy). B chooses h

$← G.
B simulates the oracle access of Csk1,pk1,pk2,h to A1 and A2 as follows: B runs

the program Re− Enc1→2 described in Section 3 with the values x, pk1, pk2, h as
constants. Thus, the oracle access to Csk1,pk1,pk2,h is simulated perfectly by B.
A1 outputs two messages m0 and m1. B tosses a random coin β ∈ {0, 1} and

gives the challenge ciphertext C∗ = (mβ · gr, Q). A2 finally outputs its guess β′

of β. If β = β′ then B outputs 1 meaning that Q is a DDH-instance. Else, B
outputs 0.

It is easy to see that if Q is a DDH-instance then the probability that β = β′

is given by δ + 1/2. Else, due to randomness of Q and the random choice of r,
the probability that β = β′ is exactly 1/2. Therefore, the advantage of B against

22

the DDH-challenger is δ which is non-negligible. Hence, we have arrived at a
contradiction.

ut

F Transformed Ciphertext Security

Theorem 5. The New Encryption Scheme is transformed ciphertext se-
cure with respect to the oracle Csk1,pk1,pk2,h under the multi-message security (2
messages) of El-Gamal encryption system (Theorem 1).

Proof. Assume for the sake of contradiction that there exists an adversary A =
(A1,A2) against the transformed ciphertext security of the encryption system
such that

∆
(
IND0,tran(Π,A, λ), IND1,tran(Π,A, λ)

)
= δ

where δ is non-negligible. We will construct an adversary B against the multi-
message security of El-Gamal encryption system with non-negligible advantage.
B obtains the public key pk = (g, gy) and the public parameters params

from the El-Gamal challenger. It chooses x
$← Z∗p and sets pk1 = (g, gx) and

sk1 = x. It sets pk2 = (g, gy) and implicitly defines sk2 as y. It outputs
(pk1, sk1, pk2, params) to the adversary A1.

It now chooses h
$← G. Since B has access to both sk1, pk2 and h, it can

simulate the re-encryption circuit perfectly. That is, it runs the program Re −
Enc1→2 with the constants sk1, pk1, pk2, h hardcoded in the program description.

In the challenge phase, A1 outputs two messages m0,m1. B outputs (h, 1)

and (w,w′) where w,w′
$← G (chosen independently) as the message sequences

to the El-Gamal challenger. It obtains c∗2 = (C∗1 , C
∗
2) and d∗2 = [D∗1 , D

∗
2] as the

challenge ciphertexts. It chooses b
$← {0, 1}, r $← Z∗p and outputs

(mb · gr, (gH(h))r ·D∗1 , C∗1 , C∗2 , D∗2)

It is easy to see that if c∗2 is an encryption of h and d∗2 is an encryption of 1,
then the challenge ciphertext is distributed identically to C(Encrypt1(m1, pk1,

params); r) where r
$← {0, 1}3λ. Otherwise, each term in the challenge ciphertext

is random (over the random choice of w,w′, r as well as the random coins used
for generating c∗2 and d∗2) and independent of each other.
A2 outputs b′. If b = b′, then B outputs 1. Else, it outputs 0. Hence, the

probability that A2 outputs b′ = b is 1/2 + δ/2 in the first case and is equal to
1/2 in the second case. Hence, advantage of B against the El-Gamal challenger
is given by δ/2 which is non-negligible (a contradiction). ut

G Proof of Lemma 3

We show that for all PPT distinguishers D, there exists a negligible function
µ(·) such that for all z ∈ {0, 1}poly(λ),

∆
(
Nice(DO(C), λ, z)}, Junk(DO(C), λ, z)

)
≤ µ(λ)

23

First, we consider two distributions which are similar to Nice and Junk except
that they consider a “dummy” distinguisher D∗ which outputs whatever is given
as input.

Proposition 1.
{

Nice(D∗, λ, z)
}
λ

c
≈
{

Junk(D∗, λ, z)
}
λ

Proof. The proof for the this proposition follows directly from the proof of
Lemma 5 which appears in Appendix 4.2. We note that Hyb0 is identically dis-
tributed to Junk(D∗, λ, z) and Hyb2 is identically distributed to Nice(D∗, λ, z).
Hence,

Nice(D∗, λ, z)
c
≈ Junk(D∗, λ, z)

ut

We now consider two more distributions which proceed as Nice and Junk
except that they consider distinguishers DO(R) where R is a probabilistic circuit
which on any input [C1, C2], first checks if C1, C2 belong to G and if yes, outputs
[A,B,C,D,E] where A,B,C,D,E are chosen uniformly and independently from
G. Otherwise, it outputs ⊥.

Note that input to DO(R) is identically distributed to Nice(D∗, λ, z) in Nice(
DO(R), λ, z) and its input is identically distributed to Junk(D∗, λ, z) in Junk(
DO(R), λ, z). The following proposition is a direct consequence of Proposition 1.

Proposition 2. For all PPT distinguihsers D, there exists a negligible function
µ(·) such that for all z ∈ {0, 1}poly(λ) and for all λ ∈ N, we have

∆
(
Nice(DO(R), λ, z), Junk(DO(R), λ, z)

)
≤ µ(λ)

Proof. Assume for the sake of contradiction that there exists a distinguisher
DO(R) which can distinguish between Nice(D∗, λ, z) and Junk(D∗, λ, z) with non-
negligible advantage. We construct an distinguisher between D′ (without the
oracle access to R) which distinguishes between Nice(D∗, λ, z) and Junk(D∗, λ, z)
with the same advantage.

D′ runs D internally by giving its own input as input to D. When D requests
an oracle access to R, D′ can simulate the responses on its own (It will choose
five independent random elements from the group and return as the response for
any oracle query after checking whether the input belongs to G×G). D′ finally
outputs what D outputs.

It is easy to see that D′ as the same distinguishing advantage that D has
and hence we have arrived at a contradiction to Proposition 1. ut

Consider any distinguisher D. Let us define,

α(λ, z) = ∆
(
Nice(DO(C), λ, z), Junk(DO(C), λ, z)

)
β(λ, z) = ∆

(
Nice(DO(R), λ, z), Junk(DO(R), λ, z)

)
Let qD be the number of oracle queries that D makes during its execution.

Since D runs in polynomial time, qD is polynomial in λ.

24

Proposition 3. There exists an algorithm B against the multi-message (2qD
messages) security of El-Gamal encryption scheme with an advantage |α(λ, z)−
β(λ, z)|/2.

Proof. We prove the proposition by constructing an adversary B against the
El-Gamal challenger with advantage |α(λ, z)− β(λ, z)|/2.

B receives the public key gy from the El-Gamal challenger. It chooses x
$← Z∗p

and sets pk1 = (g, gx) and pk2 = (g, gy). It chooses two message vectors M0

and M1 each of length 2qD as follows. It sets M0 = {1, 1, ..., 1} (of length
2qD) and M1 = {m1,m2, ...,m2qD} where m1, ...,m2qD are chosen uniformly
and independently at random from G. It then receives the challenge ciphertext
vector C∗ = {(gr1 , Q1), (gr2 , Q2), ...,
(grqD , Q2qD)} and auxiliary information z. Note that for all i ∈ {1, 2, ..2qD}, ri is
a random element in Z∗p and Qi = gyri or an uniformly chosen element depending
on whether M0 was encrypted or M1 was encrypted (due to the random choice
of m1, ...,m2qD).
B now uses D to determine whether the challenge ciphertext vector is an en-

cryption of M0 or M1. It first generates the tuples which are distributed exactly
as Nice(D∗, λ, z) and Junk(D∗, λ, z). It tosses a random coin c and runs D with
input Nice(D∗, λ, z) if c = 0 and with input Junk(D∗, λ, z) if c = 1. B needs to
answer the re-encryption oracle queries made by D. It uses the challenge cipher-
text to answer those oracle queries. We show that if the challenge ciphertext
is an encryption of M0, then the oracle responses given by B are identically
distributed to the output of the re-encryption circuit C. If the challenge cipher-
text was an encryption of M1, we show that the oracle responses are identically
distributed to the output of R. The exact details follow.

B chooses h
$← G and v

$← Z∗p and computes Z1 = h · (gy)v and Z2 =

gv. It then chooses Z3 = H(h)/x and Z ′3
$← Z∗p. It tosses a random coin and

chooses c
$← {0, 1}. If c = 0, it runs DO(X)(pk1, pk2, Z1, Z2, Z3, z). Else it runs,

DO(X)(pk1, pk2, Z1, Z2, Z
′
3, z) where X is the circuit description of the program

Re− Enc′′1→2 described below. Note that if c = 0, input to D is identical to
Nice(D∗, λ, z). Else, it is identical to Junk(D∗, λ, z).

When D makes ith oracle query [C1, C2], B runs the following program and
returns the output of the program to D as the response.

Re− Enc′′1→2

Constants: pk1, pk2, Z1, Z2, Z3

Input: [C1, C2], i

1. Choose r′
$← Z∗p.

2. Compute C ′1 = C1 · gr
′
, C ′2 = C2 · (gx)r

′
.

3. Compute Z ′1 = Z1 · (Qi), Z ′2 = Z2 · (gri).
4. Compute C ′′2 = C ′Z3

2 .

25

5. Compute D2 = C ′′2 ·Qi+qD
6. Output [C ′1, D2, Z

′
1, Z

′
2, g

ri+qD].

D finally outputs its guess. Let c′ denote the output of D. If c = c′, B outputs
1. Else, it outputs 0.

We now prove the following two claims regarding the output of B.

Claim. If M0 was encrypted, the probability that B outputs 1 is given by 1/2 +
α(λ, z)/2.

Proof. We claim that if M0 was encrypted, then B perfectly simulatesDO(C)(pk1,
pk2, h·(gy)r, gr, H(h)/x, z

)
or DO(C)(pk1, pk2, h·(gy)r, gr, Z ′3, z

)
depending upon

the bit c. We already noted that the input to D is identically distributed to
Nice(D∗, λ, z) or Junk(D∗, λ, z). It is enough to show that X simulates the cir-
cuit C perfectly. Since Qi = (gy)ri for all i ∈ [1, 2qD] and Z1, Z2, Z3 are properly
generated as per the Obf algorithm, the output of X is given by,

(m · gr+r
′
, (gr+r

′
)H(h) · (gy)ri+qD , h · (gy)v+ri , gv+ri , gri+qD)

which is identically distributed as the output of the re-encryption circuit since
r′, ri, ri+qD are chosen uniformly at random from Z∗p. Hence, the probability that

B outputs 1 in this case is same as the probability that DO(C) outputs c = c′

which is same as 1/2 + α(λ, z)/2. ut

Claim. If M1 was encrypted, the probability that B outputs 1 is given by 1/2 +
β(λ, z)/2.

Proof. We already noted that the input to D are perfectly generated according
to either Nice(D∗, λ, z) or Junk(D∗, λ, z). We claim that the response given by
B are same as the one given by R. The output of B is given by

(m · gr+r
′
, (gr+r

′
)H(h) ·Qi+qD , h · (gy)v ·Qi, gv+ri , gri+qD)

Since Qi and Qi+qD are uniformly chosen random elements in G if M1 was
encrypted and r′, ri, ri+qD are chosen uniformly at random from Z∗p, we can easily
see that all elements in the above distribution are random and independent for
every invocation of the oracle.

Hence, in this case B perfectly simulatesDO(R)
(
pk1, pk2, h·(gy)r, gr, H(h)/x, z

)
or DO(R)

(
pk1, pk2, h · (gy)r, gr, Z ′3, z

)
depending on the bit c. Thus, the proba-

bility that B outputs 1 in this case is same as the probability that DR outputs
c = c′ which is given by β(λ, z)/2 + 1/2. ut

Hence the advantage of B in the multi message security game of the El-Gamal
Encryption scheme is given by |α(λ, z)− β(λ, z)|/2. ut

We know from Proposition 2 that β(λ, z) is negligible. Hence from Proposi-
tion 3 we can infer that α(λ, z) is also negligible. Hence, Obf satisfies the average
case secure virtual black box property and this concludes the proof of Lemma.

26

