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Abstract

We present new algorithm-substitution attacks (ASAs) on symmetric encryption that im-
prove over prior ones in two ways. First, while prior attacks only broke a sub-class of ran-
domized schemes having a property called coin injectivity, our attacks break all randomized
schemes. Second, while prior attacks are stateful, ours are stateless, achieving a notion of strong
undetectability that we formalize. Together this shows that ASAs are an even more dangerous
and powerful mass surveillance method than previously thought. Our work serves to increase
awareness about what is possible with ASAs and to spur the search for deterrents and counter-
measures.
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1 Introduction

The Snowden revelations have exposed a pervasive program of mass surveillance, one of whose
potential mechanisms is an algorithm substitution attack (ASA) [19, 20, 3]. In the context of
symmetric encryption which is our focus, your encryption code (which implements the prescribed
encryption algorithm of the scheme) is replaced by big-brother created malware that aims to un-
detectably exfiltrate your key through ciphertexts [3].

In this paper we present a new ASA on symmetric encryption that improves over the prior one
of BPR [3] in two ways. First, while the prior ASA only broke a sub-class of randomized schemes
having a property called coin injectivity, ours breaks all randomized schemes. Second, while the
prior ASA was stateful, ours is stateless, achieving a stronger notion of undetectability that we
motivate and formalize. Together this shows that ASAs are even more dangerous and powerful
than previously thought.

ASAs. Alice expects that her encryption code is implementing the encryption algorithm SE.Enc
prescribed by her chosen symmetric encryption scheme SE. In an ASA [3], the code of SE.Enc has
been replaced by big-brother designed malware A.Enc. When Alice calls her encryption routine,
giving it key KSE and message m to encrypt, it is A.Enc that runs, producing a ciphertext c based
not only on the given inputs but also on another, hardwired key we denote KA. Colluding with
A.Enc is an accomplice A.Ext who knows KA and will pick up c by eavesdropping on the channel.
A.Enc aims to produce c in such a way that A.Ext can violate privacy of Alice’s communications,
the most effective (from the point of view of big brother) attack being one that recovers KSE from
c.

One’s first reaction may be that a successful ASA is trivial. For example, let the subverted
code A.Enc, given KA,KSE,m, set ciphertext c equal to the encryption key KSE. BPR [3] argue
that this is attack is unattractive to big brother because it is detectable. Anyone (in particular the
decrypter), obtaining c, will see that something is not right. BPR [3] put forth the goal of an ASA
as being to violate privacy while remaining undetectable.

Undetectability. To rigorously explore ASAs, BPR [3] provide a formalization of undetectability.
Their viewpoint is that the detecter is the decrypter. It thus knows KSE and can check that a
ciphertext decrypts to an intended message. But it can do other checks as well. The definition
models detecter D as an adversary given input KSE and access to an encryption oracle Enc that,
given a message m, returns ciphertext c computed either via SE.Enc on inputs KSE,m or via A.Enc
on inputs KA,KSE,m. Undetectability requires that no efficient D should be able to tell which.

The BPR attack. The question that emerges is whether it is possible to mount a successful but
undetectable ASA. BPR [3] address this in depth when SE.Enc is randomized. (Here and henceforth,
a randomized scheme means a stateless scheme with non-trivial entropy in the ciphertexts. See
Section 4 for a formal definition. A deterministic scheme, which has no entropy in the ciphertexts,
does not qualify!) Randomized schemes are the most basic and common, making this question
important. Their strongest result is represented by their biased ciphertext attack. We will first
explain the attack and then discuss our work.

Let us view SE.Enc as a deterministic function of KSE,m and coins r, producing a ciphertext
as c ← SE.Enc(KSE,m; r). In the true encryption process, r is chosen at random. In the biased
ciphertext attack of BPR [3], A.Enc also produces c as SE.Enc(KSE,m; r) but picks r, not uniformly
at random, but at random from a subset S of the set of all possible coins, where S is defined as
the set of r so that a PRF F under KA, when applied to input c = SE.Enc(KSE,m; r), returns the
first bit KSE[1] of KSE. This allows A.Ext, given KA, c, to retrieve KSE[1] = F(KA, c). The process
is repeated to exfiltrate KSE bit by bit.
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The difficulty is assessing undetectability. The ciphertext c produced by A.Enc is not distributed
the same way as one produced by the true encryption process. Can a detection adversary D tell?
This question turns out to be surprisingly difficult. BPR [3] provide a partial answer. Calling a
scheme SE coin injective if the mapping r 7→ SE.Enc(KSE,m; r) is injective for all KSE,m, they use
a combinatorial analysis [3, Lemma 1] to prove undetectability in this case. Based on this they
move away from randomized, stateless schemes to obtain security via deterministic, stateful ones.

Shortcomings of prior work. The biased ciphertext attack has two shortcomings. Both are
noted in BPR [3] and left as open problems which we will resolve.

The first shortcoming is that the attack only applies to coin injective schemes. The basic
question left un-answered here is, does there exist an ASA-secure randomized scheme, or are all
randomized schemes subject to attack?

The second shortcoming is that in the biased ciphertext ASA, the subverted encryption algo-
rithm A.Enc is stateful, maintaining state σ across invocations. (The state in this case is an integer
representing either which bit of the key A.Enc is trying to exfiltrate or taking a special value to
indicate that exfiltration is complete and encryption should be be done as usual.) This renders
the attack detectable in practice in simple ways. For example, a state reset, as can happen with a
reboot or cloning to create a virtual machine, leads, in their attack, to detection. However, this is
not captured by their definition of detectability, under which they prove their attack undetectable
(for coin injective schemes). BPR [3] recognize this and comment that a stateless attack would be
better, but that they do not know how to make their attack stateless.

Contributions in brief. We contribute (1) new definitions (2) new attacks and (3) new analyses.
The definitions are for strong undetectability (which captures the above issues and can only be met
by stateless schemes) and key recovery security, the latter reflecting the need to formalize not just
security goals but attack goals. The attack is a new ASA shown to achieve both. The analyses
establishing this resolve technical issues from BPR [3] via a different approach. As a by product,
we resolve the above questions, presenting a stateless ASA that breaks all randomized encryption
schemes and showing that the move to deterministic schemes for security, made by BPR [3], is a
necessary one.

Strong undetectability. Our first contribution is to introduce and formalize a stronger notion
of undetectability called strong undetectability. Our formalization, in Section 3, uses the framework
of the above discussed definition of BPR [3] but makes the oracle Enc more powerful with regard
both to inputs and outputs. It now takes input not just a message, but a key, allowing the detector
to pick, rather than merely know, the encryption key KSE. It returns not just the ciphertext, but
the current state σ of the encryption code.

The last means that as long as the good encryption algorithm SE.Enc is stateless (the case we
are interested in here), statelessness of A.Enc is a necessary (but not sufficient) condition for strong
undetectability. That is, a strongly undetectable ASA must be stateless. A consequence of this is
that the ASA will not be detectable upon system reset or cloning, meaning strong undetectability
excludes the easy and natural methods of detection allowed by undetectability under BPR [3].

Ensuring this was the main purpose of the definition. Beyond that, while BPR [3] took the view
that detection is performed by the decrypter, strong undetectability suggests that detection may
to some extent be performed by the encryptor. It imagines that the detector may have blackbox
access to the encryption code and can experiment with it, so that it can feed it keys of its choice and
see whether or not it maintains state. However one must be careful to not take this interpretation
to an extreme, for there are certainly detection methods that someone with blackbox access to the
code could employ that strong undetectability does not capture, for example timing the responses
and comparing this to the time the real algorithm would be expected to take. Indeed, it is not
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possible to evade all forms of detection. We are trying to evade more forms of detection than prior
work and figure out how “undetectable” a successful ASA can be.

The biased ciphertext ASA of BPR [3] will not be strongly undetectable due to its use of non-
trivial state. The question this raises is whether strongly undetectable (and in particular stateless)
ASAs are possible, and on which randomized encryption schemes. We will show that they are
possible on all randomized schemes.

Key recovery. Beyond introducing and formalizing strong undetectability, we take a more rigor-
ous approach to attack goals. As is conventional in cryptography, BPR [3] formalize security goals,
not attacker goals. Thus, they provide an indistinguishability style surveillance advantage, viewing
the goal as being to ensure that this advantage stays small for undetectable ASAs. This is a good
goal for the scheme designer to achieve, but its violation by an attacker means little. Big brother
is after more, specifically recovery of the target key. We carefully formalize a framework for key
recovery attacks in which we can compare different ones to differentiate between the effectiveness
of different attacks and make rigorous claims about what our attacks achieve.

Our formalization introduces as a parameter a message distribution M, distinct from the ad-
versary, that represents the messages encrypted by the encrypter. The larger the class of message
distributions for which the attack succeeds, the more powerful the attack. Our ASA will succeed
for all message distributions, which means that big brother recovers the target key regardless of
what messages the sender sends. In particular, big brother would not need to pick or control the
messages to succeed.

ASA. We now sketch our new ASA which we will show to achieve key recovery (for all message
distributions) and strong undetectability for all randomized encryption schemes. Let the good key
KSE have length k, and let PRF F take outputs in the set {0, 1} × [k] where [k] = {1, . . . , k},
meaning an output is a pair (v, i) where v is a bit and i is an index into the key. In our new ASA,
the subverted encryption algorithm A.Enc, given KA,KSE,m, aims to pick r such that the (v, i)
returned by F(KA, SE.Enc(KSE,m; r)) satisfies v = KSE[i], returning c← SE.Enc(KSE,m; r). A.Ext
can retrieve (KSE[i], i) = F(KA, c). In this way it gets the i-th bit of the key.

However, there are some difficulties with the above description. First, it may not be possible
to directly and efficiently pick r in the way described. In our ASA, which is presented in detail in
Section 4, A.Enc uses rejection sampling, repeatedly picking r at random until either the desired
condition is met or it times out, when the latter happens being controlled by a parameter s of the
attack. Second, we must use a series of q encryptions to allow A.Ext to recover the entire key, so
that we must determine how to pick q, which is another parameter of the attack. The challenge
is to prove both key recovery and strong undetectability without making any assumptions on the
encryption scheme other than that it is randomized, and with good, concrete bounds enabling
concrete and practical choices of q, s that make the attack both efficient and effective. The analyses
we discuss next resolve these challenges.

Analyses. Theorem 4.1 proves that big brother, with our ASA, will indeed recover the target key,
with high probability even for relatively small values of the attack parameters q, s. Given q, s and
the key length k of the targeted randomized encryption scheme SE, the theorem gives a concrete
lower bound on the key recovery advantage of our adversary as a function of q, s, k. The proof is
a sequence of games. We begin, in a standard way, by exploiting the assumed PRF security of F
to move to a game where it is replaced by a random function. We then exploit the assumption
that the scheme is randomized (ciphertexts have non-trivial min-entropy) to move to a game where
the (v, i) values are all picked independently at random. This allow us to move to a game where
the sampling continues infinitely, reaching the conceptually correct distribution of the above attack
idea. A coupon collector argument provides the bound for the last game. Each game transition
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accumulates an error, the sum of these being our final bound. We show with a numerical example
that a 128 bit key is recovered quite quickly.

Our approach to proving (strong) undetectability is entirely different from that used by BPR
[3] to prove undetectability of their biased ciphertext attack, and it is this novel analysis that
allows us to avoid extra assumptions like coin injectivity on the encryption scheme SE. While they
use a combinatorial analysis [3, Lemma 1], we use a game sequence. Theorem 4.2 proves strong
undetectability of our ASA assuming only that SE is randomized (ciphertexts have non-trivial min
entropy) and F is a PRF.

Related work. Simmons work on subliminal channels [15, 16, 17, 18] was an early indication of
the danger of ASAs. ASAs are part of the broader framework of kleptography studied by Young and
Yung [19, 20, 21, 23, 22]. Their ideas seem prescient now. Back-doored blockciphers were studied
in [12, 10, 11]. Goh, Boneh, Pinkas and Golle [7] show how to add key recovery to the SSL/TLS
and SSH protocols. Cryptographic reverse firewalls [9] represent an architecture to counter ASAs
via trusted code in network perimeter filters. Dodis, Ganesh, Golovnev, Juels and Ristenpart [6]
provide a formal treatment of backdooring of PRGs, another form of subversion. Russell, Tang,
Yung and Zhou [13] consider ASAs on one-way and trapdoor one-way functions. The survey by
Schneier, Fredrikson, Kohno and Ristenpart [14] takes a broader look at subversion, providing
useful categorizations. In independent work that we will discuss in more depth after giving our
definitions, Degabriele, Farshim and Poettering [5] critique and refine the definitions of BPR [3].
Ateniese, Magri and Venturi [1] study ASAs on signature schemes in particular giving stateful
attacks based on the methods of BPR [3]. We note that our methods can be employed to make
their attacks stateless as well.

2 Notation and Definitions

Notation. If n is an integer then we let [n] = {1, . . . , n}. If x is a string then |x| denotes its
length while if S is a set then |S| denotes it size. By ε we denote the empty string. By x[i] we
denote the i-th bit of a string x, for i ∈ [|x|]. By s←$ S we denote picking s at random from
set S. If A is a randomized algorithm then y ← A(x1, . . . ; r) denotes running A on inputs x1, . . .
and coins r to deterministically obtain output y, and y←$A(x1, . . .) denotes picking r at random
and letting y ← A(x1, . . . ; r). Definitions and proofs use code-based games [4]. See Fig. 1 for an
example of a game. If G is a game then Pr[G] denotes the probability that it returns true. We
adopt the convention that the running time of an adversary means the worst case execution time of
the adversary in the game that executes it, so that time for game setup steps and time to compute
answers to oracle queries is included.

PRFs. We recall the definition as per [2, 8]. Let F : {0, 1}` × {0, 1}∗ → R be a function taking
a key L ∈ {0, 1}` and input c ∈ {0, 1}∗ to return an output F(L, c) ∈ R. Consider game PRFF

F

associated to F and adversary F . It provides the adversary with an oracle Fn as shown. Let

Advprf
F (F ) = 2 Pr[PRFF

F ]− 1

be the prf advantage of adversary F against function F. In proofs we will use the standard fact
that it can also be expressed as

Advprf
F (F ) (1)

= Pr[PRFF
F | bprf = 1]− (1− Pr[PRFF

F | bprf = 0]) .
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Game PRFF
F

L←$ {0, 1}`; bprf ←$ {0, 1}; C ← ∅
b′prf ←$ FFn

Return (bprf = b′prf)

Fn(c)

If (bprf = 1) then yc ← F(L, c)

Else

If c 6∈ C then yc←$R

C ← C ∪ {c}
Return yc

Figure 1: Game used to define prf advantage of adversary F against function F.

3 ASA Framework

We recall basic syntax of symmetric encryption. We then provide our novel definitions for ASAs,
namely strong undetectability as well as adversary advantage in key recovery.

Symmetric encryption. A (symmetric) encryption scheme SE specifies the following. Via KSE

←$ {0, 1}SE.kl, one selects a key of length SE.kl. Encryption algorithm SE.Enc takes KSE, message
m and coins r ∈ {0, 1}SE.rl to deterministically obtain ciphertext c ← SE.Enc(KSE,m; r). By
c←$ SE.Enc(KSE,m) we denote the operation r←$ {0, 1}SE.rl ; c← SE.Enc(KSE,m; r). Decryption
algorithm SE.Dec is deterministic and we require that

SE.Dec(KSE, SE.Enc(KSE,m; r)) = m

for all KSE,m, r.

ASAs. An algorithm substitution attack (ASA) A specifies the following. Via KA←$ {0, 1}A.kl, one
selects a key of length A.kl. The subverted encryption algorithm A.Enc takesKA,KSE,m and current
state σ to produce ciphertext c and updated state, (c, σ)←$ A.Enc(KA,KSE,m, σ). (Denoting the
state the same in input and output simply indicates an update of this variable.) The idea is that A is
specified by big brother. Key KA is shared between the subverted encryption algorithm A.Enc and
its external accomplice A.Ext who aims, from subverted ciphertexts, to violate security of SE. Note
that conceptually, A is an adversary (the ASA) rather than a scheme, a departure in perspective
from BPR [3]. We say that A.Enc is stateless if the updated state it returns is always the empty
string ε, meaning its output for any inputs KA,KSE,m, σ has the form (c, ε). In this case we might
drop σ in both input and output, writing c←$ A.Enc(KA,KSE,m).

We said that A’s goal is to violate security of SE. With no further conditions, this is too easy,
as explained in Section 1. The goal for big brother is an attack that is undetectable yet violates
security of SE. We now turn to formalizing each of these components.

Strong undetectability. Consider game SDET of Fig. 2 associated to encryption scheme SE,
ASA A and a detection adversary D . It can obtain via oracle Enc encryptions of messages of its
choice under keys of its choice, produced either via SE.Enc (when b = 1) or via A.Enc (when b = 0),
and aims from examination of these ciphertexts to determine b. Let

Advsdet
SE,A(D) = 2 Pr[SDETD

SE,A]− 1 .

This is D ’s advantage in detecting the subversion.
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Game SDETD
SE,A

KA←$ {0, 1}A.kl

b←$ {0, 1}; σ ← ε; b′←$ DEnc

Return (b = b′)

Enc(K,m)

If (b = 1) then c←$ SE.Enc(K,m)

Else (c, σ)←$ A.Enc(KA,K,m, σ)

Return (c, σ)

Game KRA
SE,M

KSE←$ {0, 1}SE.kl; KA←$ {0, 1}A.kl; σ ← ε; σ′ ← ε

K←$ A.ExtEnc(KA); Return (KSE = K)

Enc()

(m,σ′)←$M(σ′)

(c, σ)←$ A.Enc(KA,KSE,m, σ)

Return c

Figure 2: Games used to define detection and key recovery security of subversion A of encryption
scheme SE.

The state σ returned by Enc will always be the empty string ε in the case b = 1 because SE.Enc
is stateless. Thus, if D ever sees σ 6= ε in a reply to a Enc query, it knows that b = 0, meaning the
subversion has been detected. Our formalization thus effectively implies that a subversion must be
stateless to be undetectable. A consequence of this is that state reset, as can arise due to system
reboot or cloning to create a virtual machine, will not allow the ASA to be detected, unlike for
undetectability as per BPR [3]. This exclusion of some simple and natural forms of detection not
covered by BPR [3] is the main consequence and intent of the new definition.

However there are other directions as well. The view of BPR [3] was that detection is performed
by the decryptor. Detection through state reset continues that perspective, for this can in many
cases lead to detection from the ciphertexts alone. But strong undetectability also moves towards a
perspective where the encryptor, not just the decryptor, may be making some attempts at detection.
We view the detector as having some sort of blackbox access to the encryption code, so that it
can pick inputs and see all outputs written to memory. In particular, the detector not just knows,
but can pick, the encryption key K, and it can see any state σ that the encryption code tries to
maintain across invocations. Thus D can supply, in calls to Enc, not just the message, but any
key K ∈ {0, 1}SE.kl of its choice for SE.Enc, getting in response not just the ciphertext c, but also
σ. This obviously significantly increases the power of the detector.

However we must be careful to note that we do not capture all possible detection strategies that
a “real” detector in such a position could mount. For example the detector could measure the CPU
time of an execution of the code and compare this with the expected CPU time of the real code.
Or it could look at the number of calls to the underlying pseudo-random number generator that is
being used to obtain coins. These and other detection methods are not covered by our definition.

The fact is that it impossible for an ASA to evade all forms of detection. Our work aims
to understand how far we can push the boundary. Security in this domain is a tradeoff between
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detection effort and attack success. Our results indicate that detecting ASAs takes more effort than
was previously thought.

We note that strong undetectability implies the BPR notion of undetectability. A proof may
be given by reduction, the idea being as follows. Recall that in the detection game of BPR [3],
the undetectability adversary D ′ has access to an oracle Key that, given i, returns a key Ki←$

{0, 1}SE.kl for user i, and an oracle Enc that, given message M and i, returns a ciphertext produced
by running either SE.Enc or A.Enc to encrypt M under Ki, the choice depending on the challenge
bit that D ′ is trying to guess. Given such a D ′, we build a strong undetectability adversary D
with strong undetectability advantage at least the undetectability advantage of D ′. Our adversary
D runs D ′. When the latter makes a query Key(i), adversary D itself picks Ki←$ {0, 1}SE.kl and
returns it to D ′. When the latter makes a query Enc(M, i), adversary D queries its own Enc
oracle with Ki,M to get back (c, σ) and returns c to D ′. Finally D returns the same decision as
D ′.

We note that the detectability game of BPR was explicitly multi-user, meaning it involved
multiple keys. The strong undetectability game instead allows the adversary to query Enc with
any key of its choice. One advantage of this formulation, as we have just illustrated, is that
muti-user security is a consequence.

Key recovery. The other side of the coin is what it means for an ASA to succeed, meaning
violate the security of the users of SE. One measure, formalized in BPR [3], is distinguishability,
meaning A succeeds if it can distinguish encryptions of messages of its choice. Another measure is
key recovery, meaning A succeeds if it finds KSE. Distinguishing is a strong measure for security
but a weak one for attacks (achieving it provides high security, but violating it entails little loss)
while key recovery is a weak measure for security but a strong one for attacks (violating it is very
damaging but achieving it means little for security). Since our focus is attacks, we target and
formalize key recovery.

Game KR of Fig. 2 is parameterized by a message sampler algorithmM that, given its current
state σ′ returns the next message m to be encrypted and updated state. It represents the choice of
messages made by the sender. A wins if A.Ext recovers the key KSE from the ciphertexts produced
by the subverted encryption algorithm A.Enc on messages produced byM. (The state σ maintained
by the latter is entirely distinct from the state σ′ of M.) The key recovery advantage of A is

Advkr
SE,M(A) = Pr[KRA

SE,M] .

Parametrization by M allows a fine-grained taxonomy of key recovery attacks. The less they
assume about M, the stronger they are. The strongest attack is one that works for any M. This
corresponds to an attack that works regardless of what messages the encrypter chooses to encrypt.
A somewhat weaker attack might work for certain message sequences, meaning some restricted
class of samplers M. Our ASA is of the stronger type.

Discussion and extensions. Game SDET of Fig. 2 has been written for the case where encryp-
tion scheme SE is stateless, since this is the case of interest for our attacks. It can be extended to
the case where SE is stateful. In this case, when b = 1, algorithm SE.Enc takes the current state σ
as an additional input and returns not just ciphertext c but also an updated state σ. Additionally
one should provide the adversary with a reset oracle Reset that resets the state σ to ε. The notion
is thus requiring that the detector cannot tell whether it is talking to the real or subverted encryp-
tion algorithm even if it sees the state and can reset it. Note that the reset oracle is redundant
(and hence has been omitted) in our present context because with stateless schemes the definition
already implies that a subversion must be stateless as well, and with both stateless a reset oracle
is vacuous.
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BPR [3] had required any ASA A to satisfy a decryptability condition which asked that cipher-
texts produced under A.Enc(·,K, ·, ·) decrypted correctly under SE.Dec(K, ·). We have dropped
this condition, so that decryptability holds only to the extent that it is implied by strong unde-
tectability, which we think is more realistic from a detection perspective. However, the ASAs we
provide do meet the decryptability condition of BPR [3].

DFP [5] suggest that the BPR decryptability condition is too strong. They suggest a relaxation,
and then provide an ASA that is undetectable under the BPR definition, meets their relaxed
decryptability condition, and yet succeeds in that it violates the BPR subversion security definition.
However the DFP attack does not succeed in violating our key recovery notion, and from a practical
perspective, is weak. In the DFP attack, A.Enc(KA,K,m, σ) returns K when m = KA. That is, the
attack requires that the attacker can induce the encrpytor to encrypt the message m = KA. But
in practice this is quite hard and it is unlikely that a “real” sender will ever encrypt this message.
Our attacks are much more powerful since the attacker succeeds regardless of what messages the
encryptor encrypts. This is captured by the introduction of M in our key recovery definition and
the fact that the attack succeeds regardless of its choice. In fact in our key recovery definition, the
messages being encrypted in the attack cannot even depend on the subverter’s key KA, since the
latter is not given to M. The latter is why the DFP attack [5] does not succeed under our key
recovery definition.

The issues here reflect, as we discussed above, that achieving a certain notion may provide good
practical security, but violating the same notion may not constitute an effective practical attack.
(That is, insecurity is not really the opposite of security. There is a lot in between.) Thus, achieving
security under the BPR subversion notion is a good target for a scheme. But violating security under
this notion need not be (and, in the case of DFP [5], is not) an effective attack. Conversely, our key
recovery notion is a good one for attacks but not a good one for security: violating it constitutes a
powerful attack, but achieving it provides only weak security. As an analogy, indistinguishability
(semantic security) is accepted as a good security target for encryption schemes that one wants
constructions to reach, but violating it is a weak attack.

4 Attack and Analysis

We present our ASA, having the following properties: (1) It is stateless and proven strongly unde-
tectable (2) It breaks any given encryption scheme that has a non-trivial amount of randomization,
and (3) break here is in the strong sense of key recovery for arbitrary message distributions. The
attack is simple to specify but the analysis is more challenging. We provide a careful analysis to
establish both key recovery and strong undetectability with concrete bounds. From these results
we can extract concrete values of the parameters for a concrete attack.

Preliminaries. As we discussed, we need SE to have non-trivial randomization. (Otherwise, a
deterministic scheme is just a special case of a randomized scheme.) Formally, this means that
ciphertexts have some min-entropy. To measure this we define the min-entropy H∞(SE) of the
scheme SE via

2−H∞(SE) = max
KSE,m,c

Pr[SE.Enc(KSE,m; r) = c]

Here, with KSE,m, c fixed, the probability is over a random choice of r from {0, 1}SE.rl. Our results
will assume that 2−H∞(SE) is negligible. We note that we could use collision entropy in place of
min entropy.

Attack description. Let SE denote the target encryption scheme and let F :{0, 1}F.kl×{0, 1}∗ →

10



A.Enc(KA,KSE,m, σ)

j ← 0

Repeat

j ← j + 1

r←$ {0, 1}SE.rl

c← SE.Enc(KSE,m; r)

(v, t)← F(KA, c)

success← (KSE[t] = v)

out-of-time← (j = s)

Until (success OR out-of-time)

Return (c, ε)

A.Ext(KA)

K ← 0SE.kl

For i = 1, . . . , q do

c←$ Enc()

(v, t)← F(KA, c)

K[t]← v

Return K

Figure 3: ASA A for encryption scheme SE has algorithms A.Enc and A.Ext as shown above. Here
F :{0, 1}A.kl × {0, 1}∗ → {0, 1} × [SE.kl] is a PRF used in the attack and q, s ≥ 1 are parameters of
the attack.

{0, 1} × [SE.kl] be a PRF and key length A.kl = F.kl, meaning KA will be a key for the PRF F
defining the function f(·) = F(KA, ·). The algorithms A.Enc and A.Ext are shown in Fig. 3. Here
s, q ≥ 1 are parameters of the attack. (We will show that quite small values of these suffice.)

Subverted encryption algorithm A.Enc is given KA,KSE, message m and a state σ that it
ignores. (It will be stateless and thus it will always be that σ = ε.) Its goal is to pick r so that if
c = SE.Enc(KSE,m; r) and (v, t) = F(KA, c) then KSE[t] = v. It would then return c. When A.Ext
picks up c, it can compute (v, t) = F (KSE, c) and set K[t] = v. An appropriate choice of q will
ensure that A.Ext eventually gets all bits of the key, meaning K = KSE except with tiny probability.

Conceptually, then, we imagine A.Enc as trying to pick r at random subject to the constraint
that if c = SE.Enc(KSE,m; r) and (v, t) = F(KA, c) then KSE[t] = v. However it is not clear how
to directly pick r in this way. Indeed, such an r may not even exist. To resolve this, A.Enc in
Fig. 3 samples by picking r at random from the full space {0, 1}SE.rl until either r satisfies the
desired condition (at which point the flag success becomes true) or the process exceeds the number
of allowed sampling attempts s (at which point the flag out-of-time becomes true). The tradeoff is
that for efficiency we want s to be quite small but the smaller it is the farther is the distribution
of r from the conceptually desired one. The theorems and analyses that follow will deal with these
issues and show how to appropriately pick both s and q for an effective yet efficient attack.

Key recovery. The following theorem lower bounds the key recovery advantage of our ASA A of
Fig. 3, showing that it is close to one for reasonable values of the parameters, meaning the attack
can efficiently and successfully recover the target key.

We recall that our convention is that adversary running time refers to the time of the game in
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Game H0 , H1

KSE←$ {0, 1}SE.kl; σ′ ← ε

C ← ∅; T ← ∅
For i = 1, . . . , q do

j ← 0; out-of-time← false

(m,σ′)←$M(σ′)

Repeat

j ← j + 1; r←$ {0, 1}SE.rl
c← SE.Enc(KSE,m; r)

(v, t)←$ {0, 1} × [k]

If (c ∈ C) then

bad← true

(v, t)← (vc′ , tc′)

(vc, tc)← (v, t)

C ← C ∪ {c}
success← (KSE[tc] = vc)

out-of-time← (j = s)

Until (success OR out-of-time)

If success then T ← T ∪ {t}
Else T ← T \ {t}

Return (T 6= [k])

Adversary F

KSE←$ {0, 1}SE.kl; σ′ ← ε

T ← ∅
For i = 1, . . . , q do

j ← 0; out-of-time← false

(m,σ′)←$M(σ′)

Repeat

j ← j + 1; r←$ {0, 1}SE.rl
c← SE.Enc(KSE,m; r)

(vc, tc)←$ Fn(c)

success← (KSE[tc] = vc)

out-of-time← (j = s)

Until (success OR out-of-time)

If success then T ← T ∪ {t}
Else T ← T \ {t}

If (T 6= [k]) then return 1

Else return 0

Game H4

KSE←$ {0, 1}SE.kl; T ← ∅
For i = 1, . . . , q do

Repeat

(v, t)←$ {0, 1} × [k]

Until (KSE[t] = v)

T ← T ∪ {t}
Return (T 6= [k])

Game H2 , H3

KSE←$ {0, 1}SE.kl; T ← ∅
For i = 1, . . . , q do

j ← 0; out-of-time← false

Repeat

j ← j + 1

(v, t)←$ {0, 1} × [k]

success← (KSE[t] = v)

If (j = s AND success = false) then

bad← true

out-of-time← true

Until (success OR out-of-time)

If success then T ← T ∪ {t}
Else T ← T \ {t}

Return (T 6= [k])

Game H5

KSE←$ {0, 1}SE.kl; T ← ∅
For i = 1, . . . , q do

t←$ [k]; T ← T ∪ {t}
For ` = 1, . . . , k do bad` ← (` 6∈ T )

bad← (bad1 ∨ · · · ∨ badk)

Return bad

Figure 4: Games and adversary for proof of Theorem 4.1.

which the adversary executes, so that the time of oracle calls is included. Thus for example the
reason the time for M does not show up in the time of F below is that KR runs M already.

Theorem 4.1 Let SE be a symmetric encryption scheme and let k = SE.kl. Let F : {0, 1}F.kl ×
{0, 1}∗ → {0, 1} × [k] be a PRF. Let q, s ≥ 1 and let A be defined as in Fig. 3. Let M be an
arbitrary message distribution. Then we can build PRF adversary F such that

Advkr
SE,M(A) ≥ 1−Advprf

F (F )− ε(q, s, k) (2)

where

ε(q, s, k) ≤ ke−q/k + q2−s + q2s2 · 2−H∞(SE)−1 . (3)

The running time of F is about the sum of the running times of A.Enc and A.Ext, and it makes at
most qs oracle queries.

For example, the key for SE is typically an AES key so that k = SE.kl = 128. We could let
q = 128 · 7 = 896 and s = 13, which implies ke−q/k + q2−s ≤ 1/4. We can assume Advprf

F (F ) is
negligible. Then as long as H∞(SE) ≥ 28, our attack has advantage around 1/2. The q, s values
are quite small, making the attack quite practical.
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That M may be any distribution makes the ASA particularly strong. The distribution M
represents the choice of messages made by the encryptor. We are saying the attack works regardless
of these choices. It is thus a known message attack, not a chosen message attack.

Proof of of Theorem 4.1: Game H0 of Fig. 4 includes the boxed code while H1 does not. Game
H0 implements game KR of Fig. 2 with A being as defined in Fig. 3, with two changes: (1) F(KA, ·)
is replaced by a lazily sampled random function, and (2) the game returns true when key recovery
fails rather than when it succeeds. Let prf adversary F be as defined in the second panel of Fig. 4.
It uses its Fn oracle where A would use F(KA, ·). It returns 1 when key recovery fails and 0 when
it succeeds. Letting bprf denote the challenge bit in game PRF, we have

Pr[PRFF
F | bprf = 1] ≥ 1−Advkr

SE(A)

1− Pr[PRFF
F | bprf = 0] = Pr[H0] .

The reason the first equation above is an inequality rather than an equality is that A.Ext initially
sets all bits of K to 0 and, so, for a particular bit, it may by chance end up having the right value
even when that bit is not set in the For loop. Now, using Eq. (1), we have

Advprf
F (F )

= Pr[PRFF
F | bprf = 1]− (1− Pr[PRFF

F | bprf = 0])

≥ 1−Advkr
SE(A)− Pr[H0] .

Re-arranging terms, we have

Advkr
SE(A) ≥ 1−Advprf

F (F )− Pr[H0] .

We let

ε(q, s, k) = Pr[H0] .

This establishes Eq. (2). We now proceed to upper bound ε(q, s, k). Since games H0,H1 are identical
until bad, the fundamental lemma of game playing [4] says that

ε(q, s, k) = Pr[H0] ≤ Pr[H1] + Pr[H1 sets bad] .

Game H1 sets bad when there is a collision in the ciphertexts. Since at most qs ciphertexts are
created we have

Pr[H1 sets bad] ≤
(
qs

2

)
· 2−H∞(SE)

≤ q2s2 · 2−H∞(SE)−1 .

We now proceed to upper bound Pr[H1]. The ciphertexts being chosen in this game are not
relevant to its outcome, since (vc, tc) is chosen at random each time. Furthermore, the setting of
the out-of-time flag only has an effect on the behavior of the game if the success flag is not already
set at the time. This leads to game H2 of Fig. 4, which includes the boxed code. We have

Pr[H1] = Pr[H2] ≤ Pr[H3] + Pr[H3 sets bad] ,

the inequality by the fundamental lemma of game playing [4] because games H2,H3 are identical
until bad. In game H3 the boxed code is not included, with the result that the repeat loop continues
until success. Since each iteration is successful with probability 1/2 we have

Pr[H3 sets bad] ≤ q2−s .
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Game I0

b←$ {0, 1}; C ← ∅
b′←$ DEnc; Return (b = b′)

Enc(K,m)

If (b = 1) then

c←$ SE.Enc(K,m)

Else

j ← 0; out-of-time← false

Repeat

j ← j + 1; r←$ {0, 1}SE.rl
c← SE.Enc(K,m; r)

(v, t)←$ {0, 1} × [k]

If (c ∈ C) then

(v, t)← (vc′ , tc′)

(vc, tc)← (v, t)

C ← C ∪ {c}
success← (K[tc] = vc)

out-of-time← (j = s)

Until (success OR out-of-time)

Return (c, ε)

Adversary F

b←$ {0, 1}
b′←$ DEnc

If (b = b′) then return 1

Else return 0

Enc(K,m)

If (b = 1) then

c←$ SE.Enc(K,m)

Else

j ← 0; out-of-time← false

Repeat

j ← j + 1; r←$ {0, 1}SE.rl
c← SE.Enc(K,m; r)

(vc, tc)←$ Fn(c)

success← (K[tc] = vc)

out-of-time← (j = s)

Until (success OR out-of-time)

Return (c, ε)

Game I1, I2

C ← ∅
b′←$ DEnc; Return (b′ = 1)

Enc(K,m)

j ← 0;

out-of-time← false

Repeat

j ← j + 1; r←$ {0, 1}SE.rl
c← SE.Enc(K,m; r)

(v, t)←$ {0, 1} × [k]

If (c ∈ C) then

bad← true

(v, t)← (vc′ , tc′)

(vc, tc)← (v, t)

C ← C ∪ {c}
success← (K[tc] = vc)

out-of-time← (j = s)

Until (success OR out-of-time)

Return (c, ε)

Figure 5: Games an adversary for proof of Theorem 4.2.

We proceed to upper bound Pr[H3]. Since the sampling in H3 continues until success we have

Pr[H3] = Pr[H4] = Pr[H5] .

We proceed to upper bound Pr[H5]. Let p` = Pr[H5 sets bad`] for ` ∈ [k]. Now we can use a
standard coupon collector problem analysis. For any particular ` ∈ [k] we have

p` =

(
1− 1

k

)q

≤ e−q/k .

Thus

Pr[H5] ≤ p1 + · · ·+ pk ≤ ke−q/k .
Putting the inequalities together yields Eq. (3).

Strong undetectability. The following theorem says that the ASA of our adversary A of Fig. 3
is strongly undetectable.

Theorem 4.2 Let SE be a symmetric encryption scheme and let k = SE.kl. Let F : {0, 1}F.kl ×
{0, 1}∗ → {0, 1} × [k] be a PRF. Let q, s ≥ 1 and let A be defined as in Fig. 3. Let D be an
adversary against the strong undetectability of A that makes at most n queries to its Enc oracle.
Then we can build PRF adversary F such that

Advsdet
SE,A(D) ≤ 2Advprf

F (F ) + n2s2 · 2−H∞(SE). (4)

The running time of F is about that of D and it makes at most ns oracle queries.

Proof of of Theorem 4.2: Game I0 of Fig. 5 implements SDET with F(KA, ·) replaced by a
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lazily sampled random function. Let prf adversary F be as defined in the second panel of Fig. 5.
It runs D , itself simulating the latter’s Enc oracle, in the process appealing to its own Fn oracle.
Letting bprf denote the challenge bit in game PRF, we have

Pr[PRFF
F | bprf = 1] =

1

2
+

1

2
Advsdet

SE,A(D)

1− Pr[PRFF
F | bprf = 0] = Pr[I0] .

Thus, using Eq. (1), we have

Advprf
F (F )

= Pr[PRFF
F | bprf = 1]− (1− Pr[PRFF

F | bprf = 0])

=
1

2
+

1

2
Advsdet

SE,A(D)− Pr[I0] .

Re-arranging terms, we have

Advsdet
SE,A(D) ≤ 2Advprf

F (F ) + (2 Pr[I0]− 1) .

We proceed to upper bound 2 Pr[I0] − 1. Consider games I1, I2 of Fig. 5. Game I2 includes the
boxed code while I1 does not. In both, (vc, tc) is picked at random. However, in I2, if it turns out
that c was already seen, then the game corrects, resetting (vc, tc) to its prior value. As a result, I2
is equivalent to I0 with the challenge bit b in the latter set to b = 0, except it returns true when
b′ = 1 instead of b′ = 0. On the other hand, in I1, the choice of (vc, tc) is independent of the choice
of c and does not impact the distribution of the latter, making it equivalent to I0 with b = 1. Thus
we have

Pr[I1] = Pr[I0 | b = 1]

Pr[I2] = 1− Pr[I0 | b = 0] .

Additionally, games I0, I1 are identical until bad. Via the fundamental lemma of game playing [4]
we have

2 Pr[I0]− 1 = Pr[I0 | b = 1]− (1− Pr[I0 | b = 0])

= Pr[I1]− Pr[I2]

≤ Pr[I1 sets bad] .

Game I1 sets bad whenever the same value of c is returned twice by SE.Enc. There are ns queries
to Enc. Thus

Pr[I1 sets bad] ≤
(
ns

2

)
· 2−H∞(SE)

≤ n2s2 · 2−H∞(SE)−1 .

Putting everything together gives the desired Eq. (4).

Discussion. We do not expect that most users will mount involved detection efforts. But the
weakness of the ASA of BPR [3] is that is is relatively easily detectable, even without much effort,
due to its use of state. The most obvious way for this to happen is that the state is reset, for
example due to a system reboot. When this happens, the decrypter will be able to detect the
subversion. This, however, is not captured by their notion of detectability. Strong undetectability
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fills the gap. Our new ASA, achieving this and in particular being stateless, is harder to detect
and thus more dangerous.

In a world of subversion, there are no panaceas. The extent to which big brother will risk
detection in order to successfully recover a key is not known, but it would be natural that, all else
being equal, big brother will pick the ASA that minimizes the chance of detection. This means an
ASA like ours. Our work is intended to increase awareness and spur the search for deterrents.

5 Defenses

BPR [3] present schemes that are subversion resilient. They define unique ciphertext schemes,
show they are subversion resilient, and then provide several ways to build them. These schemes are
deterministic and stateful, meaning the encryptor and decryptor have to maintain a synchronized
state.

Having strengthened the BPR undetectability condition to strong undetectability, a natural
question is whether subversion resilience can still be achieved. In fact this strengthening makes no
difference, and the schemes of BPR continue to achieve subversion resilience. This is because a
subversion resilient scheme according to BPR [3] is one where any subversion satisfying the decrypt-
ability condition cannot succeed in their subversion game. Decryptability means that ciphertexts
created by the subverted encryption algorithm decrypt properly under the real decryption algo-
rithm, and it can be seen as represented a particular and fixed form of undetectability.

DFP [5] critique the BPR decryptability condition and instead suggest an alternative formu-
lation of detectability represented by their DETECT game in which the subversion and detection
adversaries run together, the latter getting a transcript of the interaction of the former with its
oracles. They show that unique ciphertext schemes continue to achieve their notion. In this con-
text, consideration of strong undetectability would involve modifying their game to a new one,
SDETECT. For example one might return the state to the detection adversary as part of the
transcript, and also add a reset oracle Reset to allow state reset. Then the question is whether
unique ciphertext schemes continue to meet this new definition. They do.
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