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Abstract. We study a scheme of Bai and Galbraith (CT-RSA’14), also
known as TESLA. TESLA was thought to have a tight security reduction
from the learning with errors problem (LWE) in the random oracle model
(ROM). Moreover, a variant using chameleon hash functions was lifted to
the quantum random oracle model (QROM). However, both reductions
were later found to be flawed and hence it remained unresolved until now
whether TESLA can be proven to be tightly secure in the (Q)ROM.
In the present paper we provide an entirely new, tight security reduction
for TESLA from LWE in the QROM (and thus in the ROM). Our security
reduction involves the adaptive re-programming of a quantum oracle.
Furthermore, we propose parameter sets targeting 128 bits of security
against both classical and quantum adversaries and compare TESLA’s
performance with state-of-the-art signature schemes.
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1 Introduction

Our interest in the present paper is in a quantum-resistant signature scheme
proposed by Bai and Galbraith [8]. Those authors argue the security of their
scheme via reductions from the learning with errors (LWE) and the short inte-
ger solutions (SIS) problems in the random oracle model (ROM). This scheme
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was subsequently studied by Alkim, Bindel, Buchmann, Dagdelen, and Schwabe
under the name TESLA [4], who provided an alternate security reduction from
the LWE problem only.

Since then, there have been several follow-up works on the Bai-Galbraith
scheme [2, 4, 10, 61]. Most notably, a version of the scheme called ring-TESLA,
whose security is based on the ring-LWE problem [2], has the potential to evolve
into a practical, quantum-resistant signature scheme that might one day see
widespread use as replacement for contemporary signature schemes such as
ECDSA.

In what follows, we review the concepts of tightness and the quantum random
oracle model as they relate to TESLA. We then list the contributions of the
present paper and discuss related work by others.

1.1 Background

Security reduction and parameter choice. The security of digital signature
schemes is often argued by reduction. A reductionist security argument typically
proves a claim of the form, “any attacker A who can break the scheme can be
used to build an algorithm B that solves some underlying hard computational
problem”. Hence, the security gap can be determined; it measures how much
extra work B must perform in order to convert A into solving the underlying
hard problem. If the run-time and probability of success of B are close to those of
A, i.e., if the security gap is approximately 1, then the reduction is called tight.
Achieving a small security gap, ideally a tight security reduction, is of theoretical
interest in its own right, but it should also be an important consideration when
selecting parameters for a concrete instantiation of a scheme. Specifically, the
parameters of a signature scheme ought to be selected so that both (i) the effort
needed to solve the underlying hard computational problem, and (ii) the security
gap are taken into account. Hence, a tight security reduction is of advantage.

The need to instantiate schemes according to their security reductions and
the role tight reductions play in these instantiations have been well argued by
numerous authors. We refer the reader to [1, 21, 34] for a representative sample
of these arguments.

The quantum random oracle model. Security arguments for the most effi-
cient signature schemes—which therefore enjoy the most widespread real-world
use—are typically presented in the ROM. (We refer to [37] by Koblitz and
Menezes for discussion on why this might be the case.) The ROM postulates
a truly random function that is accessible to attackers only through “black box”
queries to an oracle for it—a random oracle. Any concrete proposal for a signa-
ture scheme must substitute a specific choice of hash function for the random
oracle. An attacker armed with a quantum computer can be expected to evaluate
that hash function in quantum superposition. Arguments that establish security
even against such quantum-enabled attackers are said to hold in the quantum
random oracle model (QROM).
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It is conceivable that a signature scheme shown to be secure in the ROM
may not be secure in the QROM. Thus, it is important that security arguments
for quantum-resistant signature schemes hold not merely in the ROM, but also
in the QROM.

Boneh et al. have proven that a security reduction in the ROM also holds in
the QROM if it is history-free [16]. Unfortunately, many signature schemes have
security reductions in the ROM that involve the re-programming of a random
oracle; these reductions are not history-free. For these schemes, there remains a
need to precisely clarify under what conditions these security reductions remain
meaningful in the QROM.

Tightness in the QROM for TESLA. The security reduction presented by
Bai and Galbraith for their signature scheme employs the Forking Lemma [53].
As such, it is non-tight and it involves re-programming, so it holds in the ROM
but is not known to hold in the QROM.

As mentioned above, Alkim et al. presented an alternate security analysis for
the Bai-Galbraith scheme, which they call TESLA. Their reduction is a tight
reduction from LWE in the ROM. Moreover, those authors observed that their
reduction can be made history-free at the cost of replacing a generic hash func-
tion with a chameleon hash function. It then follows from [16] that the history-
free security reduction for TESLA holds also in the QROM. (Unfortunately, the
use of a chameleon hash function would likely render any signature scheme too
inefficient for widespread practical use.)

Unfortunately, a flaw in the original TESLA security reduction has been
identified by the present authors. (The flaw was independently discovered by
Chris Peikert.) This flaw is also present in several TESLA follow-up works, in-
cluding ring-TESLA. As such, the status of the TESLA signature scheme and
its derivative works has been open until now.

1.2 Our contribution

Our primary contributions are as follows:

New security reduction. We present a new security reduction from LWE to
TESLA. Our new reduction is tight. It seems that the flaw in the original
tight security reduction of TESLA does not admit a fix without a huge
increase in the parameters; our new reduction is a significant re-work of the
entire proof.

Security in the QROM with re-programming. Our new security reduction
involves the adaptive re-programming of a random oracle and hence it is not
history-free. Nevertheless, we show that it holds in the QROM by apply-
ing a seminal result from quantum query complexity due to Bennet, Bern-
stein, Brassard, and Vazirani [12]. It is possible that our approach can be
abstracted so as to yield a general result on security reductions with re-
programming in the QROM.
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Our secondary contributions are as follows:

Parameter selection. We propose three sets of parameters for the concrete
instantiation of TESLA: TESLA-0 and TESLA-1 targeting 96 and 128 bit
security against a classical adversary, respectively; and TESLA-2, targeting
128 bits of security against a quantum adversary. All three parameter sets
are chosen according to our (tight) security reduction.
The concrete parameter space admitted by our new security reduction is
worse than that of previous reductions, but those previous reductions are
either flawed or non-tight. Consequently, our proposed parameter sets lead
to concrete instantiations of TESLA that are less efficient than previous
proposals given in [4, 8, 61] that were not chosen according to the given
security reduction.

Implementation. We provide a software implementation for the parameter
sets TESLA-0 and TESLA-1. Our implementation targets Intel Haswell
CPUs to provide a comparison of TESLA’s performance with other signature
schemes with different security levels. Unfortunately, the TESLA-2 parame-
ter set does not seem to admit an implementation that can take advantage of
the same fast parallel arithmetic instructions available on modern processors
that were used in our implementations of TESLA-0 and TESLA-1, and so
we do not provide a software implementation for TESLA at this parameter
set. See Section 7 for details.

Gaussian Heuristic. All previous analyses of the scheme from [8] relied on an
assumption known as the “Gaussian heuristic”, which provides an estimate
for the number of lattice points contained within a bounding region. This
estimate has been well studied, and is not accurate in general — particu-
larly for small bounding bodies. However, its validity has been conjectured
for simple bodies and lattices on which LWE and SIS are defined without
any published proof. Although our approach does not rely on the Gaussian
heuristic, we prove in Section 8 that its use in other works is in fact justified.

1.3 Related work

Tightness from “lossy” keys. In order to avoid the non-tightness inherent in
the use of the Forking Lemma, we take an approach that was introduced by Katz
and Wang to obtain tightly-secure signatures from the decisional Diffie-Hellman
problem [34].

The idea is to use the underlying hardness assumption to show that “real”,
properly-formed public keys for the signature scheme are indistinguishable from
“lossy”, malformed public keys. The task of forging a signature for a lossy key is
then somehow proven to be intractable.

Any attacker must therefore fail to forge when given a lossy public key. Thus,
any attacker who succeeds in forging a signature when given a real public key
can be used to distinguish real keys from lossy keys, contradicting the underlying
hardness assumption.

In the case of TESLA, the real keys are matrices A and T = AS+E for some
matrices S,E with small entries. (See Section 2.2 for a proper definition of these
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matrices and the LWE problem.) We call these real keys LWE yes-instances. The
lossy keys are LWE no-instances: matrices A,T selected uniformly at random,
so that the existence of S,E as above occurs with only negligible probability. We
prove that the task of forging a TESLA signature for lossy keys is intractable,
so that any TESLA forger must be able to solve the decisional LWE problem.

A Fiat-Shamir transform for “lossy” identification schemes. The TESLA
signature scheme could be viewed as the result of applying the Fiat-Shamir trans-
form to a “lossy” identification scheme based on LWE. A tight security reduction
for TESLA then follows from a general theorem of Abdalla, Fouque, Lyuba-
shevsky, and Tibouchi (AFLT theorem) on the tight security of any signature
scheme obtained in this way [1].

In order to leverage the AFLT theorem, one must propose an identification
scheme and prove that it is lossy. Such a proof could be obtained by excerpt-
ing the relevant parts of our security reduction to establish the simulatability
and lossiness properties of a suitably chosen identification scheme. Such an ex-
ercise might make our rather monolithic security reduction easier to digest by
modularizing it and phrasing it in a familiar framework.

However, security reductions obtained by applying the AFLT theorem are
guaranteed to hold only in the ROM. In order to fully recover our security
reduction from this framework, one must first re-prove the AFLT theorem in the
QROM. This limitation is due to the fact that the proof of the AFLT theorem
involves adaptively re-programming a hash oracle. As such, it does not meet any
known conditions for lifting a given proof from the ROM into the QROM.

Given that our security reduction in the QROM also involves the adaptive re-
programming of a hash oracle, perhaps our approach could be mined for insights
to establish the AFLT theorem in the QROM.

Other tightly-secure LWE or SIS signature schemes. Gentry, Peikert,
and Vaikuntanathan present a signature scheme with a tight security reduction
from SIS in the ROM using a trapdoor construction based on possessing a secret
short basis of a lattice [29]. Boneh et al. observed that the security reduction for
this scheme is history-free, and thus holds in the QROM [16].

Boyen and Li present a signature scheme with a tight security reduction from
SIS in the standard model [18], also using a short basis trapdoor. Since standard
model security reductions do not rely on any assumptions about a random oracle,
these reductions hold in the QROM.

The use of a short-basis trapdoor in a signature scheme imposes an additional
constraint on the concrete parameter space admitted by that scheme’s security
reduction. This additional constraint on the parameters of short-basis trapdoor
schemes seems to render them too inefficient for practical use. Since TESLA and
its derivatives do not use a trapdoor construction, they do not suffer from this
impediment.

Other than TESLA, we are aware of only one example of a signature scheme
based on the Fiat-Shamir transform with a tight security reduction from LWE
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or SIS. Prior to Bai and Galbraith, a variant of a scheme by Lyubashevsky [42]
was shown to admit a tight security reduction in the ROM by Abdalla et al. as
part of an illustration of the aforementioned AFLT theorem [1]. An artifact of
this reduction required Abdalla et al. to increase the parameters of the scheme,
rendering it too inefficient for practical use. As mentioned earlier, security re-
ductions produced via the AFLT theorem are not known to hold in the QROM.

Re-programming a quantum oracle. Adaptive reprogramming of a quan-
tum oracle has been addressed in some specific cases. Unruh considered a re-
programmed quantum oracle in order to establish the security of a quantum
position verification scheme [58]. It is not clear whether Unruh’s results apply
to our setting.

Eaton and Song present an asymptotic result on re-programming in the
QROM [28] in a context quite different from ours. Since their result is asymp-
totic, it does not allow for concrete parameter selection, for which the tightness
of the reduction needs to be explicit.

Our approach to re-programming is independent of these previous works,
though some works—such as [16,28]—do draw upon the same result by Bennet et
al. [12] that we employ. To our knowledge we are the first to present progress
on re-programming in the QROM in the context of a cryptographic scheme with
potential for quantum-resistant standardization.

A note on “lattice-based” cryptography. Part of the allure of cryptosystems
based on LWE or SIS is that those problems enjoy worst-case to average-case
reductions from fundamental problems about lattices such as the approximate
shortest independent vectors problem (SIVP) or the gap shortest vector problem
(GapSVP). (See Regev [54] or the survey of Peikert [51] and the references
therein.)

These reductions suggest that the ability to solve LWE or SIS on randomly
chosen instances implies the ability to solve SIVP or GapSVP, even on the hard-
est instances. Indeed, cryptosystems based on LWE or SIS are often referred to as
lattice-based cryptosystems, suggesting that the security of these cryptosystems
ultimately rests upon the worst-case hardness of these lattice problems.

However, as observed by Chatterjee, Koblitz, Menezes, and Sarkar, existing
worst-case to average-case reductions for LWE and SIS are highly non-tight [21].
We are not aware of a proposal for a concrete instantiation of a cryptosystem
based on LWE or SIS with the property that the proposed parameters were
selected according to such a reduction. Instead, it is common to instantiate such
cryptosystems based on the best known algorithms for solving LWE or SIS. (In
addition to TESLA, see for example [5, 17].)

For TESLA, we take care to instantiate the scheme according to its security
reduction from LWE. However, we are unable to instantiate TESLA according
to reductions from underlying lattice problems, due to the non-tightness of these
reductions.
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2 Preliminaries

In this section we clarify our notation used throughout the paper. Furthermore,
we recall the learning with errors problem and give a short overview of used
terms in quantum computing.

2.1 Notation

Integer scalars are denoted using Roman letters and if not stated otherwise,
q is a prime integer in this paper. For any positive integer n the set Zn of
integers modulo n is represented by {−b(n − 1)/2c, . . . , bn/2c}. Fix a positive
integer d and define the functions [·] , [·]L : Z → Z as follows. For any integer
x let [x]L denote the representative of x in Z2d , i.e., x = [x]L (mod 2d), and let
[x] = (x− [x]L)/2d. Informally, [x]L is viewed as the least significant bits of x and
[x] is viewed as the most significant bits of x. The definitions are easily extended
to vectors by applying the operators for each component. An integer vector y is
B-short if each entry is at most B in absolute value.

Vectors with entries in Zq are viewed as column vectors and denoted with
lowercase Roman letters in sans-serif font, e.g., y, z,w. Matrices with entries in
Zq are denoted with uppercase Roman letters in sans-serif font, e.g., A,S,E. The
transpose of a vector or a matrix is denoted by vT orMT , respectively. We denote
by ‖v‖ the Euclidean norm of a vector v, and by ‖v‖∞ its infinity norm. All
logarithms are base 2. A function is called negligible in the security parameter
λ, denoted by negl(λ), if it decreases faster than the inverse of every polynomial
in λ, for sufficiently large λ.

The centered discrete Gaussian distribution for x ∈ Z with standard devia-
tion σ is defined to be Dσ = ρσ(x)/ρσ(Z), where σ > 0, ρσ(x) = exp(−x

2

2σ2 ), and
ρσ(Z) = 1 + 2

∑∞
x=1 ρσ(x).

For a finite set S, we denote sampling the element s uniformly from S with
s←$ U(S) or simply s←$ S. Let χ be a distribution over Z, then we write x← χ
if x is sampled according to χ. Moreover, we denote sampling each coordinate
of a matrix A ∈ Zm×n with distribution χ by A ← χm×n with m,n ∈ Z>0. For
an algorithm A, the value y ← A(x) denotes the output of A on input x; if A
uses randomness then A(x) is a random variable. Aχ denotes that A can request
samples from the distribution χ.

2.2 The Learning with Errors Problem

In the following we recall the decisional learning with errors problem (LWE) and
define its matrix varariant (M-LWE) 6.

Definition 1 (Learning with Errors Problem). Let n,m, q > 0 be integers
and χ be a distribution over Z. For s←$ U(Znq ) define As,χ to be the distribution

6 Note that, against common terminology in papers about module lattices, we do not
mean Module LWE by the abbreviation M-LWE, but Matrix LWE.
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that samples a ←$ Znq and e ← χ and then returns (a, 〈a, s〉 + e) ∈ Znq × Zq.
The decisional learning with errors problem LWEn,m,q,χ is (t, ε)-hard if for any
algorithm D, running in time t and making at most m queries to the distribution
As,χ, it holds that∣∣∣Pr

[
DAs,χ(·) = 1

]
− Pr

[
DU(Z

n
q×Zq)(·) = 1

] ∣∣∣ ≤ ε .
We can also write m LWE instances to a secret s ∈ Znq as (A,As + e (mod q))
with A←$ Zm×nq and e← χm.

The security of the signature scheme covered in this paper is based on the
matrix version of LWE (M-LWE) defined in the following.

Definition 2 (Matrix Learning with Errors Problem). Let n, n′,m, q > 0
be integers and χ be a distribution over Z. Define AS,χ to be the distribution
that, for S = (s1, ..., sn′) with s1, ..., sn′ ←$ U

(
Znq
)
, samples a ←$ Znq and

e1, ..., en′ ← χ and then returns
(
aT , aTS + (e1, ..., en′)

)
∈ Z1×n

q × Z1×n′
q . The

matrix decisional learning with errors problem M-LWEn,n′,m,q,χ is (t, ε)-hard if
for any algorithm D, running in time t and making at most m queries to the
distribution AS,χ, it holds that∣∣∣∣Pr

[
DAS,χ(·) = 1

]
− Pr

[
DU

(
Znq×Z

n′
q

)
(·) = 1

]∣∣∣∣ ≤ ε .
As before, m M-LWE samples to the secret matrix S = (s1, ..., sn′) ∈ Zn×n′q can
be written as (A,AS + E) ∈ Zm×nq × Zm×n′q with A←$ Zm×nq and E← χm×n

′
.

We call (A,T) ∈ Zm×nq × Zm×n′q a yes-instance if there exists an S =
(s1, ..., sn′) with s1, ..., sn′ ∈ Znq and (A,T) are m M-LWE samples from the dis-

tribution AS,χ. Otherwise, i.e., when (A,T) ←$ U
(
Zm×nq × Zm×n′q

)
, we call

(A,T) a no-instance.

Theorem 1. If LWEn,m,q,χ is (ε/n′, t)-hard then M-LWEn,n′,m,q,χ is (ε, t)-hard.

Intuitively, the reduction loss exists since an adversary that can solve LWE has
n′ possibilities to solve M-LWE (see also [8, 17, 52]). The proof follows similar
arguments as given in [52].

We note that the hardness of LWE (resp., M-LWE) is retained even if all co-
ordinates of the secret vector s are sampled according to the error distribution χ,
known as the “normal form” [6, 43]. We use the notation LWEn,m,q,σ if χ is dis-
tributed according to Dσ. The LWE assumption comes with a worst-to-average-
case reduction [20,50,54]; breaking certain average instances of LWE allows one
to break all instances of certain standard lattice problems (namely GapSVP and
SIVP).

2.3 Quantum Information and Quantum Oracles

We assume familiarity with the fundamentals of quantum information, such as
the Dirac ket notation |·〉 for pure quantum states and the density matrix for-
malism for mixed quantum states. (Recall that a mixed state can be viewed as
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a probabilistic mixture of pure states.) For background on quantum information
the reader is referred to the books [35,49].

The trace norm ‖·‖Tr (also known as the Schatten-1 norm ‖·‖1) is a ma-
trix norm that generalizes the concept of statistical distance from probability
distributions to quantum states. For example, the quantity ‖ρ− ρ′‖Tr captures
the physically observable difference between two quantum states represented by
density matrices ρ, ρ′.

A channel is a physically realizable map on mixed quantum states - the quan-
tum analogue of a stochastic map applied to a classical probability distribution.
Examples of channels include (i) unitary channels, which preserve purity of in-
put states and act on classical basis states “in superposition”, and (ii) classical
channels, which measure input states in the standard basis and whose output is
a probabilistic mixture of classical basis states. In this paper, hash oracles are
unitary channels and sign oracles are classical channels.

Standard formalism for a quantum oracle for a hash function H : X → Y
specifies that the user has access to a unitary channel that applies the linear
map |x〉|y〉 7→ |x〉|y + H(x)〉 on standard basis states, where x ∈ X and y ∈ Y .
It is understood that the range Y of H(·) has a ‘+’ operation defined on it with
the property that y + y′ + y′ = y for all y, y′ ∈ Y , so that the unitary channel
is its own inverse. Typically, one simply imagines that elements of y are written
as binary strings, and the ‘+’ operation is the bitwise exclusive-OR.

3 The Signature Scheme TESLA

In this section, we present the LWE-based signature scheme TESLA. Its orignal
construction was proposed in 2014 by Bai and Galbraith [8]. It was later revisited
by Dagdelen et al. [61] and by Alkim et al. [4].

TESLA’s key generation, sign, and verify algorithms are listed informally
in Algorithms 1, 2, and 3. More formal listings of these algorithms are given
in Figure 1 in Section 5. Our proposed concrete parameter sets are derived in
Section 5 and listed in Table 1.

Algorithm 1 KeyGen
Input: A.
Output: Public key T, secret key (S,E).

1: Choose entries of S ∈ Zn×n′q and E ∈ Zm×n′q from Dσ.
2: If E has a row whose h largest entries sum to L or more then retry at step 1.
3: If S has a row whose h largest entries sum to LS or more then retry at step 1.
4: T← AS + E.
5: Return public key T and secret key (S,E).
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Parameters and Notation. TESLA is parameterized by positive integers q, m,
n, n′, h, d, B, L, LS , U , a positive real σ, a hash oracle H(·), and the publicly
available matrix A ←$ Zm×nq . Let H denote the set of vectors c ∈ {−1, 0, 1}n′

with exactly h nonzero entries. For simplicity we assume that the hash oracle
H(·) has range H, i.e., we ignore the encoding function F , cf. Table 1. We call an
integer vector w well-rounded if w is (bq/2c−L)-short and [w] is (2d−L)-short.

Deterministic signatures. We recommend that any implementation of TESLA
employ standard techniques to achieve deterministic signatures. In particular,
the key generation algorithm should produce a random seed as part of the secret
key. The sign algorithm should use this seed, along with the input message µ, to
derive a deterministic sequence of pseudorandom data that dictate the “random”
choices of Algorithm 2. See Section 6 on implementation for further details.

Fixed-weight hash outputs. Any implementation of the hash oracle H(·) will
require an encoding function that embeds the output of a concrete hash function
such as SHA-256 into the set H (see [31] for more information on embedding
functions of this type). Naturally, the output length of the underlying hash
function should be large enough so as to preclude collision attacks.

Additional checks in KeyGen and Sign. In contrast to earlier proposals [8, 61],
we add two additional checks. The first one is the check in Line 3 in Algorithm 1.
It ensures that no coefficient of the matrix S is too large, which allows for more
concrete bounds during the security reduction. The parameter LS is chosen such
that the probability of rejecting S is smaller than 2−λ, cf. Section 5. The second
additional check is in Line 5 in Algorithm 2. To ensure correctness of the scheme,
it checks that the absolute value of each coordinate of Ay − Ec is less or equal
than bq/2c − L.

Algorithm 2 Sign
Input: Message µ, secret key (S,E).
Output: Signature (z, c).

1: Choose y uniformly at random among B-short vectors from Znq .
2: c← H([Ay] , µ).
3: z← y + Sc.
4: If z is not (B − U)-short then retry at step 1.
5: If Ay − Ec is not well-rounded then retry at step 1.
6: Return signature (z, c).
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Algorithm 3 Verify
Input: Message µ, public key (A,T), purported signature (z, c).
Output: “Accept” or “reject”.

1: If z is not (B − U)-short then reject.
2: If H([Az− Tc] , µ) 6= c then reject.
3: Accept.

4 Security Reduction for TESLA

Our main theorem on the security of TESLA informally states that as long
as M-LWE can not be solved in time t and with success probability ε then no
adversaryA exists that can forge signatures of TESLA in time t′ and with success
probability ε′, if A is allowed to make at most qh hash und qs sign queries. The
main theorem is as follows.

Theorem 2 (Security of TESLA). Let q, m, n, n′, h, d, B, L, LS, U , σ,
λ, κ be TESLA parameters that are convenient7 (according to Definition 3 in
Appendix D) and that satisfy the bounds in Table 1.

If M-LWE is (t, ε)-hard then TESLA is existentially (t′, ε′, qh, qs)-unforgeable
against adaptively chosen message attacks with t′ ≈ t in (i) the quantum random
oracle model with

ε′ < ε+
3

2λ
+

2m(d+1)+3λ+1

qm
(qh + qs)

2q3s + 2(qh + 1)

√
1

2h
(
n′

h

) , (1)

and in (ii) the classical random oracle model with

ε′ < ε+
3

2λ
+

2m(d+1)+3λ+1

qm
(qh + qs)

2q3s + qh
1

2h
(
n′

h

) . (2)

The proof of Theorem 2 is given in appendices A, B, C, D. Here we present a
sketch of this proof and a selection of some intermediate results we feel are the
most significant technical contributions of the present manuscript.

Let F be a forger that forges signatures of the TESLA scheme with probabil-
ity Pr [forge(A,T)], where forge(A,T) denotes the event that F forges a signature
on input (A,T), which is a yes- or a no-instance of LWE. We build an LWE-
solver S whose run time is close to that of F and who solves LWE with success
bias close to Pr [forge(A,T)]. It then follows from the presumed hardness of LWE
that Pr [forge(A,T)] must be small.

Given an LWE input (A,T), the LWE-solver S treats (A,T) as a TESLA
public key; S runs F on input (A,T) and outputs “yes” if and only if F succeeds
in forging a TESLA signature.
7 It is not necessary that TESLA parameters be convenient in order to derive negligibly
small upper bounds on ε′; the definition of convenience merely facilitates a simplified
statement of those bounds.
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In order to run F , the LWE-solver S must respond in some way to F ’s
quantum queries to the hash oracle and to F ’s classical queries to the sign oracle.
Our description of S includes a procedure for responding to these queries.

That S solves LWE with success bias close to Pr [forge(A,T)] is a consequence
of the following facts:

1. For yes-instances of LWE, the probability with which S outputs “yes” is close
to Pr [forge(A,T)].

2. For no-instances of LWE, F successfully forges (and hence S outputs “yes”)
with only negligible probability.

4.1 Yes-Instances of LWE

We argue that S’s responses to F ’s oracle queries are indistinguishable from the
responses F would receive from real oracles, from which it follows that S reports
“yes” with probability close to Pr [forge(A,T)].

Each time S simulates a call to the sign oracle, it must “re-program” its
simulated hash oracle on one input. Because F is permitted to make quantum
queries to the hash oracle, we must show that F is unlikely to notice when a
quantum random oracle has been re-programmed.

To this end, let Y denote the set of vectors y ∈ Znq such that y is B-short and
define the following quantities for each choice of TESLA keys (A,T), (S,E):

nwr(A,E): The probability over (y, c) ∈ Y×H that Ay−Ec is not well-rounded.
coll(A,E): The maximum over all w ∈ {[x] : x ∈ Zmq } of the probability over

(y, c) ∈ Y×H that [Ay − Ec] = w.

We prove the following in Appendix B.6, cf. Proposition 7.

Proposition 1 (Re-Programming in TESLA, Informal Statement). The
following holds for each choice of TESLA keys (A,T), (S,E), each hash oracle
H(·), and each γ > 0.

Suppose the quantum state ρH was prepared by some party D using t quantum
queries to H(·). Let H′(·) be a hash oracle that agrees with H(·) except on a small
number of randomly chosen inputs (·, µ) for each possible message µ. Let ρH′ be
the state prepared when D uses hash oracle H′(·) instead of H(·).

Then ‖ρH′ − ρH‖Tr < γ except with probability at most

t2

γ2
· coll(A,E)

1− nwr(A,E)
(3)

over the choice of inputs upon which H(·) and H′(·) differ.

We also prove bounds on nwr(A,E) and coll(A,E) that hold with high probability
over the choice of TESLA keys (A,T), (S,E).
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4.2 No-Instances of LWE

We argue that, except with negligibly small probability over the choice of hash
oracle H(·) and LWE no-instance (A,T), a TESLA forger cannot forge a signature
for (A,T) without making an intractably large number of queries to the hash
oracle.

To forge a signature for message µ, a forger must find a hash input (w, µ)
whose output c = H(w, µ) has the property that there exists a (B − U)-short
z ∈ Znq for which [Az− Tc] = w. Let H(w,A,T) ⊂ H denote the set of all such
c. A hash input (w, µ) is called good for H(·) and (A,T) if H(w, µ) ∈ H(w,A,T).
(Once a good hash input has been found, the forger must then somehow find the
vector z witnessing this fact. For our purpose, we assume that the forger gets it
for free.)

For each LWE no-instance (A,T), a given hash input (w, µ) is good for H(·)
and (A,T) with probability

#H(w,A,T)

#H
(4)

over the choice of hash oracle H(·). In Appendix C we argue that, except with
negligibly small probability over the choice of H(·) and (A,T), the fraction of
hash inputs that are good is at most the expectation over LWE no-instances
(A,T) of the ratio (4), maximized over all w ∈

{
[x] : x ∈ Zmq

}
. We then prove the

following (cf. Proposition 9 in Appendix C) .

Proposition 2 (Good Hash Inputs are Rare). If the TESLA parameters
are convenient (according to Definition 3 in Appendix D) then

Ex
(A,T)

[
max
w

{
#H(w,A,T)

#H

}]
≤ 1

#H
. (5)

Thus, the fraction of good hash inputs is at most 1/#H except with vanishingly
small probability over the choice of hash oracle H(·) and LWE no-instance (A,T).

Since each hash input is good with a fixed probability independent of other
hash inputs, the only way to discover a good input is via search through an
unstructured space. It then follows from known lower bounds for quantum search
over an unstructured space that the forger cannot find a good hash input—and
thus a TESLA forgery—using only qh quantum queries to the hash oracle.

5 Selecting Parameters for TESLA

In this section we propose parameter sets for TESLA. Table 1 illustrates our
concrete choice of parameters and Table 2 gives the hardness of the corresponding
LWE instances. We propose three parameter sets: TESLA-0 that targets the
same (classical) bit security of 96 bit as the instantiation proposed in [61], called
DEG+. TESLA-1 targets 128 bit of classical security and TESLA-2 targets 128
bit of security against quantum adversaries. Note that the parameter set DEG+

was orignally proposed to give 128 bit of security, i.e., λ = 128, but due to new
methods to estimate the bit security its bit security is now only 96 bit.
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Table 1. Concrete instantiation TESLA-2 of 128 bit of security against classical and
quantum adversaries, and TESLA-0 of 96 bit and TESLA-1 of 128 bit of security against
classical adversaries; comparison with the instantiation proposed in [61], called DEG+,
of 96 bit security (classically); sizes are given in kilo byte [KB]; sizes are theoretic sizes
for fully compressed keys and signatures; for sizes used by our software see Table 3.

Parameter Bound DEG+ TESLA-0 TESLA-1 TESLA-2

λ 128 96 128 128
κ 256 256 256 256
n 532 644 804 1300
n′ 532 390 600 1036
m 840 3156 4972 4788

σ > 2
√
n 43 55 57 73

L 3hσ or 2.8hσ, see Sec. 5.1 2322 5082 6703 17987
LS 14σh - 25410 33516 89936

h
2h
(
n′

h

)
≥ 23λ (classically) 18 33 42 -

2h
(
n′

h

)
≥ 25λ (quantumly) - - - 88

B ≥ 14n
√
hσ 221 − 1 222 − 1 222 − 1 224 − 1

U d14
√
hσe 2554 4424 5172 9588

d (1− 2L/2d)m ≥ 0.3 23 25 26 27

q satisfying the bound in Eq. 152, 229 − 3 231 − 99 231 − 19 40582171961
≥
(
2m(d+1)+4λ+1(qh + qs)

2q3s
)1/m ≈ 235.24

δKeyGen empirically, see Sec. 5.1 0.99 1 1 future work
δSign 0.314 0.307 0.154 future work

H {0, 1}∗ → {0, 1}κ SHA-256

F {0, 1}κ → Hn′,ω see [31]

PRF1 {0, 1}κ × {0, 1}∗ → {0, 1}κ - SHA-256
PRF2 {0, 1}κ × Z→ [−B,B]n - ChaCha20

public-key size mn′dlog2(q)e 1 582 4 657 11 288 21 799
secret-key size (nn′ +mn′)dlog2(14σ)e 891 1 809 4 230 7 700
signature size ndlog2(2(B − U))e+ κ 1.4 1.8 2.3 4.0

5.1 Derivation of System Parameters

Our security reduction for TESLA minimizes the underlying assumptions which
allows us to choose secure parameters from a greater set of choices compared
to [8,61]. More precisely, our parameters do not have to involve a hard instance
of the SIS assumption as it was done by Bai and Galbraith [8] before. We sum-
marize the bounds and conditions of each parameter in Table 1 and explicate
the computation of some of the listed parameters in the following. Furthermore,
we state the resulting key and signature sizes in the table.

Compared to [8,61], we introduce the parameter n′ as the column dimension
of the secret matrices S and E to get more flexibility in the choice of parameters.
The value of n′ influences the parameters h (and hence B, U , q, and the encoding
function F ) and the size of the secret key.
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Another important parameter of the signature scheme is the value L. In the
original work [8], it is set to L = 7hσ, whereas it is set to L = 3hσ in [61]. We
choose L to be roughly L = 2.8hσ. We note that the smaller the value L, the
higher the probability of acceptance in the signature algorithm (Line 9, Figure 1)
becomes.

We add checkS to the key generation algorithm and the corresponding param-
eter LS to bound ‖Sc‖ ≤ LS in the security reduction. We determine the value
LS such that S is rejected only with negligibly small (in the security parameter
λ) probability. Hence, we do not decrease the size of the key space further. We
choose LS to be 14hσ.

The acceptance probabilities of a signature δSign and of a secret key (S,E) in
Table 1 are determined experimentally.

To ensure both correctness and security of our signature scheme, we choose
parameters with respect to our reduction, hence, we choose parameters such that
ε′ ≈ ε in Equation (1) and (2). We propose to choose qh ≤ 2λ and qs ≤ 2λ/2, since
a hash query is merely the evaluation of a publicly available function and hence
the adversary can use all its computational power to make hash queries. The
number of sign queries is somewhat limited since it involves more complicated
operations. We refer to [36] (especially, Section 7) for further discussion.

5.2 Concrete Bit Security of TESLA

The security reduction given in Section 4 provides a reduction from the hard-
ness of M-LWE and bounds explicitly the forging probability with the success
probability of the reduction. More formally, let εA and tA denote the success
probability and the run time of a forger A against our signature scheme and
let εB and tB denote analogous quantities for the reduction B presented in the
proof of Theorem 2. We say that M-LWE is η-bit hard if tB/εB ≥ 2η; and we
say that the signature scheme is λ-bit secure if tA/εA ≥ 2λ.

Since we choose parameters such that εB ≈ εA and tB ≈ tA, the bit hardness
of the M-LWE instance is about the same as the bit security of our signature
scheme instantiated as described below.

However, we lose dlog(n′)e bits of security due to the reduction from LWE to
M-LWE. Hence, we have to choose LWE instances of λ+ dlog(n′)e bit hardness.
We explain how we choose those LWE instances in the following.

Estimation of the Bit Hardness of LWE Against Classical Adversaries. Albrecht,
Player, and Scott [3] presented the LWE-Estimator, a software to estimate the
classical hardness of LWE given the matrix dimension n, the modulus q, and
the relative error rate α =

√
2πσ
q . The original LWE-Estimator does not take the

number of given LWE samples into account, leading to a more conservative choice
of parameters for applications where only a restricted number of LWE samples
is given. Recently, a fork of the original LWE-Estimator was presented [56, 57]
that takes a given number of samples m into consideration. Since for TESLA
only a restricted number of m LWE samples is given, we use [57] to estimate the
classical bit hardness of our proposed LWE instances.

15



We summarize the classical estimations of the most efficient LWE solvers
for our instances in Table 2, namely, the standard embedding or approach by
Kannan [33], the dual embedding [8], and the decoding attack [7,40,41]. We also
update the estimation of the bit hardness of the LWE instances proposed in [61].

Table 2. Estimation of the hardness of LWE instances given in TESLA-0, TESLA-1,
and TESLA-2 against the decoding attack and the (dual and standard) embedding
approach, in comparison to the parameter sets proposed by Dagdelen et al. [61], called
DEG+; estimations are computed using the LWE-Estimator with a restricted number
of samples [3, 57].

Attack DEG+ TESLA-0 TESLA-1 TESLA-2

Classical Hardness [bit]

Decoding 156 110 142 204
Dual Embedding 96 110 142 205
Standard Embedding 164 111 143 205

Post-Quantum Hardness [bit]

Decoding 73 74 98 146
Dual Embedding 61 71 94 142
Standard Embedding 111 71 95 142

Estimation of the Bit Hardness of LWE Against Quantum Adversaries. Recently
the first proposals on how to estimate the hardness of LWE against quantum
adversaries were published [5, 10, 17]. However, those do not follow the same
methodology as the LWE-Estimator we used to estimate the classical hardness
of LWE. Although the LWE-Estimator originally considers only classical hard-
ness estimations, the first changes towards quantum estimations were made. In
the latest version (from commit-id b929691 on) the estimates for a quantumly
enhanced sieving algorithm [38] are included as a subroutine to solve the lattice
reduction algorithm BKZ2.0 [23].

As mentioned in [5], a recently published quantum algorithm [47] can be
applied to enumeration methods, possibly giving a quadratic speed-up on the run
time of enumeration. We apply the quadratic speed-up to the currently fastest
enumeration estimations by Micciancio and Walter [46] and add the resulting
estimations as a subroutine to be used in BKZ2.0. We summarize the estimations
using quantum sieving and quantum enumeration in Table 2.

6 Software Implementation

To evaluate the performance of our proposed parameter sets we present a soft-
ware implementation targeting the Intel Haswell microarchitecture. The starting
point for our implementation is the software presented by Dagdelen et al. [61],
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which we obtained from the authors. Our software offers the same level of protec-
tion against timing attacks as the software presented in [61]. The software makes
use of the fast AVX2 instructions on vectors of 4 double-precision floating-point
numbers. In this section we first give a description of TESLA with technical
details necessary for implementations. Furthermore, we present important mod-
ifications to the software proposed in [61].

Algorithm KeyGen

INPUT: 1λ;A, n, n′,m, q, σ
OUTPUT: (S,E, s),T

1. S←$ Dn×n
′

σ

2. E←$ Dm×n
′

σ

3. if checkE(E) = 0 ∨ checkS(S) = 0
4. then Restart
5. s←$ {0, 1}κ

6. T← AS+ E (mod q)
7. sk← (S,E, s),pk← T

8. return (sk,pk)

Algorithm Verify

INPUT: µ, q, z, c,A,T
OUTPUT: {0,1}

1. c← F (c)
2. w′ ← Az− Tc (mod q)
3. c′ ← H(

[
w′

]
, µ)

4. if c′ = c ∧ ‖z‖∞ ≤ B − U
5. then return 1
6. return 0

Algorithm Sign

INPUT: µ, q,A, S,E, s
OUTPUT: (z, c)

1. j ← 0
2. k← PRF1(s, µ)
3. y← PRF2(k, j)
4. v← Ay (mod q)
5. c← H([v] , µ)
6. c← F (c)
7. z← y + Sc
8. w← v − Ec (mod q)

9. if ‖[w]L‖∞ > 2d−1 − LE
∨ ‖w‖∞ > bq/2c − LE ∨ ‖z‖∞ > B − U

10. then j ← j + 1 and go to Step 1
11. return (z, c)

Fig. 1. Specification of the signature scheme TESLA = (KeyGen, Sign,Verify); for de-
tails of the functions checkE and checkS see the explanation of the public parameters
and definition of functions.

Public Parameters and Definition of Functions. TESLA is parameterized
by the integers n, n′,m, α, κ, and the security parameter λ withm > n > κ ≥ λ;
by the matrix A ←$ Zm×nq ; by the hash function H : {0, 1}∗ → {0, 1}κ, by the
encoding function F : {0, 1}κ → H (see [31] for more information), by the pseudo-
random function PRF1 : {0, 1}κ × {0, 1}∗ → {0, 1}κ, and the pseudo-random
generator PRF2 : {0, 1}κ × Z → [−B,B]n. The remaining values, i.e., σ, h, d,
B, U , q, L, and LS , are derived as shown in Table 1 and described in Sec. 5.1.

Moreover, we define the functions checkE, introduced in [61, Section 3.2], as
follows: for a matrix E, define Ei to be the i-th row of E. The function maxk(·)
returns the k-th largest entry of a vector. The matrix E is rejected if for any
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row of E it holds that
∑h
k=1 maxk(Ei) is greater than some bound L. We apply

a similar check checkS to S: The matrix S is rejected if for any row of S it holds
that

∑h
k=1 maxk(Si) is greater than some bound LS .

Remark 1 (Deterministic signature). Note, that signing is deterministic for each
message µ since the randomness is determined by the vector y which is deter-
ministically computed by the secret key and the message to-be-signed. In the
original scheme by Bai and Galbraith [8] the vector y was sampled uniformly
random in [−B,B]n. As long as we assume that PRF1 and PRF2 are pseudo-
random functions, the prf-advantage of PRF2◦PRF1 is negligible in the security
parameter. Hence, the reduction given in Theorem 2 is tight with our choice of
parameters. The idea to use a pseudo-random function to generate signatures
deterministically was deployed several times before [11,13,34,48,59].

Parallel Matrix-Vector Multiplication. The most costly operation during
signing is the computation of Ay, which requires nm multiplications in Zq, most
of those followed by accumulation. Intel Haswell processors can perform two
multiply-accumulate instructions on 256-bit vectors of double-precision floating
point numbers every cycle. As we represent elements of Zq as double-precision
floating point numbers, one obtains a lower bound of nm/8 cycles per matrix
multiplication. This simple lower bound would translate to 254058 cycles for
TESLA-0; however, this is ignoring the fact that each partial product has up to
53 bits (the size of the double-precision mantissa) and requires reduction before
accumulation. Reductions are done through a multiplication by an approximate
inverse of q, rounding, multiplication by q and subtraction.

Another cause for not even getting close to the lower bound derived from
multiply-accumulate throughput is that each coefficient from A needs to be
loaded from (at best) L2 cache, because the whole matrix A does not fit into the
32KB of level-1 cache. This was already pointed out as an additional bottleneck
by Dagdelen et al. [61]. However, on average, signing computes multiple of those
matrix-vector multiplications, all with the constant matrix A. Our software al-
ways samples k = 3 vectors y, then performs 3 matrix-vector multiplications and
then proceeds to investigate whether one of the 3 results is usable for the sig-
nature. The disadvantage of this technique is that most of the time we compute
some matrix-vector products that are not used in the end. The advantage is that
matrix coefficients, once loaded from L2 cache are used k times instead of just
once. The optimal value of k depends on the parameter set. We wrote scripts
that generate an optimized assembly routine for different parameters and differ-
ent values of k. With those scripts we generated and benchmarked code for many
different combinations that all offered the targeted security and then picked the
fastest one. Computing 3 matrix-vector multiplications of the form Ay with this
parallel approach takes 11875355 cycles an average for TESLA-0.

Signature verification cannot use the k-times-parallel matrix-vector multipli-
cation for the computation of Az. For this task we use an approach similar to [61].
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7 Results and Comparison

Table 3 gives benchmarking results for TESLA-0 and TESLA-1, and compares
those benchmarks to state-of-the-art results from the literature. Due to the large
values q and B of the parameter set TESLA-2, certain elements do no fit into
the 53-bit mantissa of a double-precision floating point variable. Hence, we do
not compare the performance of TESLA-2 in Table 3.

We obtain our benchmarks on an Intel Core-i7 4770K (Haswell) processor
while disabling Turbo Boost and hyperthreading. Benchmarks of TESLA for
signing are averaged over 100, 000 signatures; benchmarks of TESLA for veri-
fication are the median of 100 verifications. The reason for not reporting the
median for TESLA signing performance is that because of the rejection sam-
pling, it would be overly optimistic. For all software results we report the sizes
of keys and signatures actually produced by the software, not the theoretically
smallest possible sizes with full compression.8

As can be seen in Table 3, TESLA is several magnitudes faster and sizes are
smaller than the only other lattice-based signature scheme that is also proven
tightly secure in the quantum random oracle model for the same (classical)
security of 96 bits. However, the signature generation and verification algorithms
of TESLA-0 are much slower than the implementation of [61] for the same level
of security. This is due to the large difference of the parameters chosen, e.g., the
matrix dimension m in TESLA-0 is 3156, while m = 840 in the parameter set
DEG+ proposed by Dagdelen et al. [61]. Note that the parameter set TESLA-0
is chosen according to our security reduction, while the set DEG+ is not chosen
according to the (non-tight) security reduction given in [8].

In the (as of yet quite small) realm of signatures that offer 128 bits of post-
quantum security, TESLA-2 offers an alternative to SPHINCS. Public and secret
keys of TESLA-2 are much larger than SPHINCS keys, but signatures are sev-
eral magnitudes smaller. The post-quantum multivariate-based signature scheme
Rainbow5640 [22,25] performs best among all listed schemes but unfortunately,
comes with no security reduction to its underlying problem.

8 The Gaussian Heuristic

Informally speaking, the Gaussian heuristic is a formula asserting that the num-
ber of points the intersection L ∩ S of a lattice L ⊂ Rm and a measurable set
S ⊂ Rm is approximated by the ratio vol(S)/ det(L). Use of the Gaussian heuris-
tic has appeared in prior works relating to TESLA [2, 4, 8]. It seems, however,
that a formal statement and proof of the Gaussian heuristic as used in these
works has not appeared in any literature. In this section we address this over-
sight by presenting a formal statement and proof of the Gaussian heuristic for
such applications. We emphasize that the present manuscript avoids all use of
8 We make an exception for BLISS. The authors of the software obviously did not
spend any effort on reducing the size of signatures and keys; we report sizes with
“trivial” compression through choosing native data types of appropriate sizes.
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the Gaussian heuristic, so the results in this section are of independent interest
to the rest of this document.

8.1 History

The study of counting lattice points within a bounded region was studied by
Gauss in the two-dimensional case, and has been explored extensively in very
generalized cases in literature on geometry [24,30,39]. The expectation intuitively
follows from Minkowski’s theorem, but can deviate arbitrarily for many types of
lattices. Due to this fact, the results on general lattices in the literature assert
error bounds that are not useful in a cryptographic setting. (For example, the
deviation from vol(S)/ det(L) may be as large as O(rn−1) for a set S containing
a sphere of radius r).

A more useful bound is presented in [44,45], in terms of the covering radius of
a lattice.9 However, this bound is not defined for sets S whose volume vol(S) is
smaller than the determinant det(L) of the lattice L. Unfortunately, prior works
relating to TESLA seek to apply the Gaussian heuristic to precisely this setting.

Previous applications of the Gaussian heuristic for cryptographic purposes
have largely focused on so-called “q-ary lattices”, which are lattices L with the
property that qZm ⊆ L ⊆ Zm. In these applications, the set S is a finite subset
of Zmq and the lattices L have the form Λq(A) or Λ⊥q (A) given by

Λq(A)
def
= {y ∈ Zm : ∃x ∈ Zn with y = Ax} (6)

Λ⊥q (A)
def
=
{
y ∈ Zm : ATy = 0 (mod q)

}
(7)

for arbitrary A ∈ Zm×nq with m ≥ n. We refer to Λ⊥q (A) as the primal lattice
and Λq(A) as the dual lattice. The following discussion immediately generalizes
to shifted primal lattices of the form

Λ⊥u,q(A)
def
=
{
y ∈ Zm : ATy = u (mod q)

}
(8)

for arbitrary u ∈ Znq .
In these applications we have that the volume vol(S) is simply the number

#S of elements in S. Moreover, if A has full rank (rank(A) = n) then the
determinants of the lattices Λq(A), Λ⊥u,q(A) are given by

det(Λq(A)) =
1

qm−n
det(Λ⊥u,q(A)) =

1

qn
(9)

The Gaussian heuristic is used in these applications to bound the expectation
over a uniformly random A of the size of the intersections Λq(A)∩S and Λ⊥u,q(A)∩
S. Since a random matrix A has full rank except with only negligibly small

9 Some recent work related to Minkowski’s theorem and estimating the covering radius
can be found in [55].
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probability, the Gaussian heuristic suggests that

Ex
A

[# (Λq(A) ∩ S)] ≈ #S

qm−n
(10)

Ex
A

[
#
(
Λ⊥u,q(A) ∩ S

)]
≈ #S

qn
(11)

We provide rigorous statements and proofs of these claims below.

8.2 Proofs of the Gaussian Heuristic for q-ary Lattices

Because S is a subset of Zmq , the the size of the intersection Λq(A) ∩ S is really
a question of the intersection of the image of A with S over the finite field Zq.
Similarly, the intersection Λ⊥u,q(A) ∩ S is merely the intersection with S of the
preimage of u under A over the finite field Zq.

With this observation in mind, for any vector u ∈ Znq and any matrix A ∈
Zm×nq define the following subsets of Zmq :

Im(A)
def
=
{
Ax : x ∈ Znq , x 6= 0

}
, (12)

PreImu(A)
def
=
{
y ∈ Zmq : ATy = u (mod q), y 6= 0

}
. (13)

Observe that

Λq(A) ∩ S = Im(A) ∩ S, (14)

Λ⊥u,q(A) ∩ S = PreImu(A) ∩ S. (15)

We prove the following.

Proposition 3 (Gaussian heuristic, “dual” q-ary lattices). Let S ⊆ Zmq
be any set. It holds that

Ex
A∈Zm×nq

[# (Im(A) ∩ S)] ≤ #S

qm−n
. (16)

Proof. By definition, the expectation in (16) is given by

1

#Zm×nq

∑
A∈Zm×nq

∑
v∈Zmq

bool [v ∈ Im(A)] bool [v ∈ S] (17)

=
∑
v∈Zmq

bool [v ∈ S] Pr
A∈Zm×nq

[v ∈ Im(A)] . (18)

For each v let us bound the probability

Pr
A∈Zm×nq

[v ∈ Im(A)] . (19)
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By definition, the probability (19) is given by
1

#Zm×nq
#
{
A ∈ Zm×nq : ∃x ∈ Znq with Ax = v, x 6= 0

}
(20)

≤ 1

#Zm×nq

∑
x∈Znq
x6=0

# {A : Ax = v} . (21)

Observe that
# {A : Ax = v} = qmn−m (22)

when x 6= 0 and so the probability (19) is at most
1

qmn
qn · qmn−m =

1

qm−n
. (23)

Substituting this bound into (18) we find that the expectation in (16) is at most∑
v∈Zmq

bool [v ∈ S]
1

qm−n
=

#S

qm−n
(24)

as desired.

Proposition 4 (Gaussian heuristic, “primal” q-ary lattices). Let S ⊆ Zmq
be any set and let u ∈ Znq be any vector. It holds that

Ex
A∈Zm×nq

[# (PreImu(A) ∩ S)] =
#S

qn
. (25)

Proof. By definition, the expectation in (25) is given by
1

#Zm×nq

∑
A∈Zm×nq

∑
y∈Zmq

bool [y ∈ PreImu(A)] bool [y ∈ S] (26)

=
∑
y∈Zmq

bool [y ∈ S] Pr
A∈Zm×nq

[y ∈ PreImu(A)] (27)

For each y 6= 0 let us compute probability

Pr
A∈Zm×nq

[y ∈ PreImu(A)] =
1

#Zm×nq
#
{
A ∈ Zm×nq : ATy = u (mod q)

}
. (28)

Observe that
#
{
A : ATy = u (mod q)

}
= qmn−n (29)

since y 6= 0 and so the probability (28) equals
1

qmn
qmn−n =

1

qn
. (30)

Substituting this bound into (27) we find that the expectation in (25) equals∑
y∈Zmq

bool [y ∈ S]
1

qn
=

#S

qn
(31)

as desired.
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A Overview of Security Proof

As in Section 4, let F be a forging algorithm that, on input a TESLA public key
(A,T), makes no more than qh quantum queries to a hash oracle H(·) and no
more than qs classical queries to a TESLA sign oracle for public key (A,T). Let
Pr [forge(A,T)] denote the probability that F produces a valid TESLA forgery.
We build a LWE-solver S whose run time is close to that of F and who solves
LWE with success bias close to Pr [forge(A,T)]. It then follows from the presumed
hardness of LWE that Pr [forge(A,T)] must be small.

The LWE-solver S is described in Algorithm 4. Classical queries made by F
to the sign oracle are simulated by S as specified in Simulated sign (Algorithm
5). Quantum queries made by F to the hash oracle are simulated by S according
to the construction of Zhandry based on 2qh-wise independent functions [60].
(Alternately, if performance of the simulator is a concern then one could instead
use a quantum-resistant pseudorandom function.)

Algorithm 4 LWE-solver S using a forger F .
Input: A LWE instance (A,T).
Output: “Yes” or “no”.

1: Invoke the forger F with public key (A,T).
Whenever F makes a hash or sign query, simulate that query as follows:
Classical sign queries. Execute Simulated sign (Algorithm 5).
Quantum hash queries. Apply a qauntum circuit that implements a ran-

dom but fixed 2qh-wise independent function, except on inputs that have
been re-programmed by Simulated sign.

2: Eventually, F produces a purported forgery.
If that forgery is legit then output “yes”, otherwise output “no”.

Algorithm 5 Simulated sign
Input: Message µ, public key (A,T).
Output: Signature (z, c).

1: Choose z uniformly at random among (B − U)-short vectors from Znq .
2: Choose c ∈ H uniformly at random.
3: If Az− Tc is not well-rounded then retry at step 1.
4: Re-program the hash oracle H(·) so that H([Az− Tc] , µ) = c.
5: Return (z, c).

That S solves LWE with success bias close to Pr [forge(A,T)] is a consequence
of the following facts, which are proven in subsequent sections:
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Appendix B: For yes-instances of LWE, the probability with which S outputs
“yes” is close to Pr [forge(A,T)].

Appendix C: For no-instances of LWE, F successfully forges (and hence S
outputs “yes”) with only negligible probability.

A.1 Notation and Sizes for Various Sets of Vectors

Discussion in appendices B, C, D refers to the following sets of integer vectors:

Y: The set of vectors y ∈ Znq such that y is B-short.
∆Y: {y − y′ : y, y′ ∈ Y}.
S: The set of vectors z ∈ Znq such that z is (B − U)-short.

∆S: {z− z′ : z, z′ ∈ S}.
H: The set of vectors c ∈ {−1, 0, 1}n′ with exactly h nonzero entries.

∆H: {c− c′ : c, c′ ∈ H}.
W: The set {[w] : w ∈ Zmq } of integer vectors obtained from the high bits of a

vector in Zmq .
∆L:

{
x− x′ : x, x′ ∈ Zmq and [x] = [x′]

}
= [−(2d − 1), 2d − 1]m.

The sizes of some of these sets are listed below:

#Y = (2B − 1)n #∆Y = (4B − 1)n (32)
#S = (2(B − U)− 1)n #∆S = (4(B − U)− 1)n (33)

#H =

(
n′

h

)
2h (34)

#∆L = (2d+1 − 1)m (35)

The size of ∆H is computed as follows.

Lemma 1 (Size of ∆H).

#∆H =

h∑
k=0

h−k∑
i=0

(
n′

2i

)
22i
(
n′ − 2i

k

)
2k (36)

Proof. For each k = 0, . . . , h let ∆Hk ⊂ ∆H denote the set of vectors in ∆H
with exactly k entries in {−2, 2} and exactly n′−k entries in {−1, 0, 1}. Observe
that #∆H =

∑h
k=0 #∆Hk.

Fix k and for each i = 0, . . . , h−k let ∆Hk,i ⊂ ∆Hk denote the set of vectors
in ∆Hk with exactly 2i entries in {−1, 1}. Observe that #∆Hk =

∑h−k
i=0 #∆Hk,i.

One can count the number of elements in each ∆Hk,i as

#∆Hk,i =

(
n′

2i

)
22i
(
n′ − 2i

k

)
2k, (37)

from which the lemma follows.
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B Yes-Instances of LWE

In this section we establish a lower bound on the probability

Pr [S output “yes” | (A,T) yes-instance of LWE] (38)

in terms of Pr [forge(A,T)]. This is accomplished by proving that the simulated
oracles are indistinguishable from the real oracles.

To this end we consider an arbitrary distinguisher D who, like the forger F ,
makes at most qh quantum queries to the hash oracle and at most qs classical
queries to the sign oracle. Unlike F , however, D’s goal is merely to distinguish
the real oracles from the simulated oracles.

B.1 Adaptively Chosen Queries

An arbitrary distinguisher could adaptively and arbitrarily interleave its hash
and sign queries. To facilitate our analysis we wish to model the distinguisher in
such a way that sign queries occur at fixed, predictable points throughout the
protocol. This goal is accomplished by a continuous accounting method for hash
queries that we describe presently.

Standard formalism specifies that a quantum oracle for H : X → Y be imple-
mented by a unitary channel |x〉|y〉 7→ |x〉|y + H(x)〉. We modify this formalism
so that the unitary channel for H(·) is a controlled unitary channel. Specifically,
the channel acts on an additional qubit, the state of which dictates whether the
unitary channel is applied:

|off〉|x〉|y〉 7→ |off〉|x〉|y〉 (39)
|on〉|x〉|y〉 7→ |on〉|x〉|y + H(x)〉 (40)

Consider a new type of distinguisher with the following properties:

1. The distinguisher makes qhqs hash queries instead of just qh hash queries.
2. Exactly one sign query occurs after every qh hash queries.
3. For each choice of hash oracle H(·), the distinguisher’s total “query magni-

tude” (in the BBBV sense - see Section B.6) on query states with the control
qubit set to |on〉 over all qhqs hash queries does not exceed qh.

A distinguisher of this form is called a live-switch distinguisher. For later conve-
nience, we refer to the query magnitude on states with the control qubit set to
|on〉 as the query magnitude on the live-switch.

Intuition: a live-switch distinguisher can make “partial” queries to the hash
oracle. If it’s query state has only α amplitude on the live-switch then the dis-
tinguisher is “charged” for only a a |α|2-fraction of a query.

It is clear that any ordinary distinguisher who makes qh hash queries and
qs sign queries, adaptively chosen and interleaved, could be simulated by a live-
switch distinguisher. Thus, live-switch distinguishers are at least as powerful
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as ordinary distinguishers, and possibly more powerful. We will prove indistin-
guishability against a live-switch distinguisher, which is more security than is
strictly necessary.

The benefit of the live-switch distinguisher is that sign queries occur at fixed
points throughout the protocol - one sign query after every qh hash queries. This
property allows us to partition the interaction into qs blocks. Each block consists
of qh quantum queries to the hash oracle, followed by a single classical query to
the sign oracle. We prove security of each block and then claim security of the
entire interaction inductively.

B.2 The Distinguisher’s State, a First Look

To begin, consider the state of D’s system immediately prior to the sign oracle
query in the first block. At this point in the interaction the real and simulated
oracles are perfectly identical - both respond to the first qh hash queries in
accordance with some fixed choice of hash oracle H(·). Let ρH denote the state
of D’s system at this point in the interaction, conditioned on H(·). The sign
oracle (both real and simulated) acts as follows on D’s system:

1. Measure the message register, resulting in outcome µ.
2. Select a signature (z, c) for message µ.
3. Prepare an output register in the classical basis state |µ〉|(z, c)〉.

These actions can be viewed as a quantum channel. If the sign oracle is a real
sign oracle then the signature (z, c) is a function of private randomness and the
hash oracle H(·). In this case, the channel is denoted Ψreal,H. If the sign oracle
is a simulated sign oracle then the signature (z, c) is a function only of private
randomness. In this case, the channel is denoted Ψsim.

Thus, the state of D’s system at the end of the first block, conditioned on
the choice of H(·), is either Ψsim(ρH) or Ψreal,H(ρH). We will argue that the state
Ψsim(ρH) is δ-close to a probabilistic mixture over re-programmed hash oracles
H′(·) of states of the form Ψreal,H′(ρH′).

This δ-closeness is preserved by the hash queries in the second block of the
interaction, since both the real and simulated hash oracles remain consistent with
H′(·) in this block. Let ρ2,H′ denote the state of D’s system immediately prior
to the sign oracle query in the second block. As above, we have that Ψsim(ρ2,H′)
is δ-close to a mixture of states of the form Ψreal,H′′(ρ2,H′′).

Continuing inductively, we see that the state of D’s system at the end of an
interaction with simulated oracles is qsδ-close to a probailistic mixture over hash
oracles of states of D’s system at the end of an interaction with real oracles. Av-
eraging over the choice of initial hash oracle H(·), we then see that the simulated
oracles are indistinguishable from the real oracles.

We formalize these arguments in subsequent sections.

B.3 Mid-Sign

Consider the sign oracle Mid-sign of Algorithm 6. Mid-sign should be viewed

31



Algorithm 6 Mid-sign
Input: Message µ, public key (A,T), secret key (S,E).
Output: Signature (z, c).

1: Choose (y, c) ∈ Y×H uniformly at random.
2: z← y + Sc.
3: If z 6∈ S then retry at step 1.
4: If Ay − Ec is not well-rounded then retry at step 1.
5: Re-program the hash oracle H(·) so that H([Ay] , µ) = c.
6: Return (z, c).

as a hybrid of Simulated sign (Algorithm 5) and the real sign oracle Sign
(Algorithm 2).

In this section we prove that Mid-sign (Algorithm 6) and Simulated sign
(Algorithm 5) are identical. This fact can be stated in terms of quantum channels
as follows. Let Ψmid denote the channel described by Algorithm 6. The claim of
this section is that Ψmid = Ψsim.

To this end, define the following sets for each choice of c ∈ H:

goodsim(c)
def
= {z ∈ S : Az− Tc is well-rounded} (41)

goodmid(c)
def
= {y ∈ Y : y + Sc ∈ S and Az− Tc is well-rounded} (42)

We begin with a simple observation on these sets.

Lemma 2. The mapping f : y 7→ y + Sc is a bijection from goodmid(c) to
goodsim(c) with inverse f−1 : z 7→ z− Sc.

Proof. It is clear that f−1f is the identity function on goodmid(c). It remains to
prove the following:

1. For each y ∈ goodmid(c) it holds that f(y) ∈ goodsim(c).
2. For each z ∈ goodsim(c) it holds that f−1(z) ∈ goodmid(c).

To prove item 1 we must show (i) f(y) ∈ S, and (ii) Af(y)−Tc is well-rounded.
Both items are immediate from the definitions of goodmid(c) and f .

To prove item 2 we must show (i) f−1(z) ∈ Y, and (ii) Af−1(z)− Ec is well-
rounded. Item (i) follows from the fact that z is (B−U)-short and Sc is U -short.
Item (ii) is immediate from the definitions of goodsim(c) and f−1.

We now prove this section’s claim.

Proposition 5 (Equivalence of Mid-sign and Simulated sign). The ob-
servable behaviour of Mid-sign (Algorithm 6) is statistically identical to that of
Simulated sign (Algorithm 5). In terms of quantum channels, we have Ψmid = Ψsim.

Proof. The observable effects of both the Simulated sign and Mid-sign algo-
rithms can be summarized as follows. Given a message µ as input, the algorithm
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selects (i) a signature (zµ, cµ) as output, and (ii) a vector wµ inducing a hash
input (wµ, µ) upon which the hash oracle is re-programmed. Thus, to establish
statistical equivalence betwen Simulated sign and Mid-sign it suffices to prove
that, for each choice of message µ, the joint distribution over (zµ, cµ,wµ) induced
by each algorithm is identical.

Fix an arbitrary message µ and let (Zsim, Csim,Wsim), (Zmid, Cmid,Wmid)
denote the joint random variables representing the observable behaviour of Sim-
ulated sign and Mid-sign, respectively, on input message µ. We argue that the
joint random variables (Zsim, Csim), (Zmid, Cmid) are identical. The proposition
will then follow from the observation that the hash input w to be re-programmed
is specified in both algorithms by the same deterministic function of (z, c). Specif-
ically, in Simulated sign we have w = [Az− Tc], whereas in Mid-sign we have
w = [Ay]. Since Ay − Ec is well-rounded, we have

w = [Ay] = [Ay − Ec] = [A(y + Sc)− Tc] = [Az− Tc] (43)

as desired.
To begin, we argue that

Pr [Zmid = z | Cmid = c] = Pr [Zsim = z | Csim = c] (44)

for each choice of c ∈ H. In Simulated sign, conditioned on a choice of c, the vec-
tor z is chosen uniformly among those z ∈ goodsim(c). In Mid-sign, conditioned
on a choice of c, the vector y is chosen uniformly among those y ∈ goodmid(c)
and the vector z is computed as z ← y + Sc. It follows from Lemma 2 that z is
uniform on goodsim(c), as desired.

Next, we argue that

Pr [Cmid = c] = Pr [Csim = c] (45)

for each choice of c ∈ H, from which it follows that the joint random vari-
ables (Zsim, Csim), (Zmid, Cmid) are identical. It follows from Lemma 2 that
# goodmid(c) = # goodsim(c) for each c ∈ H. Thus,

Pr [Cmid = c] =
# goodmid(c)∑
c′ # goodmid(c′)

=
# goodsim(c)∑
c′ # goodsim(c′)

= Pr [Csim = c] (46)

as desired.

B.4 Consistent-Mid-Sign

Broadly speaking, Mid-sign (Algorithm 6) behaves like Sign (Algorithm 2) except
that c is selected freshly at random instead of according to some hash oracle H(·).
It is tempting to claim that the only difference between Mid-sign and Sign is
that repeated invocations of Sign always use the same hash oracle H(·), whereas
each invocation of Mid-sign switches to another hash oracle H′(·) that differs
from H(·) on a small number of randomly selected inputs.
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However, there is a small probability that the random choices in a given
execution of Mid-sign are not consistent with any hash oracle. To understand
how such an inconsistency can occur, observe that each candidate (y, c) selected
by Mid-sign induces an associated claim about the underlying hash oracle: that
H([Ay] , µ) = c. Suppose Mid-sign rejects one candidate pair (y, c) because Ay−Ec
is not well-rounded before finally accepting another candidate pair (y′, c′). If
[Ay] = [Ay′] but c 6= c′ then these two candidates represent conflicting claims
about the underlying hash oracle.

To address this problem we present a new sign oracle Consistent-mid-sign in
Algorithm 7 and argue that its observable behaviour is negligibly close to that
of Mid-sign (Algorithm 6). This fact can be stated in terms of quantum channels
as follows. Let Ψc-mid denote the channel described by Algorithm 7. The claim
of this section is that Ψc-mid ≈ Ψmid, meaning that Ψc-mid(ρ) ≈ Ψmid(ρ) for all
input states ρ.

Algorithm 7 Consistent-mid-sign
Input: Message µ, public key (A,T), secret key (S,E).
Output: Signature (z, c).

1: Initialize the dictionary A ⊂ (W 7→ H) to the empty dictionary A = ∅.
2: Choose y ∈ Y uniformly at random.
3: if [Ay] ∈ A then
4: c← A[[Ay]]
5: else
6: choose c ∈ H uniformly at random
7: add A[[Ay]]← c to the dictionary A.
8: end if
9: z← y + Sc.

10: If z 6∈ S then retry at step 2.
11: If Ay − Ec is not well-rounded then retry at step 2.
12: Re-program the hash oracle H(·) so that H([Ay] , µ) = c.
13: Return (z, c).

The only difference between Consistent-mid-sign and Mid-sign is that each
invocation of Consistent-mid-sign remembers the random candidate pairs it se-
lected throughout the invocation and alters them as needed so as to maintain
consistency with a hash oracle. Thus, in order to prove Ψc-mid ≈ Ψmid it suffices
to prove that only a negligibly small fraction of the random choices made by
Mid-sign lead to an inconsistency that is corrected in Consistent-mid-sign.

A sequence r = {(yi, ci)}∞i=1 of random choices made by Mid-sign leads to an
inconsistently derived signature only if there exists k ≥ 2 such that the following
conditions hold:

1. Ay1 − Ec1, . . . ,Ayk−1 − Eck−1 are not well-rounded.
2. Ayk − Eck is well-rounded.
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3. [Ayk] ∈ {[Ay1] , . . . , [Ayk−1]}.

Consider the event that a random sequence r meets conditions 1–3 for some
choice of k ≥ 2, and let inconsistent(r) denote the infinite disjunction of these
events over all k ≥ 2.10 We seek an upper bound on the probability of event
inconsistent(r) over the choice of r. To this end, define the following quantities
for each choice of TESLA keys (A,T), (S,E):

nwr(A,E): The probability over (y, c) ∈ Y×H that Ay−Ec is not well-rounded.
coll(A,E): The maximum over all w ∈W of the probability over (y, c) ∈ Y×H

that [Ay − Ec] = w.

In symbols, these quantities are written

nwr(A,E)
def
= Pr

(y,c)∈Y×H
[Ay − Ec not well-rounded] (47)

coll(A,E)
def
= max

w∈W

{
Pr

(y,c)∈Y×H
[[Ay − Ec] = w]

}
(48)

In Sections B.8 and B.9 we prove bounds on these quantities that hold with high
probability over the choice of TESLA keys (A,T), (S,E).

Broadly speaking, nwr(A,E) should be viewed as a constant that’s noticeably
smaller than 1 - for example, nwr(A,E) = 1/2. By contrast coll(A,E) is negligibly
small. We prove the following.

Proposition 6 (Probability of inconsistency). For each choice of TESLA
keys (A,T), (S,E) it holds that

Pr
r

[inconsistent(r)] ≤ coll(A,E)
nwr(A,E)

(1− nwr(A,E))
2 (49)

Proof. For each k ≥ 2 the probability with which events 1 and 2 hold is

nwr(A,E)k−1(1− nwr(A,E)). (50)

10 In item 3 it suffices to look for a collision only between [Ayk] and any previous [Ayi];
we don’t need to look for a collision among arbitrary [Ayi] = [Ayj ]. This is because
such a collision among the bad entries is statistically identical to as if ci = cj .
Namely, [Ayi] is rejected regardless of whether ci = cj . If however, cj changes [Ayi]
from bad to good then that difference will be detected at k = j. Thus, there’s no
need to check for this when k > j.
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Conditioned on those events, the probability of event 3 is

Pr
(y1,c1),...,(yk,ck)6∈WR(A,E)

(yk,ck)∈WR(A,E)

[
k−1∨
i=1

[Ayk] = [Ayi]

]
(51)

≤ (k − 1) max
w∈W

{
Pr

(y,c)∈WR(A,E)
[[Ay] = w]

}
(52)

≤ (k − 1)

max
w∈W

{
Pr

(y,c)∈Y×H
[[Ay − Ec] = w]

}
Pr

(y,c)∈Y×H
[Ay − Ec is well-rounded]

(53)

= (k − 1)
coll(A,E)

1− nwr(A,E)
(54)

(Here we have used the notation (y, c) ∈ WR(A,E) to mean that Ay − Ec is
well-rounded.) Thus,

Pr
r

[inconsistent(r)] ≤
∞∑
k=2

nwr(A,E)k−1(1− nwr(A,E))(k − 1)
coll(A,E)

1− nwr(A,E)

(55)

= coll(A,E)

∞∑
k=2

(k − 1) nwr(A,E)k−1. (56)

The proposition then follows from the formula for the derivative of a geometric
progression.

An immediate corollary of Proposition 6 is that

‖Ψc-mid(ρ)− Ψmid(ρ)‖Tr < 2 Pr
r

[inconsistent(r)] (57)

for all states ρ.

B.5 Consistent-Mid-Sign is a Mixture of Real Sign Oracles

In the previous section we introduced the sign oracle Consistent-mid-sign (Al-
gorithm 7) and claimed that it behaves exactly like Sign (Algorithm 2) with
the following exception: repeated invocations of Sign always use the same hash
oracle H(·), whereas each invocation of Consistent-mid-sign switches to another
hash oracle H′(·) that differs from H(·) on a small fraction of randomly selected
inputs.

Let us formalize this claim. Unfortunately, we must introduce some cumber-
some notation. For each message µ define the symbols

yµ: A sequence {yµ,i}∞i=1 of elements drawn randomly from Y.
cµ(yµ): A sequence {cµ,i}∞i=1 of elements drawn randomly from H subject to the

constraint that if [Ayµ,i] = [Ayµ,j ] then cµ,i = cµ,j .

36



The output of Consistent-mid-sign on input µ is a deterministic function of the
random data yµ, cµ(yµ). Specifically, let k(µ) denote the minimum index for
which Ayµ,k(µ)−Ecµ,k(µ) is well-rounded. Then Consistent-mid-sign outputs the
signature (yµ,k(µ) + Scµ,k(µ), cµ,k(µ)). For shorthand, write τµ = (yµ, cµ(yµ)).

Let y = {yµ}µ and c(y) = {cµ(yµ)}µ denote selections of random data for
each possible message µ. For shorthand, write τ = (y, c(y)) so that the behaviour
of Consistent-mid-sign on all inputs is completely specified by τ .

For each choice of hash oracle H(·) and random data τ consider the hash
oracle Hτ (·) that agrees with H(·) everywhere except that Hτ ([Ayµ,i] , µ) = cµ,i
for each message µ and each i = 1, . . . , k(µ). In other words,

Hτ (w, µ) =

{
cµ,i if w = [Ayµ,i] for some i ∈ {1, . . . , k(µ)}
H(w, µ) otherwise

. (58)

The behaviour of Sign (Algorithm 2) with hash oracle Hτ (·) on all inputs is
completely specified by y and Hτ (·). Moreover, the behaviour of Sign with hash
oracle Hτ (·) and random data y is identical to the behaviour of Consistent-mid-
sign with random data τ .

For each choice of random data τ define the following quantum channels:

Ψc-mid,τ : The quantum channel representing the actions of Consistent-mid-sign
(Algorithm 7) with randomness τ .

Ψreal,Hτ ,y: The quantum channel representing the actions of Sign (Algorithm 2)
with hash oracle Hτ (·) and randomness y.

The previous observations establish

Ψc-mid,τ = Ψreal,Hτ ,y (59)

for each choice of τ . Because Ψc-mid is simply a uniform mixture of channels
Ψc-mid,τ , it follows that11

Ψc-mid =
∑
τ

Pr [τ ]Ψreal,Hτ ,y. (60)

B.6 Re-Programming of Hash Oracles is Hard to Detect

Thus far we have proved that Consistent-mid-sign behaves like a mixture of real
sign oracles when viewed in isolation. That is, for all states ρ we have

Ψc-mid(ρ) =
∑
τ

Pr [τ ]Ψreal,Hτ ,y(ρ). (61)

11 Strictly speaking, Pr [τ ] is zero because it represents the uniform distribution over
a countably infinite set. We should switch to a probability measure on τ and use
an integral instead of a summation over τ . Future versions of this manuscript will
address this detail.
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But we must extend this proof so that it holds even in the presence of inde-
pendent information on the underlying hash oracle. In particular, for any hash
oracle H(·) and any state ρH prepared using only a tractable number of queries
to H(·) we must show that

Ψc-mid(ρH) ≈
∑
τ

Pr [τ ]Ψreal,Hτ ,y(ρHτ ). (62)

To establish this claim it suffices to show that ρH ≈ ρHτ with high probability
over the choice of τ .

This claim is proven by an application of the BBBV Theorem [12, Theorem
3.3], so let us introduce the formalism necessary to state this theorem. Suppose
ρH was prepared by some partyR using t queries to some hash oracle H : X → Y .
For each i = 1, . . . , t let ρi denote the state of R’s system immediately prior to
the ith query to H(·). For each hash input x ∈ X let

QR(H)(x)
def
=

t∑
i=1

Tr (|x〉〈x|ρi) (63)

denote the query magnitude on input x for R’s interaction with hash oracle H(·).
The BBBV Theorem (or rather, a consequence of it) is as follows.

Theorem 3 ( [12, Theorem 3.3]). The following holds for each ε > 0. Sup-
pose ρH was prepared by some party R using t queries to some hash oracle
H : X → Y . Let H′(·) be a hash oracle that agrees with H(·) except on a subset
X ′ ⊂ X of inputs with the property that∑

x∈X′
QR(H)(x) ≤ ε2

t
. (64)

Let ρH′ be the state prepared when R uses hash oracle H′(·) instead of H(·). It
holds that ‖ρH′ − ρH‖Tr ≤ ε.

We are now ready to prove the claim of this section.

Proposition 7 (Re-Programming in TESLA). The following holds for each
choice of TESLA keys (A,T), (S,E) and each δ > 0.

Suppose ρH was prepared by some party D using t queries to hash oracle H(·).
Let τ be random data and let Hτ (·) be a hash oracle derived from H(·) and τ as
described in Section B.5. Let ρH′ be the state prepared when D uses hash oracle
H′(·) instead of H(·).

Then ‖ρHτ − ρH‖Tr < δ except with probability at most

t2

δ2
coll(A,E)

1− nwr(A,E)
(65)

over the choice of τ .
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Proof. By Theorem 3 it suffices to prove that the quantity

∑
µ

k(µ)∑
i=1

QD(H) ([Ayµ,i] , µ) (66)

is at most δ2/t with high probability over the choice of τ . To this end, for each
message µ let

Xµ = {([Ay] , µ) : y ∈ Y} (67)

denote the set of hash inputs for message µ that are candidates for re-programming,
and let

tµ =
∑
x∈Xµ

QD(H)(x) (68)

denote the total query magnitude for message µ. Observe that t =
∑
µ tµ.

The quantity (66) is maximized if for each message µ all the query magnitude
tµ alloted to message µ is placed on the element w ∈ W most likely to collide
with [Ay] when y ∈ Y is chosen uniformly at random. In this case, the quantity
(66) is at most ∑

µ

k(µ)tµ coll(A,E). (69)

By Markov’s inequality we have

Pr
τ

[∑
µ

k(µ)tµ coll(A,E) ≥ δ2

t

]
≤ t

δ2
Ex
τ

[∑
µ

k(µ)tµ coll(A,E)

]
(70)

=
t

δ2
coll(A,E)

∑
µ

tµ Ex
τµ

[k(µ)] (71)

Thus, it suffices to bound the expected number k(µ) of entries one must view
from a given list τµ before encountering an entry (y, c) for which Ay − Ec is
well-rounded. We have

Ex
τµ

[k(µ)] =

∞∑
k=1

k nwr(A,E)k−1(1− nwr(A,E)) =
1

1− nwr(A,E)
(72)

where the final equality follows from the formula for the derivative of a geometric
progression. The proposition follows from

∑
µ tµ = t.

B.7 The Distinguisher’s State, Revisited

Recall from Section B.2 the state ρH, which is the state of D’s system immedi-
ately prior to the sign query in the first block. Let κ1 ≤ qh denote the query
magnitude on the live-switch for the hash oracle in the first block. We proved
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the following in previous sections:

Ψsim(ρH) = Ψmid(ρH) (73)

‖Ψmid(ρH)− Ψc-mid(ρH)‖Tr < 2 coll(A,E)
nwr(A,E)

(1− nwr(A,E))2
(74)

Ψc-mid(ρH) =
∑
τ

Pr [τ ]Ψreal,Hτ ,y(ρH) (75)

Pr
τ

[‖ρHτ − ρH‖Tr > ε] <
κ21
ε2

coll(A,E)

1− nwr(A,E)
(76)

We conclude that∥∥∥∥∥Ψsim(ρH)−
∑
τ

Pr [τ ]Ψreal,Hτ ,y(ρHτ )

∥∥∥∥∥
Tr

< δ(κ1) (77)

where12

δ(κ)
def
= 2 coll(A,E)

nwr(A,E)

(1− nwr(A,E))2
+ ε+

κ2

ε2
coll(A,E)

1− nwr(A,E)
. (78)

That is, the state of D’s system at the end of the first block of an interaction
with simulated oracles is δ(κ1)-close to a probabilistic mixture over states of D’s
system, each of which could have been obtained from an interaction with real
hash oracles.

As suggested in Section B.2, we continue inductively throughout the qs
blocks. As with κ1, let κ2, . . . , κqs denote the query magnitude on the live-switch
for blocks two through qs. Define

δyes =

qs∑
i=1

δ(κi) (79)

and observe that the state of D’s system at the end of an interaction with
simulated oracles is δyes-close to a probabilistic mixture over states obtained
from an interaction with real hash oracles.

Let us compute an upper bound on δyes. Because each block includes in-
formation from hash queries in previous blocks plus one additional hash query
learned from the sign oracle, we have

κi+1 ≥ κi + 1. (80)

Because D is permitted at most qh total query magnitude on the live-switch for
its hash queries, we have

κi ≤ qh + i− 1. (81)

12 The final two terms of (78) are due to the fact that a κ2

ε2
nwr(A,E)

(1−nwr(A,E))2
-fraction of τ

lead to a hash oracle Hτ (·) for which ‖ρH − ρHτ ‖Tr > ε, in which case we assume
that ρH, ρHτ are perfectly distinguishable. For all other τ it holds that ρH, ρHτ are
ε-close.
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It is clear that δyes is maximized when κ1 = qh, which corresponds to a distin-
guisher who makes all qh hash queries before making any of the qs sign queries.
Taking a loose bound qh + qs for each κi, we obtain

δyes < qs

(
2 coll(A,E)

nwr(A,E)

(1− nwr(A,E))2
+ ε+

(qh + qs)
2

ε2
coll(A,E)

1− nwr(A,E)

)
(82)

Finally, because the real and simulated oracles are δyes-close, it follows that

Pr [S output “yes” | (A,T) yes-instance of LWE] > Pr [forge(A,T)]− δyes (83)

as desired.

B.8 Appendix: Probability of Well-Roundedness

Let φ denote the probability that a random vector in Zmq is not well-rounded:

φ
def
= Pr

x∈Zmq
[x not well-rounded] ≤ m

(
2L

2d
+

2L

q

)
. (84)

The quantity φ is a function of the TESLA parameters q,m, d, L. It is a constant
that’s noticeably smaller than 1.

Recall the definition of nwr(A,E): for TESLA keys (A,T), (S,E) define nwr(A,E)
as the probability over (y, c) ∈ Y×H that Ay − Ec is not well-rounded:

nwr(A,E)
def
= Pr

(y,c)∈Y×H
[Ay − Ec not well-rounded] . (85)

We prove the following.

Lemma 3 (Probability of well-roundedness). The following holds for all
K > 0. With probability 1 − 1/K over the choice of TESLA keys (A,T), (S,E)
it holds that

nwr(A,E) ≤ φ+

√
K(q + 1)

#Y
. (86)

Proof. Our strategy is to bound the variance of nwr(A,E) over the choice of
TESLA keys (A,T), (S,E) and use Chebyshev’s inequality. By definition,

Var
(A,E)

[nwr(A,E)] = Ex
(A,E)

[
nwr(A,E)2

]
− Ex

(A,E)
[nwr(A,E)]

2 (87)

so it suffices to compute the expectation of nwr(A,E) and an upper bound on
the expectation of nwr(A,E)2.
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We begin by computing the expectation of nwr(A,E). We have

Ex
(A,E)

[nwr(A,E)] (88)

=
∑
(A,E)

Pr[(A,E)]
1

#Y#H
∑
(y,c)

bool [Ay − Ec not well-rounded] (89)

=
1

#Y#H
∑
(y,c)

∑
(A,E)

Pr[(A,E)] bool [Ay − Ec not well-rounded] (90)

=
1

#Y#H
∑
(y,c)

Pr
(A,E)

[Ay − Ec not well-rounded] . (91)

(Here we have used the notation bool [s] for any statement s that can be either
true or false to mean that bool [s] = 1 if the statement is true and bool [s] = 0
otherwise.) So we need to bound the probability

Pr
(A,E)

[Ay − Ec not well-rounded] (92)

for each fixed choice of (y, c) ∈ Y×H. There are two cases:

1. If y 6= 0 then Ay is a uniformly random vector in Zmq . So too is Ay − Ec,
since c is fixed and E is independent of A. In this case, the probability (92)
equals φ.

2. If y = 0 then the probability (92) equals 0, since −Ec is well-rounded for
all E, c.

Case 2 occurs with probability 1/#Y, from which it follows that

Ex
(A,E)

[nwr(A,E)] =

(
1− 1

#Y

)
φ. (93)

Next, we compute an upper bound on the expectation of nwr(A,E)2. Similar
to the above, we have

Ex
(A,E)

[
nwr(A,E)2

]
=

1

(#Y#H)
2

∑
(y,c),(y′,c′)

Pr
(A,E)

[Ay − Ec,Ay′ − Ec′ not well rounded]

(94)
and so we need to bound the probability

Pr
(A,E)

[Ay − Ec,Ay′ − Ec′ not well-rounded] (95)

for each fixed choice of (y, c), (y′, c′) ∈ Y×H. There are two cases:

1. If y, y′ are nonzero and linearly independent then Ay,Ay′ are uniformly ran-
dom vectors in Zmq ; so too are Ay−Ec,Ay′−Ec′. In this case, the probability
(95) equals φ2.

2. If y, y′ are linearly dependent then the probability (95) is at most 1.
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Case 2 occurs with probability at most (q + 1)/#Y, from which it follows that

Ex
(A,E)

[
nwr(A,E)2

]
≤
(

1− q + 1

#Y

)
φ2 +

q + 1

#Y
(96)

Combining these bounds on the expectation of nwr(A,E) and nwr(A,E)2 (and
employing the inequality 1−(q+1)/#Y < (1− 1/#Y)

2), we obtain the inequality

Var
(A,E)

[nwr(A,E)] ≤ q + 1

#Y
. (97)

By Chebyshev’s inequality it holds that

Pr
(A,E)

[∣∣∣∣nwr(A,E)− Ex
(A,E)

[nwr(A,E)]

∣∣∣∣ ≥
√
K(q + 1)

#Y

]
≤ 1

K
. (98)

The lemma follows from the expression (93) for the expectation of nwr(A,E).

B.9 Appendix: Probability of Repetition

Let ψ denote the probability that a random vector x ∈ Zmq is in ∆L:

ψ
def
= Pr

x∈Zmq
[x ∈ ∆L] ≤

(
2d+1

q

)m
. (99)

The quantity ψ is a function of the TESLA parameters q,m, d. It is negligibly
small.

Recall the definition of coll(A,E): for TESLA keys (A,T), (S,E) define coll(A,E)
as the maximum over all w ∈ W of the probability over (y, c) ∈ Y × H that
[Ay − Ec] = w:

coll(A,E)
def
= max

w∈W

{
Pr

(y,c)∈Y×H
[[Ay − Ec] = w]

}
. (100)

We prove the following.

Lemma 4 (Probability of repetition). The following holds for all K > 0.
With probability 1 − 1/K over the choice of TESLA keys (A,T), (S,E) it holds
that

coll(A,E) ≤ Kψ. (101)

Before proving Lemma 4 let us introduce some notation. Define the set

G(A,E)
def
= {(y, c) ∈ ∆Y×∆H : Ay − Ec ∈ ∆L} . (102)

Some basic facts about the set G(A,E) are listed below in Lemma 5.
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Proof (Proof of Lemma 4). Let coll′(A,E) denote the probability over (y, c) ∈
∆Y×∆H that (y, c) ∈ G(A,E):

coll′(A,E)
def
= Pr

(y,c)∈∆Y×∆H
[(y, c) ∈ G(A,E)] . (103)

It follows from Lemma 5 that coll′(A,E) ≥ coll(A,E). Thus, it suffices to prove
the lemma with coll′(A,E) in place of coll(A,E).

Observe that coll′(A,E) ≥ 1/#∆Y, which follows from the fact that #G(A,E) ≥
#∆H (Lemma 5). Our strategy is to bound the expectation of the positive ran-
dom variable coll′(A,E)− 1/#∆Y over the choice of TESLA keys (A,T), (S,E)
and use Markov’s inequality. To this end let us compute the expectation of
coll′(A,E):

Ex
(A,E)

[
coll′(A,E)

]
=
∑
(A,E)

Pr [(A,E)]
1

#∆S#∆H
∑
(y,c)

bool [(y, c) ∈ G(A,E)] (104)

=
1

#∆S#∆H
∑
(y,c)

∑
(A,E)

Pr [(A,E)] bool [(y, c) ∈ G(A,E)] (105)

=
1

#∆S#∆H
∑
(y,c)

Pr
(A,E)

[(y, c) ∈ G(A,E)] . (106)

So we need to bound the probability

Pr
(A,E)

[(y, c) ∈ G(A,E)] (107)

for each fixed choice of (y, c) ∈ ∆Y×∆H. There are two cases:

1. If y 6= 0 then Ay is a uniformly random vector in Zmq . So too is Ay − Ec,
since c is fixed and E is independent of A. In this case, the probability (107)
is exactly ψ.

2. If y = 0 then the probability (107) is exactly 1.

Case 2 occurs with probability exactly 1/#∆Y over the choice of (y, c). It follows
that

Ex
(A,E)

[
coll′(A,E)

]
=

(
1− 1

#∆Y

)
ψ +

1

#∆Y
. (108)

Then by Markov’s inequality we have

Pr
(A,E)

[
coll′(A,E) ≥ K

(
1− 1

#∆Y

)
ψ

]
≤ 1

K
. (109)

That is, with probability at least 1−1/K over the choice of TESLA keys (A,T),
(S,E) it holds that

coll′(A,E) ≤ K
(

1− 1

#∆Y

)
ψ (110)

from which the lemma follows.
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Lemma 5. For all TESLA keys (A,T), (S,E) and all w ∈W it holds that

#G(A,E) ≥ #∆H (111)
#G(A,E) ≥ # {(y, c) ∈ Y×H : [Ay − Ec] = w} (112)

Proof. The inequality (111) is straightforward: For each c, c′ ∈ H we have [Ec] =
[Ec′] = [0], from which it follows that (0, c− c′) ∈ G(A,E).

It remains to prove the inequality (112). Let (y, c), (y′, c′) be elements of
Y × H with [Ay − Ec] = [Ay′ − Ec′] = w. We claim that (y − y′, c − c′) is in
G(A,E). It is clear that y − y′ ∈ ∆Y and c − c′ ∈ ∆H. It remains to verify
A(y − y′)− E(c− c′) ∈ ∆L. We have

A(y − y′)− E(c− c′) = Ay − Ec− (Ay′ − Ec′). (113)

Since Ay−Ec and Ay′−Ec′ have the same high bits, it must be that A(y− y′)−
E(c− c′) is the difference of two vectors from [−(2d−1 − 1), 2d−1]m, from which
it follows that A(y − y′)− E(c− c′) ∈ ∆L.

If (y1, c1), . . . , (yk, ck) are distinct elements of Y × H with [Ayi − Eci] = w
for each i = 1, . . . , k then (0, 0), (y1 − y2, c1 − c2), . . . , (y1 − yk, c1 − ck) must be
distinct elements of G(A,E)13. We have thus listed k distinct elements of G(A,E),
from which the lemma follows.

C No-Instances of LWE

In this section we prove that the probability

Pr [S output “yes” | (A,T) no-instance of LWE] (114)

is small. Our strategy is to identify a correspondence between valid message-
signature pairs and “good” inputs to the hash oracle. We then argue that, with
high probability over the choice of LWE no-instance (A,T) and hash oracle H(·),
the number of good inputs is a very small fraction of the total number of inputs.

Moreover, whether a given input is good is determined solely by its corre-
sponding output from the hash oracle, implying that the only way to discover
good inputs is to perform a search through an unstructured space.

Thus, a computationally bounded forger cannot expect to find good input
(and hence a valid forgery), even with quantum access to the random oracle.
This argument establishes the claim that the LWE-solver S outputs “yes” only
with small probability, as desired.

C.1 Correspondence Between Valid Signatures and Good Hash
Inputs

Let w ∈ W, and let µ be an arbitrary message. For any fixed choice of random
oracle H(·) and LWE no-instance (A,T) the hash input (w, µ) is called good for
H(·),A,T if there exists z ∈ S with

[Az− TH(w, µ)] = w. (115)
13 By contrast with no-instances, we cannot guarantee that the negations are distinct.
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Proposition 8 (Correspondence between valid signatures and good
hash inputs). If (µ, (z, c)) is a valid message-signature pair for public key (A,T)
and hash oracle H(·) then ([Az− Tc] , µ) is good for H(·),A,T.

Proof. Write w = [Az− Tc]. Because (z, c) is a valid signature for µ we have

H(w, µ) = H ([Az− Tc] , µ) = c. (116)

Then
[Az− TH(w, µ)] = [Az− Tc] = w (117)

as desired.

A corollary of Proposition 8 is that the ability to find a message-signature
pair (µ, (z, c)) that is valid for public key (A,T) using qh classical or quantum
queries to H(·) implies the ability to find a hash input (w, µ) that is good for
H(·),A,T using the same number of classical or quantum queries to H(·).

C.2 The fraction of good hash inputs

We wish to bound the probability over hash oracles H(·) and LWE no-instances
(A,T) that a non-negligible fraction of hash inputs (w, µ) are good. To this end,
define the sets

M def
= {(w, µ) : w ∈W, µ is a message} (118)

M(H,A,T)
def
= {(w, µ) ∈M : (w, µ) is good for H(·),A,T} (119)

Discussion is somewhat complicated by the fact that there is an infinite number
messages, and hence M and M(H,A,T) are infinite sets. For ease of exposition
we presume a fixed, large upper bound such as 22

λ

on the size of M. After all, no
computationally bounded forger could possibly query the hash oracle on inputs
whose bit length exceeds 2λ. Under this presumption, M is a finite set and so
#M is a positive integer. The ratio

#M(H,A,T)

#M
(120)

is the fraction of inputs that are good.
Our goal is to show that the ratio (120) is negligibly small with high prob-

ability over the choice of H(·),A,T. To this end, for each message (w, µ) ∈ M
define the boolean random variable

X(w,µ) =

{
1 if (w, µ) is good for H(·),A,T
0 otherwise

(121)

and observe
#M(H,A,T)

#M
=

1

#M
∑

(w,µ)∈M

X(w,µ), (122)
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which is an average over boolean random variables. Moreover, the random vari-
ables X(w,µ) are independent and so we may apply Hoeffding bounds to obtain

Pr
H,(A,T)

[
#M(H,A,T)

#M
− Ex

H,(A,T)

[
#M(H,A,T)

#M

]
≥ δ
]
≤ exp

(
−2#Mδ2

)
. (123)

Because #M is very large relative to other TESLA parameters, we may choose δ
so small that it can safely be assumed to equal zero. For example, if #M = 22

λ

then the probability (123) is negligibly small even when δ is as small as 2−2
λ−2

.
Thus, the ratio (120) is almost certain to be very close to its expecation

Ex
H,(A,T)

[
#M(H,A,T)

#M

]
. (124)

This expectation equals

1

#M
∑

(w,µ)∈M

Ex
H,(A,T)

[
X(w,µ)

]
(125)

and by definition,

Ex
H,(A,T)

[
X(w,µ)

]
= Pr

H,(A,T)
[(w, µ) is good for H(·),A,T] . (126)

It remains to bound this probability for each hash input (w, µ).

C.3 Good Hash Inputs are Rare

For each choice of w ∈W and LWE no-instance (A,T) we define the setH(w,A,T)
⊂ H as

H(w,A,T)
def
= {c ∈ H | ∃z ∈ S : [Az− Tc] = w} . (127)

Observe that a hash input (w, µ) is good for H(·),A,T if and only if H(w, µ) ∈
H(w,A,T). Thus,

Pr
H,(A,T)

[(w, µ) is good for H(·),A,T] = Ex
(A,T)

[
#H(w,A,T)

#H

]
(128)

We prove the following.

Proposition 9 (Good Hash Inputs are Rare). For all w ∈W it holds that

Ex
(A,T)

[
max
w∈W

{
#H(w,A,T)

#H

}]
≤ 1

2#H

(
1 +

#∆H#∆S#∆L
qm

)
. (129)

Proof. Define the set

D(A,T)
def
= {b ∈ ∆H : ∃y ∈ ∆S with Ay − Tb ∈ ∆L} . (130)
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In Lemma 6 below we prove

#H(w,A,T) ≤ #D(A,T) + 1

2
(131)

for all w ∈W. Thus, it suffices to bound the expectation

Ex
(A,T)

[
#D(A,T) + 1

2#H

]
=

1

2#H

(
1 + Ex

(A,T)
[#D(A,T)]

)
(132)

We have

Ex
(A,T)

[#D(A,T)] =
1

#(A,T)

∑
(A,T)

# {b ∈ ∆H : ∃y ∈ ∆S with Ay − Tb ∈ ∆L}

(133)

=
1

#(A,T)

∑
(A,T)

∑
b∈∆H

bool [∃y ∈ ∆S with Ay − Tb ∈ ∆L] (134)

≤ 1

#(A,T)

∑
(A,T)

∑
b∈∆H

∑
y∈∆S

bool [Ay − Tb ∈ ∆L] (135)

=
∑
b∈∆H

∑
y∈∆S

1

#(A,T)

∑
(A,T)

bool [Ay − Tb ∈ ∆L] (136)

=
∑
b∈∆H

∑
y∈∆S

Pr
(A,T)

[Ay − Tb ∈ ∆L] (137)

For each fixed choice of y ∈ ∆S, b ∈ ∆H, if A,T are uniformly random matrices
then Ay − Tb is a uniformly random vector from Zmq . Thus, the probability
Pr(A,T) [Ay − Tb ∈ ∆L] is simply the probability that a random vector lands in
∆L. That is,

Pr
(A,T)

[Ay − Tb ∈ ∆L] =
#∆L
qm

. (138)

Thus, the expectation becomes

Ex
(A,T)

[#D(A,T)] ≤
∑
b∈∆H

∑
y∈∆S

#∆L
qm

=
#∆H#∆S#∆L

qm
(139)

as desired.

Lemma 6. Let D(A,T) be as defined in (130). For all LWE no-instances (A,T)
and all w ∈W it holds that

#H(w,A,T) ≤ #D(A,T) + 1

2
. (140)

Proof. Let c, c′ ∈ H(w,A,T) as witnessed by z, z′ ∈ S, respectively. We claim
that c− c′ is in D(A,T). It is clear that c− c′ ∈ ∆H and z− z′ ∈ ∆S. It remains
to verify A(z− z′)− T(c− c′) ∈ ∆L. We have

A(z− z′)− T(c− c′) = Az− Tc− (Az′ − Tc′). (141)
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Since Az−Tc and Az′−Tc′ have the same high bits, it must be that A(z− z′)−
T(c− c′) is the difference of two vectors from [−(2d−1 − 1), 2d−1]m, from which
it follows that A(z − z′) − T(c − c′) ∈ ∆L. A similar argument proves that the
negation c′ − c ∈ D(A,T).

If c1, . . . , ck are distinct elements of H(w,A,T) then 0, c1−c2, . . . , c1−ck must
be distinct elements of D(A,T). Similarly, the negations c2 − c1, . . . , ck − c1 are
also distinct elements of D(A,T). To see that c1 − c2, . . . , c1 − ck are all distinct
from their negations, observe that

c1 − ci = −(c1 − cj) =⇒ 2c1 = ci + cj =⇒ ci = cj (142)

where the final implication follows from the fact that the entries of c1, ci, cj are
all in {−1, 0, 1}. We have thus listed 2k − 1 distinct elements of D(A,T), from
which the lemma follows.

C.4 Forgers Cannot Forge on LWE No-Instances

Proposition 9 provides a bound on the fraction δno of hash inputs that are good.
Moreover, since the goodness of a hash input (w, µ) depends solely on whether
H(w, µ) is in H(w,A,T), the set of all good hash inputs is a randomly selected
set. Thus, the only way to find a good hash input is via search through an
unstructured space.

It then follows from lower bounds for quantum search [19] that any algorithm
making no more than qh quantum queries to H(·) finds a good hash input—and
thus a valid TESLA forgery—with probability no larger than

2(qh + 1)
√
δno. (143)

We therefore obtain

Pr [S output “yes” | (A,T) no-instance of LWE] ≤ 2(qh + 1)
√
δno. (144)

D Security: Putting it all Together

Assuming that no algorithm with run time comparable to that of S can solve
LWE with success bias exceeding ε, we have:

ε ≥ Pr [S output “yes” | (A,T) yes-instance of LWE] (145)
− Pr [S output “yes” | (A,T) no-instance of LWE] . (146)

We know that

Pr [S output “yes” | (A,T) yes-instance of LWE] ≥ Pr [forge (A,T)]− δyes.
(147)

Against a quantum forger, we have that

Pr [S output “yes” | (A,T) no-instance of LWE] ≤ 2(qh + 1)
√
δno, (148)
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implying that

Pr [forge(A,T)] ≤ δyes + 2(qh + 1)
√
δno + ε. (149)

Against a classical forger, we can remove the quadratic speedup on the lower
bound query complexity, and the probability becomes

Pr [forge(A,T)] ≤ δyes + qh · δno + ε. (150)

We make some simplifying assumptions on the choice of TESLA parameters.
These assumptions are not necessary in order to derive a negligibly small upper
bound on the forger’s success probability—they merely facilitate a simplified
statement of the upper bound.

Definition 3 (Convenient TESLA Parameters). TESLA parameters are
convenient if the following bounds hold:

φ+

√
2λ(q + 1)

#Y
< 1/2 (151)

#∆H#∆Y#∆L < qm. (152)

All our proposed parameter sets for TESLA meet this condition.
We now incorporate our bounds on δyes and δno in order to derive an explicit

upper bound on the forger’s success probability.
By applying Lemma 3 withK = 2λ, as well as equation 151 in definition 3, we

can note that with probability 1−2−λ over the choice of (A,E), nwr(A,E) ≤ 1/2.
Incorporating this into equation 82, we see that

δyes ≤ qsγ + 4qs coll(A,E)

(
1 +

(qh + qs)
2

2γ2

)
. (153)

From lemma 4, we have a bound on coll(A,E) that holds with probability 1 −
1/Kcoll.

δyes ≤ qsγ + 4qs

(
2d+1

q

)m
Kcoll

(
1 +

(qh + qs)
2

2γ2

)
(154)

At this point, we note that our result on this bound holds for whatever γ we
may choose. As we want the first term to be exponentially small, we will select
γ = 1

2λqs
. Then, using the simplification that 1 + (qh+qs)

2

2γ2 ≈ (qh+qs)
2

2γ2 we get

δyes ≤
1

2λ
+

2m(d+1)+2λ+1

qm
(qh + qs)

2q3sKcoll. (155)

From proposition 9 we have

δno ≤
1

2#H

(
1 +

#∆H#∆S#∆L
qm

)
. (156)
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Using equation 152 of Definition 3 we can simplify this bound on δno to

δno ≤
1

#H
. (157)

Finally, we substitute this, and our bound for δyes into (149). We also note that
#H = 2h

(
n′

h

)
. We also must consider the probability with which our bounds do

not hold. Doing this, we get that Pr [forge(A,T)] is at most

ε+
1

2λ
+

2m(d+1)+2λ+1

qm
(qh+qs)

2q3sKcoll+2(qh+1)

√
1

2h
(
n′

h

)+
1

Knwr
+

1

Kcoll
(158)

Then by choosing each K value to be 2λ, we get that this is equal to

ε+
3

2λ
+

2m(d+1)+3λ+1

qm
(qh + qs)

2q3s + 2(qh + 1)

√
1

2h
(
n′

h

) . (159)

Classically, we can similarly derive that the adversary’s success is bounded by

ε+
3

2λ
+

2m(d+1)+3λ+1

qm
(qh + qs)

2q3s + qh
1

2h
(
n′

h

) (160)
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