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Abstract

Recently, several research groups in cryptography have presented new
elliptic curve model based on Edwards curves.

These new curves were selected for their good performance and security
perspectives.

Cryptosystems based on elliptic curves in embedded devices can be
vulnerable to Side-Channel Attacks (SCA), such as the Simple Power
Analysis (SPA) or the Differential Power Analysis (DPA).

In this paper, we analyze the existence of special points whose use in
SCA is known as Same Value Analysis (SVA), for Edwards curves. These
special points show up as internal collisions under power analysis. Our
results indicate that no Edwards curve is safe from such an attacks.

Keywords: Elliptic curve cryptography, Side-channel attack, Same value
analysis, Edwards curves, Smart cards.

1 Introduction

The demand on wireless technology (cell phones, smart cards, wireless sensor
networks etc.) has been increasing in the last years. Most of these devices
rely on embedded microprocessors to securely transmit data. Designing efficient
cryptographic algorithms is a fundamental problem in the development of secure
wireless devices.

Embedded devices present specific problems for implementation of cryp-
tosystems. On the one hand, they are computationally limited. On the other
hand, they are susceptible to attacks that do not concern conventional cryptog-
raphy.

Elliptic Curve Cryptography (ECC) is a class of public-key cryptosystems
proposed by Miller [30] and Koblitz [25], that addresses the first problem, by
providing significant advantages in several situations, since smaller keys can
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be used without decreasing the security level. For example, some industry
standards require 2048 bits for the size of integers 1 in the RSA system, whereas
the equivalent requirement for elliptic curve cryptography (ECC) is to work with
finite fields of 224 bits [20]

In this way, the computations are faster, therefore not so much computing
power is needed. Moreover, there is a great interest in the industry to improve
the efficiency for the scalar multiplication of points on the elliptic curve, since
it is one of the most time consuming operations in ECC protocols [18].

With regard to the second problem, ECC on Smart-Cards can be vulnerable
to Passive Side-Channel Attacks. This attack exploit physical leakages from
cryptographic process executing on a device, for example: timing [26], power
consumption [27] and electromagnetic radiation [19, 34].

There are two general strategies for these attacks: Simple Side-Channel
Analysis (SSCA) [26], which analyzes the measurements obtained during a sin-
gle scalar multiplication, based on the variations observed in the measurements
due to the bit value of the secret key; and Differential Side-channel Analy-
sis (DSCA) [27], which is based on statistical techniques to retrieve information
about the secret key based on measurements from several scalar multiplications.

In 2003 Goubin in [21] presented RPA. The basic idea of this attack is to used
special points P0 on the elliptic curve E(K) such that one of the coordinates
is 0 in K. An attacker could construct a point from the elliptic curve used in
the embedded devices, so that depending on the assumed value of a specific bit
of the key, she should obtain a special point during the scalar multiplication.
An operation which includes a special point is faster and less power consuming
than usual. Thus, the attacker can notice when a special point appears and,
after several executions, she could obtain the secret key.

Akishita and Takagi in [1] presented a generalization of Goubin’s attacks.
An attacker can obtain information not only with the special points, but also
when auxiliary registers take the value zero. These new attacks were called Zero
Value Point attacks (ZVP-attacks). Akishita and Takagi gave some conditions
that, under which, the curve can be attacked through ZVP-attacks.

Murdica et al. in [32] found another kind of attack in which the attacker can
force some points to have collisions, that is to say, they produce some identical
values (and identical side-channel traces) during the encryption. This way, she
can obtain information about the secret, and after some iterations, she can know
the whole secret value. This attack is called Same Value Analysis (SVA).

On the other hand, several groups have presented new elliptic curves for
model of Edwards that offer good performance and provide a stronger overall
security [3, 5, 8, 9, 22, 28]. Mart́ınez et al. presented an analysis of ZVP points
to the Edwards curves, in which they show that these curves are secure against
ZVP-attacks [29].

The aim of this paper is to study SVA points for Edwards models. Our
results show us that elliptic curves that recently submitted by community, have
points that enable SVA-type attacks.

This paper is organized as follows. Section 2 provides an introduction to
Edwards curves. Section 3 introduces the SVA points on Edwards and twisted
Edwards curves. In Section 4 we presents our experimental results on the exis-
tence of SVA points in the new curves Edwards.

1For the modulus (n).
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Finally, Section 5 concludes the paper.

2 Edwards Curves

Edwards, [17] introduced a new form for elliptic curve:

x2 + y2 = c2(1 + x2y2),

Every elliptic curve over a non-binary finite field can be birationally trans-
formed to an Edwards curve. Some elliptic curves require moving to an exten-
sion field for the transformation, but others have transformations defined on the
original finite field.

Bernstein and Lange [6] extended the result of Edwards to capture a larger
class of elliptic curves over the original field, and introduced their use for cryp-
tographic applications. Their model is

E : x2 + y2 = c2(1 + dx2y2),

where cd(1 − c4d) 6= 0. The only singular points for these curves is the point
at infinity. The neutral element of the curve is (0, c) and given a pair of points
(x1, y1), (x2, y2) ∈ E the addition law is:

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2
c(1− dx1x2y1y2)

)
When d is not a square, the Edwards addition law is complete: it is defined

for all pairs of input points on the Edwards curves. Moreover, this addition
law unified, it works for every pair of points, making no distinction between
addition, doubling, operations whit the neutral element and symmetries.

Given that inversions in the fields have a high computational cost, Bernstein
and Lange [6] also provided a (homogenized) projective coordinates model (X2+
Y 2)Z2 = c2(Z4+dX2Y 2). In which, the point (X1 : Y1 : Z1), Z1 6= 0 corresponds
to the affine point (X1/Z1, Y1/Z1). The neutral element is (0 : c : 1) and the
symmetric element of (X1 : Y1 : Z1) is (−X1 : Y1 : Z1)

2.1 Addition in projective coordinates

Given two points (X1 : Y1 : Z1) and (X2 : Y2 : Z2) an Edwards elliptic curve,
the addition (X3 : Y3 : Z3) = (X1 : Y1 : Z1) + (X2 : Y2 : Z2) is computed as:

A = Z1Z2, B = A2, C = X1X2, D = Y1Y2,

E = dCD, F = B − E, G = B + E,

X3 = AF ((X1 + Y1)(X2 + Y2)− C −D),

Y3 = AG(D − C),

Z3 = cFG.
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2.2 Doubling in projective coordinates

Given a point (X1 : Y1 : Z1) on the Edwards curve, the doubling (X3 : Y3 :
Z3) = 2(X1 : Y1 : Z1), is computed as:

B = (X1 + Y1)2, C = X2
1 , D = Y 2

1 ,

E = C +D, H = (cZ1)2, J = E − 2H,

X3 = c(B − E)J,

Y3 = cE(C −D),

Z3 = EJ.

3 Special Points on Elliptic Curves and Coun-
termeasures

Implementations of ECC may be vulnerable to physical attacks unless spe-
cial countermeasures are implemented. These attacks are called Side-Channel
Attacks (SCA)[23].

There are several methods to obtain the secret, depending on how many
executions are carried out and what kind of information is used. There are three
main types of attacks: power, time and electromagnetic attacks (EMA). All
attacks can also be divided into Simple Power Analysis (SPA) and Differential
Power Analysis (DPA).

SPA looks for patterns of computation behavior from the information ob-
tained from a single execution. With this information, the attacker tries to
guess which operations are being carried out by the embedded devices at every
moment, and from this guess the secret used in the cryptosystem. DPA obtains
information after several executions. It computes statistical analysis from the
information obtained and looks for the most probable key.

In order to obtain the key using timing attacks, the secret must be related
to the time needed to process different inputs. In other words, to find variations
in the obtained measurements in a given moment in order to obtain the bit that
is processed in that moment. If we can obtain the bit at specific steps of the
scalar multiplication, after many executions we can obtain the whole secret.

EMA attacks are possible because embedded devices are made of silicon
semi-conductors. When the embedded devices is accessed, there is a flow of
electrons in the medium, which generates electromagnetic waves. These waves
can be captured by an attacker, obtaining information about the operations
carried out and giving a chance to guess the secret.

3.1 Refined Power-Analysis (RPA) Attacks

Under some conditions, an attacker can construct points such that after a spe-
cific (chosen) sequence of doubling and addition computations, she obtains a
point with abscissa or ordinate equal to zero. In this way, after some execu-
tions, she could obtain the secret, k in [k]P . Goubin [21] called these points,
“special points” and established the conditions to decide if such points exist in a
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given elliptic curve. The conditions that must avoid an elliptic curve in Weier-
strass form should avoid in order that it does not contain any special points
are:

� b is a quadratic residue in Fp . This way, the curve will have (0, y) points.

� the elliptic curve has points of order 2, which are (x, 0) points.

Smart [37] proposed the use of isogenies in order to avoid RPA, since the
fact that a given elliptic curve fulfills the Goubin’s conditions does not mean
that its isogenous curves have the same problem.

3.2 Zero-Value Point (ZVP) Attacks

An attacker can also obtain information about the secret if there exists some
intermediate parameters, used in the addition or doubling computations, with
zero-value. This attack is called Zero-Value Point attack (ZVP-attack).

When an embedded devices is computing, an attacker can know if there is
a zero-value involved since the power consumption is lower than usual.

Akishita and Takagi [1, 2] gave conditions for elliptic curves to be vulnerable
to this kind of attacks:

� ED1. 3x2 + a = 0,

� ED2. 5x4 + 2ax2 − 4bx+ a2 = 0,

� ED3. order(P ) = 3,

� ED4. x(P ) = 0 or x(2P ) = 0, then b is a quadratic residue,

� ED5. y(P ) = 0 or y(2P ) = 0.

Conditions ED4 and ED5 are those proposed by Goubin.

3.3 Same Value Analysis (SVA) Attacks

Murdica et al. [32] found another kind of attack in which the attacker can force
some points to have collisions, that is to say, they produce some identical values
during the encryption. By identifying these values, she can obtain information
about the secret, and after some iterations she can know the whole secret value.
This attack is called Same Value Analysis (SVA). Murdica, notes that certain
special points, internal collisions occur in the operation of doubling Jacobian
coordinates, for example, SED conditions come from the doubling of a point
P = (x, y):

� SED2. x = 0,

� SED3. x = 1,

� SED15. 2y = 3x2 + a.
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3.4 Recursive attack using special points

Suppose that the attacker already knows the l − i − 1 left-most bits of the
fixed scalar k = (kl−1, kl−2, . . . , ki+1, ki, ki−1, . . . , k0)2 and wants to recover the
unknown bit ki.

The attacker chooses a point P0 satisfying one of the above conditions (SED2
for example), computes the point

P = [(kl−1, kl−2, . . . , ki+1, ki, ki−1, . . . , k0)−12 mod #E]P0

and sends this P to the targeted chip that computes the ECSM using the fixed
scalar k. If ki = 0, the point P0 will be doubled during the ECSM, and a collision
of power consumption will appear during the ECSM. The attacker recovers
several traces of the power consumption during the computation of [k]P. Using
the methodology presented in [35] and [13] to detect internal collision. He can
conclude if ki = 0 or not (ki = 1) The attacker can recursively recover all bits
of k.

3.5 Countermeasures

In this section we present the main countermeasures for RPA, ZVP, and SVA.
There are three major families, a) Isogeny, b) Randomizing scalar k and c)
Randomizing point P.

3.5.1 Isogeny Countermeasure

In order to resist RPA for point of large order, Smart [37] proposed to map
the underlying curve to the isogenous curve that does not have the point (0, y).
To apply the isogeny defense it would be better to alter the standards so that
the curves are replaced with isogenous ones. However, since this is unlikely to
be an option the smart card needs to convert the input point to the isogenous
curve. This countermeasure with a small isogeny degree is faster. However, but
it is much slower to implement on a smart card, in [4]. The use of isogenies
is more efficient as the same algorithms can be used for point arithmetic with
the addition of two transformations. Moreover, these transformations can be
defined when a cryptosystem is implemented to minimize the impact on the
time taken to compute a scalar multiplication.

Volcanoes Isogeny [31]: Miret et al.[31], presented improvements the com-
puting and time to find the suitable isogeny degrees of several SECG standard
curves [36]. Miret et al. uses the Isogeny-Volcano. Moreover, evaluated the
probability of a curve failing for this condition (ED4: x(P ) = 0 or x(2P ) = 0,
i.e. b is a quadratic residue) is 1/2.

In Table 1 we present the result obtained by Smart in [37] and Mired et al.
in [31]. In the second and fourth column present the minimal and preferred
isogeny degree with respect to condition ED4, given by Smart in [37], while the
third and the fifth columns contain the degrees of the isogeny-route given by
the algorithm presented by Miret in [31]. More precisely, the minimal `std and
preferred isogeny degree `prf can be defined:

`std : The minimal Isogeny degree for condition ED4.
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`prf : The minimal Isogeny degree for condition ED4 and condition a = −3.

Table 1: Minimal isogeny degrees with respect to ED4 for SECG curves
ED4 `std [37] `std − route [31] `prf[37] `prf-route [31]

P-192 23 5-13 73 5-13-23
P-224 1 1 1 1
P-256 3 3 11 3-5
P-384 19 19 19 19
P-521 5 5 5 5

The integer `std − route and `prf − route correspond to the minimal and
preferred isogeny degree obtained by Miret et al. in [31]. For example, the curve
P-192 from NIST the preferred isogeny degree is `prf = 73 while `prf − route =
5−13−23, which means the composition of three isogenies of degrees 5, 13 and
23.

In Table 2 provides the computing and searching time to find the suitable
isogeny degrees, as can be seen the volcano-isogeny obtain better calculation
and search times, specially when searching for a preferred curve.

Table 2: Time for computing minimal isogeny degrees with respect to ED4
T. Comp./T.Cerca. Methods anterior (seg.) Isogeny-route (seg.)

P-192 (lstd) 44.30/51.24 6.01/ 6.99
P-192 (lprf ) 3474.7/4788.15 50.31/59.22
P-256 (lprf ) 5.93/6.43 0.035/0.043

To protect against RPA and ZPA attacks, the base point P or the secret
scalar k should be randomized.

3.5.2 Countermeasures Randomization of the Scalar k

Scalar Randomization [15]: Select a random number d and compute the
scalar multiplication Q = [k′]P = [k + d(#E)]P = [k]P + [d(#E)]P = [k]P ,
since [d(#E)]P = P∞. Since, the d of size 20-bits. We have considered the
average of percentage of performance loss of curves P−192,

Table 3: Theoretical loss Cost

n bits of d

NIST curves 20-bits 32-bits 40-bits

P−192 10.4% 16.6% 20.8%

Exponent Splitting [14]: For any random number r is a n−bit random
integer, that is, of the same bit length as k, and computing [k]P = [k−r]P+[r]P.
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Generate a random number r is expensive, this countermeasure requires at least
twice the processing both [k − r]P and [r]P need to be computed2.

Trichina-Bellezza Countermeasure [40]: Trichina et al. was proposed
the following countermeasure. For any random number r, evaluate [k]P =
[kr−1]([r]P ). A disadvantage of this countermeasure is required to compute the
inverse of r module ordE(P ). Besides, two scalar multiplication are needed, first
R = [r]P is computed, then [kr−1]R is computed.

Euclidean Division [12]: That is, k is written as [k]P = [k mod r]P +
[bk/rc]([r]P )

Letting S := [r]P, k1 := k mod r and k2 := bk/rc we can obtain Q =
[k]P = [k1]P + [k2]S where the bit length of r is n/2. Ciet, presented an regular
algorithm variant of Shamir’s double ladder.

Self-Randomized Exponentiation Algorithms [11]: Let k = (kl, . . . , k0)2 =∑l
i=0 ki2

i with ki ∈ {0, 1} denote the binary representation of exponent k.
Defining

kd→j := (kd, . . . , kj)2 =
∑
j≤i≤d

ki2
i−j ,

The main idea behind self-randomized exponentiation consists in taking part
of k as a source of randomness. The algorithm relies on the simple observation
that, for any 0 ≤ ij ≤ l, we have.

[k]P = [kl→0]P

= [kl→0 − kl→i1 ]P + [kl→i1 ]P

= [(kl→0 − kl→i1)− kl→i2 ]P + [kl→i1 ]P + [kl→i2 ]P

=
...

...
...

= [(((kl→0 − kl→i1)− kl→i2)− kl→i3) · · · − kif ]P + [kl→i1 ]P

+ [kl→i2 ]P + [kl→i3 ]P + · · ·+ [kl→if ]P .

3.5.3 Set of Countermeasures Randomization Point P

Blinding Point [15]: A fixed (secret) point R is selected and S = [k]R is
precomputed. Given P, the computation of [k]P is replaced by that of [k](P+R)
and the known value S = [k]R is subtracted at the end of the computation.

3.5.4 Countermeasures do not support special points attacks:

Randomized algorithm 2P ∗ [12]: Ciet and Joye in [12], proposed the 2∗

Algorithm, this randomization method is applicable to left-to-right scalar multi-
plication algorithm. The idea is randomize [2]P using the method of randomized
projective coordinates. This allows to keep using P in affine coordinate (which

2Ebeid in [16], studied implementations of this countermeasure using the algorithm of
Shamir-Strauss method [39], and finds a vulnerability which can be attacked by a DPA
(Lemma 6.1), its study recommends, for this countermeasure each term of [k − r]P and [r]P
should be computed separately using a SPA-resistant algorithm.
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equivalent to saying that its Z-coordinate of P is equal to 1) and the scalar
multiplication is computed in mixed coordinates is used (which is more effi-
cient, then using only projective coordinates). Moreover, the algorithm allows
using an elliptic curve with parameter a = −3.

Randomized field K Isomorphism [24]: The idea of this countermeasure
is to use a representation of random fields definition of elliptic curve, i.e. use a
Randomized field φ : K → K′ then this isomorphism is used to obtain a point
P ′ = φ(P ) of the curve E′ = φ(E), so the scalar multiplication is calculated as

[k]P = φ−1([k](φ(P )))

This countermeasure has the major disadvantage that special fields used in
most standards for example NIST and SEGC use irreducible polynomials for
which the reduction is much more efficient (for example, in characteristic two
using trinomials or pentanomials in which most of the terms have very low
degree), this property is usually lost after the field isomorphism is applied, so
the operations over the isomorphic fields can be much slower (see [4]).

Randomized E(K) Isomorphism [24] The idea of this countermeasure is
to transfer the base point P1 = (x, y) ∈ E1(K) randomly selected isomorphic
curve φ : E1(K) → E2(K) (the parameters of the curve E2(K) are a′ = r4a
and b′ = r6b), the transferred point is φ(P1) = (r2x, r3y) = P2 and the scalar
multiplication is execute as ([k]P2 = [k]φ(P1)) on the curve E2(K) and the result
Q2 = (xk, yk) is brought back to the original curve E1(K), by computing Q1 =
[k]P = (xk/r

2, yk/r
3) = φ−1([k](φ(P ))). The randomization takes 4M + 2S

at the beginning and 1I + 3M + 1S at the end. However, when using random
curve isomorphisms the parameters of E2(K) cannot be chosen and one cannot
take advantage of algorithms that require curve parameters to be set to specific
values, the curve parameter a is randomized. In particular, fast doubling formula
for a = −3 cannot be used.

Generalization: Tunstall and Joye, [41]: Define

φ(P ) = P ′ = (X ′, Y ′, Z ′) = (fµX, fνY,Z)

for an arbitrary f ∈ Fp − {0} and some small integer µ and ν. The in-
verse of φ can be computed without inverting f since P = φ−1(P ′) =
(fνX ′, fµY ′, fµ+νZ). The case µ = 2, ν = 3 correspond to the technique
of randomized E(K) isomorphism of Joye and Tymen [24].

Randomized Projective Coordinates [15]: Randomizing the homogeneous
projective coordinates of point P = (X,Y, Z) with λ 6= 0 to P = (λX, λY, λZ).
The random variable λ can be updated in every execution or after each dou-
bling or addition. When we compute the scalar multiplication using Jacobian
coordinates, the point Q is represented as Q = (X,Y, Z). The point Q must be
recovered to affine coordinate by computing x = X/Z2 and y = Y/Z3 and so we
avoid the attack presented in [33]. Moreover, when using Jacobian coordinates
it is suggested to selected curve parameters a as a = −3. Using randomized
projective coordinates is much more efficient but does not allow λ to be set to
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one [38], i.e. scalar multiplication we cannot use mixed coordinates (Jacobian
or affine). This countermeasure is effective against Template Attacks [10].

In the following table we present a summary of countermeasures to DPA,
each with its overhead cost and whether it is effective (X) or fails (×) against
the three types of attacks considered: RPA, ZVP and SVA.

Table 4: Summary Countermeasure

Countermeasure Computation RPA ZVP SVA
Overhead3

Isogeny Defense [37] Negligible X X X
Scalar Randomization [15] Low4 X X X
Exp. Splitting [14] High5 X X X
Trichina-Bellezza [40] High6 X X X
Euclidean Division [12] Medium7 X X X
Self-Randomized Expo. [11] Negligible8 X X X
Blinding the Point [15] High9 X X X
Randomized Projective [15] Negligible10 × × ×
Method 2P ∗ [12] Negligible × × ×
Random Field K Isomorphism [24] Medium11 × × ×
Random E(K) Isomorphism [24] Low12 × × X

In the next session, we present the conditions for the existence of SVA points
in the Edwards model, these conditions come from the algorithms for point
addition and doubling.

3.6 SVA on Edwards Curves

Given the points P1 = (λ1x1, λ1y1, λ1) and P2 = (λ2x2, λ2y2, λ2), in projective
coordinates on the Edwards curves E, we now show that the degrees in λ1 and
λ2 of the terms computed during the doubling of P1 or computed during the
addition of P1 and P2 can be used to mount a SVA attacks.

Algorithm 3.6.1 and 3.6.2 give the addition and doubling formulas for Ed-
wards curves in projective coordinates. Pairs of terms with matching degrees
in λ1 and λ2 are those around which SVA points can be constructed since the
occurrence of a collision between such terms does not depend on the value of λ1
and λ2.

3High: ≈ 100%, Medium: (30 − 70)%, Low: (10 − 25)%, Negligible: < 0.5%
4On average performance loss is 15.9% for the curve P−192.
5To avoid opening the way to new attacks, [k−r]P and [r]P must be computed separately,

doubling the cost of the scalar multiplication (Ebied in[16]).
6Two scalar multiplication are needed.
7Using a regular algorithm variant of Shamir’s double ladder, the algorithm presented by

Ciet in [12] cost is n
2
D + n

2
A.

8Performance loss is 10A for a curve to P−192, for details see Alg II in [11].
9This countermeasure is considered inefficient, since it must perform two scalar multipli-

cations S = [k]p and [k](P + R).
10This countermeasure has a very low cost since only a few multiplications are required:

3M for the homogeneous representation and 4M + 1S for the Jacobian representation.
11Mersenne or ”sparse” primes cannot be used.
12a = −3 cannot be used.
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Informations on the right show the degrees of the parameters λ1, λ2 of each
operand and the result. In the doubling Algorithm, we denote by n an operand
with a term λ of degree n. In the addition Algorithm, we denote l1m2 an
operand with a term λ1 of degree l, and a term λ2 of degree m.

3.6.1 Addition

Considering the formulas given in the previous section, we look for conditions
so that the points involved in the addition formula can be used to mount an
SVA.

Algorithm 1 Addition on Edwards Curves

Inputs: P = (λ1x1, λ1y1, λ1) y Q = (λ2x2, λ2y2, λ2)
1: A = Z1 · Z2 = λ1λ2 (1112 ← 11 · 12)
2: B = A2 = λ21λ

2
2 (2122 ← 1112 · 1112)

3: C = X1 ·X2 = λ1λ2x1x2 (1112 ← 11 · 12)
4: D = Y1 · Y2 = λ1λ2y1y2 (1112 ← 11 · 12)
5: E = dC ·D = λ21λ

2
2(dx1x2y1y2) (2122 ← 1112 · 1112)

6: F = B − E = λ21λ
2
2(1− dx1x2y1y2) (2122 ← 2122 − 2122)

7: G = B + E = λ21λ
2
2(1 + dx1x2y1y2) (2122 ← 2122 + 2122)

8: H = (X1 + Y1) · (X2 + Y2)− (C +D)
= λ1λ2[(x1 + y1)(x2 + y2)− (x1x2 + y1y2)] (1112 ← 1112 − 1112)

9: I = A · F = λ31λ
3
2(1− dx1x2y1y2) (3132 ← 1112 · 2122)

10: X3 = I ·H = λ41λ
4
2(1− dx1x2y1y2)·

[(x1 + y1)(x2 + y2)− (x1x2 + y1y2)] (4142 ← 3132 · 1112)
11: J = D − C = λ1λ2(y1y2 − x1x2) (1112 ← 1112 − 1112)
12: K = A ·G = λ31λ

3
2(1 + dx1x2y1y2) (3132 ← 1112 · 2122)

13: Y3 = K · J = λ41λ
4
2(1 + dx1x2y1y2)(y1y2 − x1x2) (4142 ← 3132 · 1112)

14: Z3 = cF ·G = λ41λ
4
2c[1− (dx1x2y1y2)2] (4142 ← 2122 · 2122)

In summary we have

Degree of λ1λ2 Terms

1112 : {A,C,D,H, J}
2222 : {B,E, F,G}
3132 : {I, J}
4142 : {X3, Y3, Z3}

Where internal collisions occur in the following cases:
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x1x2 = 1 ⇒ A = C, x1y2 + y1x2 = 1 ⇒ A = H,

y1y2 = 1 ⇒ A = D, x1x2 = 0 ⇒ D = J,

2x1x2 = y1y2 ⇒ C = J, (x1 + y1)(x2 + y2) = 2y1y2 ⇒ H = J,

1 = y1y2 − x1x2 ⇒ A = J, dx1x2y1y2 = 1 ⇒ B = E,

x1x2 = y1y2 ⇒ C = D, 2dx1x2y1y2 = 0 ⇒ I = K,

x1x2 = x1y2 + y1x2 ⇒ C = H, 2dx1x2y1y2 = 1 ⇒ E = F,

y1y2 = x1y2 + y1x2 ⇒ D = H, x1x2y1y2 = 0 ⇒ B = F = G,

dx1x2y1y2 = 1 ∧ x1y2 + y1x2 + 1 + dx1x2y1y2 = 0 ⇒ X3 = Z3,

dx1x2y1y2 = −1 ∧ y1y2 − x1x2 − c(1− dx1x2y1y2) = 0 ⇒ Y3 = Z.3

3.6.2 Doubling

Similarly, the expressions used also provide for doubling point (X3 : Y3 : Z3) =
2(X1 : Y1 : Z1), which are:

Algorithm 2 Doubling on Edwards curves

Inputs: P = (X1, Y1, Z1) = (λx1, λy1, λ)
1: B = (X1 + Y1)2 = λ2(x1 + y1)2 (2← 1)
2: C = X2

1 = λ2x21 (2← 1)
3: D = Y 2

1 = λ2y21 (2← 1)
4: E = C +D = λ2(x21 + y21) (2← 2 + 2)
5: H = c(Z2

1 ) = cλ2 (2← 1)
6: J = E − 2H = λ2[(x21 + y21)− 2c] (2← 2− 2)
7: K = B − E = λ2[(x1 + y1)2 − (x21 + y21)] (2← 2− 2)
8: L = C −D = λ2(x21 − y21) (2← 2− 2)
9: X3 = cK · J = cλ4[(x21 + y1)2 − (x21 + y21)][(x21 + y21)− 2c] (4← 2 · 2)

10: Y3 = cE · L = cλ4(x41 − y41) (4← 2 · 2)
11: Z3 = E · J = λ4[(x21 + y21)− 2c][(x21 + y21)− 2c] (4← 2 · 2)

In summary we have:

Degree of λ Terms

2 {B,C,D,E,H, J,K,L}
4 {X3, Y3, Z3}
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Conditions where SVA points are presented, for doubling are:

y1 = 0 ⇒ B = C,B = E, y21 = c ⇒ D = H,

2x1 + y1 = 0 ⇒ B = C, x21 = 2c2 ⇒ D = J,

x1 = 0 ⇒ B = D,B = E,D = E, x21 + y21 = c2 ⇒ E = H,

x1 + 2y1 = 0 ⇒ B = D, 2c2 = 0 ⇒ E = J,

(x1 + y1)2 = c2 ⇒ B = H, x21 + y21 = 3c2 ⇒ H = J,

x1y1 + c2 = 0 ⇒ B = J, x21 = c2 ⇒ C = H,

x21 = y21 ⇒ C = D ⇒ L = Y3, x21 + y21 = 0 ⇒ Y3 = Z3,

y21 = 2c2 ⇒ C = J, y21 + c2 = 0 ⇒ Y3 = Z3

x1 = 0 ∧ y1 = 0 ⇒ K = X3 = 0.

c(2x1y1(x21 + y21 − 2c2)− (x41 − y41)) = 0 ⇒ X3 = Y3,

(x21 + y21 − 2c2)(2x1y1 − x21 − y21) = 0 ⇒ X3 = Z3,

3.6.3 Twisted Edwards Curve

Bernstein et al. in [7] introduced a generalization of Edwards curves.
Let Fq be a non binary field. Then, the twisted Edwards curve with coeffi-

cients a, d ∈ Fq satisfying ad(a− d) 6= 0, is a curve of the form

EE,a,d : ax2 + y2 = 1 + dx2y2

If a = 1, the previous curve is an Edwards curve, so twisted Edwards curves
correspond to a larger set of elliptic curves.

Explicit formula for addition and doubling on twisted Edwards curves are
shown in [7]. To avoid inversions, twisted Edwards curves work with projective
coordinates where we consider the projective curve

(aX2 + Y 2)Z2 = Z4 + dX2Y 2,

and (X1 : Y1 : Z1) with Z1 6= 0 represents the affine point (X1

Z1
, Y1

Z1
).

Addition Give a pair of points (X1 : Y1 : Z1) and (X2 : Y2 : Z2), their sum
(X3 : Y3 : Z3) can be computed as

A = Z1 · Z2, B = A2, C = X1 ·X2, D = Y1 · Y2,

E = dC ·D, F = B − E, G = B + E,

X3 = A · F · ((X1 + Y1) · (X2 + Y2)− C −D),

Y3 = A ·G · (D − aC),

Z3 = F ·G .

In summary we have:
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Algorithm 3 Addition on twisted Edwards Curves

Inputs: P = (λ1x1, λ1y1, λ1) y Q = (λ2x2, λ2y2, λ2)
1: A = Z1 · Z2 = λ1 · λ2 (1112 ← 11 · 12)
2: B = A2 = λ21 · λ22 (2122 ← 11 · 12)
3: C = X1 ·X2 = λ1λ2x1x2 (1112 ← 11 · 12)
4: D = Y1 · Y2 = λ1λ2y1y2 (1112 ← 11 · 12)
5: E = dC ·D = λ21λ

2
2dx1x2y1y2 (2122 ← 11 · 12)

6: F = B − E = λ21λ
2
2[1− dx1x2y1y2] (2122 ← 21 − 22)

7: G = B + E = λ21λ
2
2[1 + dx1x2y1y2] (2122 ← 21 + 22)

8: H = A · F = λ31λ
3
2[1− dx1x2y1y2] (3132 ← 1112 · 2122)

9: I = (X1 + Y1) · (X2 + Y2)− C −D
= λ1λ2[(x1 + y1)(x2 + y2)− x1x2 − y1y2] (1112 ← 1112)

10: J = A ·G = λ31λ
3
2(1 + dx1x2y1y2) (3132 ← 1112 · 2122)

11: K = D − aC = λ1λ2(y1y2 − ax1x2) (1112 ← 1112 − 1112)
12: X3 = H · I (4142 ← 3132 · 1112)
13: Y3 = J ·K = λ41λ

4
2[1 + dx1x2y1y2][y1y2 − ax1x2] (4142 ← 3132 · 1112)

14: Z3 = F ·G = λ41λ
4
2[1− (dx1x2y1)2] (4142 ← 2122 · 2122)

Degree of λ1λ2 Terms

1112 {A,C,D, I,K}
2122 {B,E, F,G}
3132 {H,J}
4142 {X3, Y3, Z3}

Where internal collisions occur in the following cases:

x1x2 = 1 ⇒ A = C, dx1x2y1y2 = 1 ⇒ B = E,

x1x2 = y1y2 ⇒ C = D, 2dx1x2y1y2 = 1 ⇒ E = F,

y1y2 − ax1x2 = 1 ⇒ A = K, −ax1x2 = 0 ⇒ D = K,

x1x2(1 + a) = y1y2 ⇒ C = K, x1y2 + y1x2 = 1 ⇒ A = I,

x1x2y1y2 = 0 ⇒ B = F = G, J = H, x1y2 + y1x2 = y1y2 ⇒ D = I,

x1y2 + y1x2 = y1y2 − ax1x2 ⇒ I = K, x1y2 + y1x2 = x1x2 ⇒ C = I,

y1y2 = 1 ⇒ A = D,Y3 = Z3.

Doubling Given a point (X1 : Y1 : Z1), its doubling points is (X3 : Y3 : Z3)
where

B = (X1 + Y1)2, C = X2
1 , D = Y 2

1 , E = aC,

F = E +D, H = Z2
1 J = F − 2H,

X3 = (B − C −D) · J,

Y3 = F · (E −D),

Z3 = F · J .
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Algorithm 4 Doubling on twisted Edwards curves

Inputs: P = (X1, Y1, Z1) = (λx1, λy1, λ)
1: B = (X1 + Y1)2 = λ2(x1 + y1)2 (2← 1)
2: C = X2

1 = λ2x21 (2← 1)
3: D = Y 2

1 = λ2y21 (2← 1)
4: E = aC = aλ2x21 (2← 2)
5: F = E +D = λ2(y21 + ax21) (2← 2 + 2)
6: H = Z2

1 = λ2 (2← 1)
7: 2H = 2λ2 (2← 2)
8: J = F − 2H = λ2(y21 + ax21 − 2) (2← 2− 2)
9: K = E −D = λ2(ax21 − y21) (2← 2− 2)

10: X3 = (B − C −D) · J = λ4(2x1y1)(y21 + ax21 − 2) (4← (2− 2− 2) · 2)
11: Y3 = F ·K = λ4(a2x41 − y41) (4← 2 · 2)
12: Z3 = F · J = λ4(y21 + ax21)(y21 + ax21 − 2) (4← 2 · 2)

In summary we have:

Degree of λ Terms

2 {B,C,D,E, F,H, 2H,J,K}
4 {X3, Y3, Z3}

The internal collisions occur for the following cases:

y1 = 0 ⇒ B = C,E = F, x1 = ±1 ⇒ C = H

2x1 + y1 = 0 ⇒ B = C, x21 − y21 = ax21 − 2 ⇒ C = J

x1 = 0 ⇒ B = D,B = F, y21 = ax21 ⇒ D = E

x1 + 2y1 = 0 ⇒ B = D, ax21 = 0 ⇒ D = F

(x1 + y1)2 = ax21 ⇒ B = E, y21 = 1 ⇒ D = H

x1 + 2y1 − ax1 = 0 ⇒ B = F, ax21 − 2 = 0 ⇒ D = J

x1 + y1 = 1 ⇒ B = H, a = 1 ∧ x1 = ±1 ⇒ E = H

x1 + y1 = −1 ⇒ B = H, y21 − 2 = 0 ⇒ E = J

x1 = ±y1 ⇒ C = D y21 + ax21 = 1 ⇒ F = H

a = 1 ⇒ C = D, y21 + ax21 = 3 ⇒ H = J

x21 = y21 ⇒ C = D, 2x1y1 = y21 + ax21 ⇒ X3 = Z3

x21 = ax21 ⇒ C = E, y1 = ±1 ⇒ Y3 = Z3

y21 + ax21 = x21 ⇒ C = F,

x1(x1 + 2y1 − ax1) = 2⇒ B = J,

(ax21)2 − (y21)2 = 2x1y1(y21 + ax21 − 2)⇒ X3 = Y3
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4 SVA on New Edwards Curves

Recently, several research groups have proposed specific curves in Edwards
or Twisted Edwards form for use cryptographic application (and possibly future
standards) [3, 5, 8, 9, 22]. Our analysis indicates that all these curves have points
of SVA type.

In the following table we present the SVA points found

Table 5: SVA Points for Doubling in Edwards curve, birationally equivalent to
the Montgomery Curves

E: y2 = x3 + Ax2 + x over Fp

Curve y = 2x (x + y)2 = 1 y2 = 2 xy = 1 x2 = y2

M-159 X X ø X X
M-191 X X ø X X
M-221 ø X ø ø X

Curve255519 X X ø ø X
M-383 ø ø13 ø X X
M-511 ø ø14 ø ø X

Table 6: SVA Points for Doubling on Edwards Curves

E : x2 + y2 = 1 + dx2y2 over Fp

Curve y = 2x (x + y)2 = 1 y2 = 2 xy = 1 x2 = y2

E-157 ø X ø X ø

E-168 X ø X ø ø

E-191 ø X ø ø ø

E-222 ø X ø ø ø

Curve1174 ø X ø X ø

E-382 X ø X X ø

Curve41417 X ø ø ø X
E-448-Goldilocks X ø ø ø ø

E-521 ø ø ø X ø

5 Conclusion

In this paper we analyzed the existence of SVA points in Edwards model of
elliptic curves. Our analysis indicates that all curves that have been proposed
for cryptographic application are vulnerable to these attacks.

13Point of order two.
14Point of order two.
15For details see [29].
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Table 7: SVA Points for Doubling in Twisted Edwards Curves

Ed : −x2 + y2 = 1 + dx2y2 over Fp
Curves Fp ZVA15 SVA

x = y, x = −y x = −y/2 x = −2y x = 1 (x+ y)2 = 1
ed-256-mont ø ø ø ø X
ed-254-mont ø ø ø ø X
ed-256-mers ø ø ø ø X
ed-255-mers ø X ø ø ø
ed-384-mont ø ø X X ø
ed-382-mont ø ø ø X X
ed-384-mers ø ø ø ø X
ed-383-mers ø ø ø X X
ed-512-mont ø ø ø X X
ed-510-mont ø X ø ø X
ed-512-mers ø ø X X X
ed-511-mers ø ø ø X ø
ed-521-mers ø ø X ø X

Ted37919 ø ø ø X ø
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