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Abstract

Differential privacy is a widely used privacy model today, whose pri-
vacy guarantees are obtained to the price of a random perturbation of the
result. In some situations, basic differentially private mechanisms may
add too much noise to reach a reasonable level of privacy. To answer
this shortcoming, several works have provided more technically involved
mechanisms, using a new paradigm of differentially private mechanisms
called instance-based noise mechanisms.
In this paper, we exhibit for the first time theoretical conditions for an
instance-based noise mechanism to be (ε, δ)-differentially private. We ex-
ploit the simplicity of these conditions to design a novel instance-based
noise differentially private mechanism. Conducting experimental eval-
uations, we show that our mechanism compares favorably to existing
instance-based noise mechanisms, either regarding time complexity or ac-
curacy of the sanitized result. By contrast with some prior works, our
algorithms do not involve the computation of all local sensitivities, a com-
putational task which was proved to be NP hard in some cases, namely
for statistic queries on graphs.
Our framework is as general as possible and can be used to answer any
query, which is in contrast with recent designs of instance-based noise
mechanisms where only graph statistics queries are considered.

1 Introduction
1.1 Context and related work
One big concern in data publishing is the privacy of the individuals involved
in these data. As the opportunities and the means to release useful informa-
tion from individual data (a.k.a. personal data) grow wider, the leakage of
information threatens more and more these individuals. That is the reason
why researchers have proposed several rigorous notions of privacy in the last
few years and, among them, one of the most promising is differential privacy.
This notion, more precisely referred as ε-differential privacy, was introduced by
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Dwork, McSherry, Nissim and Smith in [7]. It provides strong guarantees that
a mechanism A is privacy-preserving at a security level depending on ε, but
not depending on arbitrary side information owned by an adversary. Informally
speaking, a differentially private mechanism ensures that any of its outputs is
essentially likely to occur, independently of the presence or absence of a single
individual in the database.
Consider a dataset x and a query f on this dataset. A common way to de-
sign an ε-differentially private randomized mechanism A is to add noise to the
query output f(x) as: A(x) = f(x) + Z, where Z is some well-chosen random
variable (independent of x). It may happen that some situations require noise
which cannot provide ε-differential privacy, but satisfy some weaker notions of
privacy. The most known and widely used weakened notion was introduced
in [6] and is called (ε, δ)-differential privacy, where δ is an additional privacy
parameter. An important family of (ε, δ)-differentially private mechanisms is
given by instance-based noise mechanisms [16] which take the following form:
A(x) = f(x)+Zx for some random variable Zx depending on the queried dataset
x. In [16], the differentially private mechanism is calibrated to a new kind of
sensitivity called Smooth Sensitivity, while previous algorithms were always de-
signed with respect to global sensitivity (see Section 2 for formal definitions).
This careful look at sensitivity results in better accuracy of differentially pri-
vate algorithms, while almost keeping the same level of privacy. Such schemes
are now widely used, in particular to release differentially private (statistics of)
graphs (see [2], [4], [10], [11], [15], [17], [18]).
The main drawback of Smooth Sensitivty algorithms is time complexity: in
particular, the authors of [11] show that the computation Smooth Sensitivity
for countings of k-triangles in graphs is a NP-hard task (when edge-privacy is
considered). As an alternative, they designed an instance-based noise mecha-
nism for such queries, that was differentially private and did not rely on the
computation of Smooth Sensitivity. Since then, a few new frameworks were in-
troduced to replace Smooth Sensitivity technique in the context of private sub-
graph countings: recursive mechanism from [4], analysis on structured graphs
from [2], ladder functions framework in [18].
Our main contribution in the current paper is a new design of instance-based
noise differentially private algorithms. As a first step, we exhibit simple con-
ditions for an instance-based noise mechanism to be (ε, δ)-differentially private.
Then we take advantage of these conditions to design a novel instance-based
noise mechanism. Our new design is in a similar spirit as Smooth Sensitivity
mechanism, but with a sharp difference: our mechanism requires only the com-
putation of the largest local sensitivities, and not the computation of all local
sensitivities.
We also provide an algorithm for practical implementations, and we compare
it to state-of-the-art concurrent techniques. Our algorithm provides (ε, δ)-
differential privacy, and is easy to handle in practice, in all cases where privacy-
preserving queries are asked on a database. The algorithm drastically outper-
forms naive methods to answer a query in a differentially private manner, and
also most of the refined techniques such as Smooth Sensitivity mechanism, in
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terms of an advantageous trade-off between utility and time complexity.

1.2 Details on our contributions
Here we summarize our contributions:
•We give in Theorem 8 simple conditions for an instance-based noise mechanism
to be (ε, δ)-differentially private.
• We use conditions from Theorem 8 to design a new instance-based noise
mechanism, that we call Largest Local Sensitivities mechanism (LLS in the
sequel) which is (ε, δ)-differentially private and allows for drastically reducing
noise compared to standard Laplacian noise mechanism. LLS only needs to
compute (or approximate) a restricted number of local sensitivities, and not all,
which is in contrast with the so-called Smooth Sensitivity.
• We give an analysis of LLS in terms of time complexity and accuracy on
some examples, either theoretical or on real-life public datasets. In particular,
we will show that LLS is particularly attractive when datasets with low local
sensitivities are queried. We also compare LLS to the most important examples
of instance-based noise mechanisms already appeared in the literature: Smooth
Sensitivity technique from [16], Noisy Local Sensitivities from [11], and Ladder
Functions Mechanism from [18].

1.3 Organization of the paper
In section 2, we recall relevant notions of differential privacy. Section 3 is devoted
to the design of LLS. In section 4, we analyse time complexity and accuracy of
LLS . In section 5 we make a theorical comparison between LLS and other
instance-based noise mechanisms. In section 6, we give experimental results of
LLS and other instance-based noise mechanisms on different real-world dataset.
Missing proofs of theoretical results and further details are postponed to the
Appendix 8.

2 Preliminaries
In this section, we recall the relevant notions of differential privacy we will need
in the sequel. We refer to [5] and [8] for basic notions about differential privacy.
We use the notation P(event) to denote the probability that event occurs.

2.1 Privacy model
We consider a simple scenario for data sanitization where a sanitizer aims
at publishing results of queries over the data he owns, while preserving the
anonymity of some sensitive information in the data. The privacy guarantee
he wants to achieve is differential privacy, which asserts the secrecy (with high
probability) of the participation of any single user in the sanitizer’s database.
More formally, we will denote by D the dataspace, that is the set of all possible

3



datasets owned by the sanitizer. Given a query f defined on D and datasets
xi ⊂ D, the sanitizer’s goal is to release a differentially private versions of the
values f(xi). To do so, a sanitization randomized mechanism A : D → R is ap-
plied to release close perturbations of f(xi), while satisfying differential privacy
guarantee.

2.2 Sensitivity of a query
Differential privacy relies on a relation of neighboring that is defined as follows.

Definition 1 Let D be the dataspace. Two datasets x, x′ ⊂ D are said to be
neighbor if they differ from each other by a single individual’s data. In that case
we denote x ∼ x′.
We say that the dataspace D is connected if for all x, x′ ⊂ D, there exists a
sequence (xi)1≤i≤N such that x1 = x, xN = x′ and

xi ∼ xi+1 for all 1 ≤ i ≤ N − 1.

To simplify the exposition of our techniques, we will always assume that
the dataspace D is connected. In fact, this assumption can be removed in
our context by performing parallel sanitization mechanisms on the connected
components of D (see for instance Theorem 4 in [13]).

Example 2 For data tables, D is a concatenation of rows, where each row is
the data of a single individual. Then, we have x, x′ ⊂ D, x ∼ x′ if x and x′ differ
from a single row.

Any differentially private mechanism calibrates the amplitude of its random
perturbation to a quantity called sensitivity. The latter depends on the output
to be sanitized, namely the query f and the queried dataspace D, and on the
privacy guarantee, which is defined by the neighboring relation for the case of
differential privacy.
In the current paper, we exclusively deal with real-valued queries f : D → R. For
a multi-dimensional range Rd, that is a workload of real-valued queries (fi)1≤i≤d,
our results can be straightforwardly extended using composition theorems (see
Chapter 3.5 in [8]). Sensitivity is defined as follows in the one-dimensional case.

Definition 3 (Global sensitivity) Let f : D → R be a query. The global
sensitivity GS(f) of f (denoted GS if there is no confusion) is defined by

GS(f) = sup
x∼x′,x,x′⊂D

|f(x)− f(x′)|.

While global sensitivity depends only on D and not on a particular dataset
x, it is considered as a public value. By contrast, the local sensitivity around x
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defined below depends on a particular instance x, and so is a private information
regarding the issue of masking the participation of a single user.

Definition 4 (Local sensitivity) For all x ⊂ D, the local sensitivity of a
query f : D → R at x, denoted by LS(f)(x) (or simply LS(x)), is defined by

LS(f)(x) = sup
x∼x′
|f(x)− f(x′)|.

Example 5 Let us introduce now a basic example that will be used to illustrate
our techniques along the paper. The following dataset contains the average
annual salary for different classes of employees from a large company:

x5 = { 24634, 29475, 37468, 48104, 69624, 113511 }
xk the dataset of the first k salaries in x5

and D = { xk | 1 ≤ k ≤ 5 }.

We define a neighboring relation as follows: x ∼ x′ ⇔ x = xi, x′ = xj and
i 6= j ∈ {k, k + 1} for some 1 ≤ k < 5. We consider a simple query that sums
all the salaries in the queried dataset, that is f(x) =

∑
x(i)∈x x

(i) for all x ⊂ D.
Note that there are real-life situations in which the salary value is not a sensitive
information on its own, whereas the association of a specific salary to a single
employee is. Once the dataspace D is fixed, the value GS(f) is public and does
not depend on a queried dataset x ⊂ D: the pair (A(x),∆) leaks information
about the participation of a single individual only through the value A(x).
By contrast, the pair (A(x1), LS(f)(x1)) would reveal that x1 was the queried
dataset, no matter the value of A(x1): LS(f)(x1) = 29475 completely reveals
the class of employees at stake, that is those with salary 24634.

2.3 Differential privacy and Laplacian mechanisms
The following notion of (ε, δ)-differential privacy is a generalization of the so-
called ε-differential privacy. More precisely, the latter notion is obtained from
the former by taking δ = 0.

Definition 6 ((ε, δ)-differential privacy [6]). Let D be a database. A ran-
domized algorithm A : D → R is (ε, δ)-differentially private if, for all subsets
S ⊂ R, and for all x ∼ x′, we have

P(A(x) ∈ S) ≤ eε P(A(x′) ∈ S) + δ.

In the current paper, differential privacy is achieved using Laplacian mech-
anisms. These randomized mechanisms are defined as follows:

A(x) = f(x) + Zx,
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where Zx is a Laplacian random variable of parameter λx, possibly depending
on the queried instance x ⊂ D. The most straightforward way to achieve ε-
differential privacy uses a uniform parameter λ = λx equal to ε

GS(f) . Then the
corresponding Laplace distribution is g(y) = 1√

2λe
−λy.

As early noticed in [16], much more accurate algorithms can be obtained when
exploiting the dependence on x in the random variable Zx, to the price of a
small loss in privacy ((ε, δ)-differential privacy instead of ε-differential privacy).
Our goal si to introduce new instance-dependent based algorithms, and to show
their practicability through experiments on real datasets.

2.4 Privacy of local sensitivities, and their computation
in practice

When using (standard) Laplacian mechanism, the global sensitivity value GS(f)
should be reasonably considered as a public value. Indeed, if many queries are
to be made, global sensitivity can be easily approximated: it is deduced from
the amount of noise 1/λ and the public parameter ε, where the former can itself
be estimated if a single dataset is queried several times. In the contrary and
as shown by Example 5, the value of the local sensitivity used to perform an
instance-based noise mechanism cannot be public. When a query result f(x) is
asked to the sanitizer, the latter is allowed to publish A(x) and GS(f), but in
no case the corresponding sensitivity value LS(f)(x). We believe that GS(f)
should also be a public value in the instance-based noise case, and we assume
so in the current paper.
In practice, the sanitizer faces the problem of estimating a correct value for
sensitivities LS(f)(x), x ⊂ D (and even that of GS(f) sometimes). As will be
explained below and along the paper, the exact computation (or even an accu-
rate approximation) of some sensitivities is sometimes infeasible. Moreover, no
lower bound on sensitivities should be used, since it would break the differential
privacy guarantee. Sanitizer’s goal is then to provide the most accurate upper
bound on the sensitivity considered.
Theoretical sensitivity comes with a formula (given in Definition 4), which is
computable in some cases but hard to accurately estimate in other cases. In-
deed, the computation depends on the triple (D, f,∼) which may induce hard
computations. As shown in [16], this is the case when D is a set of graphs
for specific queries. Hard computations can also occur when D is simply a col-
lection of data tables: local sensitivities values are allowed to be either public
as in Example 14 (while the correspondence with individuals is kept private)
or private. In both cases, an exhaustive computation of pairs (x, LS(f)(x)) is
not achievable in reasonable time for many large databases, as illustrated in
Example 7.
Many efforts have been made in previous works ([4], [2], [18]) to propose instance-
based noise differentially private mechanisms, with alternative methods to avoid
computing all local sensitivities. Our paper follows this line of research with a
new alternative, allowing to compute only the approximations of the largest

6



sensitivities.

Example 7 Let us build a new query scenario based on Example 5. Assume
now that each salary is a (known) function g of several other attributes: age,
salary of previous job... Then each dataset x can be described as a data table
whith the following configuration: line i in the table corresponds to a single
individual, and a line format is a tuple of the form xi = (g(x1

i , x
2
i ...), x1

i , x
2
i ...)

which describes the attributes (salary, age, previous salary,...) of the individual.
Assume also that our sanitizer owns a large database, and that we allow many
distinct salary values (by refining the precision of salaries to define the dif-
ferent classes of employees). This results in a large range of possible values
(LS(f)(x))x∈D, together with a large domain D. Indeed, the size of D directly
depends on the range of all attribute values in the data table, that is on possible
variations of values (xji )i,j .
For sufficiently many attribute values and/or sufficiently large ranges for these
attributes, the sanitizer will not be able to estimate all pairs (x, LS(f)(x)), nor
to store them with efficient time and space constraints. Thus a sanitization
mechanism requiring only the computation of a restricted subset of sensitivities
would greatly simplify the sanitizer’s task.

3 Design of a (ε, δ)-differentially private instance-
based noise mechanism

Different mechanisms providing differential privacy exist in the literature and,
among them, the instance-based noise [16] is one of the most promising one. In
this section, we describe our novel algorithm, namely LLS.

3.1 Instance-based noise and (ε, δ)-differential privacy
The first purpose of this section is to show that the instance-based noise tech-
nique introduced in [16] can be generalized, and satisfies privacy in the sense of
(ε, δ)-differential privacy.
The idea from [16] is to consider a mechanism of the form

A(x) = f(x) + 1
λx
Z, (1)

where Z is a Laplacian random variable with parameter 1, and the instance-
based coefficient 1

λx
defines the noise magnitude. With such a mechanism, one

can hope for a reduced error, that is larger values of λx for subsets x ⊂ D which
are less sensitive. However, some constraints on the values λx are required for
A to satisfy privacy guarantees. We will also make use of the following notation

∆x,x′ = ∆x,x′(f) = |f(x)− f(x′)|.
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The following Theorem 8 gives simple conditions for a mechanism as above to
be (ε, δ)-differentially private. These conditions will be used in the next section
to design algorithm LLS.

Theorem 8 Let A be the mechanism defined by Equation (1), such that the
noise magnitude satisfies the 2 following conditions for all x ⊂ D:

1. λx ≤ αx × ε
∆x,x′

for all x′ ∼ x;

2. |1− λx′
λx
| ≤ (1− αx)× ε

ln(1/δ) for all x′ ∼ x,

and for some values 0 ≤ αx ≤ 1. Then A is (ε, δ)-differentially private.

Remark 9 • One can easily derive analog results for noises with respect to
other distributions, such as instance-based Gaussian noise.
• Condition 1 in Theorem 8 is equivalent to the condition

λx ≤ αx ×
ε

LS(x) ,

illustrating that the amplitude λx is calibrated to local sensitivity.
• Condition 2 requires that amplitudes of 2 neighbor instances λx and λx′ should
be close one from each other when x ∼ x′, where the distance between them is
measured by the privacy parameters ε and δ.

3.2 LLS, the Largest Local Sensitivities mechanism
Since the noise error of the mechanism is precisely 1

λx
, our goal is to design an

algorithm that chooses values of λx as large as possible, while satisfying both
conditions in Theorem 8. This obviously permits to design mechanisms with
less noise, while keeping strong guarantees of privacy. In this section, we design
an algorithm that achieves these conditions.
Let f : D → R be a query and consider values (LS(x))x⊂Dn , local sensitivities
of f that can be ordered increasingly as follows: (LS1, ...LSr), LSi ≤ LSi+1.
Notice that with such notations, we have LSr = GS. We will denote

Dk = { x | LS(x) = LSk },

that we call the k-th level of sensitivities. Moreover, we will make use of the
notation k ∼ l when there exist x ∼ x′ such that x ∈ Dk and x′ ∈ Dl. We also
write x < x′ (resp. x ≤ x′) if x ∈ Dk, x′ ∈ Dl for some k < l (resp. k ≤ l).

Now we explain the design of our algorithm LLS. Ideally, an instance-based
noise algorithm would have a noise amplitude at level k equal to λk = ε

LSk
.

Unfortunately, it is possible that condition 2 in Theorem 8 is not satisfied, re-
flecting the fact that local sensitivity is not private in general. We will construct
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an algorithm that results in a mechanism satisfying both conditions in Theorem
8 for αx = 1/2, x ∈ D. Hence our goal is to find values (λk)k as large as possible
such that λk ≤ 1

2 ×
ε

∆k
and condition 2 hold.

A straightforward computation results in the following proposition, which drives
our choice of parameters (λk)k in algorithm LLS.

Proposition 10 Let 0 < LSk < LSk+1, and 0 < t < 1. Assume that the
following relations hold:

λk+1 ≤ λk ≤ min( ε

2× LSk
, λk+1 × (1 + 1

2 t) ). (∗)

Then we have

|1− λk
λk+1

| ≤ 1
2 × t ,

|1− λk+1

λk
| ≤ 1

2 × t .

We warn the reader that two neighbor datasets x ∼ x′ do not always belong
to consecutive levels Dk, Dk−1: in other words, the situation x ∈ Dk and x′ ∈
Dl, l < k − 1 can occur. For that reason, we will consider in the sequel τk,
defined as the lowest neighbor level to Dk.
So that condition 2 in Theorem 8 holds, the noise at some level Dk requires to
be calibrated to the highest neighbor level, whose index is denoted by lk.
An illustration of values of τk, lk on some example is given in the following
picture.

D1

D2

D3

D4

D5l3 = l4 = 5

τ5 = 3

l1 = l2 = 4

τ4 = 1

We draw a link between two levels Dk and Dk′ when there exist two neighbors
x and x′ such that x ∈ Dk and x′ ∈ Dk′ .

The heuristic for our algorithm goes as follows. We build the sequence (λk)k
by descending induction, starting from λr = ε

2LSr . As is clear in Figure 1, our
strategy allows the sanitizer to compute only the local sensitivities LSk larger
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than LS(x), when answering the query f(x).
Here are explanations on how to choose λk from (λl)l≥k+1. Given λk+1 (≤

ε
2LSk+1

), we want to find λk (≤ ε
2LSk ) greater than λk+1, and such that the pri-

vacy conditions (∗) hold with all previously constructed λk+m (these conditions
were kept in memory in previous steps). During step k, we compute the privacy
conditions (∗) between λk and the lower neighbors λk−m, to be kept in memory
until we reach the lowest of their levels τk = k −m0. Later in the algorithm at
step k −m0 − 1, we will be free to delete the privacy conditions associated to
λk, in order to maximize as much as possible further values of (λj)j≤k−m0−1.
In order to choose λk ≥ λk+1 at step k, we need LSk and LSk+1 to be not
too close one from each other. A careful look at the proof shows that condition
LSk+1
LSk

≥ (1 + 1
2 × t) is required, where t = ε

ln(1/δ) .

Algorithm 1: LLS Algorithm
Input: data set y ⊂ D, query f ,
privacy parameters ε, δ
Output: private value for f(y)
. set t = ε

ln(1/δ)
. compute LSr and set λr = ε

2LSr
. if y ∈ Dr, return f(y) + Lap(λr)
. end if
. for l ∼ r, l < r, compute LSl
. end for
. compute τr = minl<r,l∼r l
. for k from r-1 to s, with y ∈ Ds do
. for l ∼ k, l < k, compute LSl
. end for
. compute τk = minl<k,l∼k l
. if LSk+1

LSk
< (1 + 1

2 × t),
. set λk = λk+1
. else compute lk = maxτl≤k,l∼k l
. set λk = min( ε

2LSk , λlk × (1 + t
2 ))

. end if

. if y ∈ Dk, return f(y) + Lap(λk)

. end if

. end for

Figure 1: Our instance-based mechanism LLS

Regarding privacy, we have the following property, which proof is given in
appendix 8.2.

Proposition 11 LLS is well-defined, and is (ε, δ)-differentially private.
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4 Optimizations on the design of LLS
LLS mechanism achieves good performances for both noise reduction and time
complexity. This section highlights these improvments, and proposes optimiza-
tion and simplification to design LLS.

4.1 Improvments on time complexity of LLS
Regarding time complexity, the main advantage in LLS is that it requires only
the computation of the largest local sensitivities. This is in sharp contrast
with the Smooth Sensitivity technique from [16]. Indeed, the Smooth Sensitiv-
ity S∗f,β(x) requires the knowledge of all local sensitivities, in order to answer
privately a single query f(x). This advantage on execution efficiency will be
illustrated through experiments in Section 6.
In a situation where multiple queries f(x), x ⊂ D are asked, and where only
datasets from levels Dk with small k are more likely to be asked, it is not neces-
sary to repeat the entire descent loop in Algorithm 1. Instead, a better strategy
would consist in keeping track of some well-chosen tuples (k, λk, Dk), in order to
avoid computations that were already processed. In practice, the server which
performs sanitization can define a storage budget, that we denote by m: the
server decides to store at most m tuples (k, λk, Dk). For simplicity in exposition,
we assume r to be an integer multiple of m in the sequel. Then the sequence of
levels can be splitted as

LS1 ≤ LS2 ≤ ... ≤ LSr,

thats is into m smaller sequences of r/m consecutive values of the form

LSr−(k−1) rm ≤ ... ≤ LSr−k rm , 0 ≤ k < m.

Then the server keeps in memory tuples of the form (r − k r
m , λr−k rm , Dr−k rm )

for 0 ≤ k < m, as soon as local sensitivities related to these levels are computed
during the sanitization process. When a query f(x), x ∈ Dl is asked, the server
looks for the largest 0 ≤ k < m in its memory such that l ≤ r − k r

m . Then in-
stead of starting the loop in LLS at r, it can start at r−k r

m . As a consequence,
LLS performs a descent only on databases in ∪lDl, where the union ranges over
r − (k − 1) rm < l ≤ r − (k − 1) rm . Hence, our Algorithm 1 provides a possible
trade-off between storage space and time execution.
Note that the worst case for time complexity in LLS happens when low sensitiv-
ities are required. In particular, when no strategy is used, the very worst case in
complexity for Algorithm 1 is comparable to the complexity in [16]. However,
as seen previously, the sanitizer can design a strategy for more efficient com-
putations with Algorithm 1, which may reduce considerably the time execution
overhead when multiple datasets are queried.
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Dr
Dr−1......

Dr− r
m......

Dr−2 r
m......Dr−2 r

m
−5 x ∈ Dr−2 r

m−5 (1)

(2)

(3)

(1) Determining the level of x
(2) Determining the closest memorized level to the one determined in step (1)
(3) Descent loop in algorithm LLS, starting from the level of step (2)

We represent the set of levels, where Dr−k× r
m

are special levels memorized
on-the-fly for optimization. Algorithm LLS requires only levels below Dr−2 r

m
on

the figure, in order to answer privately query f(x).

4.2 Well-ordered databases and estimation of noise am-
plitude in LLS

In full generality, our intuition is that LLS gives drastically better accuracy
when sufficiently many values of sensitivities (LSk)k are far apart one from each
other. On simple and rather general situations, the advantage of using LLS
against a non-instance-based noise technique can be quantified theoretically.
We now introduce such a situation assuming a specific configuration related to
neighboring relation and sensitivities values.
Let us assume that we have LS1 < ... < LSr, and that for all i, a dataset x ∈ Di

can have neighbors only in Di+1, Di or Di−1. Assume also that local sensitivities
are not too close one from each other, that is LSi+1

LSi
≥ 1 + 1

2 × t for t = ε
ln(1/δ) .

In such a configuration, we will say that the pair (D, (Dk)k) is well-ordered with
respect to the query f and the parameters (ε, δ). The following proposition will
allow us to compare LLS against other mechanisms in the sequel.

Proposition 12 Let f : D → R be a query, and assume that the pair (D, (Dk)k)
is well-ordered with respect to (f, (ε, δ)). Then to answer a query f(x), x ∈ Dk,
parameter λk required in LLS is given by the formula

λk = ε

2LSr
× (1 + 1

2 t)
r−k , where t = ε

ln(1/δ) .

12



4.3 When is it interesting to apply instance-based noise
mechanisms ?

A careful look at the estimates of the previous section on particular cases leads to
an interesting phenomenon: if privacy parameters ε, δ are chosen too small, then
there is no point in using instance-based noise mechanisms instead of standard
Laplacian mechanism. For concrete applications, the sanitizer is then in a trade-
off situation where instance-based noise mechanisms are interesting options only
for a particular range of the privacy parameters. We show that our estimates
may help the sanitizer to choose whether or not it is worth using such techniques.

In all the current section, we assume that the pair (D, (Dk)k) is well-ordered
for (f, (ε, δ)). As we will be interested in the behaviors of privacy parameters for
small values, it is worth noting that (D, (Dk)k) is also well-ordered for (f, (ε′, δ′))
for any smaller values ε′ ≤ ε and δ′ ≤ δ. We chose to compare accuracy of
Laplacian mechanism to that of other mechanisms by measuring the `1-mean
error, which is given by the following formula

errA = E(|Zx|)

for a sanitization randomized mechanism A of the form A(x) = f(x) +Zx. For
standard Laplacian noise, this error is equal to errLap = LSr

ε (LSr = GS is the
global sensitivity with our notations).

Let t = ε
ln(1/δ) . By Proposition 12, we have

errLLS = 2× LSr
ε

× (1 + t

2)k−r

whenever the queried dataset x is in level Dk, that is LS(x) = LSk. Define
l = r− k. For small values of t (that is for a good level of privacy), we have the
following estimations

errLLS = 2× LSr
ε

× exp(−l × ln(1 + t

2))

∼t<<1
2× LSr

ε
× exp(− lt2 ).

Then it is clear that for too small values of lt, mechanism LLS is useless com-
pared to Laplacian mechanism. At the opposite, a reasonable trade-off can be
found between sufficiently large values of l (low sensitivities) and not too small
values of t (reasonable amount of noise). To help the reader figure out the ad-
vantageous trade-offs, we display the graph in Figure 2. The graph reflects a
natural and interesting trade-off: if privacy parameters go smaller (small val-
ues of t), only low levels (that is large values of l) may find benefits from our
instance-based noise mechanism.

As will be shown in our experimental Section 6, a similar behavior can be
observed for other variants of instance-based noise mechanisms: too small val-
ues of privacy parameters cancel the benefits of exploiting local sensitivities. In
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Figure 2: Relative comparison between LLS and Laplacian amplitude noises for
small values of t = ε

ln(1/δ)

the case of a Smooth Sensitivity S?f,β(x), this phenomenon is indeed a natural
consequence of the convergence S?f,β(x)→ GS as β = t/2→ 0 (see Section 5.2
for details on S?f,β(x)).

5 Theorical evaluations
5.1 Genericity, accuracy and efficiency of LLS mechanism
The main remarkable features of our algorithm are summarized in the list below:

1. Full generality on queries: To perform well, the only assumption our
algorithm requires is that local sensitivities are not too close one from each
other. Anyway, this assumption is obviously necessary for any instance-
based noise mechanism aiming at providing more accurate results than
mechanisms calibrated to global sensitivity. This gap in sensitivities is
the only assumption about the query and the database considered in this
paper.

2. An appealing trade-off between time complexity and accuracy:
Compared to concurrent instance-based noise techniques, LLS always pro-
vides a solution which appears among both the most efficient and the most
accurate mechanisms. This contrasts with prior works that satisfied good
performances for only one of these two aspects. Moreover, as explained
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in Section 4.1, time efficiency in LLS can be optimized on demand, to the
price of a small loss in the storage space.

3. Computation of a theoretical bound on the error: In many situa-
tions such as for well-ordered databases (see Section 4.2), we are in position
to provide a theoretical estimate on the average error in algorithm LLS.
This is important to decide if it is worth using such an instance-based noise
mechanism or not, and also to tune the privacy parameters adequately.

5.2 Instance-based noise mechanisms from prior works
Here we recall some facts about concurrent mechanisms to our.

Smooth Sensitivity SS from [16]
The β-smooth sensitivity S?f,β(x) of a query f at x ⊂ D, is given by the

formula:
S?f,β(x) = max

y⊂D

(
LS(y) · e−βd(x,y)

)
.

Using notations from Section 3.1, an (ε, δ)-differentially private mechanism is
obtained for the values λx = ε

2S?
f,β

(x) , and β = ε
2ln(1/δ) . This was stated in

[16]. A simple proof of this privacy result using our theorem 8 is given in the
Appendix 8. Now we highlight the important benchmarks between Smooth Sen-
sitivity technique and LLS.

• LLS is efficiently computable whenever local sensitivities are. This is in sharp
contrast with Smooth Sensitivity technique from [16], since the computation of
Smooth Sensitivity has been proved to be NP-hard in some cases.
• Even when Smooth Sensitivity is efficiently computable, LLS has much better
time complexity. Indeed, LLS requires only the computation of the largest r−k
local sensitivities to answer a query f(x), x ∈ Dk. Smooth Sensitivity requires
an exhaustive list of values LS(x), for the computation of a single f(x), x ⊂ D.

Example 13 Let us consider the example of the median fmed, which is detailed
in Section 3.1 [16]. On an instance where the database is given by n points
xi = Λi/n, Smooth Sensitivity technique requires a noise amplitude equal to
Λ/εn to reach (ε, δ)-differential privacy. From Claim 3.3 [16], this can be done
in time O(n2) (in time O(n) if one uses an approximation of Smooth Sensitivity
S∗f,β for f = fmed).
Let us fix values of parameters ε, δ such that 1

n ≥
t
2 , and let x ∈ Dk. By virtue

of Proposition 12, LLS has noise amplitude 2Λ
nε × ( 1

1+ 1
2 t

)n−k, and performs in
time O(k).
Errors due to noise addition in LLS and SS mechanisms are comparable for
small values of t, that is for a good level of privacy. However, time execution is
clearly better for LLS.
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Example 14 Well-ordered databases can be found in many simple and realistic
statistical tasks. For instance, consider the database D = {x1, ...xn} of employ-
ees salaries 0 ≤ x1 ≤ x2 ≤ ... ≤ xn, and using the same neighboring relation as
in Example 5. Assume that we consider query f(x) = x1 +x2 + ...+xk for some
k, that is the sum of the k lowest salaries in the company. With notations as
above, r is the number of distinct salaries in the company, and LS1 < ... < LSr
is the ordered sequence of distinct salaries in the company.
When applying algorithm LLS over m = kr queries, the amplitude of noise re-
quired is of the order O(kln(r)

r ) when all levels Di are queried k times each.
When exclusively low salaries are queried, we have an amplitude of noise of the
order O(αr) for some parameter 0 < α < 1 depending only on ε, δ. By contrast,
standard Laplacian technique would give an amplitude of the order O(1).

Noisy Local Sensitivities NLS from [11]
In [11], it is shown that computing Smooth Sensitivity of some statistics on

graphs is a NP hard problem. Authors of [11] focus on differentially private
graphs statistics in the sense of edge privacy, that is two graphs are considered
neighbors if they differ one from each other by exacty one edge. Let f2∆ the
number of 2-triangles (a 2-triangle is given by two triangles sharing a common
edge). Then it is NP hard to compute S∗f,β for f = f2∆ (see Theorem A.1 in
[11]).
The main purpose in [11] is to provide an alternative instance-based noise
method to Smooth Sensitivity, called Noisy Local Sensitivities (NLS). In NLS,
the idea consists in computing private versions of local sensitivities. This is
done by means of a second order local sensitivity, which is a sensitivity of local
sensitivities, when considering the latter as functions over D. Their algorithms
apply only on graph statistics, since they use specific upper bounds on local
sensitivities of statistics in graphs.

• Results in [11] give reasonable accuracy only if one wants to release privately
f2∆(G) for some sufficiently connected graph G. The precise assumption made
by the authors is the existence of a pair of vertices in G which have a number of
common neighbors significantly greater than ln(1/δ)

ε . Our algorithm does only
make some mild assumption on the graphs we want to release, and in particular
can be used even when graphs do not have many connections. More precisely,
since we are looking for values of t which are not too large, the condition LSk+1

LSk
≥

1 + 1
2 t should hold in most cases, and especially when the values aH are not too

large (this is in contrast with the assumption of [11] where it is required aH to
be much larger than 1/t).
• For the first f(x) (x ∈ Dl) query asked, computation of the sequence (LSk)k≥l
is required, and this can be computed in time O(dmaxm2) where m is the number
of possible edges in the overall graph G considered, and dmax a bound on the
degree of vertices. For next computations, some elements of the list (LSk)k≥l
already computed can be used, and many less computations are required (see
section 4.1). The computation time is more likely to be O(dmaxm) after a few
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queries.
• As pointed out in [18], Noisy Local Sensitivities method applied to f2∆ holds
only for a restricted set of the privacy parameters (ε, δ), namely for ε ∈ (0, 0.6).
LLS does not suffer from such a restriction, which can be crucial in practice.
Indeed, some more sensitive data require higher values of ε in the differentially
private mechanism in order to keep some utility.

Ladder Functions LF from [18]
Other approaches were used to answer queries on graphs in a differentially

private manner (e.g. [2], [4], [18]). Among recent studies, one of the most
successful seems to be the one using ladder functions in [18]. In a nutshell, lad-
der functions method performs a refined version of the well-known exponential
mechanism (see [14]), where the amplitude noise λx to answer a query f(x)
is calibrated with respect to some ladder function It(x). Functions It(x) play
the same role as local sensitivity in our framework, and allows for a favorable
instance-dependent result. For the case of counting queries on graphs, Lad-
der Function mechanism uses a system of convergent ladders, that permits to
sample from exponential mechanism efficiently (which is a priori a non-efficient
task).

• Time complexity of ladder functions is similar to that of Smooth Sensitivity
(see section 6.1 in [18]). We have already seen that LLS was designed with
the purpose to have drastically better time complexity than Smooth Sensitivity
algorithm. This is obviously the case when asking a large number of private
queries, as highlithed in Section 4.1 ). This makes LLS a first-line option among
instance-based noise mechanisms regarding time performances.
• Methods from [18] were designed exclusively for subgraph countings. It is not
clear how to adapt the ladder functions framework for general queries, such as
Example 14 or Example 13. By contrast, LLS can be used to answer any type
of queries.

5.3 Comparison on a small graph
In order to understand the way how each instance-based noise algorithm pro-
ceeds, and to better understand the main differences between these methods,
we present a simple sanitization task: releasing a differentially private version
of f2∆ using mechanisms SS, NLS, LF and LLS.

Our simple example is defined as follows. Many notations and some results
are retrieved from [11], which first gave an in-depth study of differential privacy
on query f2∆. Consider a based (undirected) graph G0 with 6 nodes such that
any pair of nodes is connected by an edge. We allow to apply query f2∆ on
the dataspace D = G6, the set of all subgraphs of G0. The privacy model we
consider here is edge privacy.

Authors from [11] introduce a particularly convenient upper bound on local
sensitivity. This estimate allows for much easier computations and provable
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privacy. We will use here the same upper bound, as an estimate of local sensi-
tivity for each of mechanisms SS, NLS, LF and LLS. For a subgraph H ∈ G6,
and an edge e /∈ H, we denote by H + e the graph obtained from H by adding
the edge e. For an edge e ∈ G and H ∈ G6, we use the notation aHe for the
number of triangles in H involving edge e. Set aH = maxe∈H+e′,e′ /∈H a

H+e′
e ,

and LS(H) = 5
2 × aH . By computations from [11], LS is an upper bound

approximation on LS.
It appears that upper bounds LS have also an additional interesting feature

for our applications.

Proposition 15 Let H ∼ H ′, H,H ′ ∈ G6. Then we have

|LS(H)− LS(H ′)| ∈ {0, 5/2}.

Note that such a configuration for sensitivities is attractive to apply LLS
mechanism. Defining sensitivities levels Dk with LSk instead of LSk, the pair
(G6, (Dk)) is well-ordered with respect to (f2∆, (ε, δ)), for sufficiently small val-
ues of privacy parameters ε, δ.

Now our goal is to sanitize the query result f2∆(G) for the graph G ∈
G6 defined below. This graph was also used in [18] as a simple example for
explanations.

•
a

•
b

•
d

•
e

• c•f

We fix privacy parameters values ε = 5 and δ = 1/2000. This choice may
seem unreasonable regarding Definition 6, since ε = 5 would not impose suf-
ficiently tight constraints on neighbor distributions. Indeed, we chose these
values to have at least meaningful results for (some of) the concurrent mecha-
nisms. Then a large value for ε is not surprising: we consider a small graph to
ease the explanations, which results in a difficult sanitization objective. Much
smaller values of ε will be used for real applications in Section 6, for larger
graphs closer to real-life applications of privacy-preserving data mining.

Smooth Sensitivity SS
To estimate the β-smooth sensitivity of f2∆ at G, we compute

s = max
G′∈G6

(
LS(G′) · e−βd(G,G′)

)
.

18



The previous computation of maximum does not require to consider graphs
having less edges than G. There are

(6
k

)
graphs in G6 with k edges greater

than G. Estimation s is obtained up to the computation of
∑6
k=1

(6
k

)
= 64

local sensitivities. Performing this, we obtain s = max(15/2, 10e−β) where
β = ε

2ln(1/δ) ≈ 0.33. Finally, Smooth Sensitivity adds a noise with amplitude
1
λSS

= 2 max(15/2,10e−β)
ε = 3.

Noisy Local Sensitivity NLS
Let us turn now to our instantiation of Algorithm 1 from [11] to compute

Noisy Local Sensitivity on f2∆(G). We use here notations as in [11]. We set
ε′ = ε

3 , δ′ = δ
3 and amax = 1. Then the computation of the private local

sensitivity is as follows:

ãmax = 2 + Lap
(

1
ε′

)
+ ln(1/δ′)

ε′

L̃S = 15/2 + Lap
(

4ãmax
ε′

)
+ ln( 1

δ′
) · 4ãmax

ε′
.

As a result, NLS returns a noise amplitude equal to 1
λNLS

= L̃S
ε′ ≈ 72.

Ladder Functions LF
To compute the noise of f2∆ using LF, we follow the algorithm NoiseSample

in [18]. We compute

It(G) = min
(

15
2 +

t−1∑
i=0

8 + 4i, GS(f2∆)
)

for t ∈ {1, 2, 3} and we take C = GS(f2∆) = 10. After computing the weight
for each range, we see that we have more than 50% to return 1

λLF
= 6.75 and

more than 40% to return 1
λLF

= 0.
Largest Local Sensitivities LLS

Using the upper bound approximation LS, the data is well-ordered. Two
consecutive values of sensitivities LS(H) ∈ Dk and LS(H ′) ∈ Dk+1 are sepa-
rated by a gap equal to 0 or 5/2. So in algorithm LLS, we have τk = k − 1,
lk = k + 1 and LSi = i · 5/2 for i ∈ {1, 2, 3, 4}. All stages of Algorithm 1 are
detailed in Appendix 8. The algorithm requires an amplitude noise equal to

1
λLLS

= 1
λ3

= 3.

Comparisons
The results obtained previously can be compared easily. This section does

not aim to give a general comparison between the different instance-based meth-
ods, but rather to understand some important differences between the mecha-
nisms on a simple example. The intuitions which we highlight below will be
confirmed on real datasets evaluations in the next section.
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We introduce a few notations for high-level comparisons. We will write
A ≺u B (resp. A ≺t) if method B performs much better than method A
regarding utility (resp. time complexity). Symbol A �u B (or A �t B) means
that B performs better than A, but that they are close to provide equivalent
results. Note that for the above methods, utility is measured by the noise
amplitude added by the mechanism, for a same level of privacy.

Utility NLS ≺u LF ≺u LLS ≈u SS
Efficiency SS ≺t LF �t NLS ≈t LLS

The comparisons displayed in the table are not surprising, and reflects the
natural features of the different approaches:

• NLS performs poorly for such privacy parameters, since there are mul-
tiple sources of noise and several amplifications of the error whenever a
single privacy parameter is chosen smaller. SS, LF, and LLS provide com-
parable results. Note that it was expected that SS method would result
in one of the best options regarding accuracy of the mechanism, since it
calibrates the noise to the best smooth upper bound (see Appendix 8 for
more details).

• SS requires the computation of a large number of sensitivities. At the
opposite, the three other techniques are based on a single sensitivity value.
Even if this task is negligible on such a basic example, it is clear that the
sampling step is less efficient for the LF case than for NLS or LLS, because
of the inherent complexity of exponential mechanism noise sampling.

6 Experimental Evaluations
To support the idea that LLS mechanism should be considered as an interesting
option to answer queries privately, we realized experimental evaluations in which
we compare LLS to the current state-of-the-art mechanisms. All the algorithms
were implemented in Scala on a personal computer with 2.30 GHz Intel i5 CPU
and 8 GB RAM Memory.

6.1 Experiments settings
We use two real-life datasets to conduct our experiments. The first one is a
dataset that contains the average annual salary of 148654 employees from San
Francisco. The second dataset is Gowalla data, which contains 6,442,890 check-
in locations of 196,586 users over the period of Feb. 2009 to Oct. 2010. Before
applying our queries, we built gaphs from the dataset Friendship network of
Gowalla users, described as follows: each node represents a user, and an edge
is drawn between two nodes a and b when the two users corresponding to a, b
know each other. Datasets are respectively referred as Salaries and Gowalla in
the sequel.
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Figure 3: The private sum of the k smallest salaries, among n = 148654 salaries.

On Salaries dataset, we compare SS and LLS by applying the mechanisms
on the query fsum, introduced in Example 5. Recall that fsum(xk) is a notation
for the sum of the k smallest salaries in the dataset. On Gowalla dataset, we
extract subgraphs H of the Gowalla based graph G0. Then we applied the
following sanitization mechanisms to some statistics on subgraphs H ⊂ G0:
LLS, LF, NLS and Laplacian mechanism (referred as Lap). These mechanisms
are compared on sanitization of two graph queries: fedge counting the number
of edges in the queried graph, and f2∆ counting the number of 2-triangles.

Note that for (Salaries, fsum) and (Gowalla, fedge), mechanisms LF, NLS
are not displayed. Indeed, the latter methods were designed only for particular
graph queries and do not apply to these cases. At the opposite, results con-
cerning SS mechanisms on graph queries are not shown in our figures, since our
experiments confirm the well-known fact that time execution of SS mechanism
increases too much with the size of the queried graph.

In all the section, parameter n will refer to the size of the database, that is
the number of salaries in Salaries, and the number of nodes for Gowalla base
graph G0. The size (number of nodes) of a subgraph H ⊂ G0 will be denoted
by nH . Whenever a privacy parameter δ will be used together with ε, we will
take δ = ε/2n. Parameter ε will be precised on figures, and may vary depending
on the conducted experiment.

21



0.2 0.4 0.6 0.8 10

2,000

4,000

6,000

Privacy budget ε

N
oi

se
am

pl
itu

de
Gowalla, fedge(H) = 510

LLS
SS

Figure 4: Dependence of noise amplitude on privacy parameter ε (with ε =
δ/2n), for a graph H of size nH

6.2 Analysis
Figure 3 illustrates how close mechanisms LLS and SS are, regarding noise
addition required to sanitize basic queries. This similarity is not surprising:
LLS is in some sense a truncated version of SS mechanism, for which only the
largest local sensitivities are used, and not all local sensitivities. This truncation
has the natural effect to provide a very fast execution (less than 130 ms for every
k), while SS would have a long execution time even for small values of k (more
than three minutes for k/n < 0.6).

We also applied sanitization mechanisms LLS and SS on fedge and some
Gowalla subgraph H ⊂ G0 of size nH = 100. According to Figure 4, LLS gives
slightly better results for small values of ε. Note that this is not relevant, since
the amplitude noise is too large compared to the real value of the query output
fedge(H). A more interesting fact, which confirms a point already discussed in
the paper, is the similarity of amplitude noise for both algorithms and for rea-
sonable values of privacy parameters. As in the case of aggregation of salaries,
execution time of LLS is faster than that of SS. We have applied these mech-
anisms on larger Gowalla subgraphs: the noise amplitudes remain similar for
the two algorithms, but the difference in execution time significantly increases
in favor of our algorithm.

Now we turn to private releases of f2∆ on Gowalla subgraphs H ⊂ G0 using
the approximation LS(H) defined and detailed in the previous section. It ap-
pears that mechanism SS has nearly the same noise amplitude (for small values
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nodes and H ∈ D19
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of the graphs size nH) as LLS, but its time execution increases exponentially
and the mechanism can not be applied even for medium values of nH . It was
expected since computing Smooth Sensitivity is NP Hard in the case of f2∆. At
the opposite, NLS performances are very fast but its noise amplitude increases
unreasonably. This fact is certainly due to the requirement of several sources of
noise in NLS mechanism (for further details, see the formulae in Section 5.2).

For clarity in our figures, we used LF mechanism as a reference point for
our comparisons. Indeed, other instance-based noise mechanisms have been
extensively compared to LF mechanism in [18], and experiments from that prior
work showed that LF was the most challenging mechanism to be compared with.
To compare the different mechanisms, we compute the noise deviation, that is
the average distance between the real output of the query and its private version.
For instance, noise deviation is calibrated to the noise amplitude 1/λLLS for LLS
mechanism. For LF mechanism, the mechanism was applied 100 times on the
subgraph H ⊂ G0 and the noise deviation is defined as the mean of the noises
added to the real output f2∆(H).

We compare instance based-noise mechanisms LLS and LF for reasonably
small values of ε (ε < 1.2), and for subgraphs H picked at different levels of
sensitivity (D19, D155, D212). Such privacy values correspond to a meaningful
privacy guarantee in Definition 6. It is clear that for all configurations in Figures
6, 7, 8, there is a range [0, ε0] in which ε induces a significantly better result for
LLS than for LF. Outside this range, both mechanisms are comparable regarding
noise perturbation. We can also notice that the critical value ε0 for which the
two mechanisms errors converge depends on the queried level Dk (H ∈ Dk).
The smaller the level Dk, the larger the critical value ε0 is. This confirms that
our mechanism LLS particularly well apply to low sensitivities levels, and deep
levels datasets.

To summarize, it appears that for simple queries (mean, sum, median), SS
and LLS both can be considered as interesting options. But for more involved
queries (k-triangles counting, edges counting), our experiments would suggest to
consider LLS as a first choice, since it seems to provide the best trade-off between
time execution and accuracy, for any possible range of the privacy parameter
ε. The table below summarizes the different comparison relationships obtained
from our experiments (with notations from the end of Section 5.2).

Query Utility Efficiency
fsum LLS�u SS SS �t LLS
fedge SS �u LLS SS ≺t LLS
f2∆ NLS≺u LF�u LLS LF≺t NLS �tLLS

7 Conclusion and future work
In this paper, we introduced novel techniques to design differentially private
instance-based noise mechanisms. Our approach exploits the standard idea of
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instance-based noise mechanisms to optimize the amount of noise required for
differential privacy. The novelty of our methods rely in the use of a restricted
number of local sensitivities, which results in drastic optimizations regarding
time execution of the sanitization mechanism. We instantiated these ideas in a
novel differentially private mechanism, that we called Largest Local Sensitivities
mechanism (LLS). We compared LLS mechanism to state-of-the-art ones, and
we showed that LLS should be considered as a first-order option in many cases,
including basic queries (means, medians) and more involved graphs statistics
(2-triangles countings).

We believe that our Theorem 8 has a wide potential for further applications,
because it is by nature generic and easy to handle. For instance, it would be
interesting to investigate analogs of instance-based noise mechanisms in the con-
text of geo-indistinguishability [1] [3], a variation on differential privacy designed
for location privacy at the user scale.

As another future direction of research, we would like to consider more care-
fully the case of multi-dimensional range queries. In particular, it would be
certainly interesting to study in which extent the optimizations techniques from
[12] could apply to the framework of our Theorem 8 and our mechanism LLS.
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8 Appendix
8.1 A proof of (ε, δ)-differential privacy
Proof of Theorem 8 A sufficient condition for mechanism A to be (ε, δ)-
differentially private is the existence, for all x ∈ D, and for all x′ ∼ x, of subsets
Ex,x′ ⊂ R such that P(A(x) ∈ Ecx,x′) ≤ δ and:

gx(y)
gx′(y) ≤ e

ε for all y ∈ Ex,x′ .

Note that the previous condition is equivalent to:

|λx|f(x)− y| − λx′ |f(x′)− y|| ≤ ε for all y ∈ Ex,x′ .

Moreover, a triangular inequality gives

|λx|f(x)− y| − λx′ |f(x′)− y|| ≤
λx′∆x,x′ + |λx′ − λx| × |f(x)− y|.

Hence from the assumptions, it is sufficient to find subsets Ex,x′ such that:

|λx′ − λx| × |f(x)− y| ≤ (1− αx)× ε for all y ∈ Ex,x′ .

Now set Ex,x′ = { y | |λx′ − λx| × |f(x) − y| ≤ (1 − αx) × ε }. To prove the
theorem, it is then sufficient to show that P(A(x) /∈ Ex,x′) ≤ δ. For that,
denote by Z a Laplacian random variable of parameter λ = 1. The conclusion
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of the proof is a straightforward consequence of the tail bound estimation for
Laplacian distribution:

P(A(x) /∈ Ex,x′) = P(Z >
(1− αx)× ε× λx
|λx′ − λx|

)

= e
−((1−αx)×ε)× 1

|1−
λ
x′
λx
|

≤ δ

by assumption 2 in Theorem 8. �

8.2 Privacy and consistency of algorithm LLS
We first give the proof of Proposition 10, which will simplify the proof of the
main Proposition 11.

Proof of Proposition 10 By assumption, we have

|1− λk
λk+1

| = λk
λk+1

− 1

≤ (1 + 1
2 t)− 1

≤ 1
2 t.

From the above inequalities and the assumption λk+1
λk
≤ 1, we obtain:

|1− λk+1

λk
| = λk+1

λk
× |1− λk

λk+1
|

≤ 1
2 t.

�

Proof of Proposition 11 First notice that LLS is well-defined: the induc-
tion process is valid. As assumed in this paper, D is connected with respect to
our neighboring relation. In particular, there exists l > k (when k 6= r) such
that τl ≤ k. It follows that lk > k, and then λk is constructed from the sequence
(λl)l>k.
Now we need to show that the mechanism constructed in LLS satsifies condition
2 from Theorem 8 with αx = 1

2 , that is

|1− λx
λx′
| ≤ 1

2 ×
ε

ln(1/δ)

for all x ∈ D, x′ ∼ x. From Proposition 10 which deals with the situation of
two sensitivities (with the choice t = ε

ln(1/δ) ), we deduce that it is sufficient to
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prove, for all x′ ∼ x, x′ < x, the following inequalities (referred as (∗) in the
sequel) hold:

λx ≤ λx′ ≤ min( λx × (1 + 1
2 t) ,

ε

2× LS(x′) ).

Inequalities on the left in (∗) is simply requiring that the sequence (λk)k is de-
creasing. We only need to prove the monoticity in the case LSk+1

LSk
≥ (1 + 1

2 × t).
For that, we consider the following two cases:

• Case 1 : λk = ε
2LSk . Obviously, we have ε

2LSk ≥
ε

2LSk+1
. Moreover,

we have λlk+1 ≤ λk+1 (by monoticity in the previous steps), and then
λlk+1 ≤ ε

2LSk+1
. Hence, in order to have λk ≥ λk+1, it is sufficient that

the following holds:

ε

2LSk
≥ ε

2LSk+1
× (1 + 1

2 × t).

This is the case since we are in the situation where LSk+1
LSk

≥ (1 + 1
2 × t).

• Case 2 : λk = λlk×(1+ 1
2×t). This is clear that level lk decreases as k itself

decreases. Hence by monoticity in previous steps, we have λlk ≥ λlk+1 .
As required, it follows that

λk ≥ min( λlk+1 × (1 + 1
2 × t) ,

ε

2LSk+1
).

To finish the proof, we need to show inequalities on the right in (∗). This is a
straightforward consequence of the choice of λk in LLS. Indeed, λk is calibrated
to λlk × (1 + 1

2 × t) which is, by definition of lk, the lowest possible value of
λl × (1 + 1

2 × t) among possible upper neighbors l ∼ k, l > k. �

8.3 A proof for theoretical estimation in the case of well-
oredered databases

Our utility analysis of LLS mechanism relies on Proposition 12, which is the
case of well-ordered databases.

Proof of Proposition 12 Since we consider well-ordered databases for
which sensitivities always satisfy LSk+1

LSk
≥ 1 + t

2 , each step in Algorithm 1 is a
jump, that is we define λk to be min( ε

2LSk , λlk × (1 + t
2 )) for each 1 ≤ k ≤ r.

Moreover, since instances in level Dk can have neighbors only in Dk−1 or Dk+1,
it is clear that we have τk = k − 1 and lk = k + 1 for all k. In particular, we
have λlk = λk+1 and then λk = min( ε

2LSk , λk+1 × (1 + t
2 )).
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Now notice that the inequalities λk+1 × (1 + t
2 ) ≤ ε

2LSk for all k. Indeed, this
follows from a simple induction and the following inequalities:

λk+1 × (1 + t

2) ≤ λk+1 ×
LSk+1

LSk

≤ ε

2LSk+1
× LSk+1

LSk

= ε

2LSk
.

Hence we have λk = λk+1× (1 + t
2 ) for all k. The result follows from a straight-

forward induction. �

8.4 Relationship with Smooth Sensitivity calibrated noise
In [16], the authors introduced the notion of Smooth Sensitivity, a notion of
sensitivity between the local sensitivity and the global sensitivity, designed to
achieve private algorithms with better accuracy than those calibrated on the
global sensitivity. Smooth Sensitivity is a particular case of the following notion
of β-smooth upper bound.

Definition 16 (β-smooth upper bound). Let β > 0, and let f : D → R
be a query. A function S : D → R+ is a β-smooth upper bound on the local
sensitivity LS(f) if the following conditions hold for all x ⊂ D:
(i) S(x) ≥ LS(f)(x);
(ii) S(x) ≤ eβ × S(x′) for all x′ ∼ x.

Global sensitivity GS(f) is a (constant) 0-upper bound on LS(f). The β-
smooth sensitivity is another example of β-smooth upper bound.

Definition 17 (β-smooth sensitivity). Let β > 0, and let f : D → R be a
query. The β-smooth sensitivity S∗f,β of f is defined by

S∗f,β(x) = max
y⊂D

( LS(f)(y)× e−βd(x,y) )

where d(x, y) is the number of individuals on which the databases x and y differ.

The authors of [16] show that β-smooth sensitivity of a query f is the optimal
β-smooth upper bound on LS(f). Lemma 2.5 in [16] states that the previous
instance-based noise is (ε, δ)-differentially private for λx = ε

2×S(x) , where S is a
β-smooth upper bound on local sensitivity with β = ε

2×ln(1/δ) .
It appears that Lemma 2.5 in [16] is an easy consequence of our new Theorem

8, for a suitable choice of parameters αx, λx. Indeed, let S be a β-smooth upper
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bound on LS(f), and fix β = ε
2×ln(1/δ) . Take αx = 1

2 and λx = ε
2×S(x) . For

β > 0, we have 1 − eβ ≤ β. Since S is a β-smooth upper bound on local
sensitivity, we have for all x′ ∼ x,

|1− S(x)
S(x′) | ≤ |1− e

β |

≤ β

≤ ε

2 ×
1

ln(1/δ) .

Hence condition 2 of the assumptions statement in Theorem 8 is satisfied. More-
over, condition 1 is straightforward since S is an upper bound on local sensitivity
LS. Then, Theorem 8 asserts that (ε, δ)-differential privacy is guaranteed by
this choice of parameters.

8.5 More details about Section 5.2
First we give the proof of Proposition 15.

Proof of Proposition 15 Recall that for a graph H, the upper bound
LS(H) = 5

2×aH on local sensitivity LS(H) is obtained from aH = maxe∈H+e′,e′ /∈H a
H+e′
e ,

where aH+e′
e denotes the number of triangles in graph H + e′, involving edge e.

We need to show |aH − aH′ | ∈ {0, 1} for all H ∼ H ′. So let H,H ′ be two
neighbor graphs. Without loss of generality, we can assume that H ′ = H + e
for some edge e /∈ H. It is straightforward that the inequality aH ≤ aH′ holds.

To prove the other required inequality, note that proving the following asser-
tion is sufficient: for all pair of edges (e1, e2), e2 /∈ H ′ there exist a pair (e3, e4),
e4 /∈ H such that aH′+e2

e1
≤ aH+e4

e3
+ 1.

Let (e1, e2) be a pair of edges such that e2 /∈ H ′. Set e3 = e1 and e4 = e2.
Note that e4 /∈ H since we have e2 /∈ H ′ and H ⊂ H ′. The result follows from a
simple geometric fact: adding an edge to H+e2 (to obtain H ′+e2) can increase
the number of triangles involving e3 by at most 1. Indeed, two situations can
occur:

1. The graph H + e2 contains at least one pair of adjacent edges of the form
(e3, e

′′). In that case, the edge e adds one triangle if it completes one f
the pairs (e3, e

′′), or does not impact the number of triangles involving e3
otherwise.

2. Edge e3 is not involved in such a pair in graph H + e2. In that case, the
addition of edge e has no impact on the number of triangles involving e3.

�

In figure 9, we provide details on how mechanism LLS performs its compu-
tation on the basic example introduced in Section 5.2.
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Algorithm LLS
Input: graph G, query f2∆,
privacy parameters ε, δ
Output: private value for f2∆(G)
. set t = ε

ln(1/δ)
. LS(H) = 15/2
. LS4 = 10 and λ4 = ε

20
. LS(H) 6= LS4
. LS3 = 15/2
. τ4 = 3
. LS2 = 5
. τ3 = 2
. if LS4

LS3
< (1 + 1

2 × t),
. λ3 = ε

20
. else l3 = 4
. λ3 = min( ε

15 ,
ε

20 × (1 + t
2 ))

. end if

. LS(H) = LS3, return 3 + Lap(λ3)

Figure 9: Our instance-based noise algorithm LLS on a simple graph query
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