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Abstract

Many papers have proposed elliptic curves which are faster and easier to implement than
the NIST prime-order curves. Most of these curves have had fields of size around 2256, and
thus security estimates of around 128 bits. Recently there has been interest in a stronger curve,
prompting designs such as Curve41417 and Microsoft’s pseudo-Mersenne-prime curves.

Here I report on the design of another strong curve, called Ed448-Goldilocks. Implementa-
tions of this curve can perform very well for its security level on many architectures. As of this
writing, this curve is favored by IRTF CFRG for inclusion in future versions of TLS along with
Curve25519.

1 Introduction

Since Edwards’ discovery of a new elliptic curve form in 2007 [11], implementors have produced
a steady stream of implementations in this form. Edwards curves tend to be easier to implement
securely than the previously used curve shapes, because they support complete addition formulas.
These formulas do not have exceptional cases which would lead to a division by zero [3]. Edwards
curves are also faster, and have marginally simpler formulas as well. However, curves in Edwards
or twisted Edwards form always have a cofactor divisible by 4, so prime-order curves such as the
NIST curves cannot be put in this form.

Until recently, most Edwards curve implementations have been for fields of size around 2256 [2, 3,
7, 8, 12, 15, 17, 18, 22], making them comparable in security to NIST-P256 and AES-128 standards.
However, recently several authors have proposed elliptic curves with field sizes ranging roughly from
336 bits to 521 bits [1, 4, 9, 21].

Here I detail the design of an Edwards curve with a 448-bit field. I hope that this curve
will provide enough security to satisfy conservative users, but still be fast enough for those who
are performance-conscious. It would therefore be useful as a more conservative supplement to
Curve25519 and Ed25519.

As of early June 2015, the Internet Research Task Force Crypto Forum Research Group (IRTF
CFRG) favors Ed448-Goldilocks for inclusion in future TLS standards [20].

2 Security rationale

Before going on, it is important to consider why a stronger elliptic curve would be desirable. In
particular, why would anyone need a curve stronger than the existing 256-bit-field curves? These
curves are said to require about as much work to break as AES-128 (e.g. Curve25519 has work
factor W := 1

2 log q ≈ 126), but in strong attack models they may require more work than AES.
Depending on the mode, symmetric encryption may be susceptible to multiple-target attacks, which
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could allow an attacker to recover the first key of n targets in time approximately 2128/(n+ 1). For
elliptic curves, batch attacks do not speed up the recovery of the first key, only of subsequent ones.

What sorts of attacks might break an elliptic curve with a conjectured security level near 128
bits? Here are several possibilities:

• An attacker could use brute force. This is unlikely to be feasible for several decades at least,
but designers might be concerned about it for very long-term security.

• An attacker might build a quantum computer capable of running Shor’s algorithm. This
would break every elliptic curve cryptosystem which could fit in that computer’s memory, so
a larger curve would not be helpful.

• A mathematical breakthrough might render all elliptic curve cryptography weak, or at least
much weaker than expected. Depending on the breakthrough, a larger curve might resist
attack due to its size, or it might fall along with the smaller ones.

• A breakthrough might break only curves with special properties, such as complex multiplica-
tion or a certain field shape. Or it might break all curves which do not have those properties.

• A protocol might have a loose security bound, and might allow an attacker to break it with
only a tiny fraction of the work of solving the discrete log problem. This might enable an
attack on curves which were previously out of reach, but only in that protocol.

• Security bugs or side channels might compromise an implementation. The defense against
this is simplicity, not field size.

• Security architects might want to over-engineer a system, for marketing or just for extra
confidence. Or having already done this, they might want to migrate from the NIST or
Brainpool elliptic curves to an Edwards curve, without weakening their design.

Some of these issues can be mitigated by using a curve which is slightly bigger, such as Scott’s curve
modulo 2336−3 [21]. Others favor a curve which is significantly larger, but it is difficult to evaluate
exactly how large. If a significantly larger curve is chosen, the usual work factor estimate means
almost nothing, since any attempt to attack such a curve would require a significant breakthrough
to obsolete that estimate.1

I decided to design a curve in the “significantly larger” or “overkill” level. The currently popular
curves in this space include NIST [19] and Brainpool curves [10] at 384, 512 and 521 bits, so I aimed
for something in this range. Since it is always possible to use a larger curve at the cost of worse
performance, I aimed to find the best trade-off between performance and field size. I followed the
safecurves.cr.yp.to policies for curve generation to avoid known mistakes and to demonstrate
that nothing is up my sleeve.

I propose Ed448-Goldilocks as a single high-strength curve for new designs. It is tempting to
suggest a 384- and a 521-bit curve to match the existing NIST and Brainpool sizes. But there is
really no need to have an “overkill” curve and a “more overkill” curve: users will just use one and
not the other.

3 Field choice

Having settled the curve shape and generation method, the remaining major choice is the field.
Following Safecurves, I used a prime-order field. That leaves at least six families of desirable primes:

1Similarly, for ciphers with > 128-bit keys, the security margin is more informative than the actual key length.

safecurves.cr.yp.to


3.1 Possible prime shapes

Random primes. Brainpool-style random primes are an interesting option, as they would pre-
clude hypothetical attacks based on special field forms. However, this comes at a severe performance
impact, and it is more difficult to argue that the coefficients have been chosen randomly rather
than maliciously. What’s more, lacking any information about attacks on “fast” fields, it seems
better to spend performance on a larger field instead of on a random field. So I chose a large, fast
field instead.

Mersenne primes. The Mersenne prime 2521 − 1 is a good option, with very good performance
for its size. I implemented and tested the curve E-521 on Haswell, with benchmarks shown in
Section 6. But this prime is enormous, and I believe that a less extreme level of overkill would
allow wider deployment.

Crandall primes (2k− c). These are a very popular option, and for good reason. However, they
have an important constraint to get the best possible performance. To limit carry propagation
during multiply-reduce, c should be small. This limits the fastest Crandall choices to a few options,
such as 2379 − 19, 2389 − 17, and 2414 − 17.

Special Montgomery primes (2kc−1). The advantage of special Montgomery primes is mainly
in carry propagation on full-radix implementations. But primes greater than about 2256 favor
vectorized multiplication on ARM and reduced-radix multiplication on x86-64, and these require
changes to carry propagation anyway. So this prime shape loses its advantage, and has several dis-
advantages, particularly more complex direct reduction and more bias from hash-truncate-reduce.

Granger-Moss primes (ΦN (k)). These primes are very fast on 64-bit machines at around 240
or 360 bits [13], and they vectorize reasonably well. But they require one specific implementation
method, which means that they may suffer performance problems on platforms other than their
target platform. Furthermore, these primes do not work as well past 360 bits of field size. This is
essentially because 9 is not prime, so that Φ9 has degree only 6.

Solinas primes (2k − 2` ± . . . ± 1). These primes can be very fast, but only if they have few
coefficients and those coefficients are on powers of the radix. For example, the NIST primes have
32-bit-aligned exponents, so they work better on 32-bit platforms using a 32-bit radix. Because I
wanted a curve which would be fast on multiple platforms, I selected a prime with as few coefficients
as possible (3, for non-Mersenne primes) and which aligns to several different radices.

3.2 The Goldilocks prime, 2448 − 2224 − 1

I chose the Solinas trinomial prime p := 2448 − 2224 − 1. I call this the “Goldilocks” prime because
its form defines the golden ratio φ ≡ 2224. Because 224 = 32 ·7 = 28 ·8 = 56 ·4, this prime supports
fast arithmetic in radix 228 or 232 (on 32-bit machines) or 256 (on 64-bit machines). With 16, 28-bit
limbs it works well on vector units such as NEON. Furthermore, radix-264 implementations are
possible with greater efficiency than most of the NIST primes.



Karatsuba The main advantage of a golden-ratio prime is fast Karatsuba multiplication. Let
φ = 2224 as above. Then

(a+ bφ) · (c+ dφ)

= ac+ (ad+ bc)φ+ bdφ2

≡ (ac+ bd) + (ad+ bc+ bd)φ (mod p)

= (ac+ bd) + ((a+ b)(c+ d)− ac)φ

This can be evaluated particularly efficiently by considering individual limbs spaced apart by φ at
the same time.

Implementation on 32-bit platforms The coefficients of this prime are 32-bit aligned, so
it should admit a fast packed radix-232 implementation with 14 limbs. But even on most 32-bit
platforms, this may not be the best option. Carry propagation is expensive, especially with a vector
unit. Instead, the prime can be implemented with radix 228 and 16 limbs. If each limb enters the
multiplication routine less than 228 ·c for some c, then the largest coefficient before reduction will be
at most 38 · 256 · c2. This will be less than 264 if c < 24/

√
38 > 5/2. A tiny correction is required to

prevent overflows during carry propagation itself, but the result is still > 5/2. So implementers can
begin with coefficients reduced to less than 228 · 5/4, and can still perform one unreduced addition
to each multiplicand without the possibility of overflow.

Karatsuba multiplication does not change this analysis so long as the strategy is to compute
each coefficient and then reduce. Even if the accumulator overflows and underflows during the com-
putation, it will still end up correct. Overflow can still cause problems with saturating arithmetic,
such as ARM NEON’s VQDMLAL, so in practice c is bounded more tightly around 2.

The resulting formulas vectorize well, at least on ARM NEON. A signed-limb representation
might reduce the cost of subtraction at some cost during reduction, but I haven’t tested this.

Implementation on 64-bit platforms Likewise, 64-bit implementations can use radix 256 and
8 limbs. But they can add and subtract many times without the possibility of overflow, magnifying
reduced limbs by a factor of up to 41 < 28/

√
38. Vectorization is less important on 64-bit platforms

because the integer scalar multiplier is usually the fastest one on the core. But vectors are still
useful for the initial Karatsuba additions, for the add/sub routines and for constant-time selection
and swapping.

If only 64-bit machines need to be supported, then the even larger “Ridinghood” prime, 2480−
2240 − 1, gives almost as good performance as Goldilocks.

Elligator compatibility and nonce choice Note that the bias in a random variable created
by simply choosing a 448-bit input and reducing mod p is about 2−224, or 1/

√
p. So noticing this

bias is comparably expensive to a rho-attack on the curve. This means that p is easy to use with
Elligator [5].

Likewise, the order 4 · q of any curve modulo p is within 3 · 2224 of 2448 by Hasse’s bound.
Therefore it is safe to produce scalars by truncating a random string to 446 bits. This bias mod
q from this method is a negligible 3 · 2−224. The more conservative method of choosing a random
512-bit number and reducing modulo q is also safe.



4 Curve coefficients

I chose an untwisted Edwards curve, i.e. one of the form

Ed : y2 + x2 = 1 + dx2y2

To demonstrate that there is nothing up my sleeve, I chose d as small as possible in absolute value
so that Ed and its twist both have 4·prime order, and so that the order of the curve is less than
p. This last restriction was for ease of implementation, but it doesn’t matter because the least d
already gives a curve of order less than p.

The Goldilocks d is −39081. The resulting curve satisfies the other Safecurves criteria, as
shown on safecurves.cr.yp.to. In particular, because d is not square in Z/pZ, the strongly
unified Edwards point addition formulas apply.

The order of the curve is

4 · q := 4 ·

2446 −

 0x8335dc163bb124b651 \
29c96fde933d8d723a7 \
0aadc873d6d54a7bb0d


and the order of its twist is

4 ·

2446 +

 0x335dc163bb124b651 \
29c96fde933d8d723a7 \
0aadc873d6d54a7bb0d


CFRG has specified the generator on the 4-isogenous Montgomery curve to be the order-q

point with the least u-coordinate (u = 5), as in Curve25519. This corresponds to a generator of
the Edwards curve, namely(

−
√

5

3
,
0xae05e9634ad7048db359d6205086c2b0036ed7a035884dd7b7e36d7 \
28ad8c4b80d6565833a2a3098bbbcb2bed1cda06bdaeafbcdea9386ed

)

where due to the golden ratio prime shape,

−
√

5/3 =
0xaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa \
955555555555555555555555555555555555555555555555555555555

Note: The base point was changed from the first revision of this paper by adding the 2-torsion
element (−1, 0). The point in the earlier revision had order 2q, but this one has order q.

5 Implementation

I have written and published an implementation of Ed448-Goldilocks. The implementation on most
platforms uses C with assembly intrinsics for multiply-and-accumulate, and compiler extensions for
vector arithmetic. However, the NEON implementation uses an assembly implementation of a
complete field multiplication. This is because on most platforms, I was able to achieve nearly
assembly-level performance with a mostly-C-level implementation, but on NEON I was unable to
do so.

The implementation uses the “Decaf” strategy [16] to implement a prime-order group 2E/E [2]
from the cofactor-4 curve. It includes a library with general point operations, complete point and



scalar arithmetic, scalar multiplication, point compression, and invertible maps to the curve. It
includes several example crypto primitives.

The Decaf strategy works the same on an Edwards curve and on the 4-isogenous Montgomery
and twisted Edwards curves. Therefore the implementation internally uses the slightly faster twisted
Edwards form, with a = −1 and d = −39082.

Key generation The key generation algorithm uses the signed all-bits-set combs algorithm. On
64-bit platforms it uses 15kiB of tables (5 comb tables, 5 teeth per comb, 3 coordinates per point,
expanded to 32 bytes per coordinate). On 32-bit platforms it instead uses 12kiB of tables (8 combs,
4 teeth per comb).

Signing The signature algorithm produces Schnorr signatures. It uses the same combset as the
key generation algorithm.

Verification The verification algorithm runs in variable time, using wNAF and a 6kiB precom-
puted table with multiples of the generator. Verification can in principle be batched, but I haven’t
tested this.

ECDH ECDH uses the Montgomery ladder, which is marginally faster than an Edwards scalar
multiplication because it doesn’t need to decompress the input point. The Montgomery ladder is
enhanced to preserve sign information and to reject points on the twist, even though it is believed
to be safe to allow them. It is therefore a drop-in replacement for an Edwards scalar multiplication.

5.1 Source code

The source code for my Ed448-Goldilocks implementation is available at http://sourceforge.

net/p/ed448goldilocks/code/ci/decaf/tree/ under an MIT license.

6 Benchmarks

To assess the performance of Ed448-Goldilocks vs. alternative curves, I ran key generation, ECDH,
signing and verification tests on each alternative on several benchmarking machines.

I measured seven different curves. It is important to note that the implementation effort,
time/memory tradeoffs, particular functions measured and measurement technique differ by curve
and by platform.

• Goldilocks. This is a prime-order sub/quotient group of the Ed448-Goldilocks curve, using
the Decaf point compression method to remove the cofactor. It is implemented in C on x86-64
and ARM scalar, with intrinsics for word multiply and accumulate. On ARM NEON, the
entire field multiplication and squaring routines are written in assembly, because my attempts
with intrinsics gave poor performance. I measured performance with supercop-fastbuild [6].

• E-521. This is a 2q-order subgroup of E-521, from on an older branch of the Ed448-Goldilocks
code base. It implements point compression, but not complete cofactor removal. It is imple-
mented only on x86-64 using C with intrinsics, and is specifically tuned for processors with
AVX2. I measured performance with make bench.

http://sourceforge.net/p/ed448goldilocks/code/ci/decaf/tree/
http://sourceforge.net/p/ed448goldilocks/code/ci/decaf/tree/


Haswell A9 A8+NEON
goldilocks shared secret 531k 3.5M 1.8M
goldilocks keygen 166k 1.5M 599k
goldilocks sign 162k 1.5M 632k
goldilocks verify 588k 3.8M 1.9M

e521 shared secret 803k
e521 keygen 234k
e521 sign 243k
e521 verify 875k

ed-384-mers-variable (ecdh) 500k 9.9M 7.9M
ed-384-mers-fixed (keygen) 185k 3.2M 2.7M
ed-384-mers-db (verify) 508k 9.9M 7.6M

ed-512-mers-variable (ecdh) 1.1M 22 M 20 M
ed-512-mers-fixed (keygen) 357k 6.5M 6.5M
ed-512-mers-db (verify) 1.1M 22 M 21 M

openssl ecdh-p256 236k 4.4M 4.8M
openssl ecdsa-sign-p256 133k 1.2M 1.3M
openssl ecdsa-verify-p256 333k 5.2M 5.8M

openssl ecdh-p384 2.1M 11.1M 12.8M
openssl ecdsa-sign-p384 618k 2.7M 3.0M
openssl ecdsa-verify-p384 2.6M 13.2M 15.4M

openssl ecdh-p521 1.8M 24.2M 29.3M
openssl ecdsa-sign-p521 1.1M 5.4M 6.3M
openssl ecdsa-verify-p521 2.5M 29.7M 34.4M

Figure 1: Ed448-Goldilocks benchmarks vs OpenSSL 1.0.1f / 1.0.2 and MSR ECCLib 1.2. The
Haswell measurements are on a Core i7-4790 at 3.6GHz with hyperthreading and TurboBoost
disabled, and OpenSSL 1.0.2. The Cortex A9 numbers are from a 1GHz Tegra 2 processor in a
TrimSlice, with OpenSSL 1.0.1f. The Cortex A8+NEON numbers are on an AM335x BeagleBone
Black at 1GHz with OpenSSL 1.0.1f.

The E-521 code is particularly sensitive to compiler options, possibly due to alignment sen-
sitivity. I’ve reported the most favorable time for ECDH, 803kcy, but different versions and
compilation flags give up to 860kcy on the same machine.

• ed-384-mers. This is the ed-384-mers group with cofactor 4, as implemented in MSR EC-
CLib 1.2. On x86-64, all field arithmetic is implemented entirely in assembly language, but
without the (small) benefit of the Haswell BMI2 intrinsics. On ARM it is implemented in
C. MSR ECCLib does not implement point compression, which gives it an advantage in sig-
nature verification speed. However, its key generation algorithm is not as optimized as the
one Goldilocks uses, and uses smaller precomputed tables. I measured performance with
./ecc tests.

On ARM, I did minimal modification of the compilation flags and source to ensure that -mcpu
was set correctly and that the multiplication and squaring inner loops were unrolled, but the
code should not be regarded as optimized.

• NIST secp256r1, secp384r1, secp521r1. These are implementations of short Weierstrass curves



without point compression. They include the Gueron and Krasnov [14] optimizations for
secp256r1 on x86-64, but the ARM implementations are relatively unoptimized. I measured
performance with openssl speed.

The benchmarks are shown in Figure 1. The benchmarks are taken with hyperthreading and
TurboBoost disabled. The software used in this benchmark varies widely, so it is important to take
these numbers with a grain of salt. It is seen that both Ed448-Goldilocks and MSR ed-384-mers are
around 4x as fast as OpenSSL’s implementation of NIST-P384 on x86-64, and on ARM Goldilocks
is faster even than OpenSSL’s NIST-P256. Additionally, Ed448-Goldilocks can take advantage of
ARM NEON for a ≈ 2× speedup.

Compared to ed-384-mers, Ed448-Goldilocks is some 17% faster for key generation, 16% slower
for verification and 6% slower for ECDH. These differences are exaggerated by implementation
details. Goldilocks’ use of point compression slows down verification, and its larger and better-
tuned combset make it faster on key generation.

Unfortunately, while Ed448-Goldilocks had 32-bit performance as a design requirement, no fair
comparison is available on 32-bit platforms because the implementations are too different. One
could compare reference implementations, where Goldilocks and ed-384-mers take about the same
amount of time: some 11-13 million Cortex-A9 cycles for ECDH depending on the source branch
and compiler. But this is mostly a benchmark of which optimizations are still present in the
reference implementation.

When designing Goldilocks, I hypothesized that timings within the same implementation strat-
egy should roughly follow a power law t ∝ bk, where b is the bits in the field size and k is some
exponent, and therefore that bk/t might be described as an “efficiency score”. I evaluated designs
with Karatsuba’s k = 1 + log 3/ log 2, which works surprisingly well even though not all the designs
use Karatsuba multiplication. In arbitrary units2, Ed448-Goldilocks and E-521 score 3.3 and 3.1 by
this metric. ECCLib’s ed-384-mers and ed-512-mers both score 2.3, and the optimized secp256r1
scores 1.4. By this metric, Goldilocks is about 40% more efficient than either ed-mers curve on
Haswell.

7 Conclusions

Ed448-Goldilocks is a conservatively designed elliptic curve with very competitive performance on
a wide variety of platforms. It is a suitable choice for standardization as an alternative to both
secp384r1 and secp521r1.
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