
The leaking battery

A privacy analysis of the HTML5 Battery Status API

 Lukasz Olejnik1, Gunes Acar2, Claude Castelluccia1, and Claudia Diaz2

1 INRIA Privatics, Grenoble, France
{lukasz.olejnik,claude.castelluccia}@inria.fr

2 KU Leuven, ESAT/COSIC and iMinds, Leuven, Belgium
{gunes.acar,claudia.diaz}@esat.kuleuven.be

Abstract. We highlight privacy risks associated with the HTML5 Battery Status API.
We put special focus on its implementation in the Firefox browser. Our study shows that
websites can discover the capacity of users’ batteries by exploiting the high precision
readouts provided by Firefox on Linux. The capacity of the battery, as well as its level,
expose a fingerprintable surface that can be used to track web users in short time intervals.
Our analysis shows that the risk is much higher for old or used batteries with reduced
capacities, as the battery capacity may potentially serve as a tracking identifier. The
fingerprintable surface of the API could be drastically reduced without any loss in the API’s
functionality by reducing the precision of the readings. We propose minor modifications to
Battery Status API and its implementation in the Firefox browser to address the privacy
issues presented in the study. Our bug report for Firefox was accepted and a fix is deployed.

1 Introduction

HTML5 Battery Status API enables websites to access the battery state of a mobile device or a
laptop. Using the API, websites can check the battery level of a device and use this information
to switch between energy-saving or high-performance modes. All the information exposed by the
Battery Status API is available without users’ permission or awareness.

The “Security and privacy considerations” section of the W3C specification that describes
the Battery Status API, states the following: “The information disclosed has minimal impact on
privacy or fingerprinting, and therefore is exposed without permission grants” [14]. Our findings,
however, show that the API, as implemented by the Firefox browser on GNU/Linux operating
system, enables fingerprinting and tracking of devices with batteries in short time intervals.

As of June 2015, Firefox, Chrome and Opera are the only three browsers that supported the
Battery Status API [3]. Although the potential privacy problems of the Battery Status API were
discussed by Mozilla and Tor Browser developers as early as in 2012 [2, 1, 22], neither the API,
nor the Firefox implementation, has undergone a major revision. We hope to draw attention to
this privacy issue by demonstrating the ways to abuse the API for fingerprinting and tracking.

We present an analysis of Battery Status API as implemented by Firefox on GNU/Linux.
Our analysis indicate that seemingly innocuous information provided by the Battery Status API
can serve as a tracking identifier when implemented incorrectly.

The core contributions of this work are:

1. We present a new device fingerprinting vector based on the Battery Status API. We show
that the Firefox’s implementation of the Battery Status API allows the discovery of battery’s
capacity, provides short-term identifiers that facilitates tracking and potentially can be used
for reinstantiating identifiers (respawning).

2. We propose a solution that reduces the Battery Status API’s fingerprintable surface by round-
ing the level readings provided by the API. Our fix does not cause any loss in the effective
functionality of the API. We filed a bug report for Mozilla Firefox to communicate the prob-
lem and the proposed solution [20]. The fix was quickly implemented and deployed by Mozilla
engineers in response to our bug report.

2 Related work

The Panopticlick [9] study by Eckersley demonstrated the feasibility of browser fingerprinting
for online tracking by measuring the entropy present in the browser properties such as screen
size, list of system fonts and browser plugins. Other researchers demonstrated the many ways
browsers can be fingerprinted using different properties, such as clock skew [13], font metrics [10],
network protocol characteristics [7], JavaScript engine performance [16], WebGL and canvas
rendering [17].

Recently, studies measured the prevalence of the browser fingerprinting on the Web [19, 5,
4], suggesting that questionable practices such as proxy circumvention or stealthy techniques to
exercise browser fingerprinting are commonly used by the websites.

In a similar vein, researchers studied zombie cookie (or evercookie) which is another tracking
mechanism that can be used to reconstruct tracking identifiers - even if the user decides to clear
her history [12] - with the use of Flash cookies [21], ETags [6] and other vectors.

A recent work, indepentend to ours, includes a very short note about the possible use of
Battery API as a potential privacy risk vector [18]. The problem is not further described or
analyzed, and the authors only mention potential risks due to monitoring of charging and dis-
charging rates. In essence, our analysis is more extensive and detailed. Moreover, we describe a
clear risk in relation to Firefox browser and study it in detail.

3 Background

3.1 Battery Status API

World Wide Web Consortium’s (W3C) Battery Status API allows the reading of battery status
data. Among the offered information are the current battery level and predicted time to charge or
discharge. The respective properties level, chargingTime and dischargingTime can be accessed
in JavaScript by first calling the navigator.getBattery() method 3 to get a BatteryManager

object which then exposes these properties.

The API does not require user permission to read the battery information, any website or
third-party scripts included on them, can use the API. The API also does not require browsers
to notify users when the battery information is accessed. That allows website and third-party
scripts to access the battery information transparently - without users’ awareness.

The Battery Status API also provides JavaScript event handlers that allow the monitoring
of updates to battery status. The API defines the level property as a double-precision floating-
point number, taking values between 0 (depleted) and 1.0 (full) [14].

3 Firefox does not implement navigator.getBattery() method, instead, it exposes a
navigator.battery object.

3.2 Power information under Linux

In our exploratory survey of the Battery Status API implementations, we observed that the
battery level reported by the Firefox browser on GNU/Linux was presented to Web scripts with
double precision. An example battery level value observed in our study was 0.9301929625425652.
We found that on Windows, Mac OS X and Android, the battery level reported by Firefox has
just two significant digits (e.g. 0.32).

Analyzing the Firefox source code, we found out that the battery level is read from UPower, a
Linux tool allowing the access to the UPower daemon [11]. The UPower daemon provides access
to comprehensive power-management data about the device. Specifically, it enables the access
to detailed information about the battery status such as capacity, level, voltage and provides
estimates about the discharge and charge times.

Analyzing the UPower source code (linux/up-device-supply.c) to understand how it com-
putes the battery level, we compiled the following equations:

BatteryLevel = 0.01 × Percentage (1a)

Percentage = 100.0 × Energy

EnergyFull
(1b)

Energy =
ChargeNow

1, 000, 000
×DesignV oltage (1c)

EnergyFull =
ChargeFull

1, 000, 000
×DesignV oltage (1d)

The Energy is the current amount of energy present in the battery and measured in watt-
hours. EnergyFull is also measured in watt-hours and represents the maximum possible amount
of energy that can be stored in the battery. The ChargeNow and ChargeFull are measured in
µAh and represent the current and maximum charge capacities of the battery respectively. Note
that, due to the aging of the battery, EnergyFull tend to be lower than the design capacity of
the battery, moreover, it can also change after a discharge, followed by a full charge – possibly
for calibration purposes. Although many batteries share the same design capacities (e.g. 48.84
Wh or 62.16 Wh), as they age in time, their capacities may be reduced in different amounts,
resulting in a diverse number of possible EnergyFull values, which are internally stored with four
decimal places (e.g. 42.1678).

Since Firefox browser under Linux is accessing the UPower-provided data, it reads the Per-
centage value in 64 bit double precision floating point format and multiplies it by 0.01 to obtain
the battery level as shown in 1(a). The level value is then exposed to website scripts through the
Battery Status API in double precision.

As noted above, the EnergyFull value may change, as the battery capacity degrades. The
UPower daemon updates the current capacity by comparing the EnergyFull to the latest value
stored when the battery is fully charged.

4 Tracking with the Battery Status API

We measure the extent to which it is possible to link (and track) a device with battery using
the battery level and charge/discharge time readouts. We observe how it could be leveraged for
fingerprinting and tracking across sites. Moreover, we present a method to recover the battery’s
effective capacity (EnergyFull) using the precise battery level readouts provided by Firefox on
Linux.

4.1 Tracking across sites

In this section, we discuss several potential fingerprinting and tracking scenarios. A third-party
script that is present across multiple websites can link users’ visits in a short time interval by
exploiting the battery information provided to Web scripts. In order to do that, scripts can use
the values of battery level, dischargingTime and chargingTime. The readings will be consistent
on each of the sites, because of the fact that the update intervals (and their times) are identical.
This could enable the third-party script to link these concurrent visits. Moreover, in case the
user leaves these sites but then, shortly afterwards, visits another site with the same third-party
script, the readings would likely be utilized to help in linking the current visit with the preceding
ones.

Below we analyze more specific cases.

Frequency of battery status changes We analyzed the update rates under different com-
puting loads (such as watching a movie, simply browsing the Web, etc).

We tested the rate of these changes by setting up a simple page and registering JavaScript
event handlers for battery status changes; we monitored JavaScript readouts of level and dis-
chargingTime, as well as the timestamps of these events. We analyzed the collected data for
relative time differences between level, chargeTime and dischargeTime changes. The results in-
dicated that for about 30 s, battery status may serve as a static identifier, allowing (e.g.) a
third-party script to link visits from the same computer in short time intervals.

Number of possible identifiers In our test setting, the lowest indication of dischargeTime
we observed was 355 (in seconds), and highest 40277 s. Assuming all the values spanning a
range (355, 40277) are possible, this gives 39922 numbers. We can also assume that users seeing
a near-drained battery generally connect their notebooks to AC power. Assuming users start to
charge their devices when the battery level is 0.1, this leaves 90 available battery level states
(0.11 to 1.0). The number of potential levels denoted by a tuple (level, dischargeT ime) would
then be a simple multiplication 90 × 39922 and the final number of possible states would be
3592980, which only accounts for the discharging state. Using the information about the battery
charge (chargingTime) could effectively double the number of possible states. The probability of
a (level, dischargeT ime) collision (between different users, and assuming a uniform distribution)
is therefore low and for a short time frame this would effectively be a unique identifier.

However, we emphasize that the dischargeTime levels can be subject to frequent changes,
in response to change in the users’ computer use patterns. This means that, in practice, the
risk of long-term tracking with this information may be negligible. Moreover, depending on the
battery level, some chargeTime or dischargeTime values may not be observed in practice 4. Yet,
the available combinations could be used to distinguish users behind a NAT (Network Address
Translation). In such a setting, the computers may have similar fingerprints [9] and often identical
public IP addresses. The readouts from the battery may allow distinguishing these users.

Reconstructing user identifiers in short-time intervals Users who try to re-visit a website
with a new identity may use browsers’ private mode or clear cookies and other client side iden-
tifiers. When consecutive visits are made within a short interval, the website can link users’ new
and old identities by exploiting battery level and charge/discharge times. The website can then
reinstantiate users’ cookies and other client side identifiers, a method known as respawning [21].

4 For instance, 355 s dischargeTime may be too short for a full battery or, 40277 s dischargeTime may
be too long for a battery with level 0.1.

Note that, although this method of exploiting battery data as a linking identifier would only
work for short time intervals, it may be used against power users who can not only clear their
cookies but can go to great lenghts to clear their evercookies.

5 Detecting battery capacity

In addition to using battery level and charge/discharge times for linking visits in short time
intervals, Battery Status API can be used to infer the current battery capacity (EnergyFull) of
a device if it allows high precision level readouts. In this section, we analyze the possibility of
fingerprinting a device by exploiting high precision battery level readouts provided by the Firefox
on Linux operating system.

We found that using the 64-bit double precision floating point battery level readouts from
Firefox on Linux, it is possible to discover the value of EnergyFull, which signifies the actual
battery capacity. We emphasize that our method only works for UPower and Firefox on Linux,
and during our study we encountered some computers for which we cannot recover the capacity
with our method. This can be due to the differences in how processors handle floating point
calculations 5 or measurement errors in UPower.

The attack works by using the equations 1a-1d by reading the battery level and finding
candidate Energy, EnergyFull and Voltage levels which may give this floating point number
reading. In order to do this, attacker may either brute-force the candidate values by testing all
possible values or precompute a lookup table.

5.1 Test method

Assuming a uniform space of EnergyFull values (X,Y), we tested all the hypothetical level
readouts to detect the possible identifiers. It is obvious that, for a given level reading, several
possibilities for EnergyFull level may exist. However, if the attacker has access to multiple battery
level readouts, the number of collisions becomes significantly smaller. We analyzed the number
of potential EnergyFull candidates as a function of the battery level readouts.

In other words, we computed the number of collisions for one battery level readout, State1.
For each such possible readout level, we simulated another different readout level (different
than the one in preceding state), State2 (battery levels in State1 and State2 are different). We
compared the candidate EnergyFull values in State1 and State2 and intersecting the sets of
possible EnergyFull levels, we effectively decreased the number of candidate EnergyFull values.
The number of EnergyFull candidates for a total of 1559 battery level readings are displayed
on Figure 1. Figure 2, on the other hand, shows the reduction of EnergyFull candidates when a
script is able read the battery level multiple times from the same device. The figure is based on
1559 battery level readings collected from a laptop running Ubuntu 12.04 operating system. We
highlight that such analysis is made possible due to the fixed space a floating-point value can
represent, and relatively limited capacities of batteries used in practice 6.

5 See, for example, [8, 15] on the “floating-point determinism problem.”
6 Observe that, possible capacities in this calculations include the reduced battery capacities (e.g. not

limited to battery capacities on the market). Still, we could find the candidate capacities on a off-the-
shelf computer without a significant computation overhead. We believe, an adversary with moderate
storage resources can easily build a lookup table to further reduce the computation time.

Fig. 1: Distribution of number of candidate battery EnergyFull values for a total of 1559 battery
level readings (runs). In 5% of the cases the attacker can detect the battery capacity with just
one reading.

6 Defense

In the following subsections we outline possible defenses against the exploitation of the Battery
Status API for fingerprinting and tracking.

6.1 Limiting the precision of level readouts

In order to limit the tracking and fingerprinting potential of the Battery Status API, the imple-
mentations should avoid providing high-precision values. By simply rounding the level value of
the battery, the threat would be minimized, without losing any functionality of the API. This
comment especially applies to platforms where the OS provides high-precision read-outs about
the battery.

We filed an appropriate bug report to Firefox implementation, pointing out the inconsistency
of level reporting across different platforms [20]. The fix was implemented and deployed as of
June 2015.

Moreover, we believe the Battery Status API could mention the risk of exposing high preci-
sion readouts in the “Security and privacy considerations” section of the standard. We plan to
communicate the results of the study to the editors of the API.

6.2 Asking for user permission to access the Battery Status API

We also discussed potential scenarios where even the reduced precision of the level readout and
charge/discharge times could constitute a tracking identifier in short time intervals. In these sce-
narios, the exposed battery information may allow an attacker to reinstantiate tracking identifiers
in a manner similar to evercookies.

In order to prevent this, browser vendors might require user permissions for accesing the
Battery Status API. Although this has been suggested by some concerned Mozilla developers [2],
final decision was to make the API available without permissions. We believe, as a minimum,

Fig. 2: Average number of candidate battery EnergyFull values as a function of consecutive bat-
tery level readings. Attacker can significantly reduce the number of candidate battery capacities
if he can read the battery level multiple times.

users should be able to choose to be asked for battery access by Web scripts. As an alternative,
browsers can enforce the user permission requirement in their private browsing modes.

To the best of our knowledge, the only browser that has a strong defense against fingerprinting
by the Battery Status API is Tor Browser. Tor Browser completely disables the API [22] to thwart
possible fingerprinting attempts.

Finally, the information on the API use could be made available to the user to aid trans-
parency. We are advocating for streamlining the information to users, either directly via the
browser’s user interfaces, or at least by allowing to read the respective information by custom-
made browser extensions. In this way, software could allow the users to learn and be aware about
the use of the battery information on devices they own.

7 Conclusion

We analyzed the privacy implications of the Battery Status API, with a focus on its implemen-
tation in Firefox for Linux operating system. Our analysis shows that the high precision battery
level readings provided by Firefox can lead to an unexpected fingerprinting surface: the detection
of battery capacity.

In short time intervals, Battery Status API can be used to reinstantiate tracking identifiers of
users, similar to evercookies. Moreover, battery information can be used in cases where a user can
go to great lenghts to clear her evercookies. In a corporate setting, where devices share similar
characteristics and IP addresses, the battery information can be used to distinguish devices
behind a NAT, of traditional tracking mechanisms do not work.

The analysis of Web standards, APIs and their implementations can reveal unexpected Web
privacy problems by studying the information exposed to Web pages. The complex and sizable
nature of the new Web APIs and their deeper integration with devices make it hard to defend
against such threats. Privacy researchers and engineers can help addressing the risks imposed by
these APIs by analysing the standards and their implementations for their effect on Web privacy
and tracking. This may not only provide an actionable feedback to API designers and browser
manufactureres, but can also improve the transparency around these new technologies.

References

1. Proposal for a smaller battery API . https://groups.google.com/forum/#!searchin/mozilla.

dev.webapi/Why$20is$20the$20battery$20API$20exposed$20to$20unprivileged$20content$3F/

mozilla.dev.webapi/6gLD78z6ASI/Sz1DH2gWN9wJ, 2012. Accessed: 24.6.14.
2. Why is the battery API exposed to unprivileged content? https://groups.google.com/forum/#!

topic/mozilla.dev.webapi/V361K7c0olQ/discussion, 2012. Accessed: 26.3.14.
3. Battery Status API - Can I use... Support tables for HTML5, CSS3, etc, 2014.
4. G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz.

The Web never forgets: Persistent tracking mechanisms in the wild. In
21st ACM Conference on Computer and Communications Security (CCS), pages 674–689. ACM,
2014.

5. G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens,
and B. Preneel. FPDetective: Dusting the Web for fingerprinters. In
20th ACM Conference on Computer and Communications Security (CCS), pages 1129–1140.
ACM, 2013.

6. M. Ayenson, D. J. Wambach, A. Soltani, N. Good, and C. J. Hoofnagle. Flash cookies and privacy II:
Now with HTML5 and ETag respawning. World Wide Web Internet And Web Information Systems,
2011.

7. Y.-C. Chen, Y. Liao, M. Baldi, S.-J. Lee, and L. Qiu. OS Fingerprinting and Tethering Detection
in Mobile Networks. pages 173–179, 2014.

8. B. Dawson. FloatingPoint Determinism — Random ASCII. https://randomascii.wordpress.com/
2013/07/16/floating-point-determinism/, 2013. Accessed: 31.8.15.

9. P. Eckersley. How unique is your web browser? In Privacy Enhancing Technologies, pages 1–18.
Springer, 2010.

10. D. Fifield and S. Egelman. Fingerprinting Web Users through Font Metrics. In
Financial Cryptography and Data Security (FC). Springer-Verlag, 2015.

11. R. Hughes. UPower Reference Manual. http://upower.freedesktop.org/docs/, 2010. Accessed:
22.6.14.

12. S. Kamkar. Evercookie. http://samy.pl/evercookie, 2010. Accessed: 24.6.14.
13. T. Kohno, A. Broido, and K. C. Claffy. Remote physical device fingerprinting. IEEE Transactions

on Dependable and Secure Computing, 2(2):93–108, 2005.
14. A. Kostiainen and M. Lamouri. Battery Status API, 2012.
15. D. Monniaux. The pitfalls of verifying floating-point computations. ACM Transactions on

Programming Languages and Systems (TOPLAS), 30(3):12, 2008.
16. K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham. Fingerprinting information in JavaScript

implementations. In Web 2.0 Workshop on Security and Privacy (W2SP), volume 2. IEEE, 2011.
17. K. Mowery and H. Shacham. Pixel perfect: Fingerprinting canvas in HTML5. In

Web 2.0 Workshop on Security and Privacy (W2SP). IEEE, 2012.
18. G. Nakibly, G. Shelef, and S. Yudilevich. Hardware fingerprinting using HTML5. CoRR,

abs/1503.01408, 2015.
19. N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and G. Vigna. Cookieless monster:

Exploring the ecosystem of web-based device fingerprinting. In Security and Privacy (SP), 2013 IEEE
Symposium on, pages 541–555. IEEE, 2013.

20. L. Olejnik. Bug 1124127 - Round Off Navigator Battery Level on Linux. https://bugzilla.

mozilla.org/show_bug.cgi?id=1124127, 2015. Accessed: 30.2.15.
21. A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J. Hoofnagle. Flash cookies and privacy. In AAAI

Spring Symposium: Intelligent Information Privacy Management, 2010.
22. Tor Bugs: TorBrowser Bundle. #5293 Hook charging+discharching rates in Battery API . https:

//trac.torproject.org/projects/tor/ticket/5293, 2012. Accessed: 24.6.14.

