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Abstract. Weil descent methods have recently been applied to attack
the Hidden Field Equation (HFE) public key systems and solve the el-
liptic curve discrete logarithm problem (ECDLP) in small characteristic.
However the claims of quasi-polynomial time attacks on the HFE sys-
tems and the subexponential time algorithm for the ECDLP depend on
various heuristic assumptions.
In this paper we introduce the notion of the last fall degree of a poly-
nomial system, which is independent of choice of a monomial order. We
then develop complexity bounds on solving polynomial systems based on
this last fall degree.
We prove that HFE systems have a small last fall degree, by showing
that one can do division with remainder after Weil descent. This allows
us to solve HFE systems unconditionally in polynomial time if the degree
of the defining polynomial and the cardinality of the base field are fixed.
For the ECDLP over a finite field of characteristic 2, we provide com-
putational evidence that raises doubt on the validity of the first fall de-
gree assumption, which was widely adopted in earlier works and which
promises sub-exponential algorithms for ECDLP. In addition, we con-
struct a Weil descent system from a set of summation polynomials in
which the first fall degree assumption is unlikely to hold. These exam-
ples suggest that greater care needs to be exercised when applying this
heuristic assumption to arrive at complexity estimates.
These results taken together underscore the importance of rigorously
bounding last fall degrees of Weil descent systems, which remains an in-
teresting but challenging open problem.

Keywords: HFE · ECDLP · Weil descent · solving equations · first fall
degree · last fall degree

1 Introduction

1.1 Zero-dimensional polynomial systems and Weil descent attacks

Zero-dimensional multivariate polynomial systems over finite fields arise in many
practical areas of interest including in cryptography and coding theory. As such,
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solving these systems has both practical and theoretical interest. For instance,
a major application is in the design of multivariate cryptosystems. One of the
earliest proposals for the multivariate cryptosystem was the HFE public-key
cryptosystem [21]. In recent years, polynomial solving also arises in elliptic curve
cryptography, specifically in the index calculus approach to solve the elliptic
curve discrete logarithm problem (ECDLP).

Many different approaches had been proposed to solve multivariate polyno-
mial equations over finite fields. The most common approach for generic polyno-
mial systems is via Gröbner basis algorithms [1,9,10]. Typically, a Gröbner basis
with respect to the degree reverse lexicographical ordering is first computed via
algorithms F4 or F5 [9,10]. It is then converted to a Gröbner basis with respect
to the lexicographical ordering by algorithms such as the FGLM algorithm [11]
which contains equations where variables are eliminated. This enables the vari-
ables to be solved one at a time. In general, it is very difficult to determine the
complexity of the Gröbner basis algorithm. Various authors have used the term
“the degree of regularity” to describe properties of a system that can be used to
obtain complexity results. However not all definitions of this term are equivalent.

Another approach to solve multivariate polynomial systems is the XL algo-
rithm and its variants [2–5,17]. This class of algorithms performs well when the
system under consideration is overdetermined, that is, the number of equations
far exceeds the number of variables.

In this present paper, we first introduce the notion of the last fall degree of a
polynomial system over a finite field. Our definition is intrinsic to the polynomial
system itself, independent of the choice of a monomial order. With this notion
at our disposal, we present an explicit algorithm to find all the roots of a zero-
dimensional multivariate polynomial system, bounding the complexity by the
last fall degree.

When the polynomial systems are over a field of cardinality qn, where q is
a prime power and n a positive integer, one can convert this system via Weil
descent to a system over its subfield with q elements (see Section 3 for more
details). This results in a polynomial system over a smaller field, but at the
expense of more variables. For example, Weil descent has been adopted to solve
the HFE system as well as the index calculus method for ECDLP. In this paper,
we will describe Weil descent systems arising from a polynomial in one variable
and study the relations among various polynomial systems. Analogous definitions
hold for a multivariate polynomial system.

1.2 The HFE cryptosystem

Let k be a finite field of cardinality qn, with subfield k′ of cardinality q. Let f ∈
k[X] be a polynomial over k with a relatively small degree. Using factorization
algorithms, one can easily factorize this polynomial to find its roots in k. One can
transform this system using Weil descent and two transformations into a system
in n variables over k′. At first glance, this system seems to be hard to solve and
this is the basis of the Hidden Field Equations (HFE) cryptosystem (see [21]
and Subsection 4.1). Computational and heuristic evidence show that such a
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system is not secure [7,8,16]: the degree of regularity of a Weil descent systemis
small and does not depend on n and hence the system can be solved efficiently
using Gröbner basis algorithms. In particular in [16], the authors claimed that
the HFE system can be solved efficiently under a heuristic assumption on the
complexity of the Gröbner basis computations to solve the system. More recently,
Christophe Petit, in a preprint [22], gives a proof of this observation by doing
manipulations using his successive resultant algorithm on the descent side. In
this article, we prove that HFE systems have a small last fall degree, by showing
that one can do division with remainder after Weil descent. This allows us to
solve the HFE systems unconditionally in polynomial time if the degree of the
defining polynomial and the cardinality of the base field are fixed.

We have a natural right action of Affn(k′) = k′n o GLn(k′) on the ring
R′ = k′[Y0, . . . , Yn−1] by acting as affine change of coordinates. If M ∈ Affn(k′)
and g ∈ R′ we write gM for this action. The main theorem is the following,
which allows one to solve HFE systems efficiently. We stress that our results
hold for a larger class of polynomial systems as we do not require the resulting
Weil descent system to be quadratic.

For r ∈ Z≥0 and c ∈ Z≥1, we set

ψ(r, c) = max (b2(c− 1) (logc (r) + 1)c, 0) .

Main Theorem 1. Let q be a prime power and let k be a finite field of cardi-
nality qn with subfield k′ of cardinality q. Let f ∈ k[X] nonzero which has at
most e different roots over k and let F = {f}. Let F ′f ⊂ k′[Y0, . . . , Yn−1] be a
Weil descent system of F (Subsection 3.1). Let M ∈ Affn(k′), N ∈ GLn(k′).
Define gi, i = 0, . . . , n− 1, by g0

...
gn−1

 = N

 [f ]0M
...

[f ]n−1M

 .

Set d = max(ψ(deg(f), q), q, e). Then given G = {g0, . . . , gn−1, Y q0 −Y0, . . . , Y
q
n−1−

Yn−1} ⊂ k′[Y0, . . . , Yn−1], one can deterministically find all solutions to G in time
polynomial in (n+ d)d.

If one fixes q and deg(f), then the complexity to solve systems in Main
Theorem 1 is polynomial in n. Note that e ≤ deg(f), but usually it is much
smaller. Furthermore, in practical applications, one wants e to be small, say
bounded by a constant: in this case one can solve the above system in quasi-
polynomial time if q is fixed and deg(f) grows like nα.

It is an open question whether variants of HFE, such as HFEv-, can be
attacked by our approach.

1.3 Polynomial systems from ECDLP

A major application of solving multivariate polynomial equations over a finite
field k of cardinality qn is in the relation search step of the index calculus algo-
rithm for elliptic curves over the field [6,14,23]. Indeed, let E : y2 + a1xy+ a3 =
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x3 +a2x
2 +a4x+a6, where a1, a2, a3, a4, a6 ∈ k, be an elliptic curve defined over

k. Let P be a point on E and let Q be a point in the cyclic group generated by
P . The elliptic curve discrete logarithm problem seeks for an integer a such that
Q = aP .

The most important step in the index calculus approach is to generate suf-
ficiently many relations among suitable points on the elliptic curve E. To this
end, summation polynomials provide a way to achieve this (see Subsection 5.1).
In particular, this transforms the problem of finding relations among points to
solving a system of polynomial equations over k via the summation polynomials.

Cryptographic applications of Weil descent were first suggested by Frey [12],
and Weil descent attacks were initially applied to elliptic curves of composite
degrees over F2 [12, 15]. In [6] and [14], Weil descent was exploited to solve
the ECDLP by applying the Weil descent to the summation polynomials over k.
In [6], for instance, sub-exponential time estimates via this Weil descent approach
were obtained for certain classes of q and n. Here, the author relied on a geometric
approach by Rojas to solve a Weil descent system.

In [23], Petit et al studied Weil descent systems arising from polynomial sys-
tems over fields of characteristic 2. Their results are based on a certain heuristic
assumption, called the first fall degree assumption, which asserts that the first
fall degree of a polynomial system is close to the degree of regularity. More

specifically, they obtained a sub-exponential time complexity of 2O(n2/3 logn) on
the basis of this assumption.

In this article, we provide computational evidence that raises doubt on the
validity of the first fall degree assumption when applied to elliptic curves over
fields of characteristic 2. In addition, we construct a Weil descent system from a
set of summation polynomials in which the first fall degree assumption is unlikely
to hold. These examples suggest that greater care needs to be exercised when
applying this heuristic assumption to arrive at complexity estimates.

1.4 Our contributions

The contributions of this paper are three-fold.

– First, we introduce the notion of the last fall degree for a finite set of poly-
nomials. Intuitively, this last fall degree determines the minimum degree at
which operations on the generating polynomials need to be performed for
all other polynomials to be generated. Our definition is intrinsic to the gen-
erating system and is independent of any monomial order. This allows us
to provide an explicit and generic algorithm to find all the zeroes of a zero-
dimensional set of polynomials whose time complexity depends on this last
fall degree. While our approach may be similar to existing Gröbner basis
algorithms, we stress that we have developed a generic framework that ap-
plies to any multivariate zero-dimensional polynomial system with a time
complexity dependent on a well-defined parameter.

– Second, we prove that the polynomials from the HFE system can be solved
in polynomial time if the degree of the defining polynomial and the cardinal-
ity of the base field are fixed. Our proof is elementary and complete, without
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relying on any unproved assumptions or results. We do this by bounding the
last fall degree of the zero-dimensional system and then exploit the aforemen-
tioned algorithm to solve the system. Besides, our proof works for any uni-
variate polynomial f(X) bounded by some degree in contrast to the original
HFE system which restricts the monomials in f(X) to be of a certain form.
More importantly, our approach can be applied to analyze zero-dimensional
polynomial systems of other types (see [20]).

– Finally, we consider an important application of solving a zero-dimensional
multivariate polynomial system, namely in finding relations for index calcu-
lus algorithms to solve the elliptic curve discrete logarithm problem. Here,
we revisit the first fall degree assumption adopted in [23] to derive a sub-
exponential time estimate to solve the ECDLP. We illustrate two examples
which raise some doubts on the correctness of this assumption on Weil de-
scent systems arising from summation polynomials. From such examples, we
believe that more evidence has to be presented before applying the first fall
degree assumption to make complexity claims on the ECDLP.

1.5 Organization of the paper

The rest of this article is organized as follows. We begin in Section 2 by defining
a vector space of polynomials obtained with operations within a certain degree
starting from a set of polynomials. We then use this set to define the notion
of the last fall degree of a polynomial system. With these notions, we present
an algorithm to find all the zeros of a zero-dimensional multivariate polynomial
system over a finite field. Next in Section 3, we define the notion of a Weil descent
system and of a fake Weil descent system arising from a system of univariate
polynomials over a field of cardinality qn and we discuss the relations between
both systems. This is followed by our attack on the HFE system in Section 4. The
main result in this section is Main Theorem 1. In the final section, we provide a
brief discussion and some comments on Weil descent attacks on ECDLP.

2 Constructible polynomials

Let k be a field and let R = k[X0, . . . , Xn−1] be a polynomial ring. Let F
be a finite subset of R and let I ⊆ R be the ideal generated by F . We set
deg(F) = max(deg(f) : f ∈ F).

Definition 1. For i ∈ Z≥0, we let VF,i be the smallest k-vector space of R such
that

1. {f ∈ F : deg(f) ≤ i} ⊆ VF,i;
2. if g ∈ VF,i and if h ∈ R with deg(hg) ≤ i, then hg ∈ VF,i.

We set VF,∞ = I. For convenience, we set VF,−1 = ∅. If F is fixed, we often
write Vi instead of VF,i.
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Intuitively, Vi is the largest subset of I which can be constructed from F by
doing ideal operations without exceeding degree i.

Note that Vi is a finite-dimensional k-vector space of dimension dimk(Vi) ≤(
n+i
i

)
≤ (n+ i)i.

If F is fixed and g1, g2 ∈ R, then we write g1 ≡i g2 whenever g1 − g2 ∈ Vi.
Note that for h1, h2, h3 ∈ R with h1 ≡r h2, one has

h1h3 ≡max(r,deg(h1h3),deg(h2h3)) h2h3.

We write g1 ≡ g2 if g1 − g2 ∈ I.

Definition 2. Let F be a finite subset of R and let I be the ideal generated by
F . The minimal c ∈ Z≥0∪{∞} such that for all f ∈ I one has f ∈ Vmax(c,deg(f)),
is called the last fall degree of F , and is denoted by dF .

A monomial order ≤ on R is called degree refining if for monomials M,N
with deg(M) < deg(N), one has M < N .

Lemma 1. The following hold:

1. One has dF ∈ Z≥0.
2. Let B be a Gröbner basis of I with respect to some degree refining monomial

order on R. Then there is an integer c ∈ Z≥0 such that B ⊆ VF,c and one
has dF ≤ c.

Proof. Since (1) follows from (2), we will prove (2). Let {g1, . . . , gs} be a Gröbner
basis of I with respect to some monomial order which refines the degree. Set c
to be the minimal i such that gj ∈ Vi for all j. Let f ∈ I. Since B is a Gröbner
basis of I with respect to a degree refining order, we can write f =

∑s
i=1 aigi

with deg(aigi) ≤ deg(f) for i = 1, . . . , s. Then one easily finds f ∈ Vmax(deg(f),c).

Note that the bound c on dF given in Lemma 1 is constructed with respect
to a fixed monomial order. However, the last fall degree dF is intrinsic to the set
F and independent of the choice of a monomial order.

Let G be obtained from F through an invertible linear transformation of equa-
tions. Then one has max(dF ,deg(F)) = max(dG ,deg(F)). Note that deg(F) =
deg(G). Further, since any affine transformation of the variables X0, . . . , Xm−1
is degree-preserving, the last fall degree is invariant under such transformations.
Finally, enlarging the field k does not change the last fall degree.

Remark 1. The name last fall degree has been chosen because there is a similar
concept called the first fall degree, which is used to heuristically bound the
complexity of Gröbner basis algorithms, see [23]. The first fall degree of a system
F is the smallest d ≥ deg(F) such that there exists gf ∈ R for f ∈ F such that
d = maxf∈F (deg(gff)) and deg(

∑
f∈F gff) < d and

∑
f∈F gff 6= 0.

An equivalent definition of the last fall degree is the following: dF is the
largest c ∈ Z≥0 such that Vc∩R≤c−1 6= Vc−1, where R≤c−1 denotes the set of all
polynomials in R with degree less than or equal to c− 1. This definition has the
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same flavour as the definition of the first fall degree. This equivalent definition of
the last fall degree allows one to compute the last fall degree if an upper bound,
for example from Lemma 1, is known. It would be of great interest to find a
direct method for computing the last fall degree.

2.1 An explicit construction of Vi

Next, we describe an algorithm to construct Vi explicitly.
Let V be a finite-dimensional k-vector subspace of k[X0, . . . , Xn−1]. We say

that B is a reduced basis of V if B is a basis of V and for all h =
∑
g∈B agg, ag ∈

k, we have deg(h) = maxg∈B deg(agg). For instance, a reduced basis can be
constructed if we order the monomials with respect to their degrees and apply
linear algebra operations to obtain a basis with different leading monomials.

Fix an integer i ≥ 0 and let F = {f1, . . . , fr} ⊂ k[X0, . . . , Xn−1]. We con-
struct Vi inductively as follows.

Let W0 be the k-linear span of {fj : j = 1, . . . , r, deg(fj) ≤ i}. By linear
algebra operations, construct a reduced basis B0 of W0. For j = 1, 2, . . ., define
Wj = Spank{tg : g ∈ Bj−1, t is a monomial and deg(tg) ≤ i}. Construct a
reduced basis Bj of Wj from using linear algebra. Note that Wj contains Wj−1.
Since W0 ⊆ W1 ⊆ . . . ⊆ Vi, this process must terminate and we conclude that
there exists some l such that Wl = Wl+1.

We claim that Wl = Vi. Suppose not. Then there must exist some g ∈Wl and
h ∈ k[X0, . . . , Xn−1] such that gh 6∈ Wl and deg(gh) ≤ i. Let Bl = {g1, . . . , gs}
be a reduced basis of Wl. Then one has g = a1g1 + a2g2 + . . . + asgs with
a1, a2, . . . , as ∈ k. Since Bl is a reduced basis of Wl, maxj(deg(ajgj)) = deg(g).
Hence, gh =

∑
j gajgj and maxj(gajgj) ≤ i so that Wl+1 6= Wl.

Assume k is a finite field of cardinality q. Since l is bounded by (n + i)i, it
follows from the above arguments that one can compute Vi in time polynomial
in r, log(q) and (n+ i)i. Furthermore, using linear algebra, one can determine if
a polynomial f with deg(f) ≤ i lies in Vi with the same time bound.

2.2 Solving a zero-dimensional polynomial system

Consider a system of r multivariate polynomial equations over a field k of car-
dinality q, namely, f1 = f2 = . . . = fr = 0 in n variables X0, X1, . . . , Xn−1.
Suppose that the algebraic set defined by this system is zero-dimensional, that
is, there are finitely many solutions over an algebraic closure k of k. The next
proposition gives a generic approach to solve the system via the above construc-
tion of Vi.

Proposition 1. Let k be a finite field of cardinality q. Let F ⊂ R be a finite
subset and let I be the ideal generated by F . Assume that I is radical and that
the system has at most e solutions over k. Set d = max(dF , e). Then one can
find all solutions of I in k

– probabilistically in time polynomial in the input size of F , log(q) and (n+d)d;

7



– deterministically in time polynomial in the input size of F , q and (n+ d)d.

Proof. First, note that one can factor a polynomial of degree s over k determin-
istically in time polynomial in q and s, and probabilistically in time polynomial
in log(q) and s [13].

Compute Vd in time polynomial in the input size of F , log(q) and (n + d)d

(Subsection 2.1).

Assume that all solutions over k of the system are

(a0,0, . . . , a0,n−1), . . . , (at,0, . . . , at,n−1) ∈ kn

with t < e. Since I is a radical ideal, by the Nullstellensatz and Galois theory,
one has

h0 =
∏

a∈{ai,0: i=0,...,t}

(X0 − a) ∈ I.

Using linear algebra, one can find h0 as the nonzero polynomial of minimal
degree d0 in Vd ∩ Spank{1, X0, . . . , X

e
0}. Factor h0. Assume that a0 is a root of

h0 in k. We will find all solutions over k with X0 = a0. Set h′0 = h0/(X0 − a0)
of degree d0 − 1. By the Nullstellensatz and Galois theory, one has

h1 = h′0
∏

a∈{ai,1: i=0,...,t, ai,0=a0}

(X1 − a) ∈ I.

Using linear algebra, one finds h1 as the polynomial of minimal degree d1 in
Vd ∩ Spank{h′0, X1h

′
0, . . . , X

e−d0+1
1 h′0}. Factor h1/h

′
0 over k. Pick a solution a1

over k and find all solutions with X0 = a0, X1 = a1 using the similar recursive
procedure. Hence one can find all solutions over k as required.

Remark 2. See [20] for a comparison between our approach for solving systems,
MutantXL and Gröbner basis algorithms.

3 Weil descent

Let q be a prime power. Let n ∈ Z≥1 and let k be a finite field of cardinality qn

with subfield k′ of cardinality q. Let F be a finite subset of k[X]. In this section,
we introduce a Weil descent system of F , which is a system in k′[Y0, . . . , Yn−1].
Furthermore, we introduce the fake Weil descent system of F , which is a system
in k[X0, . . . , Xn−1]. The analysis in this section can be easily extended to m
variables for any positive integer m (see Remark 3).

Let F ⊂ k[X] be a finite set of polynomials. Suppose we want to find the
common zeros of these polynomials in k. Let I be the ideal generated by

Ff = F ∪ {Xqn −X}.
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3.1 Weil descent

Let α0, . . . , αn−1 be a basis of k/k′. Write X =
∑n−1
i=0 αiYi and for f ∈ k[X],

define [f ]j ∈ k′[Y0, . . . , Yn−1] by

f(

n−1∑
j=0

αjYj) ≡
n∑
j=0

[f ]jαj (mod Y q0 − Y0, . . . , Y
q
n−1 − Yn−1)

where [f ]j ∈ k′[Y0, . . . , Yn−1] is chosen of minimal degree, that is, degYi
([f ]j) < q.

Consider the systems

F ′ = {[f ]j : f ∈ F , j = 0, . . . , n− 1}

and

F ′f = {[f ]j : f ∈ F , j = 0, . . . , n− 1} ∪ {Y qi − Yi : i = 0, . . . , n− 1}.

The latter is called a Weil descent system of F . Notice that the ideal generated
by F ′f is always a radical ideal, as k′[Y0, . . . , Yn−1]/(Y qi −Yi : i = 0, . . . , n− 1) is
isomorphic to a product of fields (Chinese remainder theorem). One easily sees
that solutions of F or Ff in k correspond to solutions of F ′ or F ′f over k′.

A different choice of αi merely results in a linear change of the variables Yi
and the polynomials [f ]i. An interesting choice for the αi is a normal basis, that

is, a basis with αi = θq
i

for some θ ∈ k.

3.2 Fake Weil descent

To study the complexity of solving a Weil descent system, we relate a Weil
descent system to another system in k[X0, . . . , Xn−1], which we refer to as the
fake Weil descent system.

Let R = k[X0, . . . , Xn−1]. Let e ∈ Z≥0. Let Xe′ be the remainder of division

of Xe by Xqn−X in k[X]. Write e′ =
∑n−1
j=0 e

′
jq
j in base q with e′j ∈ {0, 1, . . . , q−

1}. We set

Xe = X
e′0
0 · · ·X

e′n−1

n−1 ∈ R.

We extend this definition k-linearly for all polynomials in R. This gives a map
¯: k[X]→ R. We set, where by convention Xn = X0,

F = {f : f ∈ F}

and

Ff = {f : f ∈ F} ∪ {Xq
0 −X1, . . . , X

q
n−1 −Xn}.

We let I be the ideal generated by Ff . We call Ff the fake Weil descent
system of F . Note that I is a radical ideal. Indeed the k-algebra morphism
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R/(Xq
0 − X1, . . . , X

q
n−1 − Xn) → k[X0]/(Xqn

0 − X0) which sends Xi to Xqi

0 is
an isomorphism, because it is a surjective morphism on k-vector spaces of the
same dimension. The latter ring is isomorphic to kk by the Chinese remainder
theorem. In the ring kk all ideals are radical.

There is a bijection between the set of solutions of I and those of I over k
(or k). If X = a ∈ k is a zero of I, then (X0, . . . , Xn−1) = (a, aq, . . . , aq

n−1

) is a
zero of I. Conversely, if (X0, . . . , Xn−1) = (a0, . . . , an−1) is a solution of I, then
X = a0 is a solution of I.

We will now prove a couple of lemmas which will be useful later.

Lemma 2. Let h1, h2 ∈ R, g ∈ k[X]. One has, where ≡i is defined with respect
to Ff :

1. h1 + h2 ≡max(deg(h1),deg(h2))
h1 + h2;

2. h1 · h2 ≡deg(h1)+deg(h2)
h1h2;

3. There is h3 ∈ k[X] with deg(h3) < qn such that g ≡deg(g) h3.

Proof. One reduces to the case of monomials and the result then follows easily.

We have a morphism of k-algebras ϕ : R → k[X] which maps Xi to Xqi .
This map has the following properties.

Lemma 3. Let h ∈ k[X]. The following statements hold:

1. ϕ(h) ≡ h (mod Xqn −X);

2. h ∈ I if and only if h ∈ I.

Proof. 1: Follows directly.

2: Let h ∈ I. We will show h ∈ I. One can write h = b(Xqn−X)+
∑
f∈F aff .

Modulo I we find with Lemma 2:

h = b(Xqn −X) +
∑
f∈F

aff ≡ b(X0 −X0) +
∑
f∈F

aff ≡ 0.

Conversely, let h ∈ k[X] and assume h ∈ I. Write h =
∑n−1
j=0 cj(X

q
j −Xj+1)+∑

f∈F bff . One finds, using 1,

ϕ(h) =

n−1∑
j=0

ϕ(cj)ϕ(Xq
j −Xj+1) +

∑
f∈F

ϕ(bf )ϕ(f)

≡ ϕ(cn−1)(Xqn −X) +
∑
f∈F

ϕ(bf )f (mod Xqn −X).

We conclude ϕ(h) ∈ I.
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3.3 Summary of notation

Let us recall some notation we have introduced thus far. Let F ⊂ k[X] be a
finite subset, where k is a finite field of cardinality qn and let k′ be its subfield of
cardinality q with an implicit choice of basis of k over k′. We let I be the ideal
generated by

Ff = F ∪ {Xqn −X}.

We have systems in k′[Y0, . . . , Yn−1] defined by

F ′ = {[f ]j : f ∈ F , j = 0, . . . , n− 1}

and a Weil descent system

F ′f = {[f ]j : f ∈ F , j = 0, . . . , n− 1} ∪ {Y qi − Yi : i = 0, . . . , n− 1}.

Finally, we have systems in k[X0, . . . , Xn−1] defined by

F = {f : f ∈ F}

and the fake Weil descent system

Ff = {f : f ∈ F} ∪ {Xq
0 −X1, . . . , X

q
n−1 −Xn}.

We let I be the ideal generated by Ff .

3.4 Relating both types of descent

This subsection seeks to connect the last fall degrees of a Weil descent system
and the fake Weil descent system presented in Subsection 3.1 and Subsection 3.2.
We follow the formulation in [16] which essentially shows that the two systems
are linked by suitable transformations. We have the following result.

Proposition 2. One has

max(dF ′f , q, deg(F ′)) ≤ max(dFf
, q,deg(F ′)).

Proof (Sketch). We follow [16]. The details can be found in [20]. One has deg(F ′) =
deg(F). After a linear change, we may assume that a Weil descent in F ′ is

with respect to a normal basis {θqi : i = 0, . . . , n − 1}. Consider the system
F ′ ⊆ k[Y0, . . . , Yn−1], which has the same last fall degree as considered over
k′. Using some linear changes of the polynomials and linear changes of vari-

ables as in Section 4 of [16], we obtain the system F ′′ = {f, fq, . . . , fqn−1 : f ∈
F} ∪ {Y q0 − Y1, . . . , Y

q
n−1 − Yn}. One has

max(dF ′f , q,deg(F ′)) = max(dF ′′ , q,deg(F ′)).

Note that F ⊆ F ′′ and that both sets generate the same ideal (Lemma 2(2)).
Hence the result follows.
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Remark 3. In this section, we have presented a Weil descent system and its re-
lated fake Weil descent system corresponding to a polynomial system in one
variable X over k. This definition can be easily extended to a system of r poly-
nomials in m variables over k such that each variable corresponds to n descent
variables. This gives rise to rn polynomials in mn variables and all the results
follow accordingly.

4 Solving the HFE system

In this section, our primary goal is to prove that the HFE system and its vari-
ants can be solved efficiently by employing the tools we have developed so far.
Although such results were shown previously (see for example [16]), their proofs
were based on some heuristics. Our proof, on the other hand, is rigorous and
free from any unproven conjecture or heuristics. Another claim for a proof can
be found in [22].

We begin by reviewing the general description of the HFE system. Through-
out this section, k will denote a field of cardinality qn, while k′ will denote its
subfield of cardinality q.

4.1 Description of the HFE encryption

The HFE public key cryptosystem was first introduced by Patarin [21]. Briefly,
let f(X) be a univariate polynomial in k[X] with degree bounded by qt. In
practice, the nonconstant monomials in f are chosen to be either of the form
Xqi+qj or Xqi for integers i, j ≥ 0. However, we will remove this restriction in
this paper and allow f to be an arbitrary polynomial with degree bounded by
qt.

Let F = {f} ⊂ k[X] and consider the Weil descent system

F ′f = {[f ]0, . . . , [f ]n−1} ∪ {Y qi − Yi : i = 0, . . . , n− 1} ⊆ k′[Y0, . . . , Yn−1]

as in Subsection 3.1 with respect to some basis of k/k′. We have a natural
right action of Affn(k′) on R′ = k′[Y0, . . . , Yn−1] by an affine transformation
of variables. Let M ∈ Affn(k′). For g ∈ k′[Y0, . . . , Yn−1], we write gM for this
action. Let N ∈ GLn(k′). Define g0

...
gn−1

 = N

 [f ]0M
...

[f ]n−1M

 .

The public key of the system is the set of equations {g0, g1, . . . , gn−1} ⊂
k′[Y0, . . . , Yn−1] while the private key comprises f , the basis choice k/k′ and the
transformations M and N . To encrypt a message, (m0,m1, . . . ,mn−1) ∈ k′n,
one computes

(c0, . . . , cn−1) = (g0(m0, . . . ,mn−1), . . . , gn−1(m0, . . . ,mn−1)).
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Using the private key and a factorization algorithm, one can find the message
efficiently.

Let G = {g0 − c0, . . . , gn−1 − cn−1} ∪ {Y qi − Yi : i = 0, 1, . . . , n− 1}. Observe
that the message (m0, . . . ,mn−1) can be recovered if we can solve G. This can be
achieved deterministically via Proposition 1 in time polynomial in q and (n+d)d,
where d is bounded by the maximum of the last fall degree of G and the number
of solutions e of G. Notice that we are now in the situation of the main theorem
(Main Theorem 1) which we now proceed to prove.

4.2 An upper bound on the last fall degree

Let q be a prime power and let k be a finite field of cardinality qn. Let F ⊂
k[X] be a finite set. Consider a fake Weil descent system Ff to the subfield of
cardinality q. Define ≡j with respect to Ff . For e ∈ Z≥0 with e =

∑
i aiq

i in
base q, we set w(e) =

∑
i ai. For f =

∑
i biX

i, we set w(f) = max(w(i) : bi 6= 0).
Note that w(f) ≤ deg(f), with equality if deg(f) < qn.

We start with a technical lemma. Recall the following. For r ∈ Z≥0 and
c ∈ Z≥1, we set

ψ(r, c) = max (b2(c− 1) (logc (r) + 1)c, 0) .

Let g ∈ k[X] \ k. Then one has

deg(g) ≤ (q − 1)
(
logq(deg(g)) + 1

)
.

It follows that deg(g) ≤ ψ(deg(g), q)/2.

Lemma 4. Let h2 ∈ k[X] nonzero of degree d. Set u = ψ(d, q). Assume h2 ≡u 0.
Let h1 ∈ k[X]. Let h3 be the remainder of division of h1 by h2. Then one has
h1 ≡max(u,w(h1)) h3.

Proof. If d = 0, the result follows easily. Assume d > 0.
Fix h2 and write h2 =

∑d
i=0 biX

i where bd 6= 0. Since taking remainders is
additive, it suffices to prove the result for h1 = Xe. Let re be the remainder of
division of Xe by h2. For g ∈ k[X] with deg(g) ≤ d, one has deg(g) ≤ u/2. In
particular, we have deg(re) ≤ u/2.

We will prove the following statements successively:

1. for e ∈ {0, 1, . . . , qd− 1}, we have Xe ≡u re;
2. if e, e′ ∈ Z≥0 satisfy w(e) + w(e′) ≤ u, Xe ≡u re and Xe′ ≡u re′ , then

Xe+e′ ≡u re+e′ ;
3. for e ∈ Z≥0 with w(e) ≤ u, we have Xe ≡u re;
4. for all e ∈ Z≥0 one has Xe ≡max(u,w(e)) re.

1: For e = 0, . . . , d− 1, the remainder is Xe itself and the result follows. One
has rd = −1

bd

∑d−1
i=0 biX

i and this gives Xd ≡u rd. We continue by induction.
Assume the statement holds for cases smaller than e and that e ≤ qd − 1. We
will prove the statement for e. Write re−1 =

∑d−1
j=0 cjX

j . Note that re is the
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remainder of division of Xre−1 by h2, which gives re =
∑d−1
j=0 cjrj+1. Note that

e− 1 ≤ qd− 2 = qlogq(d)+1 − 2. Hence we have (as d > 0):

deg(X) + deg(Xe−1) ≤ 1 + b(q − 1)
(
logq(d) + 2

)
− 1c

= b(q − 1)
(
logq(d) + 2

)
c ≤ u.

Using Lemma 2 and the induction hypothesis, we find

Xe ≡u X ·Xe−1 ≡u X · re−1 ≡u
d−1∑
j=0

cjXj+1 ≡u
d−1∑
j=0

cjrj+1,

and this gives the required remainder.
2: Assume without loss of generality that w(e′) ≤ u/2. Then one has u ≥

max(w(e) + w(e′),deg(re) + w(e′),deg(re) + deg(re′)) and one has deg(rere′) ≤
2d− 2 ≤ qd− 1. Lemma 2 and 1 give

Xe+e′ ≡u Xe ·Xe′ ≡u re ·Xe′ ≡u re · re′ ≡u rere′ ≡u re+e′ .

3: Using 2 and induction, we easily reduce to the case where e = qi, i ≥ 0.
Note that for i ≥ 1, qi = q · qi−1 and that u ≥ q. We can then apply 2 and the
proof follows by induction.

4: We prove this statement by induction on w(e) > u. Write e = e1 + e2 with
u ≤ w(e1) < w(e), and w(e1) + w(e2) = w(e). One has (Lemma 2 and part 3)

Xe ≡max(u,w(e)) Xe1 ·Xe2 ≡max(u,w(e)) re1 ·Xe2

≡max(u,w(e)) re1 · re2 ≡max(u,w(e)) re.

Proposition 3. Assume F = {f} with f ∈ k[X] nonzero. Set u = ψ(deg(f), q)
and set g = gcd(f,Xqn −X). Then we have g ∈ Vu.

Proof. Let f1 be the remainder of division of Xqn −X by f . By Lemma 4, we
have f1 ≡u 0. Let f2 be the remainder of division of f by f1. Similarly, we find
f2 ≡u 0. Hence we can follow the Euclidean algorithm and we obtain g ∈ Vu.

4.3 Proof of the main theorem

We can finally prove Main Theorem 1.

Proof (of Main Theorem 1). We first study the last fall degree of G. One has
(Proposition 2)

dG ≤ max(dG , q,deg(F ′)) = max(dF ′f , q,deg(F ′)) ≤ max(dFf
, q,deg(F ′)).

Hence we study the last fall degree of Ff . Set g = gcd(f,Xqn − X). From
Proposition 3, we have g ∈ Vu with u = ψ(deg(f), q).

Let h ∈ I, the ideal generated by Ff . Define the relations ≡i with respect to
Ff . By Lemma 2(3), one has h ≡deg(h) h2 for some h2 ∈ k[X] with deg(h2) < qn.
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Since h2 ∈ I, it follows from Lemma 3(2) that h2 ∈ I. Hence h2 has remainder
0 when divided by g. From Lemma 4, we conclude (as deg(h2) ≤ deg(h)),

h ≡max(deg(h),u) h2 ≡max(deg(h),u) 0.

This shows dF ≤ u. Hence one finds, as deg(F ′) ≤ u,

dG ≤ max(dFf
, q,deg(F ′)) ≤ max(u, q, deg(F ′)) = max(u, q).

Notice that u ≥ q. Apply Proposition 1 to solve the system G in the required
time.

5 Weil descent attacks on ECDLP

5.1 ECDLP and summation polynomials

Let E be an elliptic curve over a field k of cardinality qn and let k′ be its sub-
field of cardinality q. One possible approach to solve the elliptic curve discrete
logarithm problem (ECDLP) is via the index calculus method. Essentially, suf-
ficiently many relations between k-points on the curve E need to be generated
and the time to construct such relations has a direct impact on the complexity
of the entire index calculus approach.

In [24] and [6], summation polynomials were used to find relations between
points on the curve. Here, we recall the definition of a summation polynomial.

Let F be a field. Let A = (a1, a2, a3, a4, a6) ∈ F 5. Set

b2 = a21 + 4a2,

b4 = a1a3 + 2a4,

b6 = a23 + 4a6,

b8 = a21a6 − a1a3a4 + a2a
2
3 + 4a2a6 − a24.

We define

SA,2 = X0 −X1 ∈ F [X0, X1].

We define the third summation polynomial SA,3 ∈ F [X0, X1, X2] of degree 4 by:

SA,3 = (X2
0X

2
1 +X2

0X
2
2 +X2

1X
2
2 )− 2 · (X2

0X1X2 +X0X
2
1X2 +X0X1X

2
2 )

−b2 · (X0X1X2)− b4 · (X0X1 +X0X2 +X1X2)− b6 · (X0 +X1 +X2)− b8.

We will quite often write SA instead of SA,3. For r ∈ Z>3, we recursively define
the rth summation polynomial by

SA,r = ResX (SA,r−1(X0, . . . , Xr−3, X), SA,3(Xr−2, Xr−1, X)) ∈ F [X0, . . . , Xr−1],

where ResX denotes the resultant with respect to X.
We have the following proposition.
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Proposition 4. Let F be a field and let E/F be an elliptic curve given by Y 2 +
a1XY + a3Y = X3 + a2X

2 + a4X + a6. Let r ∈ Z≥2 and let x0, . . . , xr−1 ∈ F .
Then there are P0, . . . , Pr−1 ∈ E(F )\{0} with x(Pi) = xi (i = 0, . . . , r−1) such
that P0 + . . .+ Pr−1 = 0 if and only if S(a1,a2,a3,a4,a6),r(x0, . . . , xr−1) = 0.

It follows that given a point Q 6= 0 and a positive integer m, we can represent
a point Q as a sum of m points by solving Sm+1(x(Q), X0, . . . , Xm−1) = 0.

Assume that F = k. Further linear constraints were introduced so as to
restrict the Xi’s to a subspace V of k of dimension n′ over k′. Let L(X) ∈
k[Xq] ⊂ k[X] be the additive polynomial whose roots are precisely the elements
of the subspace V . We obtain a system F of equations in k[X0, . . . , Xm−1],
namely,

F = {Sm+1(x(Q), X0, . . . , Xm−1), L(X0), L(X1), . . . , L(Xm−1)}.

Using this set-up and Weil descent (Remark 3), Diem showed that there exist
sub-exponential time index calculus algorithms for ECDLP for some families of
q and n.

The authors of [23] adopted a similar approach and considered ECDLP for
q = 2n. To solve the system F , they considered a Weil descent system F ′ over
F2 (notation as in Subsection 3.1). With m = O(n1/3), the authors claimed
that this system can be solved via Gröbner basis algorithms in sub-exponential

time of 2O(n2/3 logn). Essentially, their claim was based on the so-called “first fall
degree assumption” which asserts that the first fall degree (see Remark 1) of a
Weil descent polynomial system is close to the degree of regularity, the largest
degree reached during Gröbner basis computations. More precisely, as the first
fall degree of this system is O(m2), they conjectured that the degree of regularity
is O(m2) as well, thereby giving their heuristic result. According to the authors,
they justified this heuristic assumption based on the following:

– The assumption of a constant gap between the first fall degree and the degree
of regularity is widely believed to hold for Weil descent systems arising from
HFE systems;

– The assumption is verified with experimental data for some multivariate
polynomial systems for small parameters of n and m.

5.2 Discussion on the first fall degree assumption

Here, we wish to highlight some examples where the first fall degree assumption
is unlikely to hold.

One bivariate summation polynomial Let k be a finite field of cardinality
2n. Let E/k be a random elliptic curve in Weierstrass form with a random
nonzero point Q ∈ E(k). The following table records the degree of regularity for
a Weil descent system comprising the bivariate polynomial S3(X0, X1, x(Q)).
Following the formulation in [23], we include linear constraints on X0 and X1 to
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restrict their values to be in a random F2-subspace of k with dimension dn/2e.
Note that in this case, a Weil descent system F ′, after eliminating variables using
the linear constraints, is a system in about n variables and has about n quadratic
equations together with field equations of the form Y 2

i + Yi. We performed our
computations using the “GroebnerBasis()” function in the Magma computer
Algebra System and the degree of regularity is read off as the largest step degree
where new polynomials are generated while the first fall degree is the smallest
step degree at which a new lower-degree polynomial is generated. Here, the last
column in the table records the degree of regularity of a system of n random
quadratic equations in n variables over F2 together with the n field equations. By
a quadratic equation over F2, we mean an equation whose terms are a product
of at most 2 variables.

n First fall degree Degree of regularity Random
12 2 3 4
16 2 3 5
18 2 4 5
20 2 4 5
24 2 4 6
30 2 4 –
40 2 ≥ 5 –

As the computations require more than 38 GB for n = 40, we are not able to carry
out more experiments for larger values of n. However, the behaviour of the step
degrees, another observable parameter from the Gröbner basis computations,
suggests that the degree of regularity follows an increasing pattern as n increases.
The above table raises doubt to the evidence of Assumption 2 from the article
[23]: the gap between the degree of regularity and the first fall degree might be
dependent on n.

Remark 4. Notice that our n = 40 computation did not terminate. After the sub-
mission of this paper, with the help of the Caramel team from Nancy (France),
we managed to terminate similar computations: the degree of regularity does
seem to increase. See [19] for the details. This paper also contains a proof that
the first fall degree in general is 2.

Note that in all our computations, the first fall degree is 2. One can prove
that this is almost always the case when E is ordinary (a1 6= 0) and Q is not the
point of order 2. After some mathematics, the result follows from the following
proposition where a complete proof can be found in [18, Chapter 7, Proposition
5.4]. The result is partially found in [25] as well.

Proposition 5. Let E/k be an elliptic curve given by Y 2 + a1XY + a3Y =
X3 + a2X

2 + a4X + a6. Assume that E is ordinary (a1 6= 0). Then we have a
surjective group morphism

E(k)→ F2
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0 7→ 0

P 7→ Trk/F2

(
x(P ) + a2

a21

)
with kernel 2E(k).

Note that knowledge of this map can speed up the summation polynomial ap-
proach for solving ECDLP, but probably only by a constant.

Multiple summation polynomials Let k be a finite field of cardinality 2n

and let E/k be an elliptic curve. Let Q ∈ E(k) be a nonzero point. Let m ∈ Z≥3.
Instead of working with the (m + 1)st summation polynomial, we consider the
following sequence of m sums:

Q = P1 +Q1,

Q1 = P2 +Q2,

. . . . . .

Qm−2 = Pm−1 + Pm.

Observe that when this system is satisfied, we have Q = P1 + . . .+ Pm.
Once again, we let the x-coordinates of Pi be restricted in some subspace of

dimension O(n/m). Consider the set

F = {S3(x(Q), X1, Y1), . . . , S3(Ym−2, Xm−1, Xm)},

where the Xi’s are restricted to the subspace and the Yi are unrestricted. We
perform Weil descent to obtain a system F ′ of equations in F2, where each
equation has degree at most 3. According to [23], the first fall degree of this
system is no greater than 5 (in fact, it is usually 2). Under the first fall degree
assumption, this system will have a constant degree of regularity. In particular,
it can be solved in time polynomial in m. Now, take m = O(n). Letting the
Pi’s take some specific points, say Pi = 2iP, i = 1, . . . ,m, this system will allow
us to solve the ECDLP for a large proportion of points Q and thus, for all
points Q. Consequently, we have a polynomial-time algorithm to solve ECDLP,
which is highly improbable. We conclude that the first fall degree assumption
is unlikely to hold for this system as well. In a similar way, using the first fall
degree assumption, one can prove P=NP [19].

5.3 Open problem on the last fall degree

From the discussion in the preceding subsection, we believe that greater justifica-
tion needs to be provided before one applies the first fall degree assumption to a
Weil descent system arising from a multivariate polynomial system. Nonetheless,
as Table 1 demonstrates, the degree of regularity of a Weil descent system tends
to grow more slowly than a random system with the same number of equations
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and variables. The big question is, how slowly does it grow. The slower it grows,
the better algorithms there will be for ECDLP using Gröbner basis algorithms.
As such, we believe that it remains worthwhile to analyze such systems in greater
detail in order to get a more rigorous estimate to solve the ECDLP.

In this article, we defined the notion of a last fall degree of a multivariate
polynomial system and describe an explicit algorithm to solve a zero-dimensional
polynomial system whose time complexity depends on this last fall degree. As
the last fall degree is independent of monomial orders, it enables us to give a
rigorous bound on the time to solve a Weil descent system coming from univariate
polynomials. We believe that this framework will be useful to help us investigate
Weil descent systems from multivariate polynomials as well and will hopefully
allow us to rigorously bound last fall degrees.

Remark 5. After submitting this paper, the authors continued their work in [20],
and showed that the last fall degree of a Weil descent system arising from a
zero-dimensional system also does not depend on the Weil descent parameter
n. Unfortunately, the results of [20] do not apply to summation polynomials,
because such systems are not zero-dimensional without adding field equations.
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