
Lightweight Coprocessor for Koblitz Curves:
283-bit ECC Including Scalar Conversion with

only 4300 Gates

Sujoy Sinha Roy, Kimmo Järvinen, and Ingrid Verbauwhede

KU Leuven ESAT/COSIC and iMinds
Kasteelpark Arenberg 10 bus 2452, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be

Abstract. We propose a lightweight coprocessor for 16-bit microcon-
trollers that implements high security elliptic curve cryptography. It uses
a 283-bit Koblitz curve and offers 140-bit security. Koblitz curves offer
fast point multiplications if the scalars are given as specific τ -adic ex-
pansions, which results in a need for conversions between integers and
τ -adic expansions. We propose the first lightweight variant of the con-
version algorithm and, by using it, introduce the first lightweight imple-
mentation of Koblitz curves that includes the scalar conversion. We also
include countermeasures against side-channel attacks making the copro-
cessor the first lightweight coprocessor for Koblitz curves that includes a
set of countermeasures against timing attacks, SPA, DPA and safe-error
fault attacks. When the coprocessor is synthesized for 130 nm CMOS,
it has an area of only 4,323 GE. When clocked at 16 MHz, it computes
one 283-bit point multiplication in 98 ms with a power consumption of
97.70µW, thus, consuming 9.56µJ of energy.

Keywords: Elliptic curve cryptography, Koblitz curves, lightweight im-
plementation, side-channel resistance

1 Introduction

Elliptic curve cryptography (ECC) is one of the prime candidates for bringing
public-key cryptography to applications with strict constraints on implemen-
tation resources such as power, energy, circuit area, memory, etc. Lightweight
applications that require strong public-key cryptography include, e.g., wireless
sensor network nodes, RFID tags, medical implants, and smart cards. Such ap-
plications will have a central role in actualizing concepts such as the Internet of
Things and, hence, providing strong cryptography with low resources has been
an extremely active research field in the recent years. As a result of this research
line, we have several proposals for efficient lightweight implementations of ECC.

c©IACR 2015. This article is the final version submitted by the author(s) to the
IACR and to Springer-Verlag on DATE:TBD. The version published by Springer-Verlag
is available at DOI:TBD.

These proposals focus predominately on 163-bit elliptic curves which provide
medium security level of about 80 bits [4–6, 15, 24, 26, 34, 42, 43]. We provide
a coprocessor architecture that implements ECC using a high security 283-bit
Koblitz curve and includes countermeasures against side-channel attacks.

Koblitz curves [23] are a special class of elliptic curves which enable very effi-
cient point multiplications and, therefore, they are an attractive alternative also
for lightweight implementations. However, these efficiency gains can be exploited
only by representing scalars as specific τ -adic expansions. Most cryptosystems
require the scalar also as an integer (see, e.g., ECDSA [31]). Therefore, cryptosys-
tems utilizing Koblitz curves need both the integer and τ -adic representations of
the scalar, which results in a need for conversions between the two domains. This
is not a major problem in applications which have sufficient resources because
fast methods for on-the-fly scalar conversion are available [8, 37]. Consequently,
very fast ECC implementations using Koblitz curves have been presented for
both software [39] and hardware [18]. For lightweight implementations, however,
the extra overhead introduced by these conversions has so far prevented efforts
to use Koblitz curves in lightweight implementations. A recent paper [4] showed
that Koblitz curves result in a very efficient lightweight implementation if τ -adic
expansions are already available but the fact that the conversion is not included
seriously limits possible applications of the implementation. An alternative ap-
proach was provided in a very recent paper [20] which provides a solution that
delegates conversions from the lightweight implementation to a powerful server.
However, this solution is not suitable for applications where both communicating
parties are lightweight implementations and it also requires minor modifications
to the cryptosystems which may hinder its use in some applications. Computing
conversions directly in the lightweight implementation would be a better option
in many cases and, hence, we focus on that alternative in this paper. All previous
hardware implementations of the conversions [1, 7, 8, 19, 36] are targeted on high
speed which makes them unsuitable for lightweight implementations.

To the best of our knowledge, we present the following novel contributions:

– We present the first lightweight implementation of high security ECC by
using a 283-bit Koblitz curve offering roughly 140 bits of security. By high
security, we mean security levels exceeding 128 bits (e.g., AES-128). Because
security of a cryptosystem utilizing multiple cryptographic algorithms is de-
termined by its weakest algorithm, our implementation is the first lightweight
implementation of ECC that can be combined, e.g., with AES-128 without
reducing the security level of the entire system.

– We present the first complete lightweight implementation of Koblitz curves
that also includes on-the-fly scalar conversion. We achieve this by presenting
a lightweight variant of the conversion algorithm from [8] which is optimized
for word-serial computations. As mentioned above, the first implementation
introduced in [4] does not include the conversion which limits the possible
applications of the implementation. All conversion algorithms and architec-
tures available in the literature focus on the speed of the conversion.

– The first lightweight implementation of Koblitz curves [4] does not include
any countermeasures against side-channel attacks. We present the first light-
weight implementation of Koblitz curves with countermeasures against side-
channel attacks such as simple power analysis (SPA), differential power anal-
ysis (DPA), timing attacks, and safe-error fault attacks.

The paper is structured as follows. In Sect. 2, we provide a brief background
on ECC and Koblitz curves. Then in Sect. 3 and 4, we describe our scalar
conversion and point multiplication techniques. Our lightweight coprocessor ar-
chitecture is presented in Sect. 5. We provide synthesis results in 130 nm CMOS
and comparisons to other works in Sect. 6. We end with conclusions in Sect. 7.

2 Preliminaries

The use of elliptic curves for cryptography was independently proposed by Vic-
tor Miller [29] and Neal Koblitz [22] in the mid-1980s. Points that satisfy the
equation of an elliptic curve form an additive Abelian group E together with
a special point O, which is the zero element of the group. Elliptic curves over
finite fields Fq are used in cryptography and we focus on elliptic curves over bi-
nary fields F2m (finite fields over characteristic two) with polynomial basis. Let
P1, P2 ∈ E. The group operation P1+P2 is called point addition when P1 6= ±P2

and point doubling when P1 = P2. The fundamental operation of ECC is the
elliptic curve point multiplication Q = kP , where k ∈ Z and Q,P ∈ E.

Point multiplication is computed with a series of point additions and point
doublings. The basic approach to compute point multiplications is to use the
double-and-add algorithm (also called the binary algorithm) which iterates over
the bits of k one at a time and computes a point doubling for every bit and a point
addition if the bit is one. Each point operation involves several operations in the
underlying finite field. Projective coordinates are typically used for representing
points as (X,Y, Z) in order to reduce the number of inversions in F2m . We use
the López-Dahab coordinates [27] and specifically the point addition formulae
from [2]. Another option that we considered was to use the λ-coordinates [33]
which offer slightly faster point additions. In our case, however, the cost of
obtaining the λ-coordinate representation, which includes an inversion in F2m ,
overweighs the cheaper point additions.

Koblitz curves introduced by Koblitz in [23] are a special class of elliptic
curves defined by the following equation:

y2 + xy = x3 + ax2 + 1 (1)

with x, y ∈ F2m and a ∈ {0, 1}. Koblitz curves offer efficient point multiplications
because they allow trading computationally expensive point doublings to cheap
Frobenius endomorphisms. Many standards use Koblitz curves including NIST
FIPS 186-4 [31] which describes the (Elliptic Curve) Digital Signature Standard
(ECDSA) and defines five Koblitz curves NIST K-163, K-233, K-283, K-409, and
K-571 over the finite fields F2163 , F2233 , F2283 , F2409 , and F2571 , respectively.

The Frobenius endomorphism for a point P = (x, y) is given by φ(P) =
(x2, y2) and, for Koblitz curves, it holds that φ(P) ∈ E for all P ∈ E. It can be
also shown that φ2(P)−µφ(P)+2P = O for all P ∈ E, where µ = (−1)1−a [23].
Consequently, the Frobenius endomorphism can be seen as a multiplication by
the complex number τ = (µ+

√
−7)/2 [23].

Representing the scalar k as a τ -adic expansion t =
∑`−1

i=0 tiτ
i allows com-

puting point multiplications with a Frobenius-and-add algorithm, which is sim-
ilar to the double-and-add algorithm except that point doublings are replaced
by Frobenius endomorphisms. Depending on the application, a τ -adic expan-
sion can be found by converting an integer into a τ -adic expansion [23, 28, 37, 8]
and/or by finding a random τ -adic expansion directly [23, 25]. In the latter case,
a conversion in the other direction is typically required because most cryptosys-
tems (e.g., ECDSA [31]) require the scalar as an integer, too. Conversions in
either direction can be expensive [8] but once the τ -adic expansion is obtained,
the point multiplication is significantly faster, which typically makes Koblitz
curves more efficient than other standardized elliptic curves. So far, no efficient
lightweight implementations of these conversions exist ruling Koblitz curves out
of the domain of lightweight cryptography.

Because the negative of a point is given simply as −P = (x, x+y), the cost of
point subtraction is practically equal to the cost of point addition and significant
performance improvements can be obtained by using signed-bit representations
for the scalar. In that case, a point addition is computed if ti = +1 and a point
subtraction is computed if ti = −1. The most widely used signed-bit represen-
tation for Koblitz curves is the τ -adic nonadjacent form (τNAF) introduced by
Solinas in [37] and it has an average density of 1/3 for nonzero coefficients. Soli-
nas also presented the window τNAF (w-τNAF) that allows even lower densities
of 1/(w+1) by utilizing precomputations to support an increased set of possible
values for coefficients: ti ∈ {±1,±3,±5, . . . ,±(2w−1 − 1)}.

Both τNAF and w-τNAF have the serious downside that they are vulnerable
against side-channel attacks because the pattern of point operations depends on
the key bits. The basic approach for obtaining resistance against side-channel
attacks for ECC is to use Montgomery’s ladder [30] which employs a constant
pattern of point operations. Unfortunately, Montgomery’s ladder is not a viable
choice for Koblitz curves because then all benefits of cheap Frobenius endomor-
phisms are lost. Certain options (e.g., by using dummy operations) have been
proposed in [14]. In this paper, we reuse the idea of using a zero-free τ -adic rep-
resentation [32, 41], that contains only nonzero digits, i.e., ti ∈ {−1,+1}. When
this representation is scanned with windows of size w ≥ 2, the resulting point
multiplication algorithm is both efficient and secure against many side-channel
attacks because it employs a constant pattern of operations [32, 41].

3 Koblitz Curve Scalar Conversion

The zero-free representation for an integer scalar k is found so that k is first
reduced to ρ = b0 + b1τ ≡ k (mod τm − 1) and the zero-free representation t

Input: Integer scalar k
Output: Reduced scalar ρ = b0 + b1τ ≡ k (mod τm − 1)
(a0, a1)← (1, 0), (b0, b1)← (0, 0), (d0, d1)← (k, 0)1

for i = 0 to m− 1 do2

u← d0[0] ; /* The lsb of d0, the remainder before division by τ */3

d0 ← d0 − u4

(b0, b1)← (b0 + u · a0, b1 + u · a1)5

(d0, d1)← (d1 − d0/2,−d0/2) ; /* Division of (d0, d1) by τ */6

(a0, a1)← (−2a1, a0 − a1)7

ρ = (b0, b1)← (b0 + d0, b1 + d1)8

Algorithm 1: Scalar reduction algorithm from [8]

is generated from the reduced scalar ρ [37, 32, 41]. The overhead of these con-
versions is specifically important for lightweight implementations. Another im-
portant aspect is resistance against side-channel attacks. In the following, we
describe our lightweight and side-channel resistant scalar conversion algorithms.
Only SPA countermeasures are required because only one conversion is required
per k. The scalar k is typically a nonce but even if it is used multiple times, t
can be computed only once and stored.

3.1 Scalar Reduction

We choose the scalar reduction technique called lazy reduction (described as
Alg. 1) from [8]. The algorithm reduces an integer scalar by repeatedly divid-
ing it by τ for m times. This division can be implemented with shifts, addi-
tions, and subtractions. This makes the scalar reduction algorithm [8] attrac-
tive for lightweight implementations. However, the only known hardware im-
plementations of this algorithm [8] and its speed-optimized versions [1, 36] use
full-precision integer arithmetic and parallelism to minimize cycle count. Hence
the reported architectures consume large areas and are thus not suitable for
lightweight implementations. We observe that the original lazy reduction al-
gorithm [8] can also be implemented in a word-serial fashion to reduce area
requirements but such a change in the design decision increases cycle count. To
reduce the number of cycles, we optimize the computational steps of Alg. 1.
Further, we investigate side-channel vulnerability of the algorithm and propose
lightweight countermeasures against SPA.

Computational Optimization In lines 6 and 7 of Alg. 1, computations of
d1 and a0 require subtractions from zero. In a word-serial architecture with
only one adder/subtracter circuit, they consume nearly 33% of the cycles of the
scalar reduction. We use the iterative property of Alg. 1 and eliminate these two
subtractions by replacing lines 6 and 7 with the following ones:

(d0, d1)← (d0/2− d1, d0/2)

(a0, a1)← (2a1, a1 − a0)
(2)

However with this modification, (a0, a1) and (d0, d1) have a wrong sign after
every odd number of iterations of the for-loop in Alg. 1. It may appear that this
wrong sign could affect correctness of (b0, b1) in line 5. Since the remainder u
(in line 3) is generated from d0 instead of the correct value −d0, a wrong sign is
also assigned to u. Hence, the multiplications u ·a0 and u ·a1 in line 5 are always
correct, and the computation of (b0, b1) remains unaffected of the wrong signs.

After completion of the for-loop, the sign of (d0, d1) is wrong as m is an odd
integer for secure fields. Hence, the correct value of the reduced scalar should be
computed as ρ← (b0 − d0, b1 − d1).

Protection Against SPA In line 5 of Alg. 1, computation of new (b0, b1)
depends on the remainder bit (u) generated from d0 which is initialized to k.
Multi-precision additions are performed when u = 1; whereas no addition is
required when u is zero. A side-channel attacker can detect this conditional
computation and can use, e.g., the techniques from [8] to reconstruct the secret
key from the remainder bits that are generated during the scalar reduction.

One way to protect the scalar reduction from SPA is to perform dummy addi-
tions (b′0, b

′
1)← (b0+a0, b1+a1) whenever u = 0. However, such countermeasures

based on dummy operations require more memory and are vulnerable to fault
attacks [11]. We propose a countermeasure inspired by the zero-free τ -adic rep-
resentations from [32, 41]. A zero-free representation is obtained by generating
the remainders u from d = d0 + d1τ using a map Ψ(d)→ u ∈ {1,−1} such that
d−u is divisible by τ , but additionally not divisible by τ2 (see Sect. 3.2). We ob-
serve that during the scalar reduction (which is basically a division by τ), we can
generate the remainder bits u as either 1 or −1 throughout the entire for-loop
in Alg. 1. Because u 6= 0, new (b0, b1) is always computed in the for-loop and
protection against SPA is achieved without dummy operations. The following
equation generates u by observing the second lsb of d0 and lsb of d1.

Case 1: If d0[1] = 0 and d1[0] = 0, then u← −1

Case 2: If d0[1] = 1 and d1[0] = 0, then u← 1

Case 3: If d0[1] = 0 and d1[0] = 1, then u← 1

Case 4: If d0[1] = 1 and d1[0] = 1, then u← −1

(3)

The above equation takes an odd d0 and computes u such that the new d0 after
division of d− u by τ is also an odd integer.

Algorithm 2 shows our computationally efficient SPA-resistant scalar reduc-
tion algorithm. All operations are performed in a word-serial fashion. Since the
remainder generation in (3) requires the input d0 to be an odd integer, the lsb of
d0 is always set to 1 (in line 3) when the input scalar k is an even integer. In this
case, the algorithm computes the reduced scalar of k + 1 instead of k and after
the completion of the reduction, the reduced scalar should be decremented by
one. Algorithm 2 uses a one-bit register e to implement this requirement. The
final subtraction in line 10 uses e as a borrow to the adder/subtracter circuit.
In the next section, we show that the subtraction d0 − u in line 6 also leaks
information about u and propose a countermeasure that prevents this.

Input: Integer scalar k
Output: Reduced scalar ρ = b0 + b1τ ≡ k (mod τm − 1)
(a0, a1)← (1, 0), (b0, b1)← (0, 0), (d0, d1)← (k, 0)1

e← ¬d0[0] ; /* Set to 1 when d0 is even */2

d0[0]← 13

for i = 0 to m− 1 do4

u← Ψ(d0 + d1τ) ; /* Remainder u ∈ {1,−1}, computed using (3) */5

d0 ← d0 − u6

(b0, b1)← (b0 + u · a0, b1 + u · a1)7

(d0, d1)← (d0/2− d1, d0/2) ; /* Saves one subtraction */8

(a0, a1)← (2a1, a1 − a0) ; /* Saves one subtraction */9

ρ = (b0, b1)← (b0 − d0 − e, b1 − d1) ; /* Subtraction instead of addition */10

Algorithm 2: SPA-resistant scalar reduction

Input: Reduced scalar ρ = b0 + b1τ with b0 odd
Output: Zero-free τ -adic bits (t`−1, · · · t0)
i← 01

while |b0| 6= 1 or b1 6= 0 do2

u← Ψ(b0 + b1τ) ; /* Computed using (3) */3

b0 ← b0 − u4

(b0, b1)← (b1 − b0/2,−b0/2)5

ti ← u6

i← i+ 17

ti ← b08

Algorithm 3: Computation of zero-free τ -adic representation [32]

3.2 Computation of τ -adic Representation

For side-channel attack resistant point multiplication, we use the zero-free τ -adic
representation proposed in [32, 41] and described in Alg. 3. In this paper, we add
the following improvements to the algorithm.

Computational Optimization Computation of b1 in line 5 of Alg. 3 requires
subtraction from zero. Similar to Sect. 3.1 this subtraction can be avoided by
computing (b0, b1)← (b0/2−b1, b0/2). With this modification, the sign of (b0, b1)
will be wrong after an odd number of iterations. In order to correct this, the sign
of ti should be flipped for odd i (by multiplying it with (−1)i).

Protection Against SPA Though point multiplications with zero-free repre-
sentations are resistant against SPA [32], the generation of τ -adic bits (Alg. 3)
is vulnerable to SPA. In line 3 of Alg. 3, a remainder u is computed as per the
four different cases described in (3) and then subtracted from b0 in line 4. We
use the following observations to detect the side-channel vulnerability in this
subtraction and to propose a countermeasure against SPA.

1. For Case 1, 2 and 3 in (3), the subtractions of u are equivalent to flipping
two (or one) least significant bits of b0. Hence, actual subtractions are not
computed in these cases.

2. For Case 4, subtraction of u from b0 (i.e. computation of b0 + 1) involves
carry propagation. Hence, an actual multi-precision subtraction is computed
in this case.

3. If any iteration of the while-loop in Alg. 3 meets Case 4, then the new value
of b1 will be even. Hence, the while-loop will meet either Case 1 or Case 2
in the next iteration.

Based on the differences in computation, a side-channel attacker using SPA can
distinguish Case 4 from the other three cases. Hence, the attacker can reveal
around 25% of the bits of a zero-free representation. Moreover, the attacker
knows that the following τ -adic bits are biased towards 1 instead of −1 with a
probability of 1/3.

We propose a very low-cost countermeasure that skips this special addition
b0 + 1 for Case 4 by merging it with the computation of new (b0, b1) in Alg. 3.
In line 5, we compute a new b0 as:

b0 ←
(
b0 + 1

2
− b1

)
=

(
b0 − 1

2
− {b′1, 0}

)
. (4)

Since b1 is an odd number for Case 4, we can represent it as {b′1, 1} and subtract
the least significant bit 1 from (b0 + 1)/2 to get (b0 − 1)/2. Since b0 is always
odd, the computation of (b0 − 1)/2 is just a left-shift of b0.

The computation of b1 ← (b0 + 1)/2 in line 5 of Alg. 3 involves a carry prop-
agation and thus an actual addition becomes necessary. We solve this problem
by computing b1 ← (b0 − 1)/2 instead of the correct value b1 ← (b0 + 1)/2 and
remembering the difference (i.e., 1) in a flag register h. Correctness of the τ -adic
representation can be maintained by considering this difference in the future
computations that use this wrong value of b1. Now as per observation 3, the
next iteration of the while-loop meets either Case 1 or 2. We adjust the previous
difference by computing the new b0 as follows:

b0 ←
(
b0
2
− (b1 + h)

)
=

(
b0
2
− b1 − 1

)
. (5)

In a hardware architecture, this equation can be computed by setting the borrow
input of the adder/subtracter circuit to 1 during the subtraction.

In (6), we show our new map Ψ ′(·) that computes a remainder u and a new
value h′ of the difference flag following the above procedure. We consider b1[0]⊕h
(instead of b1[0] as in (3)) because a wrong b1 is computed in Case 4 and the
difference is kept in h.

Case 1: If b0[1] = 0 and b1[0]⊕ h = 0, then u← −1 and h′ ← 0

Case 2: If b0[1] = 1 and b1[0]⊕ h = 0, then u← 1 and h′ ← 0

Case 3: If b0[1] = 0 and b1[0]⊕ h = 1, then u← 1 and h′ ← 0

Case 4: If b0[1] = 1 and b1[0]⊕ h = 1, then u← −1 and h′ ← 1

(6)

Input: Reduced scalar ρ = b0 + b1τ
Output: τ -adic bits (tell−1, · · · t0) and flag f
f ← assign flag(b0[0], b1[0])1

(b0[0], b1[0])← bitflip(b0[0], b1[0], f) ; /* Initial adjustment */2

i← 03

h← 04

while i < m or |b0| 6= 1 or b1 6= 0 do5

(u, h′)← Ψ ′(b0 + b1τ) ; /* Computed using (6) */6

b0[1]← ¬b0[1] ; /* Second LSB is set to 1 when Case 1 occurs */7

(b0, b1)← (b0
2
− b1 − h, b0

2
)8

ti ← (−1)i · u9

h← h′10

i← i+ 111

ti ← (−1)i · b012

Algorithm 4: SPA-resistant generation of a zero-free τ -adic representation

The same technique is also applied to protect the subtraction d0−u in the scalar
reduction in Alg. 2.

Protection Against Timing Attack The terminal condition of the while-
loop in Alg. 3 is dependent on the input scalar. Thus by observing the timing
of the computation, an attacker is able to know the higher order bits of a short
τ -adic representation. This allows the attacker to narrow down the search do-
main. We observe that we can continue the generation of zero-free τ -adic bits
even when the terminal condition in Alg. 3 is reached. In this case, the redun-
dant part of the τ -adic representation is equivalent to the value of b0 when the
terminal condition was reached for the first time; hence the result of the point
multiplication remains correct. For example, starting from (b0, b1) = (1, 0), the
algorithm generates an intermediate zero-free representation −τ − 1 and again
reaches the terminal condition (b0, b1) = (−1, 0). The redundant representation
−τ2 − τ − 1 is equivalent to 1. If we continue, then the next terminal condition
is again reached after generating another two bits. In this paper we generate
zero-free τ -adic representations that have lengths always larger than or equal to
m of the field F2m . To implement this feature, we added the terminal condition
i < m to the while-loop.

In Alg. 4, we describe an algorithm for generating zero-free representations
that applies the proposed computational optimizations and countermeasures
against SPA and timing attacks. The while-loops of both Alg. 3 and 4 require
b0 to be an odd integer. When the input ρ has an even b0, then an adjustment
is made by adding one to b0 and adding (subtracting) one to (from) b1 when b1
is even (odd). This adjustment is recorded in a flag f in the following way: if b0
is odd, then f = 0; otherwise f = 1 or f = 2 depending on whether b1 is even
or odd, respectively. In the end of a point multiplication, this flag is checked
and (τ + 1)P or (−τ + 1)P is subtracted from the point multiplication result if

Input: An integer k, the base point P = (x, y), a random element r ∈ F2m

Output: The result point Q = kP
(t, f)← Convert(k) ; /* Alg. 2 and 4 */1

P+1 ← φ(P) + P2

P−1 ← φ(P)− P3

if ` is odd then Q = (X,Y)← t`−1P ; i← `− 34

else Q = (X,Y)← t`−1Pt`−2t`−1 ; i← `− 45

Q = (X,Y, Z)← (Xr, Y r2, r)6

while i ≥ 0 do7

Q← φ2(Q)8

Q← Q+ ti+1Ptiti+19

i← i− 210

if f = 1 then Q← Q+ P−111

else if f = 2 then Q← Q− P+112

Q = (X,Y)← (X/Z, Y/Z2)13

return Q14

Algorithm 5: Zero-free point multiplication with side-channel counter-
measures

f = 1 or f = 2, respectively. This compensates the initial addition of (τ + 1) or
(−τ + 1) to the reduced scalar ρ described in line 2 of Alg. 4.

4 Point Multiplication

We base the point multiplication algorithm on the use of the zero-free represen-
tation discussed in Sect. 3. We give our modification of the point multiplication
algorithm of [32, 41] with window size w = 2 in Alg. 5. The algorithm includes
countermeasures against SPA, DPA, and timing attacks as well as inherent resis-
tance against safe-error fault attacks. Implementation details of each operation
used by Alg. 5 are given in App. A. Below, we give a high-level description.

Line 1 computes the zero-free representation t given an integer k using Alg. 2
and 4. It outputs a zero-free expansion of length ` with ti ∈ {−1,+1} represented
as an `-bit vector and a flag f . Lines 2 and 3 perform the precomputations by
computing P+1 = φ(P) + P and P−1 = φ(P) − P . Lines 4 and 5 initialize the
accumulator point Q depending on the length of the zero-free expansion. If the
length is odd, then Q is set to ±P depending on the msb t`−1. If the length
is even, then Q is initialized with ±φ(P)± P by using the precomputed points
depending on the values of the two msb’s t`−1 and t`−2. Line 6 randomizes Q by
using a random element r ∈ F2m as suggested by Coron [9]. This randomization
offers protection against DPA and attacks that calculate hypotheses about the
values of Q based on its known initial value (e.g., the doubling attack [12]).

Lines 7 to 10 iterate the main loop of the algorithm by observing two bits
of the zero-free expansion on each iteration. Each iteration begins in line 8 by
computing two Frobenius endomorphisms. Line 9 either adds or subtracts P+1 =
(x+1, y+1) or P−1 = (x−1, y−1) to or from Q depending on the values of ti

and ti+1 processed by the iteration. It is implemented by using the equations
from [2] which compute a point addition in mixed affine and López-Dahab [27]
coordinates. Point addition and subtraction are carried out with the exactly same
pattern of operations (see App. A). Lines 11 and 12 correct the adjustments that
ensure that b0 is odd before starting the generation of the zero-free representation
(see Sect. 3.2). Line 13 retrieves the affine point of the result point Q.

The pattern of operations in Alg. 5 is almost constant. The side-channel prop-
erties of the conversion (line 1) were discussed in Sect. 3. The precomputation
(lines 2 and 3) is fixed and operates only on the base point, which is typically
public. The initialization of Q (lines 4 and 5) can be carried out with a constant
pattern of operations with the help of dummy operations. The randomization of
Q protects from differential power analysis (DPA) and comparative side-channel
attacks (e.g., the doubling attack [12]). The main loop operates with a fixed
pattern of operations on a randomized Q offering protecting against SPA and
DPA. Lines 11 and 12 depend on t (and, thus, k) but they leak at most one bit to
an adversary who can determine whether they were computed or not. This leak-
age can be prevented with a dummy operation. Although the algorithm includes
dummy operations, it offers good protection also against safe-error fault attacks.
The reason is that the main loop does not involve any dummy operations and,
hence, even an attacker, who is able to distinguish dummy operations, learns
only few bits of information (at most, the lsb and the msb and whether the
length is odd or even). Hence, fault attacks that aim to reveal secret information
by distinguishing dummy operations are not a viable attack strategy.

5 Architecture

In this section, we describe the hardware architecture (Fig. 1) of our ECC co-
processor for 16-bit microcontrollers such as TI MSP430F241x or MSP430F261x
[40]. Such families of low-power microcontrollers have at least 4KB of RAM and
can run at 16 MHz clock. We connect our coprocessor to the microcontroller
using a memory-mapped interface [35] following the drop-in concept from [42]
where the coprocessor is placed on the bus between the microcontroller and the
RAM and memory access is controlled with multiplexers. The coprocessor con-
sists of the following components: an arithmetic and logic unit (ALU), an address
generation unit, a shared memory and a control unit composed of hierarchical
finite state machines (FSMs).

The Arithmetic and Logic Unit (ECC-ALU) has a 16-bit data path and
is used for both integer and binary field computations. The ECC-ALU is in-
terfaced with the memory block using an input register pair (R1, R2) and an
output multiplexer. The central part of the ECC-ALU consists of a 16-bit inte-
ger adder/subtracter circuit, a 16-bit binary multiplier and two binary adders.
A small Reduction-ROM contains several constants that are used during mod-
ular reductions and multiplications by constants. The accumulator register pair
(CU,CL) stores the intermediate or final results of any arithmetic operation.

>

+
−

25

27

212

R1

R2

RdB1

RdB2

WtB1

WtB2

CU

0 0

CL

1

0

ALU

RAM Address

ADDRESS

16

15 16

11

5 16

Single Port

RAM

CONTROL

Scalar Conversion, Field Addition/Squaring/Multiplication/Inversion, Point Arithmetic

16

din dout

LSB

clr en

en

LSB

ca
rr

y
in

Binary Add

16x16 Binary Mult

shift

Offset

1 1

clr2 2

addcarry carry1 2

CU CL

mask

T

0

ROM

18

+

Base
Address

Base

WtOffsetRdOffset

Reduction−ROM

Fig. 1. Hardware architecture of the ECC coprocessor

Finally, the output multiplexer is used to store the contents of the registers CL,
T and a masked version of CL in the memory block, which sets the msb’s of the
most significant word of an alement to zero.

The Memory Block is a single-port RAM which is shared by the ECC copro-
cessor and the 16-bit microcontroller. Each 283-bit element of F2283 requires 18
16-bit words totaling 288 bits. The coprocessor requires storage for 14 elements
of F2283 (see App. A), which gives 4032 bits of RAM (252 16-bit words). Some
of these variables are reused for different purposes during the conversion.

The Address Unit generates address signals for the memory block. A small
Base-ROM is used to keep the base addresses for storing different field elements
in the memory. During any integer operation or binary field operation, the two
address registers RdB1 and RdB2 in the address unit are loaded with the base
addresses of the input operands. Similarly the base addresses for writing inter-
mediate or final results in the memory block are provided in the register WtB1

and in the output from the Base-ROM (WtB2). The adder circuit of the address

block is an 8-bit adder which computes the physical address from a read/write
offset value and a base address.

The Control Unit consists of a set of hierarchical FSMs that generate control
signals for the blocks described above. The FSMs are described below.

1) Scalar Conversion uses the part of the ECC-ALU shown by the red dashed
polygon in Fig. 1. The computations controlled by this FSM are mainly integer
additions, subtractions and shifts. During any addition or subtraction, the words
of the operands are first loaded in the register pair (R1, R2). The result-word is
computed using the integer adder/subtracter circuit and stored in the accumu-
lator register CL. During a right-shift, R2 is loaded with the operand-word and
R1 is cleared. Then the lsb of the next higher word of the operand is stored in
the one-bit register LSB. Now the integer adder is used to add the shifted value
{LSB,R2/2} with R1 to get the shifted word. One scalar conversion requires
around 78,000 cycles.

2) Binary Field Primitives use the registers and the portion of the ECC-ALU
outside the red-dashed polygon in Fig. 1.

– Field addition sequentially loads two words of the operands in R2, then
multiplies the words by 1 (from the Reduction-ROM) and finally calculates
the result-word in CL after accumulation. One field addition requires 60
cycles.

– Field multiplication uses word-serial comb method [13]. It loads the words
of the operands in R1 and R2, then multiplies the words and finally accumu-
lates. After the completion of the comb multiplication, a modular reduction
is performed requiring mainly left-shifts and additions. The left-shifts are
performed by multiplying the words with the values from the Reduction-
ROM. One field multiplication requires 829 cycles.

– Field squaring computes the square of an element of F2283 in linear time by
squaring its words. The FSM first loads a word in both R1 and R2 and then
squares the word by using the binary multiplier. After squaring the words,
the FSM performs a modular reduction. The modular reduction is shared
with the field multiplication FSM. One field squaring requires 200 cycles.

– Field inversion uses the Itoh-Tsujii algorithm [17] and performs field multipli-
cations and squarings following an addition chain (1, 2, 4, 8, 16, 17, 34, 35, 70,
140, 141, 282) for F2283 . One inversion requires 65,241 cycles.

3) Point Operations and Point Multiplication are implemented by combining an
FSM with a hardwired program ROM. The program ROM includes subprograms
for all operations of Alg. 5 and the address of the ROM is controlled by the FSM
in order to execute Alg. 5 (see App. A for details).

Algorithm 5 is executed so that the microcontroller initializes the addresses
reserved for the accumulator point Q with the base point (x, y) and the random
element r by writing (X,Y, Z) ← (x, y, r). The scalar k is written into the

RAM before the microcontroller issues a start point multiplication command.
When this command is received, the reduction part of the conversion is executed
followed by the computation of the msb(s) of the zero-free expansion. After this,
the precomputations are performed by using (x, y) and the results are stored
into the RAM. The initialization of Q is performed by writing either P+1 or
P−1 in (X,Y) if the length of the expansion is even; otherwise, a dummy write
is performed. Similarly, the sign of Q is changed if t`−1 = −1 and a dummy
operation is computed otherwise. The main loop first executes two Frobenius
endomorphisms and, then, issues an instruction that computes the next two
bits of the zero-free expansion. By using these bits, either a point addition or a
point subtraction is computed with P+1 or P−1. One iteration of the main loop
takes 9537 clock cycles. In the end, the affine coordinates of the result point are
retrieved and they become available for the microcontroller in the addresses for
the X and Y coordinates of Q.

6 Results and Comparisons

We described the architecture of Sect. 5 by using mixed Verilog and VHDL and
simulated it with ModelSim SE 6.6d. We synthesized the code with Synopsys De-
sign Compiler D-2010.03-SP4 using the regular compile for UMC 130 nm CMOS
with voltage of 1.2 V by using Faraday FSC0L low-leakage standard cell libraries.
The area given by the synthesis is 4,323 GE including everything in Fig. 1 ex-
cept the single-port RAM. Computing one point multiplication requires in total
1,566,000 clock cycles including the scalar conversion. The power consumption at
16 MHz is 97.70 µW which gives an energy consumption of approximately 9.56µJ
per point multiplication. Table 1 summarizes our synthesis results together with
several other lightweight ECC implementations from the literature.

Among all lightweight ECC processors available in the literature, the pro-
cessor from [4] is the closest counterpart to our implementation because it is so
far the only one that uses Koblitz curves. Even it has many differences with our
architecture which make fair comparison difficult. The most obvious difference
is that the processor from [4] is designed for a less secure Koblitz curve NIST
K-163. Also the architecture of [4] differs from ours in many fundamental ways:
they use a finite field over normal basis instead of polynomial basis, they use a
bit-serial multiplier that requires all bits of both operands to be present during
the entire multiplication instead of a word-serial architecture that we use, they
store all variables in registers embedded into the processor architecture instead
of an external RAM, and they also do not provide support for scalar conver-
sions or any countermeasures against side-channel attacks. They also provide
implementation results on 65 nm CMOS. Our architecture is significantly more
scalable for different Koblitz curves because, besides control logic and RAM re-
quirements, other parts remain almost the same, whereas the entire multiplier
needs to be changed for [4]. It is also hard to see how scalar conversions or side-
channel countermeasures could be integrated into the architecture of [4] without
significant increases on both area and latency.

Table 1. Comparison to other lightweight coprocessors for ECC. The top part consists
of relevant implementations from the literature. We also provide estimates for other
parameter sets in order to ease comparisons to existing works.

Work Curve Conv. RAM
Tech. Freq. Area Latency Latency Power
(nm) (MHz) (GE) (cycles) (ms) (µW1)

[5], 2006 B-163 n/a no 130 0.500 9,926 95,159 190.32 <60
[6], 2008 B-163 n/a yes 220 0.847 12,876 – 95 93
[15], 2008 B-163 n/a yes 180 0.106 13,250 296,299 2,792 80.85
[24], 2006 B-163 n/a yes 350 13.560 16,207 376,864 27.90 n/a
[26], 2008 B-163 n/a yes 130 1.130 12,506 275,816 244.08 32.42
[43], 2011 B-163 n/a yes 130 0.100 8,958 286,000 2,860 32.34
[42], 2013 B-163 n/a no 130 1.000 4,114 467,370 467.37 66.1
[34], 2014 P-160 n/a yes 130 1.000 12,4482 139,930 139.93 42.42
[4], 2014 K-163 no yes3 65 13.560 11,571 106,700 7.87 5.7

Our, est. B-163 yes no 130 16.000 ≈3,773 ≈485,000 ≈30.31 ≈6.11
Our, est. K-163 yes no 130 16.000 ≈4,323 ≈420,900 ≈26.30 ≈6.11
Our, est. B-283 yes no 130 16.000 ≈3,773 ≈1,934,000 ≈120.89 ≈6.11
Our, est. K-283 yes yes4 130 16.000 10,204 1,566,000 97.89 >6.11
Our K-283 yes no 130 16.000 4,323 1,566,000 97.89 6.11
1 Normalized to 1 MHz.
2 Contains everything required for ECDSA including a Keccak module.
3 All variables are stored in registers inside the processor.
4 The 256× 16-bit RAM is estimated to have an area of 5794 GE because the size

of a single-port 256× 8-bit RAM has an area of 2897 GE [42].

Table 1 includes also implementations that use the binary curve B-163 and
the prime curve P-160 from [31]. The area of our coprocessor is on the level of
the smallest coprocessors available in the literature. Hence, the effect of selecting
a 283-bit elliptic curve instead of a less secure curve is negligible in terms of area.
The price to pay for higher security comes in the form of memory requirements
and computation latency. The amount of memory is not a major issue because
our processor shares the memory with the microcontroller which typically has
a large memory (e.g. TI MSP430F241x and MSP430F261x have at least 4KB
RAM [40]). Also the computation time is on the same level with other published
implementations because our coprocessor is designed to run on the relatively
high clock frequency of the microcontroller which is 16 MHz.

In this work our main focus was to investigate feasibility of lightweight im-
plementations of Koblitz curves for applications demanding high security. To
enable a somewhat fair comparison with the existing lightweight implementa-
tions over F2163 , Table 1 provides estimates (see App. B) for area and cycles of
ECC coprocessors that follow the design decisions presented in this paper and
perform point multiplications on curves B-163 or K-163. Our estimates show
that our coprocessors for both B-163 and K-163 require more cycles in compar-
ison to [43] which also uses a 16-bit ALU. The reason behind this is that [43]
uses a dual-port RAM, whereas our implementation uses a single-port RAM (as

it works as a coprocessor of MSP430). Moreover [43] has a dedicated squarer
circuit to minimize cycle requirement for squaring.

Table 1 provides estimates for cycle and area of a modified version of the
coprocessor that performs point multiplications using the Montgomery’s ladder
on the NIST curve B-283. The estimated cycle count is calculated from the
cycle counts of the field operations described in Sect. 5. From the estimated
value, we see that a point multiplication on B-283 requires nearly 23.5% more
time. However, the coprocessor for B-283 is smaller by around 550 GE as no
scalar conversion is needed.

Although application-specific integrated circuits are the primary targets for
our coprocessor, it may be useful also for FPGA-based implementations when-
ever small ECC designs are needed. Hence, we compiled our coprocessor also for
Xilinx Spartan-6 XC6SLX4-2TQG144 FPGA by using Xilinx ISE 13.4 Design
Suite. After place&route, it requires only 209 slices (634 LUTs and 309 registers)
and runs on clock frequencies up to 106.598 MHz.

Our coprocessor significantly improves speed, both classical and side-channel
security, memory footprint, and energy consumption compared to leading light-
weight software [3, 10, 16, 21, 38]. For example, [10] reports a highly optimized
Assembly implementation running on a 32-bit Cortex-M0+ processor clocked at
48 MHz that computes a point multiplication on a less secure Koblitz curve K-233
without strong side-channel countermeasures. It computes a point multiplication
in 59.18 ms (177.54 ms at 16 MHz) and consumes 34.16µJ of energy.

7 Conclusions

In this paper we showed that implementing point multiplication on a high se-
curity 283-bit Koblitz curve is feasible with extremely low resources making it
possible for various lightweight applications. We also showed that Koblitz curves
can be used in such applications even when the cryptosystem requires scalar con-
versions. Beside these contributions, we improved the scalar conversion by ap-
plying several optimizations and countermeasures against side-channel attacks.
Finally, we designed a very lightweight architecture in only 4.3 kGE that can be
used as a coprocessor for commercial 16-bit microcontrollers. Hence, we showed
that Koblitz curves are feasible also for lightweight ECC even with on-the-fly
scalar conversions and strong countermeasures against side-channel attacks.

Acknowlegments

S. Sinha Roy was supported by the Erasmus Mundus PhD Scholarship and K.
Jrvinen was funded by FWO Pegasus Marie Curie Fellowship. This work was
supported by the Research Council KU Leuven: TENSE (GOA/11/007), by
iMinds, by the Flemish Government, FWO G.0550.12N, G.00130.13N and FWO
G.0876.14N, and by the Hercules Foundation AKUL/11/19. We thank Bohan
Yang for his help with ASIC synthesis and simulations.

References

1. Adikari, J., Dimitrov, V., Järvinen, K.: A fast hardware architecture for integer
to τNAF conversion for Koblitz curves. IEEE Transactions on Computers 61(5),
732–737 (May 2012)

2. Al-Daoud, E., Mahmod, R., Rushdan, M., Kilicman, A.: A new addition formula
for elliptic curves over GF (2n). IEEE Transactions on Computers 51(8), 972–975
(Aug 2002)

3. Aranha, D.F., Dahab, R., López, J., Oliveira, L.B.: Efficient implementation of
elliptic curve cryptography in wireless sensors. Advances in Mathematics of Com-
munications 4(2), 169–187 (2010)

4. Azarderakhsh, R., Järvinen, K.U., Mozaffari-Kermani, M.: Efficient algorithm and
architecture for elliptic curve cryptography for extremely constrained secure ap-
plications. IEEE Transactions on Circuits and Systems I—Regular Papers 61(4),
1144–1155 (Apr 2014)

5. Batina, L., Mentens, N., Sakiyama, K., Preneel, B., Verbauwhede, I.: Low-cost
elliptic curve cryptography for wireless sensor networks. In: Security and Privacy
in Ad-Hoc and Sensor Networks — ESAS 2006. Lecture Notes in Computer Science,
vol. 4357, pp. 6–17. Springer (2006)

6. Bock, H., Braun, M., Dichtl, M., Hess, E., Heyszl, J., Kargl, W., Koroschetz, H.,
Meyer, B., Seuschek, H.: A milestone towards RFID products offering asymmetric
authentication based on elliptic curve cryptography. In: Proceedings of the 4th
Workshop on RFID Security — RFIDSec 2008 (2008)

7. Brumley, B.B., Järvinen, K.: Koblitz curves and integer equivalents of Frobenius
expansions. In: Selected Areas in Cryptography — SAC 2007. Lecture Notes in
Computer Science, vol. 4876, pp. 126–137. Springer (2007)

8. Brumley, B.B., Järvinen, K.U.: Conversion algorithms and implementations for
Koblitz curve cryptography. IEEE Transactions on Computers 59(1), 81–92 (Jan
2010)

9. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Cryptographic Hardware and Embedded Systems — CHES 1999.
Lecture Notes in Computer Science, vol. 1717, pp. 292–302. Springer (1999)

10. De Clercq, R., Uhsadel, L., Van Herrewege, A., Verbauwhede, I.: Ultra low-power
implementation of ECC on the ARM Cortex-M0+. In: Design Automation Con-
ference — DAC 2014. pp. 1–6. ACM (2014)

11. Fan, J., Verbauwhede, I.: An Updated Survey on Secure ECC Implementations:
Attacks, Countermeasures and Cost. In: Cryptography and Security: From The-
ory to Applications, Lecture Notes in Computer Science, vol. 6805, pp. 265–282.
Springer (2012)

12. Fouque, P.A., Valette, F.: The doubling attack—why upwards is better than down-
wards. In: Cryptographic Hardware and Embedded Systems — CHES 2003. Lec-
ture Notes in Computer Science, vol. 2779, pp. 269–280. Springer (2003)

13. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer-Verlag New York, Inc., Secaucus, NJ, USA (2003)

14. Hasan, M.A.: Power analysis attacks and algorithmic approaches to their coun-
termeasures for Koblitz curve cryptosystems. IEEE Transactions on Computers
50(10), 1071–1083 (Oct 2001)

15. Hein, D., Wolkerstorfer, J., Felber, N.: ECC is ready for RFID a proof in silicon. In:
Selected Areas in Cryptography — SAC 2008. Lecture Notes in Computer Science,
vol. 5381, pp. 401–413. Springer (2009)

16. Hinterwlder, G., Moradi, A., Hutter, M., Schwabe, P., Paar, C.: Full-size high-
security ECC implementation on MSP430 microcontrollers. In: Progress in Cryp-
tology — LATINCRYPT 2014. Lecture Notes in Computer Science, vol. 8895, pp.
31–47. Springer (2015)

17. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in
GF (2m) using normal bases. Information and Computation 78(3), 171–177 (1988)

18. Järvinen, K.: Optimized FPGA-based elliptic curve cryptography processor for
high-speed applications. Integration, the VLSI Journal 44(4), 270–279 (2011)

19. Järvinen, K., Forsten, J., Skyttä, J.: Efficient circuitry for computing τ -adic non-
adjacent form. In: Proc. the 13th IEEE International Conference on Electronics,
Circuits and Systems — ICECS 2006. pp. 232–235. IEEE (2006)

20. Järvinen, K., Verbauwhede, I.: How to use Koblitz curves on small devices? In:
Smart Card Research and Advanced Application Conference — CARDIS 2014.
Lecture Notes in Computer Science, vol. 8968, pp. 154–170 (2014)

21. Kargl, A., Pyka, S., Seuschek, H.: Fast arithmetic on ATmega128 for elliptic curve
cryptography. Cryptology ePrint Archive, Report 2008/442 (2008)

22. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177),
203–209 (1987)

23. Koblitz, N.: CM-curves with good cryptographic properties. In: Advances in Cryp-
tology — CRYPTO ’91. Lecture Notes in Computer Science, vol. 576, pp. 279–287.
Springer (1991)

24. Kumar, S., Paar, C.: Are standards compliant elliptic curve cryptosystems feasible
on RFID? In: Handouts of the Workshop on RFID Security — RFIDSec 2006
(2006)

25. Lange, T.: Koblitz curve cryptosystems. Finite Fields and Their Applications 11,
200–229 (2005)

26. Lee, Y.K., Sakiyama, K., Batina, L., Verbauwhede, I.: Elliptic-curve-based security
processor for RFID. IEEE Transactions on Computers 57(11), 1514–1527 (Nov
2008)

27. López, J., Dahab, R.: Improved algorithms for elliptic curve arithmetic in GF (2n).
In: Selected Areas in Cryptography — SAC’98. Lecture Notes in Computer Science,
vol. 1556, pp. 201–212. Springer (1999)

28. Meier, W., Staffelbach, O.: Efficient multiplication on certain nonsupersingular
elliptic curves. In: Advances in Cryptology — CRYPTO ’92. Lecture Notes in
Computer Science, vol. 740, pp. 333–344. Springer (1993)

29. Miller, V.S.: Use of elliptic curves in cryptography. In: Advances in Cryptology —
CRYPTO ’85. Lecture Notes in Computer Science, vol. 218, pp. 417–426. Springer
(1986)

30. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48, 243–264 (1987)

31. National Institute of Standards and Technology (NIST): Digital signature standard
(DSS). Federal Information Processing Standard, FIPS PUB 186-4 (Jul 2013)

32. Okeya, K., Takagi, T., Vuillaume, C.: Efficient representations on Koblitz curves
with resistance to side channel attacks. In: Proc. the 10th Australasian Conference
on Information Security and Privacy — ACISP 2005. Lecture Notes in Computer
Science, vol. 3574, pp. 218–229. Springer (2005)

33. Oliveira, T., López, J., Aranha, D.F., Rodŕıguez-Henŕıquez, F.: Lambda coordi-
nates for binary elliptic curves. In: Cryptographic Hardware and Embedded Sys-
tems — CHES 2013. Lecture Notes in Computer Science, vol. 8086, pp. 311–330.
Springer (2013)

34. Pessl, P., Hutter, M.: Curved tags — a low-resource ECDSA implementation tai-
lored for RFID. In: Workshop on RFID Security — RFIDSec 2014 (2014)

35. Schaumont, P.R.: A Practical Introduction to Hardware/Software Codesign.
Springer, 2nd edn. (2013)

36. Sinha Roy, S., Fan, J., Verbauwhede, I.: Accelerating scalar conversion for Koblitz
curve cryptoprocessors on hardware platforms. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 23(5), 810–818 (May 2015)

37. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Designs, Codes and Cryptog-
raphy 19(2–3), 195–249 (2000)

38. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC:
Testing the limits of elliptic curve cryptography in sensor networks. In: European
Conference on Wireless Sensor Networks — ESWN 2008. Lecture Notes in Com-
puter Science, vol. 4913, pp. 305–320. Springer (2008)

39. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodŕıguez-Henŕıquez, F., Hanker-
son, D., López, J.: Speeding scalar multiplication over binary elliptic curves using
the new carry-less multiplication instruction. Journal of Cryptographic Engineer-
ing 1(3), 187–199 (2011)

40. Texas Instruments: MSP430F261x and MSP430F241x (Jun 2007, Rev Nov 2012),
http://www.ti.com/lit/ds/symlink/msp430f2618.pdf (accessed Jun. 4, 2015)

41. Vuillaume, C., Okeya, K., Takagi, T.: Defeating simple power analysis on Koblitz
curves. IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences E89-A(5), 1362–1369 (May 2006)

42. Wenger, E.: Hardware architectures for MSP430-based wireless sensor nodes per-
forming elliptic curve cryptography. In: Applied Cryptography and Network Secu-
rity — ACNS 2013. Lecture Notes in Computer Science, vol. 7954, pp. 290–306.
Springer (2013)

43. Wenger, E., Hutter, M.: A hardware processor supporting elliptic curve cryptog-
raphy for less than 9 kGEs. In: Smart Card Research and Advanced Applications
— CARDIS 2011. Lecture Notes in Computer Science, vol. 7079, pp. 182–198.
Springer (2011)

A Implementation of Operations Used by Algorithm 5

The operations required by Alg. 5 are implemented by combining an FSM and
a program ROM. The program ROM includes subprograms for all operations of
Alg. 5 and the FSM sets the address of the ROM to the first instruction of the
subprogram according the phase of the algorithm and ti+1, ti.

Table 2 shows the contents of the program ROM. The operations required
by Alg. 5 are in this ROM as follows:

– Line 0 obtains the next bits of the zero-free representation.
– Lines 1–23 perform the precomputation that computes (x+1, y+1) = φ(P)+P

and (x−1, y−1) = φ(P)− P .
– Line 24 computes the negative of Q during the initialization and Line 25 is

the corresponding dummy operation.
– Lines 26–28 randomize the projective coordinates of Q by using the random
r ∈ F2283 which is stored in Z.

– Lines 29–34 compute two Frobenius endomorphisms for Q.

Table 2. The program ROM includes instructions for the following operations

0 Convert(k) 20 y−1 ← y−1 × T1 40 ym ← x−1 + y−1 60 T2 ← xp × Z
1 x+1 ← X2 21 y−1 ← y−1 + x−1 41 xp ← x+1 61 T2 ← T2 +X
2 y+1 ← Y 2 22 y−1 ← y−1 + Y 42 ym ← y+1 62 Y ← Y + Z
3 x+1 ← X + x+1 23 y−1 ← y−1 +X 43 yp ← x+1 + y+1 63 Y ← Y × T2

4 x−1 ← x−1
+1 24 Y ← X + Y 44 xp ← x−1 64 T1 ← Z2

5 T1 ← Y + y+1 25 T1 ← X + Y 45 ym ← y−1 65 T1 ← T1 × ym
6 y−1 ← T1 × x−1 26 X ← X × Z 46 yp ← x−1 + y−1 66 Y ← Y + T1

7 T1 ← y2−1 27 T1 ← Z2 47 T1 ← Z2 67 x+1 ← Z
8 T1 ← T1 + y−1 28 Y ← Y × T1 48 T1 ← T1 × yp 68 x−1 ← x−1

+1

9 x+1 ← T1 + x+1 29 Y ← Y 2 49 T1 ← T1 + Y 69 X ← X × x−1

10 T1 ← x+1 +X 30 Y ← Y 2 50 T2 ← Z × xp 70 x−1 ← x2−1

11 y+1 ← T1 + y−1 31 X ← X2 51 T2 ← T2 +X 71 Y ← Y × x−1

12 y+1 ← y+1 + x+1 32 X ← X2 52 X ← T 2
2 72 X ← x+1

13 y+1 ← y+1 + Y 33 Z ← Z2 53 X ← X + T1 73 Y ← y+1

14 x−1 ← x−1 ×X 34 Z ← Z2 54 T2 ← T2 × Z 74 X ← x−1

15 y−1 ← y−1 + x−1 35 xp ← x+1 55 X ← X × T2 75 Y ← y−1

16 T1 ← x2−1 36 yp ← y+1 56 Y ← T1 × T2 76 T1 ← x+1

17 x−1 ← x−1 + T1 37 ym ← x+1 + y+1 57 T1 ← T 2
1 77 T2 ← y+1

18 x−1 ← x−1 + x+1 38 xp ← x−1 58 X ← X + T1

19 T1 ← x−1 +X 39 yp ← y−1 59 Z ← T 2
2

– Lines 35–37 set (xp, yp) ← (x+1, y+1) = φ(P) + P and compute the y-
coordinate of its negative to ym.

– Lines 38–40 set (xp, yp) ← (x−1, y−1) = φ(P) − P and compute the y-
coordinate of its negative to ym.

– Lines 41–43 compute (xp, yp) ← −(x+1, y+1) = −φ(P) − P and set the
y-coordinate of its negative to ym.

– Lines 44–46 compute (xp, yp) ← −(x−1, y−1) = −φ(P) + P and set the
y-coordinate of its negative to ym.

– Lines 47–66 compute the point addition (X,Y, Z) ← (X,Y, Z) + (xp, yp) in
López-Dahab coordinates using the equations from [2].

– Lines 67–71 recover the affine coordinates of Q by computing (X,Y) ←
(X/Z, Y/Z2).

– Lines 72–73 and lines 74–75 initialize Q with (x+1, y+1) and (x−1, y−1), re-
spectively, and lines 76–77 perform a dummy operation for these operations.

Point addition and point subtraction are computed with exactly the same
sequence of operations. This is achieved by introducing an initialization which
sets the values of three internal variables xp, yp, and ym according to Table 3
(these are in lines 35–46 in Table 2). This always requires two copy instructions
followed by an addition. After this initialization, both point addition and point
subtraction are computed with a common sequence of operations which adds
the point (xp, yp) to Q. The element xm is the y-coordinate of the negative of
(xp, yp) and it is also used during the point addition.

Table 3. Initialization of point addition and point subtraction

ti+1, ti 1st 2nd 3rd

+1,+1 xp ← x+1 yp ← y+1 ym ← x+1 + y+1

+1,−1 xp ← x−1 yp ← y−1 ym ← x−1 + y−1

−1,+1 xp ← x−1 ym ← y−1 yp ← x−1 + y−1

−1,−1 xp ← x+1 ym ← y+1 yp ← x+1 + y+1

B Estimates for B-163 and K-163

Our estimated cycle count for scalar multiplication over F2163 is based on the
following facts:

1. A field element in F2163 requires 11 16-bit words, and hence, is smaller by a
factor of 0.61 than a field element in F2283 . Since field addition and squaring
have linear complexity, we estimate that the cycle counts for these operations
scale down by a factor of around 0.61 and become 37 and 122 respectively.
In a similarly way we estimate that field multiplication (which has quadratic
complexity) scales down to 309 cycles. A field inversion operation following
an addition chain (1, 2, 4, 5, 10, 20, 40, 81, 162) requires nearly 22,700 cycles.

2. The for-loop in the scalar reduction operation (Alg. 2) executes 163 times
in F2163 and performs linear operations such as additions/subtractions and
shifting. Moreover the length of τ -adic representation of a scalar reduces
to 163 (thus reducing by a factor of 0.57 in comparison to F2283). So, we
estimate that the cycle count for scalar conversion scales down by a factor
of 0.57× 0.61 and requires nearly 27,000 cycles.

3. One Frobenius-and-add operation over F2283 in Alg. 5 spends total 9,537 cy-
cles among which 6,632 cycles are spent in eight quadratic-time field multi-
plications, and the rest 2,905 cycles are spent in linear-time operations. After
scaling down, the cycle count for one Frobenius-and-add operation over F2163

can be estimated to be around 4,250. The point multiplication loop iterates
nearly 82 times for a τ -adic representation of length 164. Hence the number
of cycles spent in this loop can be estimated to be around 348,500.

4. The precomputation and the final conversion steps are mainly dominated by
the cost of field inversions. Hence the cycle counts can be estimated to be
around 45,400.

As per the above estimates we see that a point multiplication using K-163 re-
quires nearly 420,900 cycles. Similarly, we estimate that Montgomery’s ladder
for B-163 requires nearly 485,000 cycles.

