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Abstract. The Rényi divergence is a measure of closeness of two prob-
ability distributions. We show that it can often be used as an alternative
to the statistical distance in security proofs for lattice-based cryptogra-
phy. Using the Rényi divergence is particularly suited for security proofs
of primitives in which the attacker is required to solve a search problem
(e.g., forging a signature). We show that it may also be used in the case of
distinguishing problems (e.g., semantic security of encryption schemes),
when they enjoy a public sampleability property. The techniques lead to
security proofs for schemes with smaller parameters, and sometimes to
simpler security proofs than the existing ones.

1 Introduction

Let D1 and D2 be two non-vanishing probability distributions over a common
measurable support X. Let a ∈ (1,+∞). The Rényi divergence [Rén61,vEH14]
(RD for short) Ra(D1‖D2) of order a between D1 and D2 is defined as the
((a−1)th root of the) expected value of (D1(x)/D2(x))a−1 over the randomness
of x sampled from D1. For notational convenience, our definition of the RD is
the exponential of the classical definition [vEH14]. The RD is an alternative to
the statistical distance (SD for short) ∆(D1, D2) = 1

2
∑
x∈X |D1(x)−D2(x)| as

measure of distribution closeness, where we replace the difference in SD, by the
ratio in RD. RD enjoys several properties that are analogous of those enjoyed by
SD, where the additive property of SD is replaced by a multiplicative property
in RD (see Subsection 2.3).



SD is ubiquitous in cryptographic security proofs. One of its most useful
properties is the so-called probability preservation property: For any measurable
event E ⊆ X, we have D2(E) ≥ D1(E) −∆(D1, D2). RD enjoys the analogous
property D2(E) ≥ D1(E)

a
a−1 /Ra(D1‖D2). If the event E occurs with significant

probability under D1, and if the SD (resp. RD) is small, then the event E also
occurs with significant probability under D2. These properties are particularly
handy when the success of an attacker against a given scheme can be described as
an event whose probability should be non-negligible, e.g., the attacker outputs a
new valid message-signature pair for a signature scheme. If the attacker succeeds
with good probability in the real scheme based on distribution D1, then it also
succeeds with good probability in the simulated scheme (of the security proof)
based on distribution D2.

To make the SD probability preservation property useful, it must be ensured
that the SD ∆(D1, D2) is smaller than any D1(E) that the security proof must
handle. Typically, the quantityD1(E) is assumed to be greater than some success
probability lower bound ε, which is of the order of 1/poly(λ) where λ refers
to the security parameter, or even 2−o(λ) if the proof handles attackers whose
success probabilities can be sub-exponentially small (which we believe better
reflects practical objectives). As a result, the SD ∆(D1, D2) must be < ε for
the SD probability preservation property to be relevant. In contrast, the RD
probability preservation property is non-vacuous when the RD Ra(D1‖D2) is ≤
poly(1/ε). In many cases, the latter seems less demanding than the former:
in all our applications, the RD between D1 and D2 is small enough for the
RD probability preservation property while their SD is too large for the SD
probability preservation to be applicable (see Subsection 2.3). This explains the
superiority of the RD in several of our applications.

Although RD seems more amenable than SD for search problems, it seems
less so for distinguishing problems. A typical cryptographic example is semantic
security of an encryption scheme. Semantic security requires an adversary A to
distinguish between the encryption distributions of two plaintext messages of its
choosing: the distinguishing advantage AdvA(D1, D2), defined as the difference
of probabilities that A outputs 1 using D1 or D2, should be sufficiently large.
In security proofs, algorithm A is often called on distributions D′1 and D′2 that
are close to D1 and D2 (respectively). If the SDs between D1 and D′1 and D2
and D′2 are both bounded from above by ε, then, by the SD probability preser-
vation property (used twice), we have AdvA(D′1, D′2) ≥ AdvA(D1, D2)− 2ε. As
a result, SD can be used for distinguishing problems in a similar fashion as for
search problems. The multiplicativity of the RD probability preservation prop-
erty seems to prevent RD from being applicable to distinguishing problems.

We replace the statistical distance by the Rényi divergence in several security
proofs for lattice-based cryptographic primitives. Lattice-based cryptography is a
relatively recent cryptographic paradigm in which cryptographic primitives are
shown at least as secure as it is hard to solve standard problems over lattices
(see the surveys [MR09,Pei15]). Security proofs in lattice-based cryptography
involve different types of distributions, often over infinite sets, such as contin-
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uous Gaussian distributions and Gaussian distributions with lattice supports.
The RD seems particularly well suited to quantify the closeness of Gaussian dis-
tributions. Consider for example two continuous Gaussian distributions over the
reals, both with standard deviation 1, but one with center 0 and the other one
with center c. Their SD is linear in c, so that c must remain extremely small
for the SD probability preservation property to be useful. On the other hand,
their RD of order a = 2 is bounded as exp(O(c2)) so that the RD preservation
property remains useful even for slightly growing c.

RD was first used in lattice-based cryptography in [LPR13], in the decision
to search reduction for the Ring Learning With Errors problem (which serves as
a security foundation for many asymptotically fast primitives). It was then ex-
ploited in [LSS14] to decrease the parameters of the Garg et al. (approximation
to) cryptographic multilinear maps [GGH13]. In the present work, we present
a more extensive study of the power of RD in lattice-based cryptography, by
showing several independent applications of RD. In some cases, it leads to se-
curity proofs allowing to take smaller parameters in the cryptographic schemes,
hence leading to efficiency improvements. In other cases, this leads to alternative
security proofs that are conceptually simpler.

Our applications of RD also include distinguishing problems. To circum-
vent the aforementioned a priori limitation of the RD probability preservation
property for distinguishing problems, we propose an alternative approach that
handles a class of distinguishing problems enjoying a special property that we
call public sampleability. This public sampleability allows to estimate success
probabilities via Hoeffding’s bound.

The applications we show in lattice-based cryptography are as follows:

• Smaller storage requirement for the Fiat-Shamir BLISS signature scheme
[DDLL13,PDG14,Duc14].
• Smaller parameters in the dual-Regev encryption scheme from [GPV08].
• Alternative proof that the Learning With Errors (LWE) problem with noise
chosen uniformly in an interval is no easier than the Learning With Errors
problem with Gaussian noise [DMQ13]. Our reduction does not require the
latter problem to be hard, and it is hence marginally more general as it also
applies to distributions with smaller noises. Further, our reduction preserves
the LWE dimension n, and is hence tighter than the one from [DMQ13] (the
latter degrades the LWE dimension by a constant factor).6
• Alternative proof that the LearningWith Rounding (LWR) problem [BPR12]
is no easier than LWE. Our reduction is the first which preserves the di-
mension n for a composite LWE modulus q that is a multiple of the LWR
rounding modulus p, without resorting to noise flooding (which significantly
degrades the noise rate): the reductions from [AKPW13,BGM+16] do not
preserve the dimension for composite q, while the the one from [BPR12]
preserves the dimension but makes use of noise flooding (we have recently

6 Note that LWE with uniform noise in a small interval is also investigated in [MP13],
with a focus on the number of LWE samples. The reduction from [MP13] does not
preserve the LWE dimension either.
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become aware that [BGM+16] does give a dimension-preserving reduction
for prime modulus q; our result is complementary in showing how to obtain
a dimension-preserving reduction also for composite q). In [AKPW13], the
authors can get close to preserve the dimension up to a constant but at a
price of larger polynomial modulus q. Our new reduction also gains extra
factors of p

√
logn and pn

√
logn in the number of LWR samples handled,

compared with [BGM+16] and [AKPW13], respectively.
We think RD is likely to have further applications in lattice-based crypto-

graphy, for both search and distinguishing problems.
Related work. The framework for using RD in distinguishing problems was
used in [LPSS14], in the context of the k-LWE problem (a variant of LWE
in which the attacker is given extra information). In [PDG14], Pöppelmann,
Ducas and Güneysu used the Kullback-Leibler divergence (which is the RD of
order a = 1) to lower the storage requirement of BLISS scheme [DDLL13].
Asymptotically, using the Kullback-Leibler divergence rather than SD only leads
to a constant factor improvement. Our approach allows bigger savings in the case
where the number of signature queries is limited, as explained in Section 3.

Recently, Bogdanov et al. [BGM+16] adapted parts of (an earlier version of)
our RD-based hardness proof for LWE with noise uniform in a small interval, to
the LWR problem. In particular, they obtained a substantial improvement over
the hardness results of [BPR12,AKPW13]. In this revised and extended version
of our earlier conference paper [BLL+15], we show an alternative LWR hardness
proof that improves on that of [BGM+16], exploiting the equivalence of LWR
to LWE with noise uniform in an interval; an equivalence was also established
in [BGM+16] but not used there to relate the hardness of LWE to that of LWR.

After the publication of earlier versions of this article, some of our results
have been improved [TT15] and used in [LLM+16] in the context of dynamic
group signatures and in [ADPS16] to replace the LWE error distribution by a
more efficiently samplable distribution.
Road-map. In Section 2, we provide necessary background on lattice-based
cryptography, and on the Rényi divergence. In Section 3, we use RD to improve
lattice-based signature scheme parameters via more efficient Gaussian sampling.
Section 4 contains the description of the framework in which we can use RD
for distinguishing problems, which we apply to improve the parameters of the
dual-Regev encryption scheme. In Section 5, we describe an alternative hardness
proof for LWE with noise uniformly chosen in an interval. Section 6 shows an
application of the previous section to give a new hardness proof for the LWR
problem. Finally, Section 7 concludes with open problems.
Notation. If x is a real number, we let bxe denote a closest integer to x. The
notation ln refers to the natural logarithm and the notation log refers to the
base 2 logarithm. We define T = ([0, 1],+), where the addition operation is
just modulo 1 operation. For an integer q, we let Zq denote the ring of integers
modulo q. We let Tq denote the group Tq = {i/q mod 1 : i ∈ Z} ⊆ T. Vectors
are denoted in bold. If b is a vector in Rd, we let ‖b‖ denote its Euclidean norm.
By default, all our vectors are column vectors.
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If D is a probability distribution, we let Supp(D) = {x : D(x) 6= 0} denote its
support. For a setX of finite weight, we let U(X) denote the uniform distribution
on X. To ease notation, we let Uβ denote the distribution U([−β, β]) for a
positive real β. The statistical distance between two distributions D1 and D2
over a countable support X is ∆(D1, D2) = 1

2
∑
x∈X |D1(x) − D2(x)|. This

definition is extended in the natural way to continuous distributions. If f : X →
R takes non-negative values, then for all countable Y ⊆ X, we define f(Y ) =∑
y∈Y f(y) ∈ [0,+∞]. For any vector c ∈ Rn and any real s > 0, the (spherical)

Gaussian function with standard deviation parameter s and center c is defined
as follows: ∀x ∈ Rn, ρs,c(x) = exp(−π‖x − c‖2/s2). The Gaussian distribution
is Ds,c = ρs,c/s

n. When c = 0, we may omit the subscript c.
We use the usual Landau notations. A function f(λ) is said negligible if it

is λ−ω(1). A probability p(λ) is said overwhelming if it is 1− λ−ω(1).
The distinguishing advantage of an algorithmA between two distributionsD0

and D1 is defined as AdvA(D0, D1) = |Prx←↩D0 [A(x) = 1]−Prx←↩D1 [A(x) = 1]|,
where the probabilities are taken over the randomness of the input x and the
internal randomness of A. Algorithm A is said to be an (ε, T )-distinguisher if it
runs in time ≤ T and if AdvA(D0, D1) ≥ ε.

We say a distribution χ is B-bounded, for some positive real B, if its support
be in the interval [−B,B]. In the case where χ is over Zq, we assume that B ≤
(q− 1)/2. A B-bounded distribution χ is said to be balanced if Pr[χ ≤ 0] ≥ 1/2
and Pr[χ ≥ 0] ≥ 1/2.

2 Preliminaries

We assume the reader is familiar with standard cryptographic notions, as well
as with lattices and lattice-based cryptography. We refer to [Reg09a,MR09] for
introductions on the latter topic.

2.1 Lattices

A (full-rank) n-dimensional Euclidean lattice Λ ⊆ Rn is the set of all integer
linear combinations

∑n
i=1 xibi of some R-basis (bi)1≤i≤n of Rn. In this setup,

the tuple (bi)i is said to form a Z-basis of Λ. For a lattice Λ and any i ≤ n,
the ith successive minimum λi(Λ) is the smallest radius r such that Λ contains i
linearly independent vectors of norm at most r. The dual Λ∗ of a lattice Λ is
defined as Λ∗ = {y ∈ Rn : ytΛ ⊆ Zn}.

The (spherical) discrete Gaussian distribution over a lattice Λ ⊆ Rn, with
standard deviation parameter s > 0 and center c is defined as:

∀x ∈ Λ,DΛ,s,c = ρs,c(x)
ρs,c(Λ) .

When the center is 0, we omit the subscript c.
The smoothing parameter [MR07] of an n-dimensional lattice Λ with respect

to ε > 0, denoted by ηε(Λ), is the smallest s > 0 such that ρ1/s(Λ∗ \ {0}) ≤ ε.
We use the following properties.
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Lemma 2.1 ([MR07, Le. 3.3]). Let Λ be an n-dimensional lattice and ε > 0.
Then

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))
π

· λn(Λ).

Lemma 2.2 (Adapted from [GPV08, Le. 5.3]). Let m,n ≥ 1 and q a prime
integer, with m ≥ 2n ln q. For A ∈ Zn×mq we define Λ⊥A as the lattice {x ∈ Zm :
Ax = 0 mod q}. Then

∀ε < 1/2 : Pr
A←↩U(Zn×mq )

[
ηε(Λ⊥A) ≥ 4

√
ln(4m/ε)

π

]
≤ q−n.

Lemma 2.3 (Adapted from [GPV08, Cor. 2.8]). Let Λ,Λ′ be n-dimen-
sional lattices with Λ′ ⊆ Λ and ε ∈ (0, 1/2). Then for any c ∈ Rn and s ≥ ηε(Λ′)
and any x ∈ Λ/Λ′ we have

(DΛ,s,c mod Λ′)(x) ∈
[

1− ε
1 + ε

,
1 + ε

1− ε

]
· det(Λ)

det(Λ′) .

2.2 The SIS, LWE, and LWR problems

The Small Integer Solution (SIS) problem was introduced by Ajtai in [Ajt96]. It
serves as a security foundation for numerous cryptographic primitives, including,
among many others, hash functions [Ajt96] and signatures [GPV08,DDLL13].

Definition 2.4. Let m ≥ n ≥ 1 and q ≥ 2 be integers, and β a positive real.
The SISn,m,q,β problem is as follows: given A←↩ U(Zn×mq ), the goal is to find x ∈
Zm such that Ax = 0 mod q and 0 < ‖x‖ ≤ β.

The SIS problem was proven by Ajtai [Ajt96] to be at least as hard as some
standard worst-case problems over Euclidean lattices, under specific parameter
constraints. We refer to [GPV08] for an improved (and simplified) reduction.

The Learning With Errors (LWE) problem was introduced in 2005 by Regev
[Reg05,Reg09b]. LWE is also extensively used as a security foundation, for
encryption schemes [Reg09b,GPV08], fully homomorphic encryption schemes
[BV11], and pseudo-random functions [BPR12,AKPW13], among many oth-
ers. Its definition involves the following distribution. Let χ be a distribution
over T, q ≥ 2, n ≥ 1 and s ∈ Znq . A sample from As,χ is of the form (a, b) ∈
Znq × T, with a←↩ U(Znq ), b = 1

q 〈a, s〉+ e and e←↩ χ.

Definition 2.5. Let χ be a distribution over T, q ≥ 2, and m ≥ n ≥ 1. The
search variant sLWEn,q,χ,m of the LWE problem is as follows: given m samples
from As,χ for some s ∈ Znq , the goal is to find s. The decision variant LWEn,q,χ,m
consists in distinguishing between the distributions (As,χ)m and U(Znq × T)m,
where s←↩ U(Znq ).
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Definition 2.6. The sbinLWEn,q,χ,m (resp. binLWEn,q,χ,m) for any error dis-
tribution χ denotes the sLWEn,q,χ,m problem (resp. LWEn,q,χ,m problem) when
the vector s is uniformly sampled in {0, 1}n.

In [BGM+16], the secret s can be drawn from any distribution over {0, 1}n
similar to what we defined above. It would be more consistent with the defini-
tion of sLWE to let the secret s be arbitrary, but it does not seem possible to
prove equivalence via the random self reducibility property of LWE. A less di-
rect reduction from worst-case sbinLWE to uniform-secret sbinLWE is as follows:
worst-case sbinLWE reduces to LWE, then [GKPV10] and [BLP+13, Th. 4.1]
provide reductions from LWE to binLWE, and finally [BGM+16] contains a re-
duction from binLWE to uniform-secret sbinLWE. In any case, we will only use
uniform-secret sbinLWE so we stick to this variant in the present article.

In some cases, it is convenient to use an error distribution χ whose support
is Tq. In these cases, the definition of LWE is adapted such that U(Znq × T)
is replaced by U(Znq × Tq). Note also that for a fixed number of samples m,
we can represent the LWE samples using matrices. The ai’s form the rows of a
matrix A uniform in Zm×nq , and the scalar product is represented by the product
between A and s.

Regev [Reg09b] gave a quantum reduction from standard worst-case problems
over Euclidean lattices to sLWE and LWE, under specific parameter constraints.
Classical (but weaker) reductions have later been obtained (see [Pei09,BLP+13]).
We will use the following sample-preserving search to decision reduction for
LWE.

Theorem 2.7 (Adapted from [MM11, Prop. 4.10]). If q ≤ poly(m,n) is
prime and the error distribution χ has support in Tq, then there exists a reduction
from sLWEn,q,χ,m to LWEn,q,χ,m that is polynomial in n and m.

For integers p, q ≥ 2, the rounding function from Zq to Zp is defined by

bxep = b(p/q)x̄c (mod p),

where x̄ ∈ Z is any integer congruent to x modulo q. This can also be extended
component-wise to vectors and matrices.

For a secret vector s ∈ Znq , a sample (a, b) from the LWR distribution Bs

over Znq × Zp is obtained by choosing a vector a ←↩ U
(
Znq
)
and setting b =

b〈a, s〉ep.

Definition 2.8. The decision variant LWRn,q,p,m of LWR consists in distin-
guishing between the distributions (Bs)m and U(Znq × Zp)m, where s←↩ U(Znq ).

The LWR problem was introduced in [BPR12] and used there and in subsequent
works to construct pseudorandom functions (PRFs) based on the hardness of
LWE.
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2.3 The Rényi divergence

For any two discrete probability distributions P and Q such that Supp(P ) ⊆
Supp(Q) and a ∈ (1,+∞), we define the Rényi divergence of order a by

Ra(P‖Q) =

 ∑
x∈Supp(P )

P (x)a

Q(x)a−1

 1
a−1

.

We omit the a subscript when a = 2. We define the Rényi divergences of orders 1
and +∞ by

R1(P‖Q) = exp

 ∑
x∈Supp(P )

P (x) log P (x)
Q(x)

 and R∞(P‖Q) = max
x∈Supp(P )

P (x)
Q(x) .

The definitions are extended in the natural way to continuous distributions. The
divergence R1 is the (exponential of) the Kullback-Leibler divergence.

For any fixed P,Q, the function a 7→ Ra(P‖Q) ∈ (0,+∞] is non-decreasing,
continuous over (1,+∞), tends to R∞(P‖Q) when a grows to infinity, and
if Ra(P‖Q) is finite for some a, then Ra(P‖Q) tends to R1(P‖Q) when a tends
to 1 (we refer to [vEH14] for proofs). A direct consequence is that if P (x)/Q(x) ≤
c for all x ∈ Supp(P ) and for some constant c, then Ra(P‖Q) ≤ R∞(P‖Q) ≤ c.
In the same setup, we have ∆(P,Q) ≤ c/2.

The following properties can be considered the multiplicative analogues of
those of the SD. We refer to [vEH14,LSS14] for proofs.

Lemma 2.9. Let a ∈ [1,+∞]. Let P and Q denote distributions with Supp(P ) ⊆
Supp(Q). Then the following properties hold:

• Log. Positivity: Ra(P‖Q) ≥ Ra(P‖P ) = 1.
• Data Processing Inequality: Ra(P f‖Qf ) ≤ Ra(P‖Q) for any function f ,
where P f (respectively Qf ) denotes the distribution of f(y) induced by sam-
pling y ←↩ P (respectively y ←↩ Q).

• Multiplicativity: Assume P and Q are two distributions of a pair of ran-
dom variables (Y1, Y2). For i ∈ {1, 2}, let Pi (resp. Qi) denote the marginal
distribution of Yi under P (resp. Q), and let P2|1(·|y1) (resp. Q2|1(·|y1))
denote the conditional distribution of Y2 given that Y1 = y1. Then we have:
• Ra(P‖Q) = Ra(P1‖Q1) · Ra(P2‖Q2) if Y1 and Y2 are independent for
a ∈ [1,∞].
• Ra(P‖Q) ≤ R∞(P1‖Q1) ·maxy1∈X Ra(P2|1(·|y1)‖Q2|1(·|y1)).

• Probability Preservation: Let E ⊆ Supp(Q) be an arbitrary event. If a ∈
(1,+∞), then Q(E) ≥ P (E)

a
a−1 /Ra(P‖Q). Further, we have

Q(E) ≥ P (E)/R∞(P‖Q).

Let P1, P2, P3 be three distributions with Supp(P1) ⊆ Supp(P2) ⊆ Supp(P3).
Then we have:
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• Weak Triangle Inequality:

Ra(P1‖P3) ≤
{

Ra(P1‖P2) ·R∞(P2‖P3),
R∞(P1‖P2)

a
a−1 ·Ra(P2‖P3) if a ∈ (1,+∞).

Getting back to the setup in which P (x)/Q(x) ≤ c for all x ∈ Supp(P ) and
for some constant c, the RD probability preservation property above is relevant
even for large c, whereas the analogous SD probability preservation property
starts making sense only when c < 2.

Pinsker’s inequality is the analogue of the probability preservation property
for a = 1: for an arbitrary event E ⊆ Supp(Q), we have Q(E) ≥ P (E) −√

lnR1(P‖Q)/2 (see [PDG14, Le. 1] for a proof). Analogously to the statistical
distance, this probability preservation property is useful for unlikely events E
only if lnR1(P‖Q) is very small. We refer to Subsection 3 for additional com-
ments on this property.

2.4 Some RD bounds

As we have already seen, if two distributions are close in a uniform sense,
then their RD is small. We observe the following immediate consequence of
Lemma 2.3, that allows replacing the SD with the RD in the context of smooth-
ing arguments, in order to save on the required parameter s. In applications of
Lemma 2.3, it is customary to use s ≥ ηε(Λ′) with ε ≤ 2−λ, in order to make the
distribution DΛ/Λ′,s,c = DΛ,s,c mod Λ′ within SD 2−λ of the uniform distribu-
tion U(Λ/Λ′). This translates via Lemma 2.1 to use s = Ω(

√
λ+ logn · λn(Λ′)).

If using an RD bound, the fact that R∞(DΛ/Λ′,s,c‖UΛ/Λ′) = O(1) suffices for
the application: one can take ε = O(1) in the corollary below, which translates
to just s = Ω(

√
logn · λn(Λ′)), saving a factor Θ(

√
λ).

Lemma 2.10. Let Λ,Λ′ be n-dimensional lattices with Λ′ ⊆ Λ and ε ∈ (0, 1/2).
Let DΛ/Λ′,s,c for any c ∈ Rn denote the distribution on Λ/Λ′ induced by sam-
pling from DΛ,s,c and reducing modulo Λ′, and let UΛ/Λ′ denote the uniform
distribution on Λ/Λ′. Then for s ≥ ηε(Λ′), we have

R∞(DΛ/Λ′,s,c‖UΛ/Λ′) ≤
1 + ε

1− ε .

In our hardness analysis of the LWR problem, the following Gaussian tail-
cut lemma is used. It bounds the RD of order ∞ between a continuous Gaus-
sian Dα and the same Gaussian with its tail cut to be B-bounded, that we de-
note by D′α,B . This allows, via an application of the RD probability preservation
property, to conclude that any algorithm with success probability ε form-sample
search LWE with noise coordinates sampled from the tail-cut Gaussian D′α,B , is
also an algorithm for LWE with noise coordinates sampled from the true Gaus-
sian Dα with success probability ≥ ε/O(1), as long as B = Ω(α ·

√
logm). This

improves upon the bound B = Ω(α ·
√

log(m · ε−1)) that one obtains with an
application of the SD to get the same conclusion.
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Lemma 2.11. Let D′α,B denote the continuous distribution on R obtained from
Dα by cutting its tail (by rejection sampling) to be B-bounded. Then we have

R∞(D′α,B‖Dα) ≤ 1
1− exp(−πB2/α2) .

Furthermore, form independent samples, we have R∞((D′α,B)m‖(Dα)m) ≤ exp(1)
if B ≥ α ·

√
ln(2m)/π.

Proof. For x ∈ R, we have D′α,B(x) = c · Dα(x) for |x| < B and D′α,B(x) = 0
otherwise, where c is a normalization constant such that

∫∞
−∞D′α,B(x)dx = 1.

It follows that c = 1
1−2Qα(B) , where Qα(B) =

∫∞
B
Dα(x)dx is the tail proba-

bility Prz←↩Dα [z ≥ B]. By a standard Gaussian tail bound, we have Qα(B) ≤
1
2 · exp(−πB2/α2), and hence c ≤ 1

1−exp(−πB2/α2) . The first part of the lemma

now follows from the observation that R∞(D′α,B‖Dα) = maxx
D′α,B(x)
Dα(x) = c. For

the second part of the lemma, observe that c ≤ exp(4Qα(B)) if 2Qα(B) ≤ 1/2 us-
ing the inequality 1−x ≥ exp(−2x) for 0 < x ≤ 1/2. It follows by the multiplica-
tivity property of RD that R∞((D′α,B)m‖(Dα)m) ≤ exp(4mQα(B)) ≤ exp(1)
if 2Qα(B) ≤ 1

2m . The latter condition is satisfied by the above tail bound
on Qα(B) if B ≥ α ·

√
ln(2m)/π. ut

3 Application to lattice-based signature schemes

In this section, we use the RD to improve the security proofs of the BLISS
signature scheme [DDLL13], allowing to take smaller parameters for any fixed
security level.

More precisely, we show that the use of RD in place of SD leads to signifi-
cant savings in the required precision of integers sampled according to a discrete
Gaussian distribution in the security analysis of lattice-based signature schemes.
These savings consequently lower the precomputed table storage for sampling
discrete Gaussians with the method described in [DDLL13,PDG14]. In Tables 1
and 2, we provide a numerical comparison of RD and SD based on an instanti-
ations of BLISS-IV and BLISS-I.

Discrete Gaussian sampling. In the BLISS signature scheme [DDLL13] (and sim-
ilarly in earlier variants [Lyu12]), each signature requires the signing algorithm
to sample O(n) independent integers from the 1-dimensional discrete Gaussian
distribution DZ,s, where s = O(m) is the deviation parameter (here the vari-
able m denotes a parameter related to the underlying lattice dimension, and is
typically in the order of several hundreds).7

In [DDLL13], a particularly efficient sampling algorithm forDZ,s is presented.
To produce a sample from DZ,s, this algorithm samples about ` = blog((k− 1) ·
7 Note that [Lyu12,DDLL13] consider the unnormalized Gaussian function ρ′σ,c(x) =

exp(−‖x− c‖/(2σ2)) instead of ρs,c. We have ρs,c = ρ′σ,c when σ = s/
√

2π.
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(k − 1 + 2k · τσ2)c+ 1 Bernoulli random variables of the form Bexp(−π2i/s2) for
0 ≤ i ≤ ` − 1. Here, σ2 = 1√

2 ln(2)
is the standard deviation of a ‘small width’

Gaussian (sampled by Algorithm 10 in [DDLL13]), k = s
σ2·
√

2π is the standard
deviation ‘amplification factor’ (in Algorithm 11 in [DDLL13]), and τ is the tail-
cut factor for the ‘small width’ Gaussian samples (i.e. those samples are cut by
rejection sampling to be less than τ ·σ2). To sample the required Bernoulli random
variables Bexp(−π2i/s2), the authors of [DDLL13] use a precomputed table of the
probabilities ci = exp(−π2i/s2), for 0 ≤ i ≤ `− 1. Since these probabilities are
real numbers, they must be truncated to some bit precision p in the precomputed
table, so that truncated values c̃i = ci + εi are stored, where |εi| ≤ 2−pci are the
truncation errors.

In previous works, the precision was determined by an analysis either based
on the statistical distance (SD) [DDLL13] or the Kullback-Leibler divergence
(KLD) [PDG14]. In this section, we review and complete these methods, and we
propose an RD-based analysis that in some cases leads to bigger savings, asymp-
totically and in practice, in particular for larger security levels and or smaller
number of sign queries, when the number of attack sign queries is significantly
less than 2λ/2 for security level λ (see Table 1 and Table 2). More precisely, we
give sufficient lower bounds on the precision p in terms of the number of signing
queries qs and security parameter λ to ensure security level λ for the scheme im-
plemented with truncated values against adversaries making ≤ qs signing queries
in time T , assuming that the scheme implemented with untruncated (exact) val-
ues has security level λ + 1 (i.e. our truncated scheme loses at most 1 bit of
security with respect to the untruncated scheme).

Here, and in the following analysis, we say that a scheme has security level λ
against (T, qs, ε) forging adversaries running in time T , making qs sign queries
(where each sign query involves ` ·m Bernoulli samples), and succeeding with
probability ε, if T/ε ≥ 2λ for all adversaries with T ≥ Q = qs · ` ·m and qs ≥ 1
(we count each Bernoulli sampling in signing queries as a unit time operation,
so that T ≥ Q, where Q is the total number of Bernoulli samples over all signing
queries).

For any adversary, the distributions Φ′ and Φ denote the signatures in the
view of the adversary in the untruncated (resp. truncated) cases.

SD-based analysis [DDLL13]. Any forging adversary A with success probabil-
ity ≥ ε in time T on the scheme implemented with truncated Gaussian has a
success probability ε′ ≥ ε−∆(Φ,Φ′) against the scheme implemented with per-
fect Gaussian sampling in time T ′. We guarantee a security level λ for truncated
scheme if T/ε < 2λ. This means that an adversary A′ against the untruncated
scheme has T ′/ε′ ≤ (2T )/ε if ε′ ≥ ε/2. Therefore, we select parameters to han-
dle adversaries with success probabilities ≥ ε/2 against the untruncated scheme;
we can set the required precision p so that ∆(Φ,Φ′) ≤ ε/2. Each signature
requires ` · m samples from the Bernoulli random variables (Bc̃i)i. To ensure
security against qs signing queries, each of the truncated Bernoulli random vari-
ables Bc̃i should be within SD ∆(Φ,Φ′)/(` · m · qs) of the desired Bci (by the
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union bound). Using ∆(Bc̃i , Bci) = |εi| ≤ 2−pci ≤ 2−p−1 leads to a precision
requirement

p ≥ log(` ·m · qs/∆(Φ,Φ′)) ≥ log
(
` ·m · qs

ε

)
.

Letting Q = ` ·m · qs it is sufficient to take p ≥ log(Qε ). For each ` ·m ≤ Q ≤ 2λ,
the maximum value of Qε under the constraint Tε ≤ 2λ is Q

T ·2
λ which in turn has

maximum value 2λ using T ≥ Q. Therefore, the SD-based precision requirement
for truncated scheme security level λ is

p ≥ λ. (1)

The overall precomputed table is hence of bit-size LSD = p · ` ≥ log(` ·m ·
qs/ε) · `.

One may also set the precision pi depending on i for 0 ≤ i ≤ ` − 1. It is
sufficient to set

Q · 2−pici ≤ ε/2.
Hence, since the maximum of Q/ε is T/ε ≤ 2λ, the precision pi is

pi ≥ λ+ 1 + log (min (ci, 1− ci)) , 0 ≤ i ≤ `− 1. (2)

The bit-size of the overall precomputed table can be computed as a sum of the
above pi’s. The min in the precision estimate above exploits the symmetry of
the Bernoulli variable to decrease the bit-size of the precomputed table (i.e. we
may sample B1−c̃i and flip the sampled bit to get a bit with distribution Bc̃i).

KLD-based analysis [PDG14]. In [PDG14], Pöppelman, Ducas and Güneysu
replace the SD-based analysis by a KLD-based analysis (i.e., using the RD
of order a = 1) to reduce the precision p needed in the precomputed table.
They show that any forging adversary A with success probability ε on the
scheme implemented with truncated Gaussian has a success probability ε′ ≥
ε−

√
lnR1(Φ‖Φ′)/2 on the scheme implemented with perfect Gaussian (see re-

mark at the end of Subsection 2.3). By the multiplicative property of the RD
over the Q = ` ·m ·qs independent Bernoulli samples needed for signing qs times,
we get that R1(Φ‖Φ′) ≤ (max1≤i≤`R1(Bc̃i‖Bci))`·m·qs . Now, we have:

lnR1(Bc̃i‖Bci) = (1− ci − εi) ln 1− ci − εi
1− ci

+ (ci + εi) ln ci + εi
ci

≤ −(1− ci − εi)
εi

1− ci
+ (ci + εi)

εi
ci

= ε2
i

(1− ci)ci
.

Exploiting the symmetry of the distribution, |εi| ≤ 2−p min(ci, 1 − ci), we
obtain lnR1(Bc̃i‖Bci) = 2−2p min( ci

1−ci ,
1−ci
ci

) ≤ 2−2p. Therefore, we get ε′ ≥
ε−

√
Q · 2−2p−1. We can select parameters such that

√
Q · 2−2p−1 ≤ ε/2. This

leads to a precision requirement

p ≥ 1
2 log

(
Q

ε2

)
+ 1

2 . (3)
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To minimize the required precision, if the attacker has run-time T < 2λ, makes
Q ≤ T queries, and has success probability ε ≥ T/2λ, we assume, as in [PDG14],
that the attacker is first converted, by re-running it ≈ 2λ/T times with in-
dependent public keys and random coins and returning the forgery from any
successful run, to an attacker with run-time T̂ = (2λ/T ) · T = 2λ, making
Q̂ = 2λ · (Q/T ) queries, and having success probability ε̂ ≥ 1− (1−ε)2λ/T ≥ 1−
exp

(
−2λ/(T/ε)

)
≥ 1−exp(−1) ≥ 0.63. We remark that this new attacker works

in a multi-key model, in which an attacker gets as input 2λ/T keys, and outputs
a forgery for any one of them. Then, since Q̂

ε̂2 ≤ (2λ · Q/T )/0.632 ≤ 2λ/0.632

using Q ≤ T , the required precision is

p ≥ 1
2 log

(
2λ

0.632

)
+ 1

2 ≈
λ

2 + 1.2. (4)

The overall precomputed table is hence of bit-size LKLD ≥ (λ/2 + 1.2) · `.
One may also set the precision pi depending on i. It is sufficient to set√

Q̂ · (2−pi min(ci, 1− ci))2

2(1− ci)ci
≤ ε̂

2 .

Hence, since as above the maximum of Q̂

ε̂2 is ≤ 2λ/0.632 using Q ≤ T , the
precision pi is

pi ≥
λ

2 + 1.2 + 1
2 log

(
min

(
ci

1− ci
,

1− ci
ci

))
, 0 ≤ i ≤ `− 1. (5)

R∞-based analysis. The probability preservation property of the Rényi diver-
gence from Lemma 2.9 is multiplicative for a > 1 (rather than additive for a = 1).
Here we use the order a =∞. This property gives that any forging adversary A
having success probability ε on the scheme implemented with truncated Gaus-
sian sampling has a success probability ε′ ≥ ε/R∞(Φ‖Φ′) on the scheme imple-
mented with perfect Gaussian. If R = R∞(Φ‖Φ′) ≤ O(1), then ε′ = Ω(ε). By
the multiplicative property of the RD over the Q = ` ·m · qs samples needed for
signing qs times, we have R∞(Φ‖Φ′) ≤

∏
i≤QR∞(Bc̃i‖Bci). By our assumption

that ci ≤ 1/2, we have R∞(Bc̃i‖Bci) = 1 + |εi|/ci ≤ 1 + 2−p. Therefore, we
get R∞(Φ‖Φ′) ≤ (1 + 2−p)Q and hence ε′ ≥ ε/(1 + 2−p)Q. We select parame-
ters to get adversaries with success probabilities ≥ ε/2 against the untruncated
scheme and hence set the precision so that (1 + 2−p)Q ≤ 2. Using the inequal-
ity 1 + x ≤ exp(x), this yields a sufficient precision requirement

p ≥ log(Q) + log(1/ ln(2)) ≈ λQ + 0.16, (6)

where λQ = logQ. Overall, we get a precomputed table of bit-size LRD = λQ · `.
In terms of the security parameter λ, the precision requirement (6) for R∞
is lower than the requirement (4) for R1 if the number of on-line queries Q is
smaller than 2λ/2. In practice this condition may be satisfied, especially for larger
security parameters λ (see numberical examples below).
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Ra-based analysis. We may also consider Ra-based analysis for general a > 1.
It should be noted that the reductions here are not tight: for Ra-based analysis
with a > 1, the probability preservation shows ε′ > εa/(a−1)/Ra(Φ‖Φ′). The
Rényi divergence can be computed, as follows

(Ra(Bc̃i‖Bci))a−1 = (1− ci − εi)a

(1− ci)a−1 + (ci + εi)a

ca−1
i

= (1− ci − εi)
(

1− εi
1− ci

)a−1
+ (ci + εi)

(
1 + εi

ci

)a−1
.

If a is much smaller than 2p, we obtain

(Ra(Bc̃i‖Bci))a−1 ≈ (1− ci − εi)
(

1− (a− 1)εi
1− ci

+ (a− 1)(a− 2)
2 · ε2

i

(1− ci)2

)
+ (ci + εi)

(
1 + (a− 1)εi

ci
+ (a− 1)(a− 2)

2 · ε
2
i

c2
i

)
≈ 1 + a(a− 1)

2 · ε2
i

ci(1− ci)
≤ 1 + a(a− 1)

2 · 2−2p.

For instance, if we take a = 2, we have R2(Bc̃i‖Bci) ≤ 1 + 2−2p and hence ε′ ≥
ε2/R2(Bc̃i‖Bci). On the other hand, if a is much larger than 2p, then we have

(Ra(Bc̃i‖Bci))a−1 = (1− ci − εi)
(

1− εi
1− ci

)a−1
+ (ci + εi)

(
1 + εi

ci

)a−1

≈ (ci + εi) exp
(

(a− 1)εi
ci

)
.

Hence the Rényi divergence satisfies

Ra(Bc̃i‖Bci) ≈ (ci + εi)1/(a−1) exp
(
εi
ci

)
≈ 1 + εi

ci
.

As a→∞, we have Ra(Bc̃i‖Bci)→ 1 + 2−p.
Thus if the tightness of the reduction is not a concern, using Ra with small a

reduces the precision requirement. Subsequent work [TT15] shows that by choos-
ing an adequate a, tightness can be reached (ε′ ≈ ε) for the same number of
queries. This may however lead to a slightly larger precision (compared to the
case of using a tiny Rényi order a).

Numerical examples. In Tables 1 and 2, we consider a numerical example
which gives the lower bound on the precision p and table bit size for Gaussian
sampling in the schemes BLISS-IV (λ = 192) and BLISS-I (λ = 128), and three
settings for the number of sign queries qs = (242, 250, 264) allowed for the adver-
sary. In all cases, we assume that the ‘small deviation’ (positive) Gaussian sam-
ples of standard deviation σ2 = 1√

2 ln(2)
(sampled in Algorithm 11 of [DDLL13])
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are tail cut to τσ2, where we set the tail-cut factor τ =
√

2 ln(2mqs) by apply-
ing Lemma 2.11, to make the R∞ bound ≤ exp(1) between the cut and uncut
distributions, over all mqs ‘small deviation’ Gaussian samples.

For the BLISS-IV parameters, we use λ = 192, m = 1024, k = d271/σ2e =
320, τ =

√
2 ln(2mqs) ≈ (7.3, 7.8, 8.7), ` = blog((k− 1) · (k− 1 + 2k · τσ2)c+ 1 =

21, s = d
√

2π · k · σ2e = 682 and Q = ` ·m · qs ≈ (256, 264, 278). For the BLISS-I
parameters, we use λ = 128,m = 1024, k = d215/σ2e = 254, τ =

√
2 ln(2mqs) ≈

(7.3, 7.8, 8.7), ` = blog((k−1) ·(k−1+2k ·τσ2)c+1 = 20, s = d
√

2π ·k ·σ2e = 541
and Q = ` ·m · qs ≈ (256, 264, 278). In all cases, we assume that the underlying
BLISS scheme with perfect (infinite precision) Bernoulli sampling has security
level 2λ+1.

Note that we assume, as is common in practice, that the allowed ‘off-line’
attack run-time T = 2λ is much bigger than the allowed ‘on-line’ number of
sign queries qs. This assumption may be satisfied in practice since in many
applications the number of issued signatures qs is limited by computation, com-
munication and/or policy restrictions of the attacked user’s application running
the signing algorithm, whereas the ‘off-line’ run-time T depends only on the at-
tacker’s resources and may be much larger. For example, even for the scenario
with the smallest allowed number of signatures qs = 242 considered in the Ta-
bles, if the attacked user’s signing algorithm runs on a single Intel Core i7 CPU
at 3.4GHz, it would take the attacker more than 17 years to collect all qs sig-
natures, even if the signer was continuously signing messages throughout this
time.

Table 1. Comparison of the precision needed to obtain 2λ security for the finite pre-
cision BLISS-IV scheme against adversaries with off-line run-time T ≤ 2λ and making
less than qs sign queries (resulting in Q = ` · m · qs Bernoulli samples over all sign
queries), assuming ≈ 2λ+1 security of the infinite precision scheme. The example nu-
merical values of precision p and table size are for off-line security parameter λ = 192
and (in order) three cases qs = (242, 250, 264) for the number of sign queries. Our R∞
parameters are on the last line. The Bernoulli probabilities are ci = exp(−π2i/s2) for
i = 0, . . . , ` − 1. For the BLISS-IV parameters, we use m = 1024, ` = 21, s = 682
and τ ≈ (7.3, 7.8, 8.7).

Method Precision p Example p Example Table bit-sizes

SD (Eq. (1)) λ 192, 192, 192 4032, 4032, 4032

SD (Eq. (2)) λ+ 1 + log ci – 3882, 3882, 3882

KLD (Eq. (4)) λ/2 + 1.2 97, 97, 97 2037, 2037, 2037

KLD (Eq. (5)) λ/2 + 1.2 + log(
√

ci
1−ci

) – 1957, 1957, 1957

R∞ (Eq. (6)) λQ + 0.16 57, 65, 79 1197, 1365, 1659
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Table 2. Comparison of the precision needed to obtain 2λ security for the finite pre-
cision BLISS-I scheme against adversaries with off-line run-time T ≤ 2λ and making
less than qs sign queries (resulting in Q = ` · m · qs Bernoulli samples over all sign
queries), assuming ≈ 2λ+1 security of the infinite precision scheme. The example nu-
merical values of precision p and table size are for off-line security parameter λ = 128
and (in order) three cases qs = (242, 250, 264) for the number of sign queries. Our R∞
parameters are on the last line. The Bernoulli probabilities are ci = exp(−π2i/s2) for
i = 0, . . . , ` − 1. For the BLISS-I parameters, we use m = 1024, ` = 20, s = 541
and τ ≈ (7.3, 7.8, 8.7).

Method Precision p Example p Example Table bit-sizes

SD (Eq. (1)) λ 128, 128, 128 2560, 2560, 2560

SD (Eq. (2)) λ+ 1 + log ci – 2429, 2429, 2429

KLD (Eq. (4)) λ/2 + 1.2 65, 65, 65 1300, 1300, 1300

KLD (Eq. (5)) λ/2 + 1.2 + log(
√

ci
1−ci

) – 1222, 1222, 1222

R∞ (Eq. (6)) λQ + 0.16 57, 65, 79 1140 ,1300, 1580

4 Rényi divergence and distinguishing problems

In this section, we prove Theorem 4.2 which allows to use the RD for distin-
guishing problems, and we show how to apply it to the dual-Regev encryption
scheme.

4.1 Problems with public sampleability

A general setting one comes across in analyzing the security of cryptographic
schemes has the following form. Let P denote a decision problem that asks to
distinguish whether a given x was sampled from distribution X0 or X1, defined
as follows:

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.

Here r is some parameter that is sampled from the same distribution Φ in
both X0 and X1. The parameter r then determines the conditional distribu-
tions D0(r) and D1(r) from which x is sampled in X0 and X1, respectively,
given r. Now, let P ′ denote another decision problem that is defined similarly
to P , except that in P ′ the parameter r is sampled from a different distribu-
tion Φ′ (rather than Φ). Given r, the conditional distributions D0(r) and D1(r)
are the same in P ′ as in P . Let X ′0 (resp. X ′1) denote the resulting marginal
distributions of x in problem P ′. Now, in the applications we have in mind, the
distributions Φ′ and Φ are “close” in some sense, and we wish to show that this
implies an efficient reduction between problems P ′ and P , in the usual sense
that every distinguisher with efficient run-time T and non-negligible advantage
ε against P implies a distinguisher for P ′ with efficient run-time T ′ and non-
negligible advantage ε′. In the classical situation, if the SD ∆(Φ,Φ′) between Φ′
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and Φ is negligible, then the reduction is immediate. Indeed, for b ∈ {0, 1}, if pb
(resp. p′b) denotes the probability that a distinguisher algorithm A outputs 1 on
input distribution Xb (resp. X ′b), then we have, from the SD probability preser-
vation property, that |p′b−pb| ≤ ∆(Φ,Φ′). As a result, the advantage ε′ = |p′1−p′0|
of A against P ′ is bounded from below by ε− 2∆(Φ,Φ′) which is non-negligible
(here ε = |p1 − p0| is the assumed non-negligible advantage of A against P ).

Unfortunately, for general decision problems P, P ′ of the above form, it seems
difficult to obtain an RD-based analogue of the above SD-based argument, in the
weaker setting when the SD ∆(Φ,Φ′) is non-negligible, but the RD R = R(Φ‖Φ′)
is small. Indeed, the probability preservation property of the RD in Lemma 2.9
does not seem immediately useful in the case of general decision problems P, P ′.
With the above notations, it can be used to conclude that p′b ≥ p2

b/R but this
does not allow us to usefully relate the advantages |p′1 − p′0| and |p1 − p0|.

Nevertheless, we now make explicit a special class of “publicly sampleable”
problems P, P ′ for which such a reduction can be made. In such problems, it is
possible to efficiently sample from both distributions D0(r) (resp. D1(r)) given
the single sample x from the unknown Db(r). This technique is implicit in the
application of RD in the reductions of [LPR13]: we abstract it and make it
explicit in the following.

Before going ahead to state one of the main results of this paper, we recall
Hoeffding’s bound [Hoe63]:

Lemma 4.1. Let X1, . . . , XN be independent random variables for which ai ≤
Xi ≤ bi. Let X denotes X1+···+Xn

N , then

P
(∣∣X − E

[
X
]∣∣ ≥ t) ≤ 2 exp

(
− 2N2t2∑N

i=1(bi − ai)2

)
,

is valid for all positive t and E denotes the expected value.

Theorem 4.2. Let Φ,Φ′ denote two distributions with Supp(Φ) ⊆ Supp(Φ′),
and D0(r) and D1(r) denote two distributions determined by some parameter r ∈
Supp(Φ′). Let P, P ′ be two decision problems defined as follows:

• Problem P : Distinguish whether input x is sampled from distribution X0
or X1, where

X0 = {x : r ←↩ Φ, x←↩ D0(r)}, X1 = {x : r ←↩ Φ, x←↩ D1(r)}.

• Problem P ′: Distinguish whether input x is sampled from distribution X ′0
or X ′1, where

X ′0 = {x : r ←↩ Φ′, x←↩ D0(r)}, X ′1 = {x : r ←↩ Φ′, x←↩ D1(r)}.

Assume that D0(·) and D1(·) satisfy the following public sampleability prop-
erty: there exists a sampling algorithm S with run-time TS such that for all (r, b),
given any sample x from Db(r):
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• S(0, x) outputs a fresh sample distributed as D0(r) over the randomness of S,
• S(1, x) outputs a fresh sample distributed as D1(r) over the randomness of S.
Then, given a T -time distinguisher A for problem P with advantage ε, we

can construct a distinguisher A′ for problem P ′ with run-time and distinguishing
advantage respectively bounded from above and below by (for any a ∈ (1,+∞]):

64
ε2 log

(
8Ra(Φ‖Φ′)
εa/(a−1)+1

)
· (TS + T ) and ε

4 ·Ra(Φ‖Φ′) ·
(ε

2

) a
a−1

.

Proof. For each r̂ ∈ Supp(Φ), and b ∈ {0, 1}, we let pb(r̂) = Prx←↩Db(r̂)(A(x) =
1) and pb =

∑
r̂∈Supp(Φ) pb(r̂)Φ(r̂). The advantage of A is defined as |p0 − p1|,

which we assume is bigger than ε. Without loss of generality, we may assume
that p0 > p1. Distinguisher A′ is given an input x sampled from Db(r) for
some r sampled from Φ′ and some unknown b ∈ {0, 1}. For an ε′ to be deter-
mined later, it runs distinguisher A on N ≥ 32ε−2 log(4/ε′) independent inputs
sampled from D0(r) and D1(r) calling algorithm S on (0, x) and (1, x) to obtain
estimates p̂0 and p̂1 for the acceptance probabilities p0(r) and p1(r) of A given
as inputs samples from D0(r) and D1(r) (with the r fixed to the value used
to sample the input x of A′). By letting t = ε/8 and N = 32ε−2 log(4/ε′) for
Xi’s being Bernoulli with probability pb(r) over [ai, bi] = [0, 1], for 1 ≤ i ≤ N ,
the Hoeffding’s bound implies that, the estimation errors |p̂0 − p0| and |p̂1 − p1|
are < ε/8 except with probability < 2 exp(−2Nt2) = ε′/2 over the randomness
of S. Then, if p̂1 − p̂0 > ε/4, distinguisher A′ runs A on input x and returns
whatever A returns, else distinguisher A′ returns a uniformly random bit. This
completes the description of distinguisher A′.

Let S1 denote the set of r’s such that p1(r)− p0(r) ≥ ε/2, S2 denote the set
of r’s that are not in S1 and such that p1(r)− p0(r) ≥ 0, and S3 denote all the
remaining r’s. Then:
• If r ∈ S1, then except with probability < ε′ over the randomness of S, we will

have p̂1 − p̂0 > ε/4 and thus A′ will output A(x). Thus, in the case b = 1,
we have Pr[A′(x) = 1|r ∈ S1] ≥ p1(r) − ε′ and in the case b = 0, we
have Pr[A′(x) = 1|r ∈ S1] ≤ p0(r) + ε′.

• Assume that r ∈ S2. Let u(r) be the probability over the randomness
of S that p̂1 − p̂0 > ε/4. Then A′ will output A(x) with probability u(r)
and a uniform bit with probability 1 − u(r). Thus, in the case b = 1, we
have Pr[A′(x) = 1|r ∈ S2] = u(r) ·p1(r)+(1−u(r))/2, and in the case b = 0,
we have Pr[A′(x) = 1|r ∈ S2] = u(r) · p0(r) + (1− u(r))/2.

• If r ∈ S3, except with probability < ε′ over the randomness of S, we
have p̂1− p̂0 < ε/4 and A′ will output a uniform bit. Thus, in the case b = 1,
we have Pr[A′(x) = 1|r ∈ S3] ≥ 1/2 − ε′, and in the case b = 0, we
have Pr[A′(x) = 1|r ∈ S3] ≤ 1/2 + ε′.

Overall, the advantage of A′ is bounded from below by:∑
r∈S1

Φ′(r) (p1(r)− p0(r)− 2ε′) +
∑
r∈S2

Φ′(r)u(r) (p1(r)− p0(r))−
∑
r∈S3

Φ′(r)2ε′

≥ Φ′(S1) · ε2 − 2ε′.
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By an averaging argument, the set S1 has probability Φ(S1) ≥ ε/2 under distri-
bution Φ. Hence, by the RD probability preservation property (see Lemma 2.9),
we have Φ′(S1) ≥ (ε/2)

a
a−1 /Ra(Φ‖Φ′). The proof may be completed by setting

ε′ = (ε/4) · (ε/2)
a
a−1 /Ra(Φ‖Φ′). ut

4.2 Application to dual-Regev encryption

Let m,n, q, χ be as in Definition 2.5 and Φ denote a distribution over Zm×nq .
We define the LWE variant LWEn,q,χ,m(Φ) as follows: Sample A ←↩ Φ, s ←↩
U(Znq ), e ←↩ χm and u ←↩ U(Tm); The goal is to distinguish between the
distributions

(
A, 1

qAs+ e
)

and (A,u) over Zm×nq × Tm. Note that standard
LWE is obtained by taking Φ′ = U(Zm×nq ).

As an application to Theorem 4.2, we show that LWE with non-uniform
and possibly statistically correlated ai’s of the samples (ai, bi)’s (with bi either
independently sampled from U(T) or close to 〈ai, s〉 for a secret vector s) remains
at least as hard as standard LWE, as long as the RD R(Φ‖U) remains small,
where Φ is the joint distribution of the given ai’s and U denotes the uniform
distribution.

To show this result, we first prove in Corollary 4.3 that there is a reduction
from LWEn,q,χ,m(Φ′) to LWEn,q,χ,m(Φ) using Theorem 4.2 if Ra(Φ‖Φ′) is small
enough. We then describe in Corollary 4.4 how to use this first reduction to
obtain smaller parameters for the dual-Regev encryption. This allows us to save
an Ω(

√
λ/ log λ) factor in the Gaussian deviation parameter r used for secret

key generation in the dual-Regev encryption scheme [GPV08], where λ refers to
the security parameter.

Corollary 4.3. Let Φ and Φ′ be two distributions over Zm×nq with Supp(Φ) ⊆
Supp(Φ′). If there exists a distinguisher A against the LWEn,q,χ,m(Φ) with run-
time T and advantage ε = o(1), then there exists a distinguisher A′ against
the LWEn,q,χ,m(Φ′) with run-time T ′ = O(ε−2 log Ra(Φ‖Φ′)

εa/(a−1) · (T +poly(m, log q)))
and advantage

Ω

(
ε1+a/(a−1)

Ra(Φ‖Φ′)

)
,

for any a ∈ (1,+∞].

Proof. Apply Theorem 4.2 with r = A ∈ Zm×nq , x = (A, b) ∈ Zm×nq ×Tm,D0(r) =
(A,A · s + e) with s ←↩ U(Znq ) and e ←↩ χm, and D1(r) = (A,u) with u ←↩
U(Zmq ). The sampling algorithm S is such that S(0, x) outputs (A,A · s′ + e′)
for s′ ←↩ U(Znq ) and e′ ←↩ χm, while S(1, x) outputs (A,u′) with u′ ←↩ U(Zmq ).

ut

We recall that the dual-Regev encryption scheme has a general public parame-
ter A ∈ Zm×nq , a secret key of the form sk = x with x←↩ DZm,r and a public key
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of the form u = Atx mod q. A ciphertext for a message M ∈ {0, 1} is obtained
as follows: Sample s←↩ U(Znq ), e1 ←↩ χm and e2 ←↩ χ; return ciphertext

(c1, c2) =
(

1
q

As+ e1,
1
q
〈u, s〉+ e2 + M

2

)
∈ Tm × T.

Corollary 4.4. Suppose that q is prime, m ≥ 2n log q and r ≥ 4
√

log(12m)/π.
If there exists an adversary against the IND-CPA security of the dual-Regev en-
cryption scheme with run-time T and advantage ε, then there exists a distinguish-
ing algorithm for LWEn,q,χ,m+1 with run-time O((ε′)−2 log(ε′)−1 ·(T+poly(m)))
and advantage Ω((ε′)2), where ε′ = ε− 2q−n.
Proof. Breaking the security of the dual-Regev encryption scheme as described
above is at least as hard as LWEn,q,χ,m+1(Φ) where Φ is obtained by sam-
pling A ←↩ U(Zm×nq ), u ←↩ At · DZm,r mod q and returning the (m + 1) × n
matrix obtained by appending ut at the bottom of A. We apply Corollary 4.3
with Φ′ = U(Z(m+1)×n

q ).
Since q is prime, if A is full rank, then the multiplication by At induces an

isomorphism between the quotient group Zm/Λ⊥A and Znq , where Λ⊥A = {x ∈ Zm :
At · x = 0 mod q}. By Lemma 2.2, we have η1/3

(
Λ⊥A
)
≤ 4

√
log(12m)/π ≤ r,

except for a fraction ≤ q−n of the A’s. Let Bad denote the union of such bad A’s
and the A’s that are not full rank. We have Pr[Bad] ≤ 2q−n.

By the multiplicativity property of Lemma 2.9, we have:

R∞(Φ‖Φ′) ≤ max
A/∈Bad

R∞

(
DZm,r mod Λ⊥A‖UZm/Λ⊥A

)
.

Thanks to Lemma 2.10, we know that the latter is ≤ 2. The result now follows
from Corollary 4.3. ut

In all applications we are aware of, the parameters satisfy m ≤ poly(λ)
and q−n ≤ 2−λ, where λ refers to the security parameter. The r = Ω(

√
log λ)

bound of our Corollary 4.4, that results from using δ = 1/3 in the condition r ≥
ηδ
(
Λ⊥A
)
in the RD-based smoothing argument of the proof above, improves on

the corresponding bound r = Ω(
√
λ) that results from the requirement to use δ =

O(2−λ) in the condition r ≥ ηδ
(
Λ⊥A
)
in the SD-based smoothing argument of

the proof of [GPV08, Th. 7.1], in order to handle adversaries with advantage ε =
2−o(λ) in both cases. Thus our RD-based analysis saves a factor Ω

(√
λ/ log λ

)
in

the choice of r, and consequently of a−1 and q. (The authors of [GPV08] specify
a choice of r = ω(

√
log λ) for their scheme because they use in their analysis

the classical “no polynomial attacks” security requirement, corresponding to
assuming attacks with advantage ε = λ−O(1), rather than the stronger ε =
ω(2−λ) but more realistic setting we take.)

5 Application to LWE with uniform noise

The LWE problem with noise uniform in a small interval was introduced first
in [DMQ13]. In that article, the authors exhibit a reduction from LWE with
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Gaussian noise, which relies on a new tool called lossy codes. The main proof
ingredients are the construction of lossy codes for LWE (which are lossy for
the uniform distribution in a small interval), and the fact that lossy codes are
pseudorandom.

We note that the reduction from [DMQ13] needs the number of LWE samples
to be bounded by poly(n) and that it degrades the LWE dimension by a constant
factor. The parameter β (when the interval of the noise is [−β, β]) should be at
least mnσα where α is the LWE Gaussian noise parameter and σ ∈ (0, 1) is an
arbitrarily small constant.

Another hardness result for LWE with uniform noise can be obtained by com-
posing the hardness result for Learning With Rounding (LWR) from [BGM+16]
(based on RD-based techniques inspired by an earlier version of our pa-
per, see Theorem 6.1 in Sec. 6 and the discussion there) with the reduction
of Chow [Cho13] (see Theorem 6 in [BGM+16]) from LWR to LWE with
uniform noise. The resulting reduction maps the LWEn′,q,Dα,m problem to
the LWEn,q,U([−β,β]),m problem with n′ = n/ log q and β = Ω(mα/

√
logn),

and hence, like the reduction of [DMQ13], it also degrades the LWE dimension.
We now provide an alternative reduction from the LWEn,q,Dα,m distinguish-

ing problem to the LWEn,q,U([−β,β]),m distinguishing problem, and analyze it
using RD. Our reduction preserves the LWE dimension n, and is hence tighter
in terms of dimension than the reductions from [DMQ13] and [BGM+16] dis-
cussed above. In terms of noise, our reduction requires that β = Ω(mα/ logn)
(so in this respect is slightly less tight than the reduction of [BGM+16] by a
factor

√
logn).

We remark that the search-decision equivalence idea in the proof of Theo-
rem 5.1 could be extended to show the hardness of the decision LWE problem
with any noise distribution ψ, with respect to the hardness of LWE with Gaussian
noise Dα if either ψ is ‘close’ to Dα in the sense of RD (i.e., R(ψ‖Dα) is ‘small’),
or (as below) if ψ is sufficiently ‘wider’ than a Dα so that R(ψ‖ψ+Dα) is ‘small’.
The first generalization could be applied to prove the IND-CPA security of LWE-
based encryption schemes (such as Regev [Reg05] and Dual-Regev [GPV08])
schemes with low-precision Gaussian sampling, as used for signature schemes in
Section 3.

Theorem 5.1. Let α, β > 0 be real numbers with β = Ω(mα/ logn) for positive
integers m and n. Let m > n log q

log(α+β)−1 ≥ 1 with q ≤ poly(m,n) prime. Then
there is a polynomial-time reduction from LWEn,q,Dα,m to LWEn,q,φ,m, with φ =
1
q bqUβe.

Proof. Our reduction relies on five steps:

• A reduction from LWEn,q,Dα,m to LWEn,q,ψ,m with ψ = Dα + Uβ ,
• A reduction from LWEn,q,ψ,m to sLWEn,q,ψ,m,
• A reduction from sLWEn,q,ψ,m to sLWEn,q,Uβ ,m,
• A reduction from sLWEn,q,Uβ ,m to sLWEn,q,φ,m, with φ = 1

q bqUβe,
• A reduction from sLWEn,q,φ,m to LWEn,q,φ,m.
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First step. The reduction is given m elements (ai, bi) ∈ Znq × T, all drawn
from As,Dα (for some s), or all drawn from U(Znq ×T). The reduction consists in
adding independent samples from Uβ to each bi. The reduction maps the uniform
distribution to itself, and As,Dα to As,ψ.

Second step. Reducing the distinguishing variant of LWE to its search variant
is direct. In particular, suppose that there exists a solver, which finds the secret
for sLWEn,q,ψ,m with success probability ε. We use this solver to construct a
distinguisher for LWEn,q,ψ,m. Let (A, b) be the input to the distinguisher, which
comes from either the LWE distribution or the uniform distribution. Let s be the
output of the solver on input (A, b). Given s, A, and b, we compute ‖b− 1

qAs‖∞.
If this quantity is smaller than

t0 = β + 2πα
√

log (4ε−1), (7)

then the distinguisher outputs 1; otherwise it outputs 0. We now analyze the
advantage εadv of such a distinguisher. On the one hand, if the input to the
distinguisher comes from the LWE distribution, the probability that the distin-
guisher outputs 1 is bounded from below by

ε− Pre←↩ψ (‖e‖∞ ≥ t0) .

On the other hand, when the input comes from the uniform distribution, the
probability of having 1 as the output of the constructed distinguisher is bounded
from above by

Prb←↩U(Znq )
[
∃s ∈ Znq : ‖b− 1

q
As‖∞ ≤ t0

]
.

Hence the overall distinguishing advantage satisfies

εadv ≥ (ε− Pre←↩ψ[‖e‖∞ ≥ t0])−Prb←↩U(Znq )
[
∃s ∈ Znq : ‖b− 1

q
As‖∞ ≤ t0

]
. (8)

Since
Pre←↩ψ[‖e‖∞ ≥ t0] ≤ Pre←↩Dα [‖e‖∞ ≥ t],

where t is defined to be 2πα
√

log (4ε−1), the lower bound on εadv given in (8)
can be re-written as

ε− Pre←↩Dα [‖e‖∞ ≥ t]− Prb←↩U(Znq )
[
∃s ∈ Znq |‖b−

1
q

As‖∞ ≤ t0
]
. (9)

If both the above probabilities are ≤ ε/4, then εadv is at least ε/2. We now give
an upper bound to each probability and enforce the parameters to satisfy these
bounds. For the first probability, since e←↩ Dα, a standard Gaussian tail bound
follows

Pre←↩Dα [‖e‖∞ ≥ t] ≤ exp
(
−
(

2πα
t

)2
)
.
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To ensure that the latter is less than ε/4, we need t ≥ 2πα
√

log (4ε−1). Our t0
defined in (7) satisfies the latter condition. For the second probability, by using
a union bound argument, we have that

Prb←↩U(Znq )[∃s ∈ Znq : ‖b−As‖∞ ≤ t0] ≤ qn
(

2bt0qc+ 1
q

)m
≤
(
qn/m(4t0)

)m
.

To ensure that the right hand side of the above inequality is less than ε/4,
we require to satisfy two conditions. First, we impose that qn/m(4t0) < 1/2,
which is equivalent to (n log q)/m ≤ log

(
1

8t0

)
. Now that qn/m(4t0) < 1/2, we

impose (1/2)m ≤ ε/4 to enforce the second constraint, that is m ≥ log
(
4ε−1).

Combining the above two conditions, it suffices to have

m ≥ max

 n log q
log
(

1
8t0

) , log
(
4ε−1) .

By replacing t0 from (7) and inserting ε−1 = O(poly(n)), we get

m ≥ n log q
log (α+ β)−1 ,

if (α+ β)−1 = 2o(
n log q
logn ).

Third step. The reduction from sLWEn,q,ψ,m to sLWEn,q,Uβ ,m is vacu-
ous: by using the RD (and in particular the probability preservation prop-
erty of Lemma 2.9), we show that an oracle solving sLWEn,q,Uβ ,m also
solves sLWEn,q,ψ,m.

Lemma 5.2. Let α, β be real numbers with α ∈ (0, 1/e) and β ≥ α. Let ψ =
Dα + Uβ. Then

R2(Uβ‖ψ) = 1 + 1
1− e−πβ2/α2

α

β
< 1 + 1.05 · α

β
.

Proof. The density function of ψ is the convolution of the density functions ofDα

and Uβ :

fψ(x) = 1
2αβ

∫ β

−β
e
−π(x−y)2

α2 dy.

Using Rényi of order 2, we have:

R2(Uβ‖ψ) =
∫ β

−β

1
(2β)2

1
2αβ

∫ β
−β e

−π(x−y)2
α2 dy

dx = α

β

∫ β

0

1∫ β
−β e

−π(x−y)2
α2 dy

dx.

The denominator in the integrand is a function for x ∈ [0, β].

φ(x) = α−
∫ ∞
β+x

exp(−πy
2

α2 ) dy −
∫ ∞
β−x

exp(−πy
2

α2 ) dy.
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For standard Gaussian, we use the following tail bound [CDS03]:
1√
2π

∫ ∞
z

e−x
2/2dx ≤ 1

2e
−z2/2.

Then we have

φ(x) ≥ α
(

1− 1
2 exp

(
−π(β + x)2

α2

)
− 1

2 exp
(
−π(β − x)2

α2

))
.

Taking the reciprocal of above, we use the first-order Taylor expansion. Note
here

t(x) = 1
2 exp

(
−π(β + x)2

α2

)
+ 1

2 exp
(
−π(β − x)2

α2

)
. (10)

We want to bound the function t(x) by a constant c ∈ (0, 1). Here t(x) is not
monotonic. We take the maximum of the first term and the maximum of the
second term of t(x) in (10). Let σα,β denote 1

2e
−πβ2/α2 , then an upper bound

(β ≥ α) is:
t(x) ≤ 1

2e
−πβ2/α2

+ 1
2 = σα,β + 1

2 < 1.

We then use the fact that 1
1−t(x) = 1 + 1

1−t(x) t(x) ≤ 1 + 1
1−2σα,β t(x) to bound

the Rényi divergence of order 2.

R2(Uβ‖ψ) = α

β

∫ β

0

1
φ(x)dx

≤ 1
β

∫ β

0

1
1− 1

2 exp
(
−π(β+x)2

α2

)
− 1

2 exp
(
−π(β−x)2

α2

)dx

≤ 1
β

∫ β

0

(
1 + 1

1− 2σα,β
exp

(
−π(β + x)2

α2

)
+ 1

1− 2σα,β
exp

(
−π(β − x)2

α2

))
dx

= 1 + 1
(1− 2σα,β)β

∫ 2β

0
exp

(
−πx2

α2

)
dx

= 1 + 1
2(1− 2σα,β)β

∫ 2β

−2β
exp

(
−πx2

α2

)
dx

= 1 + α

(1− 2σα,β)β (1− 2Dα(2β)) ≤ 1 + 1
1− 2σα,β

α

β
.

Hence we have the bound

R2(Uβ‖ψ) ≤ 1 + 1
1− e−πβ2/α2

α

β
.

The second bound in the lemma statement follows from the fact that
1

1− e−πβ2/α2 < 1.05,

for β ≥ α. ut
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The RD multiplicativity property (see Lemma 2.9) implies that for m indepen-
dent samples, we have R2(Umβ ‖ψm) ≤ R2(Uβ‖ψ)m. To ensure that the lattermth
power is polynomial in n, we use Lemma 5.2 with β = Ω(mα/ logn); with this
choice, we have R2(Uβ‖ψ) = 1 + O(αβ ) ≤ exp(O(αβ )) and R2(Uβ‖ψ)m = nO(1).
The RD probability preservation and data processing properties (see Lemma 2.9)
now imply that if an oracle solves sLWEn,q,Uβ ,m with probability ε, then it also
solves sLWEn,q,ψ,m with probability ε′ ≥ ε2/R2(Uβ‖φ)m ≥ ε2/nO(1).

Fourth step. We reduce sLWEn,q,Uβ ,m with continuous noise Uβ to sLWEn,q,φ,m
with discrete noise φ = 1

q bqUβe with support contained in Tq, by rounding to
the nearest multiple of 1

q any provided bi (for i ≤ m).

Fifth step. We reduce sLWEn,q,φ,m to LWEn,q,φ,m by invoking Theorem 2.7. ut

6 Application to Learning With Rounding (LWR)

In this section, we first review (in Theorem 6.1) and combine with other re-
sults (in Theorem 6.2) the recent hardness result of [BGM+16] for the Learning
With Rounding (LWR) problem introduced in [BPR12], for general modulus q,
based on the hardness of the standard LWE problem. This result of [BGM+16]
makes use of RD (inspired by an earlier version of our work) within a proof
that can be seen as a variant of the Micciancio-Mol search to decision reduction
for LWE [MM11]. Then, we show (in Theorem 6.4) a new dimension-preserving
hardness result for LWR with a composite modulus q that is a multiple of the
LWR rounding modulus p, obtained by composing our RD-based hardness result
for LWE with uniform noise from the previous section with another reduction
from [BGM+16] (which we rephrase in Theorem 6.3) that reduces LWE with
uniform noise to LWR. Interestingly, our new reduction for LWR also makes use
of the Micciancio-Mol reduction [MM11], but unlike the LWR reduction in The-
orem 6.1, ours uses [MM11] as a black box within the reduction of Theorem 5.1.

6.1 Adapted results from [BGM+16]
We first recall the main hardness result on LWR from [BGM+16].
Theorem 6.1 ([BGM+16, Th. 3]). For every ε > 0, n, m, q > 2pB, and
algorithm Dist such that

|PrA,s [Dist (A, bAsep) = 1]− Pru [Dist (A, buep) = 1]| ≥ ε

where A ←↩ U
(
Zm×nq

)
, s ←↩ U ({0, 1}n) and u ←↩ U

(
Zmq
)
there exists an

algorithm Learn that runs in time polynomial in n, m, the number of divisors
of q, and the running time of Dist such that

PrA,s [Learn (A,As+ e) = s] ≥
(

ε

4qm −
2n

pm

)2
· 1(

1 + 2Bp
q

)m , (11)

for any noise distribution e that is B-bounded and B-balanced in each coordinate.
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We remark that the above Theorem is applicable to a general modulus q with
the coefficients of s distributed as uniformly on {0, 1} (i.e. uniformly random
bits). For a prime q, as remarked in [BGM+16], the proof of Theorem 6.1 goes
through also with the coefficients of s distributed uniformly on Zq.

We now combine Theorem 6.1 with other results to state it as a reduction
from the standard LWE problem for general q, so that it would be compa-
rable with our alternative reduction. We remark that for prime q, using the
version of Theorem 6.1 with s uniform in Znq (mentioned above), the proof of
Theorem 6.2 can be modified to avoid the reduction from LWEn/ log q,q,Dα,m
to binLWEn,q,Dα,m, and this gives (as observed in [BGM+16]) a dimension-
preserving reduction from LWEn,q,Dα,m to LWRn,q,p,m for prime q. However,
we state below the result for general q to compare with our following improved
result for a composite q.

Theorem 6.2. Let qm = O (poly(n)), and n ≤ m ≤ O

(√
logn
pα

)
. Then there

is a polynomial-time reduction from LWEn/ log q,q,Dα,m to LWRn,q,p,m.

Proof. The reduction can be obtained in the following five steps:

• A reduction from LWEn/ log q,q,Dα,m to binLWEn,q,Dα,m,
• A trivial reduction from binLWEn,q,Dα,m to sbinLWEn,q,Dα,m,
• A reduction from sbinLWEn,q,Dα,m to sbinLWEn,q,D′

α,B′
,m, with D′α,B′ the

distribution Dα truncated (by rejection) to the interval [−B′, B′],
• A reduction from sbinLWEn,q,D′

α,B′
,m to sbinLWEn,q,φ,m, with φ = 1

q bqD
′
α,B′e,

• A reduction from sbinLWEn,q,φ,m to LWRn,q,p,m via Theorem 6.1.

The first reduction is taken from [BLP+13]. The second one is just the trivial
decision to search reduction for binary secret LWE. Note that we provided such
a reduction (see the second step of proof of Theorem 5.1) for a more general
setting. In fact, there we had binary secret LWE with ψ = Dα +Uβ as the error
distribution while we have non-binary secret LWE and Gaussian noise Dα here.
If we simplify the constraints appeared there, we simply get m ≥ n/ log

(
α−1),

which can be further relaxed to m ≥ n. The third reduction is vacuous and con-
sists in applying the R∞ probability preservation property from Lemma 2.9 and
them-sample Gaussian tail-cut Lemma 2.11 that ensures that this reduction pre-
serves success probability up to a constant factor by setting B′ = αq

√
ln(2m)/π.

The fourth reduction consists of applying 1
q bq(·)e to all samples. With this, we

have only changed the noise distribution from Gaussian Dα with standard devi-
ation αq to its quantized version φ. This only adds a rounding error of magni-
tude ≤ 1/2. The last step is exactly Theorem 6.2 mentioned above. The last step
reduction holds if (i) the distribution φ be B-bounded, and, to ensure the re-
duction is probabilistic polynomial-time, we need that (ii) the right hand side of
(11) is at least εO(1)/nO(1). The obtained distribution φ in (i) is both B-bounded
and B-balanced with B = αq

√
ln(2m)/π + 1/2. For the second condition (ii),

we note that there are two terms in the right hand side of (11). We first claim
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that
ε

8qm >
2n

pm
,

for q = poly(n) and ε−1 = 2o(n). To prove this claim, first note that

ε

8qm >
2n

pm
⇔ n−m log p < log

(
ε

8qm

)
⇔ m >

n+ log
(
8qmε−1)

log p .

Now, qm = poly(n) and ε−1 = nO(1) and the assumption m ≥ n ≥ 2n/ log(p)
imply the above condition for sufficiently large n. Hence, for the first term we
get (

ε

4qm −
2n

pm

)2
>

(
ε

8qm

)2
,

which is ≥ εO(1)/nO(1) using qm = O (poly(n)). For the second term, we get(
1 + 2Bp

q

)m
≤ exp

(
2Bpm
q

)
, (12)

since for positive x and y, we have (1+x)y ≤ exp(xy). The right hand side of (12)
is less than nO(1) if 2Bpm/q ≤ O (logn). Replacing B by the value derived from
condition in (i), and using that m ≥ n, we get that some m = O

(√
logn/(pα)

)
suffices. ut

Below, we will give a tighter reduction than above from LWE to LWR for
composite q. We will make use of the theorem below.

Theorem 6.3 (Adapted from [BGM+16, Th. 13]). Let p and q be two
integers such that p divides q and let β = q/(2p). If we have a T -time dis-
tinguisher for LWRn,q,p,m with advantage ε, then we can construct a T ′ =
O (T +m′n · poly(log q)) time distinguisher for LWEn,q,Uβ ,m′ with m′ = m · q/p
and advantage ε′ ≥ ε/2.

Proof. The proof follows the steps of the proof of Theorem 13 in [BGM+16].
Suppose that we have access to a T -time distinguisher which runs over m sam-
ples (a, b) = (a, 〈a, s〉+ e) for a←↩ U(Znq ), and

e←↩
[
− q

2p , . . . ,
q

2p

)
⊆ Zq.

The authors of [BGM+16] run the LWE oracle until they hit a ‘good’ sam-
ple (a, b) with b ∈ (q/p)Zp and output the LWR sample (a, (p/q)b) ∈ Znq × Zp.
Since the LWE error e is distributed uniformly in Uβ , each sample output by
the LWE oracle is ‘good’ with probability p/q, and the expected number of
LWE samples needed by this reduction to produce m LWR samples is there-
fore m′ = m · q/p. Instead, here we modify the reduction to work with a fixed
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number m′ = m · q/p of LWE samples. Namely, if the m′ = m · q/p given
LWE samples contain at least m ‘good’ samples (which we call event Good), the
modified reduction uses them to compute m LWR samples and runs the LWR
distinguisher on them, outputting whatever it outputs, as in [BGM+16]. Else, if
the m′ given LWE samples contain < m ‘good’ samples, the LWE distinguisher
outputs 0. The proof of Theorem 13 in [BGM+16] shows that conditioned on
event Good, the input samples to the LWR distinguisher come from the LWR
distribution (resp. uniform distribution) if the LWE oracle generates samples
from the LWE distribution (resp. uniform distribution). It follows that the ad-
vantage of our LWE distinguisher is ≥ Pr[Good] · ε ≥ ε/2, where we have used
the fact that Pr[Good] ≥ 1/2, since the number of ‘good’ samples is binomially
distributed with parameters (m′, p/q) and has median m′ · p/q = m. ut

6.2 New results

One can compose the reduction in Theorem 6.3 with ours from LWE with Gaus-
sian noise to LWE with uniform noise (Theorem 5.1) to get a new reduction
from LWE to LWR. Hence, this combination can be summarized as:

Theorem 6.4. Let p divide q, m′ = m·q/p with m = O (logn/α) for m′ ≥ m ≥
n ≥ 1. There is a polynomial-time reduction from LWEn,q,Dα,m′ to LWRn,q,p,m.

Proof. Let β = q/(2p). The reduction has two steps:

• A reduction from LWEn,q,Dα,m′ to LWEn,q,Uβ ,m′ ,
• A reduction from LWEn,q,Uβ ,m′ to LWRn,q,p,m.

On the one hand, LWEn,q,Uβ ,m′ is at least as hard as LWEn,q,Dα,m′ where β =
Ω (m′α/ logn) (see Theorem 5.1). On the other hand, the second phase of the re-
duction follows from Theorem 6.3; namely we have a reduction from LWEn,q,Uβ ,m′
to LWRn,q,p,m subject to the condition that p divides q and m′ = m · q/p. Com-
bining these two reductions completes the proof. Note that, by putting all the
conditions together, it turns out that

β = Ω

(
m′α

logn

)
⇔ q

2p ≥
mq
p α

logn ⇔ m = O

(
logn
α

)
,

where the first equivalence is derived by replacing β andm′, by q/(2p) andmq/p.
ut

Table 3 compares the parameters of Theorems 6.2 and 6.4, and a reduction
from [AKPW13], all assuming composite q that is a multiple of p. The reduction
in Theorem 6.2 loses a log q factor in dimension, while our uniform-noise reduc-
tion preserves the dimension, which is the first of its kind without resorting to
the noise-flooding technique (as [BPR12]). On the downside, our reduction does
not preserve the number of samples.

Note that setting γ = 1 gives n′ equal to that of Theorem 6.2, while it loses
an extra factor n in the denominator of m. On the other hand, setting γ = q
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Table 3. Comparing the main parameters of different reductions from LWEn′,q,Dα,m′
to LWRn,q,p,m for a fixed n and another flexible parameter γ ≥ 1.

Param. [AKPW13, Th. 4.1] Th. 6.2 ([BGM+16]) Th. 6.4

n′ O
(
n log(2γ)

log q

)
n

log q n

m O
(√

logn
γnpα

)
O
(√

logn
pα

)
O
( logn

α

)
m′ m m m · q

p

allows for approximately n = n′, however for an expense of much smaller m.
The reduction in Theorem 6.2 also restricts the number of LWR samples m
by a further O

(
p
√

logn
)
factor in comparison to our results. This factor is

equal to O
(
γpn
√

logn
)
if we compare our result with that of Theorem 4.1

from [AKPW13].

7 Open problems

Our results show the utility of the Rényi divergence in several areas of lattice-
based cryptography. A natural question is to find further new applications of
RD to improve the efficiency of cryptosystems. Our results suggest some nat-
ural open problems, whose resolution could open up further applications. In
particular, can we extend the applicability of RD to more general distinguish-
ing problems than those satisfying our ‘public sampleability’ requirement? This
may extend our results further. For instance, can we use RD-based arguments to
prove the hardness of LWE with uniform noise without using the search to deci-
sion reduction of [MM11]? This may allow the proof to apply also to Ring-LWE
with uniform noise and Ring-LWR. Another open problem will be discussed in
the next subsection.

7.1 GPV signature scheme

The RD can also be used to reduce the parameters obtained via the SD-based
analysis of the GPV signature scheme in [GPV08].

In summary, the signature and the security proof from [GPV08] work as
follows. The signature public key is a matrix A ∈ Zn×mq with n linear in the
security parameter λ, q = poly(n), and m = O(n log q). The private signing key
is a short basis matrix T for the lattice Λ⊥A = {x ∈ Zm : A · x = 0 mod q},
whose last successive minimum satisfies λm

(
Λ⊥A
)
≤ O(1) when m = Ω(n log q)

(see [GPV08]). A signature (σ, s) on a message M is a short vector σ ∈ Zm
and a random salt s ∈ {0, 1}λ, such that A · σ = H(M, s) mod q, where H is
a random oracle hashing into Znq . The short vector σ is sampled by computing
an arbitrary vector t satisfying A · t = H(M, s) mod q and using T along with
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a Gaussian sampling algorithm (see [GPV08,BLP+13]) to produce a sample
from t+DΛ⊥A,r,−t.

The main idea in the security proof from the SIS problem [GPV08] is based on
simulating signatures without T, by sampling σ from DZm,r and then program-
ming the random oracle H at (M, s) according to H(M, s) = A · σ mod q. As
shown in [GPV08, Le. 5.2], the conditional distribution of σ given A · σ mod q
is exactly the same in the simulation and in the real scheme. Therefore, the
SD between the simulated signatures and the real signatures is bounded by
the SD between the marginal distribution D1 of A · σ mod q for σ ←↩ DZm,r
and U(Zmq ). This SD for one signature is bounded by ε if r ≥ ηε

(
Λ⊥A
)
. This leads,

over the qs sign queries of the attacker, in the SD-based analysis of [GPV08], to
take ε = O(2−λq−1

s ) and thus r = Ω(
√
λ+ log qs) (using Lemma 2.2), in order

to handle attackers with success probability 2−o(λ).
Now, by Lemma 2.10, we have that the RD R∞(D1‖U) is bounded by 1 +

c · ε for one signature, for some constant c. By the multiplicativity property of
Lemma 2.9, over qs queries, it is bounded by (1 + cε)qs . By taking ε = O(q−1

s ),
we obtain overall an RD bounded as O(1) between the view of the attacker
in the real attack and simulation, leading to a security proof with respect to
SIS but with a smaller r = Ω(

√
log(nqs)) = Ω(

√
log λ+ log qs). When the

number of sign queries qs allowed to the adversary is much smaller than 2λ, this
leads to significant parameter savings, because SIS’s parameter β is reduced and
hence n,m, q may be set smaller for the same security parameter λ.

The above analysis indeed reduces the smoothing condition in the security
proof from r = Ω(

√
λ) to r = Ω(

√
log λ). But to make Gaussian sampling on Λ⊥A

efficient in signature generation, we also need r lower bounded by the Euclidean
norm of the trapdoor basis for Λ⊥A. The latter is lower bounded by λ1

(
Λ⊥A
)
,

which is Ω(
√
m) ≥ Ω(

√
λ) with high probability. That is actually similar to (or

even larger than) the old SD-based smoothing condition. Overall, we relaxed the
smoothing condition while the sampling condition remained unchanged. Hence,
relaxing both conditions together is left as an open problem.
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