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Abstract. Physical Unclonable Functions (PUFs), as novel lightweight
hardware security primitives, provide a higher level security with lower
power and area overhead in comparison with traditional cryptographic
solutions. However, it has been demonstrated that PUFs are vulnerable
to model building attacks, especially those using linear additive func-
tions such as Arbiter PUF (APUF) and k-sum PUF as building units.
Nevertheless, both APUFs and k-sum PUFs are highly desirable secu-
rity primitives, especially for authentication, because they are capable
of producing a huge number of challenge response pairs (CRPs) and can
be easily integrated into silicon. In this paper, we actually rely on the
demonstrated vulnerability of PUFs to model building attacks as well
as the relative ease with which this can be achieved to develop a new
parameter-based authentication protocol based on obfuscating challenges
sent to PUFs and their subsequent recovery. We show, using statistical
analysis and model building attacks using published approaches, that
constructing a model using machine learning techniques are infeasible
when our proposed method is employed. Finally, we also demonstrate
that our challenge obfuscation and recovery method can be successfully
used for secure key exchange between two parties.

Keywords: Physical Uncloanble Function, obfuscation, model building
attacks, hardware security, authentication.

1 Introduction

Traditional digital keys are stored in a non-volatile memory (NVM) for crypto-
graphic applications. However, it has been shown that the digital keys in NVM
are vulnerable to invasive physical attacks. Complicated tamper sensing and
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temper-proofing mechanisms has to be implemented in hardware to secure dig-
ital keys in NVM, consequently increasing the area and power overhead of the
device as well as limiting the use of these anti-tampering methods for resource-
constrained devices.

The growing new area of PUFs is receiving increased attention because PUFs,
especially circuit or silicon based PUFs, offer a simple alternative to storing
digital keys in NVM with a small hardware footprint and without the need for
tamper-sensing mechanisms for extracting secret key information from a complex
physical system. Notably that PUFs are easy to build but practically impossible
to duplicate because they rely on uncontrollable physical parameter variations
that occur during hardware device manufacturing. More importantly, secrecy
of a PUF is derived from the inherent complicated physical system instead of
storing information in NVM memories and thus enabling a lightweight hardware
security primitive.

When a PUF is stimulated by a challenge (input), C, a corresponding re-
sponse (output), R, will be generated and determined by f(R), where f() is a
physical function that is unique to each device. Given the same challenge, C,
different PUF instantiations built upon the same design will respond with a
different response, R. The challenge, C, and its corresponding response, R, are
commonly referred to as a Challenge Response Pair (CRP). A set of CRPs can
be treated as a fingerprint of a PUF and therefore a PUF integrated device or
object. Therefore, it is favourable that a PUF has an exponential number of
CRPs as in the Arbiter PUF (APUF) [8, 20] and k-sum PUF [25, 3] to enable
distinguishing a unique device among a large device population.

PUFs can be used for authentication and cryptographic key generation as
well as realising more complex cryptographic protocols such as oblivious transfer
(OT), bit commitment (BC), key exchange (KE) [20, 11, 23, 26, 18]. Furthermore,
because of a PUFs ability to bind to a physical entity, PUFs are increasingly used
to offer protection against identity theft, cloning of devices, and counterfeiting
of goods.

However, if an adversary can eavesdrop on CRPs or have access to a physical
device for a short period to measure CRPs, it has been shown that an adversary
armed with only thousands of CRPs from, for example a highly desirable PUF
architecture with exponential CRPs such as an APUF or a k-sum PUF built
on linear additive blocks, and with access to a typical modern laptop computer
can build a model of a PUF in less than a few seconds. The model building
attack vulnerability threatens conventional PUF based authentication protocols,
as shown in [20], and other cryptographic applications based on PUFs [17].

To enhance the security level of a PUF, or in other words to increase the
complexity of the task faced by an adversary to perform a model building at-
tack, there are several solutions. One solution is to add nonlinearity, such as
XOR-ing the responses of several PUF instantiations to generate a single bit re-
sponse. Another solution is to alter the PUF architecture, for example, as in Feed
Forward Arbiter PUFs [8, 13] and lightweight secure PUFs [12]. Unfortunately,
increasing the complexity of model building attacks through the integration of
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more non-linear elements also significantly reduces the reliability of the PUF [8,
17]. In addition, it has been demonstrated that such a solution only provides a
modest advantage as the PUFs can still be broken using machine learning based
model building attacks [17, 18].

Unlike the previous approaches, two recent proposals [16, 24] have demon-
strated a highly innovative alternative that effectively confuses the adversary by
hiding the direct relationship between C and R. In these proposals, an adversary
cannot obtain the exact pair of C and R, however, the server (or verifier) is still
able to discover the exact pair of C and R to successfully authenticate a device
(or prover) because the server can take advantage of the PUF’s vulnerability to
model building attacks to verify the response from the device [14, 16, 24]. In gen-
eral, both of these approaches [16, 24] post-process, i.e. decimate, the response
generated on device and subsequently only expose the post-processed response
to an adversary.

In contrast, our approach focuses on challenge obfuscation instead of post-
processing PUF responses as done in [16, 24]. We demonstrate that exposing
an obfuscated PUF challenge through random elimination of challenge bits to
an adversary and subsequent pre-processing of the challenge on the device to
generate a full challenge before it is used to stimulate the physical PUF instance
can also provide resiliency to model building attacks. Further, the challenge
recovery method is both different and more simpler compared to recovering the
response where the length of the decimated response has to expanded to ensure
successful authentication. Additionally, we also demonstrate that given a set of
obfuscated challenge and response pairs, an adversary cannot mount a model
building attack and also demonstrate how our proposed approach can be used
to secure key exchange. We summarize the contributions from our study below:

– We propose a challenge obfuscation and a recovery method to thwart model
building attacks on PUFs by first taking advantage of the ability to rapidly
build a parametrised model of a physical PUF.

– We analyse the challenge obfuscation and recovery method to demonstrate
that a server (verifier) can successfully recover a challenge. That is a server
can identify the exact full length challenge used in the device, where this
exact full length challenge is obfuscated from both the attacker and the
server, because the server is able to exploit a securely stored parametrised
model of the physical PUF on the device.

– We illustrate a modified parameter-based authentication protocol and then
further show that our modified authentication protocol can be used for se-
curing key exchange.

– We perform statistical analysis to illustrate the exponentially increasing
workload that an attacker will face to build a model of a PUF after im-
plementing the proposed challenge obfuscation and recovery method. Fur-
ther, we also perform model building attacks methodologies successfully em-
ployed against PUFs to demonstrate the enhanced security provided by our
approach.
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The remainder of the paper is organized as follows: Section 2 introduces re-
lated work; Section 3 presents the proposed challenge obfuscation method used
on the device and challenge recovery method used on the server. In addition,
the modified parameter-based authentication protocol and the affiliated key ex-
change protocol is given in this section; Section 4 provides statistical analysis
and model building attack employed to evaluate the enhanced security of a PUF
after implementing the challenge obfuscation and recovery method; and then
Section 5 concludes this paper followed by an acknowledgment.

2 Related Work

Over the years, a number of PUF structures have been proposed, built and
analyzed. These include time delay based PUFs such as the Arbiter PUF [1,
2, 7] (APUF), Feed-Forward APUF [8], Ring-Oscillator PUF [20] (RO-PUF),
and Glitch PUF [21]; Memory-based PUFs leveraging device mismatch such as
SRAM PUF [4, 5], Latch PUF [19], Flip-flop PUF [10, 22], Butterfly PUF [6]. A
comprehensive review of different PUF architectures can be found in [15, 3].

The examples of PUFs that builds upon linear additive blocks include APUF [1,
9, 20] and k-sum PUF [25, 3]. They have one key desirable feature that generates
exponential number of CPRs. However, the shortcomings is that they have been
shown to be vulnerable to model building attacks using machine learning tech-
niques. From the model building attacks perspective, both architectures have the
same topology, therefore in this paper, the APUF is considered to demonstrate
the proposed method, nonetheless this does not limit its applications to other
PUF structures.

Since our work is based on exploiting the vulnerability of APUFs to model
building attacks, we will first summarise work in the area of building parametrised
models of APUFs. Then we will briefly introduce the concept of parameter-based
authentication we have employed in our work and highlight two recent propos-
als that use parameter-based authentication and relies on the vulnerability of
APUFs to model building attacks to construct authentication approaches re-
silient to model building attacks using a response post-processing (decimation
and sub-string padding of the response) and recovery technique.

2.1 Modelling Arbiter-PUFs

The APUF consists of k stages in sequence, each stage is composed of two 2-
input multiplexers shown in Fig. 1, or any other architectures that have two
signal paths. To generate a response bit, a signal is applied to the first stage
input, while the challenge C is used to determine the signal path to the next
stage. The two electrical signals simultaneously race through each multiplexer
path (top and bottom paths) in parallel. At the end of the APUF architecture,
an arbiter, which can be implemented by a latch, can be used to determine
whether the top or bottom signal arrives first and hence outputs a logic ‘0’ or
‘1’ accordingly.
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Fig. 1. An arbiter PUF (APUF) circuit.

It has been shown that an APUF can be modelled via a linear additive model
since a response bit is generated based on the summation of each time delay
segment in each stage (two 2-input multiplexers) depending on the challenge
C, where C is made up of (c1, c2, ...ck) [8, 17, 18]. The final delay difference 4
between the two signals can be expressed as:

4 = ωTΦ, (1)

where ω and Φ are the delay determined vector and the parity vector, re-

spectively, of dimension k+ 1 as a function of C. We denote σ
1/0
i as the delay in

stage i for the crossed (ci = 1) and uncrossed (ci = 0) signal path through the
multiplexers, respectively. Hence σ1

i is the delay of stage i when ci = 1, while σ0
i

is the delay of stage i when ci = 0. Then

ω = (ω1, ω2, ...ωk, ωk+1)T , (2)

where ω1 =
σ0
1−σ

1
1

2 , ωi =
σ0
i−1+σ

1
i−1+σ

0
i−σ

1
i

2 for all i = 2, ..., k and ωk+1 =
σ0
k+σ

1
k

2 .
Furthermore,

Φ(C) = (Φ1(C), ..., Φk(C), 1)T , (3)

where Φj(C) = Πk
i=j(1− 2ci) for j = 1, ..., k.

Here we can see that the ω encodes the delays for the subcomponents in
the APUF stages, while the Φ is a parity vector as a function of c1, ..., ck. The
delay difference, 4, is the inner product of ω and Φ. If 4 is greater than 0,
the response bit is ‘1’, otherwise, the response bit is ‘0’. Then the task for an
adversary is to find an estimate of ω that mimics the actual delay vector ω of
a physical PUF structure, Notably that this estimate will be based on both the
full knowledge of Φ and the corresponding response.

2.2 Parameter-Based Authentication

Suppose we have an APUF which uses k challenge bits and produces n response
bits. Let us assume k = 64 and n = 128 to simplify the description given in
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this paper. In practice, such a PUF structure can be implemented by the APUF
instantiation shown in Fig. 1 by duplicating 128 APUFs in a circuit, where all
of the 128 APUF instantiations share the same 64 bit challenge. In the following
discussion, when we refer to n-bits APUF, we imply a PUF structure with n
APUF instantiations such that an n-bits APUF produces a n bits response
given a single challenge with k bits.

It has been demonstrated that the n-bits APUF could be easily modelled by
using machine learning techniques. For instance, our own experimental results
has shown that machine learning techniques can be successfully used to produce
learnt models with prediction accuracies higher than 98% within 1 second for a
specific 1-bit APUF—already higher than an APUF’s reliability—after training
with just 2000 CRPs. These results are consistent with published results in [18]
and [17].

In parameter-based authentication, during the provisioning phase, the server
stores k + 1 parameters of a model for a 1-bit APUF instead of storing a large
number of CRPs, where the model is built on training a small number of CRPs.
If we are going to use a 128-bits (n = 128) APUF to generate a 128-bit response,
we save 128 × (k + 1) parameters. The securely stored set of parameters then
constitutes a “snapshot”, pss, of a 128-bits APUF. If a challenge control block is
implemented along with a PUF in hardware, the direct extraction of CRPs can
be disabled (e.g., via a fuse) to avoid an adversary from extracting pss at a later
time by gaining physical access to the device.

In the authentication phase, whenever a server (or verifier) needs to authen-
ticate a device (or prover) onto which a PUF is already integrated, the server
randomly generates a challenge and sends it to the device. Then the device
applies the received challenge and gains a corresponding n-bit response. Sub-
sequently, the device sends the generated response back to the server. Finally,
the server emulates the response based on the stored parameterized model for
the given challenge and compare the emulated response with the response re-
ceived from the device. If they are matched, then the authenticity of the device
is established, otherwise, the authenticity is rejected.

2.3 Mechanisms Resilient to Model Building Attacks

The concept of exploiting the machine learning based model building vulnerabil-
ity of additive delay model based PUFs, such as APUFs, to in fact increase the
resilience of a PUF implementation to model building attacks was very recently
demonstrated in [16, 24].

In the first approach [16] a subset string of a PUF response is randomly
selected and is padded with a randomly generated string to ensure the padded
string is of identical length with a response expected from a PUF. The device
then sends the post-processed response to the server which subsequently de-
termines the randomly selected subset string to decide the authenticity of the
device. While the authors demonstrate using statistical analysis the infeasible
task faced by an attacker to build a model of a PUF, a model building attack is
not conducted to evaluate the security of the proposed approach. In the second
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approach [24] a randomized decimation technique is used to randomly eliminate
bits from a response generated by a device. Subsequently, a response recovery
method is used by the server on receipt of a response to recover the original
response generated by the device for authentication.

Notably, both approaches requires increasing lengths of response bits, espe-
cially [24] which demands exponentially increasing length of response bits, to
ensure the same authentication failure or success rates expected from a PUF
before implementing the response post-processing strategies. In addition, the
server has a more complex task of completely recovering a post-processed re-
sponse. More interestingly, since a challenge response pair is never utilized more
than once (nonce), these approaches are also reported to be resilient to side-
channel attacks that filter the noise prior to machine learning through repeated
measurements of CRPs.

In contrast, we consider an alternative perspective that is simpler by devel-
oping a challenge obfuscation and recovery method suitable for parameter-based
authentication and key exchange and how that indeed it is infeasible to for a
passive adversary to build a model of a PUF after the challenge obfuscation and
recovery method are implemented.

3 Challenge Obfuscation and Recovery Method

Our goal is to obfuscate an adversary by implementing a challenge obfuscation
method that prevents the adversary from obtaining a meaningful relationship
between the observed challenge-response pairs, while the server can still success-
fully perform authentication by using a challenge recovery method. So in this
section, firstly, we introduce our challenge obfuscation and the appropriately
challenge control, subsequently, we provide the challenge recovery method to
discover the full obfuscated challenge used in the device. Then we summarize
the modified parameter-based authentication protocol and we further propose a
secure key exchange protocol as an affiliate of the modified parameter-based au-
thentication protocol. Table 1 describes the parameters used in our discussions.

Table 1. Description of parameters

Parameter Description

k Length of PUF challenge (stages of APUF)
n Length of PUF response
m Eliminated length of challenge from the server
τ Response Hamming distance (HD) threshold
ε Error prediction rate of a machine learning model
p Number of Patterns
C′ Partial challenge of k −m bits
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Fig. 2. A block diagram illustrating the challenge obfuscation method. Note that the
true random number generator on the device can be implemented by using the least
significant bit (LSB) of frequency from a ring oscillator (RO) or from utilizing the
unstable output bits of an n-bit APUF.

Fig. 3. Challenge obfuscation example. Here we list 4 (p = 4) Patterns of positions
and values that can be inserted into a partial challenge C′ to produce a full length
challenge C.

3.1 Challenge Obfuscation

Figure 2 shows a block diagram of our challenge obfuscation approach. Here a
partial challenge, C ′, of k −m bits are randomly selected by a server. The true
random number generator determines which challenge obfuscation Pattern out
of p possibilities, see the example shown in Fig. 3, will be chosen to determine
the position of the m bits and the values of the m bits. Note that in our example
we only list 4 (p = 4) possible full length challenges, C, to one C ′ to simplify our
description. Subsequently, the challenge control block determines a full length
challenge C based on C ′ and the selected challenge obfuscation Pattern. Conse-
quently, the response, R, is generated according to the full length challenge C
as shown in Fig. 2.

The notable aspect of our concept is the fact that full length challenge C is
hidden from not only the adversary but also the server because the generation
of the full length challenge C is invisible to both parties. However, as we will
show in Section 3.2, only the server has the knowledge to recover the correct C
given C ′ and R to authenticate the device.

Challenge Control How does a server (verifier) ensure a successful authenti-
cation of a legitimate device? In other words, how does the server discover the
exact full length challenge C or Pattern used by the device? The answer lies in
taking advantage of the large Hamming distance among different responses cor-
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Fig. 4. Minimum fractional hamming distance (HD) evaluated using the example in
Fig. 3 for 2000 randomly selected partial challenges illustrating that the server can
authenticate a PUF without any knowledge of the exact full length challenge C used
by the device. Here, the minimum fractional HD is 10.95%.

responding to different challenges applied to the same PUF, where HD is defined
as the number of positions at which two strings, x and y of the same length over
a finite alphabet

∑
differ, i.e., 4(x, y) = |i{xi 6= yi}|.

Ideally, if one bit flips between two different challenges, the fractional Ham-
ming distance (where the fractional HD between x, y ∈

∑n
is given by 4

n )
between two responses corresponding to the two different challenges is expected
to be 50%. However, in reality, this is not the case for a PUF. Mostly, the
Hamming distance among responses corresponding to nearly similar challenges
is very small. Thus if the p responses for the possible p full length challenges
corresponding to a specific partial challenge C ′ are nearly similar to each other,
the small HD between nearly similar responses can essentially prevent the server
from identifying the exact full length challenge C used by the device to generate
the response R.

The challenge control block can be implemented to appropriately select Pat-
terns —determining the positions and values of these eliminated m bits in
challenge—to ensure that challenge recovery results in a successful authenti-
cation. This can be realized by ensuring that the m bits for different Patterns
have a relatively large HD. Subsequently the HD among the possible full length
challenges corresponding to a given C ′ will also be large and consequently the
possible responses will also have large Hamming distances. Thus, the server will
be able to identify the full length challenge C used by the device by selecting
Patterns that have larger Hamming distances.
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Furthermore, appropriate selection of a partial challenge, C ′, by the server
can further ensure the correct recovery of the challenge C generated by the
device. This can be realized by pre-calculation of the HD among all possible
responses to a randomly selected partial challenge C ′. If the minimum HD is
small, then this partial challenge C ′ will be discarded to ensure that the min-
imum HD among all the possible responses are large enough. Notably, these
per-calculations will not leak information to the adversary or result in any ad-
ditional overhead to the device because the partial challenge C ′ is randomly
generated by the sever, therefore the adversary has no knowledge of the dis-
carded partial challenges without having access to a parameterized model of a
PUF.

Consider the challenge control block example implementation outlined using
the four different Patterns listed in the Fig. 3. Fig. 4 shows the distribution
of minimum fractional HD among the responses corresponding 2000 randomly
selected partial challenges using Patterns listed in the Fig. 3. It can be seen
that 100% of the possible responses that use this control block example have a
minimum fractional HD> 10.95%.

3.2 Challenge Recovery

The server now has to emulate all possible responses corresponding to all differ-
ent Patterns, for example the Patterns shown in Fig. 2 using the parameterised
model of the PUF securly stored on the server. Only the response corresponding
to the hidden full length challenge C used by the device will match the response
sent from the device because the hamming distance between the emulated re-
sponses by the server and the response sent from the device is large enough (see
Section 3.1) to ensure that the server can reject the authenticity of the device
otherwise.

However given that PUF responses exhibit a degree of unreliability charac-
terised as the bit error rate (BER) we define a response HD threshold τ which is
the Hamming distance between a possible emulated response by the server and
the received response R from the device. Then a response HD threshold that is
less than the average BER of the PUF used by the device is needed to mini-
mize the FRR (False Rejection Rate) and FAR (False Acceptance Rate) of the
device [15] as illustrated in Fig. 5. Therefore, in practice, if one of the emulated
responses by the server closely matches, that is with a response HD below τ , the
response sent from the device is accepted as a valid match, otherwise, if none
of the emulated responses meets the threshold criterion, the response sent from
the device is rejected by the server.

Recall that partial challenges can be discarded by the server, therefore, the
randomly selected partial challenges employed by the server further ensures a
higher minimum HD among possible responses. Consequently, it is highly un-
likely for a full length challenge C to be selected by the device with a HD lower
than the BER of a PUF. For instance we can observe from Fig. 4 that the mini-
mum hamming distance value is no less than 10.95%, which is 5.95% higher than
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Fig. 5. Illustration of a Bit error rate (BER) distribution and a minimum Hamming
distance (HD) distribution among all possible responses, R, corresponding to a given
C′. The threshold τ shown is the optimal value that minimizes both FRR and FAR.

the 5% BER of an APUF [1] under worst case power supply and temperature
fluctuations.

3.3 Modified Parameter-Based Authentication

Here we present a modified version of the parameter-based authentication pro-
tocol in [20]. Our protocol is illustrated in Fig. 6 and outline in detail below:

First: A server measures a specific number of CRPs of a PUF to train a model
and securely stores the parameterised model. This is called the provisioning
phase.

Second: Whenever a device (prover) needs to be authenticated, the device re-
quests an authentication service from the server.

Third: The server randomly selects a partial challenge C ′ and sends it to the
device. Subsequently, the device generates a challenge C from C ′ and obtains
a response R using the challenge obfuscation method.

Fourth: The device sends the obtained response back to the server.

Fifth: The server performs the authentication by implementing the challenge
recovery method, if the response HD between one of the emulated possible
responses given a C ′ and the response sent from the device is lower than the
threshold τ , the device is authenticated successfully; otherwise, the authen-
tication fails and the device is rejected.

Sixth: The specific partial challenge C ′ used is discarded by the server to ensure
that is it used only once.
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Fig. 6. Modified parameter based authentication protocol.

The modified authentication protocol can be distinguished from the basic
parameter-based authentication [20] in three aspects: (i) The server sends out
a randomly selected partial challenge C ′ instead of a full length challenge C;
(ii) The device implements challenge obfuscation to hide the exact full length
challenge C used not only to the adversaries but also to the server; (iii) The
server is implements a challenge recovery method in contrast to a response re-
covery method to successfully authenticate a device. An adversary now faces the
challenge of uncovering the exact relationship between the partial challenge C ′

and the response R.

3.4 Key Exchange Protocol

Considering Fig. 2, if the true random number generator and the control logic
are implemented in software rather in hardware in the device. The prover who
has already securely got the PUF can determine which Pattern is selected to
stimulate the PUF. In this case, the modified parameter-based authentication
protocol can be also utilized to secure key exchange.

For the example given in Fig. 3, where an prover is given 4 options, the prover
can select Pattern 1 to Pattern 4 on behalf of value 0 to 3 correspondingly.
These 4 random numbers is encoded into 2 bits that can be exchanged during
one authentication round, if the secret key needs to be exchanged is 128-bit, the
authentication should take 64 = 128

2 rounds to transfer all of the secret key. It
should be noted that the required transfer rounds can be reduced by increasing
the number of Patterns. In this way, the authentication protocol can also act as
key exchange protocol and securely transfer keys between two parties (here are
the server and prover).
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4 Analysis

After implementing challenge obfuscation, the adversary faces a challenge to
find out the full length challenge C used to generate the response, since the
adversary can only acquire the partial challenge C ′ and the response R regardless
of possible concern about eavesdropping or direct measurements. However, the
adversary has no knowledge on which Pattern is randomly picked up in Fig. 3.
In other words, the adversary has no knowledge of the exact full length challenge
C and the corresponding response relationship.

4.1 Statical Analysis

It has been demonstrated that the number of CRPs needed to train a machine
learning model is a function of the prediction accuracy 1 − ε (ε is the error
prediction rate of the machine learning model) and the number of stages, k, in
an APUF [17, 18, 16]

NCRP = O(
k

ε
) (4)

Usually, to impersonate a physical PUF, the model should achieve a prediction
rate higher than the reliability of the PUF. For example, more than NCRP of
CPRs is needed to break a n-bit APUF. To achieve a prediction accuracy of 1−ε,
the adversary needs NCRP,1−ε CRPs for training to break an APUF. However, in
our case, the adversary has no knowledge of full length challenge C, and hence has
to guess it based on guessing the Pattern that is randomly selected in the device.
To achieve the same prediction accuracy of 1− ε from machine learning through
challenge-replication strategy [24], which the adversary substitute all possible
p CRPs given a C ′ to his/her model. As for each possible CRP, the adversary
needs build up a model. The adversary has to conduct NCRP,1−ε rounds of
authentication with the server and each time use one of his/her trained models.
If the adversary correctly guesses all the precisely full length challenge C used in
the device for all of these NCRP,1−ε rounds. Therefore, one of his/her models will
pass authentication. Then the number of models the adversary has to try/build
is expressed as [16]:

NModel = pNCRP,1−ε , (5)

where NModel is the number of models the adversary needs to build up, and
then gains one out of them, to pass the authentication or impersonate a physical
PUF. In the above equation, we see by only using p = 4 Patterns, the adversary
has already faced a great challenge to find out the correct model. Moreover, the
p can be increased to an even large number.

4.2 Model Building Attack Test

CRP Generation The CRPs used in the following are generated through
simulations that can effectively model a physical APUF architecture [13, 17, 18].
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Fig. 7. Pass rate and training time as function of the number of CRPs when challenge
obfuscation is implemented.

The delay values for different stages in APUF are randomly produced following
a standard normal distribution. When a specific response is required, a given

challenge C is applied to the APUF to determine which delay values σ
0/1
i in

each stage will be selected according to the logic value of ci. Then according to
the linear delay model, the selected delay values corresponding to two electrical
signal paths are simply added up and compared with each other to generate a
response bit.

Tests First, we define pass rate is the possibility that the fractional hamming
distance between the predicted response and the response from measurement
is less than a threshold (τ). Here τ = 6.25% that is greater than the bit error
rate (BER) of n-bits APUF (5.0%) used for tests. The τ = 6.25% can ensure
successful authentication even considering worst-case BER than caused by a
wide range of fluctuations on voltage supply and ambient temperature. As for
a 128-bits response, if the hamming distance between predicted response and
measured response is less than 8 bits, the server will let the adversary pass the
authentication, which means the adversary’s model successfully impersonate a
physical n-bits APUF.

The LR (logistic regression) machine learning algorithm is used for building
a machine learning model. Because this algorithm shows best performance to
train a model to break PUFs [17]. The pass rate after implementing the proposed
challenge obfuscation method is shown in Fig. 7. It can be seen that the pass
rate is less than 0.1% even after 1× 106 CRPs used to train a model. Moreover,
increasing the number of CRPs does not help improve the pass rate. The reason
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is that Φ used to evaluate vector ω is always missing several features due to
the elimination of 4 bits from the full length challenge C. Only increasing the
number of CRPs for training without inferencing the full 64-bit challenge does
not result in increasing the pass rate.

To make a direct comparison, we test the pass rate without implementing
the challenge obfuscation by also using LR machine learning algorithm. It is
shown that the pass rate achieves 100% only after 2000 number of CRPs used
to train the model within only 46.81 seconds. To sum up, it can be seen that our
proposed challenge obfuscation method can significantly increase the resistance
to model building attacks through machine learning algorithms, LR, which is
the most effective algorithm when it is deployed to break PUFs [17].

5 Conclusion

In this paper, we propose a challenge obfuscation and a challenge recovery
method to thwart model building attacks on PUFs, in particular, APUF and
k-sum PUF, which build upon linear additive blocks. We provide a modified
parameter-based authentication mechanism that is able to obfuscate the ad-
versary, while still allowing a server (or verifier) to successfully authenticate a
device (or prover). Moreover, we demonstrate that the modified parameter-based
authentication protocol can further be used for securing key exchange. Further-
more, the presented statistical analysis demonstrates that the number of models
needed to build up after using the proposed challenge obfuscation method in-
creases exponentially. Finally, we implement model building attacks using the
most effective machine learning algorithm against PUFs, Logistic Regression, to
evaluate our proposed method. Our tests confirm that our method significantly
enhances the security of APUFs, and therefore linear additive blocks based PUFs
in general, by making model building attacks infeasible.

The limitation of our work is that we have not conducted a full-challenge-
replication strategy through inferencing the full challenge based on Patterns,
although it has already been shown that a full-challenge-replication strategy is
not efficient once an adversary has to guess the exact challenge-response relation-
ships [24]. Moreover, trade-offs among the number of Patterns, computational
load on the server, the FAR rate, the FRR rate, robustness to machine learning
attacks need to be investigated in more detail. These tasks will be our future
work.
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