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Abstract
We describe a new methodology that enables the di-
rect execution of multi-threaded applications inside of
Shadow, an existing parallel discrete-event network sim-
ulation framework. Our methodology utilizes function
interposition and an application-layer thread library to
emulate the ordinary thread interface to the application.
Using this methodology, we implement a new Shadow
plug-in that directly executes the Bitcoin reference client
software. We describe optimizations that enable scalable
execution of thousands of Bitcoin nodes on a single ma-
chine, and discuss how to model the Bitcoin network for
experimental purposes. Finally, we present novel denial-
of-service attacks against the Bitcoin software, which
exploit low-level implementation artifacts in the Bitcoin
reference client. We demonstrate these attacks using our
methodology, tools, and models.

1 Introduction
Experimentation testbeds for distributed systems and
peer-to-peer networks such as Bitcoin, Bittorrent, and
Tor, are beneficial to the scientific community as they
simplify the code debugging and testing process, reduce
time to deployment of new features and protocol modi-
fications, and promote the research and development of
new protocols and architectural modifications. However,
testbeds like PlanetLab and the Bitcoin testnet do not
scale gracefully, are hard to manage and maintain, and
do not offer as much control over experimental topology
and node configurations as is possible under alternative
experimenation techniques. As a result, developers and
researchers are often unable to realize the full potential
of the experimental method, and new code and design
modifications are often accepted into mainline software
without fully understanding their effects on the existing,
often critical infrastructure.

Alternative approaches to experimentation offer a
unique set of benefits over the use of a distributed
testbed. In particular, emulation may provide better scal-
ability and improve management of and control over the
network model and node configuration, and simulation
may further allow for more efficient execution and re-
peatable experiments. Shadow [2, 24] provides an inter-

esting and unique alternative to traditional experimenta-
tion techniques. At its core, Shadow is a simulator; the
operating system, network stack, internetwork topology,
and communication between nodes are all simulated us-
ing a discrete-event engine. However, each virtual host
in Shadow runs real application software, such as the net-
work’s official reference client or alternate implementa-
tions. This unique simulation/emulation hybrid allows
Shadow to provide the most efficient experimentation
platform possible while remaining true to application-
layer effects of the software executed by the virtual hosts.
This unique approach is ideal for experimenting with
large distributed systems and peer-to-peer networks.

Unfortunately, Shadow does not yet natively support
virtual hosts that fork processes or run multi-threaded
software due to the non-trivial layer of complexity
added to Shadow’s own internal multi-threaded simula-
tion core. As a result, many distributed systems, includ-
ing Bitcoin, are not amenable to simulation in Shadow.

In this work, we extend the state of the art in this
unique simulation/emulation space by designing and im-
plementing a simulation architecture that allows the di-
rect execution of multi-threaded software. As a proof
of concept of the efficacy of our approach, we de-
sign, implement, and test a new Shadow plug-in that di-
rectly executes the multi-threaded Bitcoin software in-
side the Shadow simulation framework. Our novel ap-
proach utilizes GNU Portable Threads (a.k.a., Pth) [1],
an application-layer library that provides non-preemptive
priority-based scheduling for multiple threads of exe-
cution. Pth runs in a single operating system thread
while providing the facilities to emulate the Pthreads
(posix threads) interface to the application. We then
use function interposition to redirect Pthreads function
calls made from the virtual host to Pth, while allow-
ing Pthreads calls initiated by Shadow itself to be for-
warded to and handled by the Pthreads library. Using
our techniques, multi-threaded application software run-
ning in virtual hosts will function as intended, while the
virtual host threads will not interfere with Shadow’s in-
ternal threading engine. We envision that our approach
will be ported to Shadow core so that all existing and
future Shadow plug-ins may benefit.
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Using our new Bitcoin Shadow plug-in1, we show how
to model the Bitcoin network and how to optimize the
bootstrapping of a Bitcoin network. We then describe
several novel vulnerabilities in the Bitcoin software, and
use Shadow to demonstrate and measure their cost and
effectiveness.

Our major contributions are as follows:
• A new approach that utilizes Pth and function inter-

position to allow direct execution of multi-threaded
applications in the Shadow simulator.

• The design and implementation of a new Shadow
plug-in that uses our techniques to directly execute
the multi-threaded Bitcoin software.

• A Bitcoin model that can be used to efficiently boot-
strap and instantiate a large Bitcoin test network in-
side of Shadow.

• The description of several new attacks against Bit-
coin, and an evaluation and measurement of these
attacks using our new techniques and tools in a safe,
private Shadow environment.

2 Background and Related Work
This section provides background on the Shadow simula-
tion framework, while outlining related experimentation
work for and previous attacks on Bitcoin.

2.1 Shadow
Shadow [2, 24] is a parallel discrete-event network sim-
ulator. Shadow has a modular architecture that is broken
into two major components: (1) the core simulator, and
(2) software run by virtual hosts, which are dynamically
loaded at run time as plug-in libraries.

2.1.1 The Core Simulator

Shadow itself is, at its core, a simulator. In addition to the
parallel event engine, Shadow contains the logic required
to simulate both the internetwork topology over which its
virtual hosts will communicate as well as the operating
system base upon which virtual hosts will run.
Event Engine. Because Shadow is a simulator, it re-
places the concept of real time with its own simulation
time over which it has precise control. Every action
that happens in Shadow, such as starting virtual host ap-
plications or sending and receiving packets, is initiated
from an event that occurs at a precise time instant (with
nanosecond granularity). Shadow’s event engine runs
these events in the correct chronological order, while ad-
hering to real-world characteristics such as network de-
lay and loss. Shadow’s event engine can benefit from the
use of multiple worker threads.
Topology. Shadow uses the standard GraphML format
to represent the connectivity and properties of links be-

1 The code for our simulator is made freely available at https:
//github.com/shadow/shadow-plugin-bitcoin

tween each virtual host running in a simulation. This
topology contains both vertices and edges: vertices rep-
resent Internet points-of-presence at which virtual hosts
can be connected; and edges represent the path between
those points-of-presence and their properties, including
latency, jitter, and packet loss. Shadow models the In-
ternet using real data available from public sources, like
CAIDA and NetIndex. Every packet sent between two
virtual hosts will be subject to the properties of the edges
over which the packet travels, leading to communication
characteristics that are not unlike those that would be re-
alized between those locations on the Internet.
Operating System. Each virtual host in Shadow runs
a simulated operating system (OS), including sockets,
pipes, network protocols (TCP and UDP), timers, asyn-
chronous event facilities, network interfaces, and various
data buffers. These mechanisms are implemented to sup-
port the Linux POSIX interface and provide the function-
ality expected by virtual host software. Note that only
the mechanisms that would affect the simulation, such as
time or network communication, must be implemented;
many system functions, such as file I/O, can be handled
directly by libc as usual. Shadow uses function inter-
position to intercept calls made from virtual host soft-
ware to OS functions, and redirects them to their sim-
ulated counterparts as required. In this way, Shadow is
emulating a Linux environment to the application, which
need not be aware that it is being simulated.

2.1.2 Host Software Plug-ins

As mentioned above, each virtual host contains a simu-
lated OS that emulates a POSIX API to the application.
The real software applications that run in Shadow are
themselves compiled as Shadow plug-ins and loaded at
run-time. During the compilation process, LLVM [4,31]
is used to inject a hook function that is used by Shadow
to pass control into the application code in order to, e.g.,
call the main function in the application and notify the
plug-in of available input/output on file descriptors.

Whenever Shadow instantiates a new virtual node that
runs a particular plug-in, Shadow creates a new copy of
the global structure and stores it internally. Shadow ex-
pects the plug-in to provide an interface in the form of an
on event(e) fuction, which Shadow invokes when-
ever an IO event e is available. The plug-in indicates
which events it is interested in by using epoll library
functions, which Shadow intercepts.

A Shadow plug-in that runs the Tor anonymity soft-
ware [5] has been created [24], is maintained [3] and
is used extensively to help explore Tor research and de-
velopment problems [14, 19, 22, 23, 25–29]. The largest
known Tor test network to date contained 3600 relay
nodes and 12000 client nodes [23]. Our work was moti-
vated by the utility of the Tor plug-in.
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2.2 Bitcoin Experimentation
Bitcoin [34] is a peer-to-peer “cryptocurrency” network
that functions as a decentralized digital currency. There
has been a recent surge of Bitcoin-related research in-
cluding measurement, new applications, security mod-
els, incentive analysis, and attacks (see [11] for a com-
prehensive survey). We describe some of the existing ex-
perimentation frameworks, and outline several areas of
research which we believe could utilize our simulator.
Testbeds. Parallel to the actual bitcoin network, there
exists a public dedicated “test” network2 that runs a mod-
ified version of the code. The modifications, such as fre-
quently resetting the “mining difficulty”, are intended to
make it easier for experimentation while also discourag-
ing its use as an actual currency. At the time of writ-
ing, we crawled Testnet and determined that it consists
of approximately 250 nodes (at least an order of mag-
nitude smaller than the actual network). Alternately, a
“testnet-in-a-box” [20] can be run as a local instance of
the test network. The main advantages of our Shadow-
based simulation over Testnet is that the experimenter is
afforded greater control over the network, while provid-
ing an accurate simulation of the network structure.

Several other projects, such as Simbit [13], simulate
various aspects of the Bitcoin network. However, these
do not run the actual bitcoind application code, but rather
implement simplified abstractions; these may oversim-
plify or misrepresent the actual behavior. The attacks
we demonstrate in Section 6, in particular, make use
of implememtation-specific behavior that is not modeled
elsewhere.

Another form of testbed is a platform for measuring
and interacting with the live network itself, such as Coin-
seer [30] and Coinscope [33].
Attacks. A very large focus of Bitcoin-related research
has been on Bitcoin’s weak privacy guarantees. Al-
though the reference client takes some measures to main-
tain privacy, such as creating a new address to store
“change,” implementation quirks often allows one Bit-
coin transaction to be linked to others. [32] The tim-
ing of information propagation can often be used to as-
sociate transactions with ips [30]. Another vector for
deanonymization involves exploiting the mechanisms by
which Bitcoin nodes propagate information about their
peers. [10]. Bitcoin privacy could be improved through
a variety of techniques such as mixing [12, 35] or by up-
grading the Bitcoin protocol to support privacy preserv-
ing cryptography [9, 36].

A well-known class of attacks involves deviating from
the default mining behavior, and can in some cases allow
the deviating miner to profit disproportionately. [7,17,18]

2see https://en.bitcoin.it/wiki/Testnet

Another well-known class of attacks involves “double-
spending” by convincing a victim that a payment trans-
action is (or will be imminently) accepted by the net-
work, when in reality the attacker has ensured that a
conflicting transaction is actually be accepted first [8].
So-called “fast payment” attacks exploit weaknesses of
Bitcoin’s information propagation mechanism [15]. We
illustrate how our simulator can be used to model infor-
mation propagation in Bitcoin.

Researchers have recently demonstrated that an attack
that fills up a node’s address list so that it eventually only
connects to the attacker’s nodes [21]. This attack and
the vulnerabililies it exploits are unrelated to ours. They
demonstrate and evaluate their attack against a “victim”
node that they connect to the live network, and propose
but do not evaluate several potential countermeasures;
we believe an implementation of this attack in our sim-
ulator would be a good way to evaluate potential coun-
termeasures and study their interactions within the entire
network.

Another recently published denial-of-service attack
involves exploiting the address propagation mechanism
to exhaust a node’s memory, causing it to crash [10]. The
attack we demonstrate uses an entirely different mecha-
nism, but has a similar effect.

3 Direct Execution of Multi-Threaded
Applications

Shadow ordinarily uses an epoll-based event loop. This
works well for systems such as Tor and Bittorrent, which
are implemented as a single event loop and exclusively
use sockets in non-blocking mode. Essentially, a Shadow
plug-in consists of an event loop that is executed by the
Shadow framework; each Shadow worker thread delivers
one event to a single instance at a time. Shadow uses co-
operative scheduling, rather than preemptive scheduling.
As such, it’s assumed that each plug-in finishes respond-
ing to every event within a short time.

This does not apply to typical multi-threaded ap-
plications, such as Bitcoin, that create several OS-
level threads – typically through the POSIX threads
(Pthreads) API – and allow each thread to block when
reading or writing to a socket.

In this section we describe an architecture for directly
running such applications as a Shadow plug-in.
Pth. Pth (GNU Portable threads) [1] is an free software
library that provides user-space threads. Pth threads are
cooperative rather than pre-emptive. A Pth thread runs
until it reaches a pth yield instruction, which trans-
fers control to the scheduler and activates another avail-
able thread. The underlying mechanism for switching
between threads is fairly intricate [16]; it involves intro-
spection and self-modification of the program stack. Pth
provides a substitute for the Pthreads api, as well as for
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on startup():
for every event e we’re waiting for:
epoll add(e)

on event(e):
handle event e

Figure 1: Pseudocode for an ordinary epoll Shadow plug-in

on startup():
pth create(plugin main);
pth setpriority(LOWEST);
pth yield();
for each event e thread is waiting on:
epoll add(e)

on event(e):
pth yield();
epoll clear()
for each event e thread is waiting on:
epoll add(e)

Figure 2: Pseudocode for a Pth-based Shadow plug-in

the ordinary suite of POSIX I/O operations, such as read-
ing and writing on files and sockets. The Pth version
of an I/O operation ensures that the underlying file de-
scriptor is in non-blocking mode; instead of blocking, it
uses pth yield to yield to the scheduler and indicates
which events it can wait for.

Ordinarily, the Pth scheduler will activate threads un-
til every thread is blocked waiting for an I/O event,
and then it will use select in blocking mode to ac-
tually wait for an event. A plug-in using Pth directly
would violate Shadow’s assumption that the plug-in pro-
cesses each event quickly and then returns control back
to Shadow.

We take a simple approach that bypasses Pth’s block-
ing call to select. Instead, we ensure that the “Shadow
thread” is always available to run, but assign it the
lowest-priority value so that it is only activated when ev-
ery other thread is blocked. (The “main thread” of the
application code is run in Pth thread with ordinary prior-
ity). When the Shadow thread receives an event, it yields
to the Pth scheduler which activates any threads that can
now run. When no more threads can run, the Shadow
thread inspects which events the other threads are waiting
for, and translates these into epoll event requests, which
Shadow recognizes. Pseudocode for this plug-in archi-
tecture is given in Figure 2 (compare with pseudocode
for a typical Shadow plugin in Figure 1).
Supporting select. Pth uses select-based tools
for manipulating file descriptors. These crucially assume
that the file descriptor is less than 1024. However, epoll-
based programs do not make this assumption. Shadow is
currently unfriendly to such programs, since the virtual

mapped file descriptors may be any large number, and in
fact every “instance” in Shadow has a unique number.

To fix this, we added an extra layer of mapping be-
tween file descriptors. For each instance, Shadow main-
tains a mapping between the local file descriptor num-
ber (which is typically less than 1024) and actual file de-
scriptors on the host (which will be unique among all
instances, and therefore typically greater than 1024 in
number).
Interposition of Pthreads. While the approach de-
scribed above is suitable for writing new Pth-based ap-
plications, most existing application code is written to
depend on the Pthreads api. Our solution is to inter-
cept calls intended for I/O or Pthreads library, and route
them to the appropriate Pth functions. Fortunately, Pth
provides an emulation of the Pthreads interface, which
we were able to use mostly intact.

4 Simulating Bitcoin in Shadow
We implemented the architecture above as a reusable
plug-in “template” for simulating arbitrary multi-
threaded applications; the template simply calls the ap-
plication’s “main” function to create a new instance. As
a proof-of-concept, we used this framework to build a
Shadow plug-in for bitcoind. We now describe the archi-
tecture of bitcoind and several further changes we needed
to make to Shadow to support it.
The Satoshi Client. While the Bitcoin network com-
prises dozens of different client implementations, the de
facto standard is the “reference client” (also known as,
bitcoind, mainline, or the Satoshi client). There is
arguably no authority to define an “official” client; re-
gardless, as bitcoind remains far and away the most
widely used client,3 other alternative clients generally
aim for full compliance with its behavior.

The reference client was originally written by the
pseudonymous author, Satoshi Nakamoto, and published
to a cryptography mailing list. Since then, it has been
maintained as a free software project. The reference
client is written in C++, and uses a heterogeneous
multi-threaded architecture. The basic architecture of
bitcoind has remained unchanged, despite frequent
version updates with optimizations and new features. It
contains dependencies on several libraries such as Lev-
elDB and Boost.4

3The reference client is the most popular among “reachable”
nodes that receive incoming connections. According to https://
getaddr.bitnodes.io/, which performs daily crawls of the net-
work, recent versions of Satoshi accounts for 83% of the reachable
nodes. BitcoinJ is likely more popular among mobile clients, which
are often behind a firewall and do not receive incoming connections.

4We omit BerkeleyDB by compiling bitcoind without the “wallet”
functionality that depends on it. A BerkeleyDB version change was
involved in an accidental “fork” disaster [6] where non-updated nodes
temporarily diverged from the network.
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The reference client interacts with the rest of the net-
work by sending and receiving messages. It uses one
connection handler thread for each connected peer, but
a single main thread that processes messages arriving in
a queue. It maintains eight outgoing connections by de-
fault, and handles up to 117 incoming connections. This
multithreaded architecture makes use of both blocking
and non-blocking behavior. For example, although each
peer connection uses a non-blocking socket, the connec-
tion thread performs a blocking sleep for 100 millisec-
onds in between polling the socket.
Supporting C++ in Shadow. Shadow supports ordinary
static variables by initializing them once, then memoiz-
ing the initialized state to reuse later for other instances.
This is insufficient for C++, since static objects may ex-
ecute arbitrary code in their constructors. We modified
Shadow with an extra LLVM pass that executes all nec-
essary constructors each time an instance is loaded.
Injector. In addition to the bitcoind plugin, we used
our multi-threaded framework to easily build a special
purpose “injector” plug-in for our experiments. The
plug-in connects to a single node and performs only
the minimal handshake required before sending a pay-
load of messages from a file. This plug-in shares no
common codebase with bitcoind whatsoever, and in-
stead uses a free library made by Bitcoin core developer
Jeff Garzik called PicoCoin that provides C routines for
manipulating Bitcoin protocol messages. Using this li-
brary, we made a small application, the injector, that
communicates with the Bitcoin network in a very lim-
ited way. Effectively, it connects to a node, performs
the VERSION/VERACK handshake, delivers a payload of
blocks and transactions, and then quits. It requires under
250 lines of code.
Local Sockets. We’ve taken initial steps towards sup-
porting simulations of Bitcoin network measurement
platforms, such as Coinscope [33], within our frame-
work. Coinscope consists of multiple processes (each
of which becomes a single plugin) that coordinate using
local unix domain sockets (which are not currently sup-
ported within Shadow). We implemented unix domain
sockets as a new socket type in Shadow and are now able
to directly execute Coinscope code.

5 Bitcoin Network Model
We now describe how to run thousands of simulated
instances of bitcoind to create a realistic, full-scale
model of the Bitcoin network.
Bitcoin network topology. Although Shadow already
supports existing datasets for the Internet topology, we
must model the Bitcoin network overlay topology.

A list of the reachable IPs on the Bitcoin network
can be imported from publicly available snapshots from
getaddr.bitnodes.io. We used data obtained

through our own crawls using Coinscope [33]. Our net-
work model consists of 6081 nodes; roughly 40% of
these are from the US, and a nearly equal amount from
Europe. Our data only includes IPV4 addresses, al-
though IPv6 nodes are supported by Bitcoin; according
to getaddr.bitnodes.io data, at the time of writ-
ing less than 4% of nodes use IPV6.

The actual Bitcoin network forms its overlay topol-
ogy through an intricate mechanism [33]. Information
about potential peers propagates throughout the network
through a gossip protocol. Each node maintains a list of
peers it knows about, and tries to maintain exactly eight
outgoing connections; when an outgoing connection is
dropped, the node selects a random peer from the set
it knows about and attempts to make a new connection.
When a new node first joins the network, it queries sev-
eral hardcoded “seed” nodes for a small starting list. Af-
ter forming initial connections from this list, nodes learn
about each other by relaying “ADDR” messages contain-
ing the IP and port of themselves and their peers.

For simplicity, we bypassed this procedure by using
existing bitcoind configuration options to force node
connectivity. The data from our Coinscope crawls give
us a set of known peer IP addresses to which each node in
our model has connected. To downscale our network, we
start with this 6081 node connectivity model and then re-
peatedly remove the least connected node (the node with
the least number of edges) as well as the edges to and
from that node until reaching a network with the desired
number of nodes. Finally, we configure each node with
8 connections from the remaining set of edges.

The least connected node was chosen in order to mini-
mize the number of edges that get removed from the orig-
inal connectivity graph. We acknowledge that this over-
simplified connectivity model likely affects the accuracy
of our simulated network. For example, it has been
shown that the information propagation effectiveness can
be influenced by even a single well-connected node [15].
Preliminary measurements of the Bitcoin network have
provided evidence of many such well-connected nodes
and that random graph models do not account for the ob-
served network structure [33]. However, we stress that
our primary goal is to demonstrate the flexibility we have
in creating a topology of our choosing, and we believe
that it is more important to understand how changes in
a given network affect behavior than it is to precisely
model the real network.
Providing initial blockchain state. Each node in the
Bitcoin network typically maintains its own copy of the
entire blockchain. In our model network, we begin
with all the nodes “in sync” to some prior state of the
blockchain.

To reduce the storage cost, we allow the simulated
nodes to share a single copy of state files whenever pos-
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sible. The bitcoind data directory primarily consists
of a set of block files, each of which stores up to 128
megabytes worth of blocks; and a LevelDB database that
maintains an index into the block files and is used to
lookup individual blocks or transactions from disk.

The block files are append-only rotated logs; once a
block file reaches 128MB, it is finalized and never writ-
ten to again. Therefore, each node only ever needs to
write to the “newest” block file. By choosing our initial
blockstate to correspond to the first block after a block
file is completed, we minimize the amount of data that
must be copied rather than aliased. Similarly, the Lev-
elDB database consists of a number of append-only files
that, once full, can also be aliased.

Overall, we are able to run a 6000 node simulation
using less than 350 gigabytes of RAM and less than 300
gigabytes of storage.
Transaction Propagation Experiment We now explore
how information propagates in Bitcoin using simulated
networks at various scales.

Transactions propagate through the network using a
three-round protocol. When a node receives a valid trans-
action from one of its peers, it sends an INV message
containing the transaction’s hash to each of its peers.
When a peer receives an INV containing a transaction it
does not know about, it requests the transaction by send-
ing GETDATA. Finally, a node responds to GETDATA
with the actual TX data.
INV messages aren’t sent immediately; instead, INV

messages are buffered for each peer, and every tenth of
a second, one peer is selected at random and the corre-
sponding buffer is flushed. If a node has N connections,
then for a given peer, it takes on average 10/N seconds
before the INV message is received.

We instantiated a model network at block height
120594, which corresponds to April 2011. In order to
simulate spending coins mined then, we modified the
client to recognize a hard-coded public key and replace
it with a default public key for which we know the corre-
sponding private key.

We experimented with overlay topologies containing
1000, 2000, and 6000 nodes to determine the effect of
network size on transaction propagation times. For each
experiment, we generated 100 transactions, and relayed
them through a randomly chosen entry node. The results
from these three experiments are shown in Figure 3. In
our model, on average, transactions take longer to prop-
agate in a larger network.

In Figure 4, we overlay the data for our 6000 node ex-
periment on a map. There appears to be little geographic
correlation with transaction propagation time, suggesting
that application delays and the structure of the overlay
network have a greater impact.
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Figure 3: Transaction propagation in our simulated Bitcoin net-
work. (Black: minimum, red: mean, blue: maximum). Each
experiment was averaged over 10, 3, and 1 runs respectively).

While these experiments demonstrate the versatility of
our simulation framework, we again stress that our initial
network model does not capture many salient aspects of
the Bitcoin network. For example, the presence of even
a small number of very well-connected nodes may have
measurable impact on information propagation [15], and
the presence of well-connected nodes in the Bitcoin new-
tork is widely known [33]. Validating and improving our
network model is ongoing work.

6 The mapOrphans Attack
In this section, we present novel denial-of-service attacks
that exploit vulnerabilities in the bitcoind implemen-
tation. We describe how we used our simulator to imple-
ment and evaluate these attacks, demonstrating that our
simulator framework is useful for practical research.
The mapOrphans Vulnerability. Bitcoin transactions
form a directed graph; each transaction spends some pre-
viously available “input” coins, and creates several new
“output” coins that can be spent by subsequent transac-
tions. Consider a pair of related transactions: one trans-
action (the “child”) spends a transaction output created
by the other (the “parent”). If a node receives these
transactions out of order (i.e., first the child and then the
parent), the child transaction can not be validated until
the parent is received. To help with out-of-order arrivals
(e.g., due to varying latency or a dropped connection),
the reference client maintains a buffer called mapOr-
phans. 5 Transactions with unknown parents are placed
in this buffer, and are not validated until the parent is re-
ceived.

This mechanism can be exploited to circumvent
bitcoind’s defenses. The most computationally ex-
pensive step in validating a transaction is checking the
ECDSA signature. To prevent exhaustion attacks, signa-
ture checking is deferred until all other validation steps
are complete, and a node bans any peer that sends trans-
actions with invalid signatures. However, when a node
places transactions in mapOrphans, it forgets which
peer relayed it. Thus by sending a set of (invalid) trans-
actions out-of-order (as illustrated in Figure 5), an at-
tacker can (at low cost to itself) cause a node to perform

5We use mapOrphans to abbreviate mapOrphanTransactions
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Figure 4: Transaction propagation in our 6000-node simulated Bitcoin network (zoomed to show Europe and North America). The
large triangle (Houston) indicates the transaction origin. The color of each point indicates the time to receive a transaction (averaged
over 100 trials) (blue is faster, green and yellow are longer).
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Figure 5: Transactions used in the mapOrphans DoS Attack.
The payload transactions are invalid and mutually conflicting.
The attacker delivers these transactions to the victim out-of-
order: first the payloads, and then the parent.

a large number of signature checks. Since bitcoind
processes all transactions in a single main thread, the net
result is that a victim node can be frozen until all the sig-
natures have been processed.

The primary constraints on this attack are the maxi-
mum size of mapOrphans (10k transactions) and the
maximum size of an orphan transaction (5KB, enough to
hold 40 signatures). On a test machine (Intel Core i7,
1.73Ghz), each signature verification took 1.7 millisec-
onds; hence an attacker could plausibly freeze a node for
over 10 minutes.
Evaluation. We implemented this attack in our sim-
ulator to confirm its effectiveness. We generated a
payload of transactions as described above, and used
the injector plug-in to deliver it to an instance of
bitcoind (version 0.9.2).

Our simulator allowed us to make rapid itera-
tions while developing and testing the implementation.
In particular, the simulator’s faithfully modelling of
application-level behavior helped us notice errors in our
initial attempts. For example, bitcoind processes sig-
natures in a deterministic order, which we exploit to
incur the incur the greatest cost on the victim; also,
bitcoind maintains a cache of previously-validated
signatures, hence the attack must consist of entirely dis-
tinct valid signatures.

It is necessary to manually modify the bitcoind
code to simulate the time delay of signature validation,
since Shadow models all computation as occurring in-
stantaneously. Therefore we inserted a sleep function
after signature verification based on the amount of time
our measurements indicate the computation should take.

We used our simulator to observe the effects of a
frozen message queue on a node’s connections. What
happens when it “thaws”? We experimented with this
by configuring the Shadow experiment script to launch
nodes and form new connections at various moments be-
fore, during, and after an attack. Connections that were
established prior to the attack are still serviceable after
the attack subsides. Although the stalled message queue
prevents the node from responding to messages from it
peers, the separate connection threads prevent the socket
buffers from overflowing. However, new incoming con-
nection attempts are dropped, since a peer times out if the
initial handshake is not completed within 60 seconds.
Memory Consumption Extension. While the victim’s
main thread is busy processing invalid transactions, the
connection handler threads continue to receive and buffer
input from each of its peers. Each connection buffers up
to 5 megabytes of messages; if this limit is reached, the
connection is dropped. By using up the maximum avail-
able connections (i.e., 125), and filling up these buffers to
the maximum limit while a mapOrphans attack is un-
derway, an attacker can consume up to 500+ megabytes
of RAM. This can crash nodes with a limited (but plau-
sible) amount of memory.
Mitigations. We reported these vulnerabilities to the Bit-
coin developers, who deployed a mitigation in version
0.9.3. The mitigation reduces the size of mapOrphans
to 500, down by a factor of 100. Also, whenever a trans-
action is placed in mapOrphans, the identity of the peer
who sent it is stored alongside the transaction itself. If a
mapOrphans transaction turns out to be invalid, then
that peer is disconnected. Whenever a peer disconnects,
any items in mapOrphans associated with that peer are
discarded without inspection.

7 Conclusion
In this paper, we introduced a new methodology that
enables virtual hosts in the Shadow parallel discrete-
event simulator to run multi-threaded applications. Us-
ing this methodology, we designed and developed a
Shadow plug-in that runs the Bitcoin reference software,
explained how we model a Bitcoin network for testing
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purposes, and describe optimizations that enable us to
run thousands of Bitcoin nodes in a private test net-
work. Finally, we demonstrated the efficacy of our plug-
in through transaction propagation experiments, and by
demonstrating novel denial of service attacks based on
the mapOrphans transaction processing queue.
Lessons Learned. Through this work, we have realized
the benefit of having access to a simulation environment
that runs real software. Not only does our Bitcoin simu-
lator allow us to scale to the largest Bitcoin test-network
known to date, but it also enables rapid prototyping of
new features and fixes. In fact, when the topology size is
small, our experiments run in faster than real time. We
have come to appreciate this feature during our explo-
ration of the mapOrphans attack.

Accurate simulators, rather than simplified abstrac-
tions, are ideal tools for studying the nuances of dis-
tributed system software. Our work has contributed to
our understanding that the Bitcoin peer-to-peer protocol
is flawed and highly vulnerable, and that many potential
vulnerabilities and exploits lie within the low level de-
tails of the Bitcoin implementation.
Future Work. Although we have demonstrated the use-
fulness of our approach, and provided initial steps to-
wards, it still remains for us to validate our network
model by comparing it with measurements. We also
hope to work with the Shadow developers to merge our
work into Shadow core so that other multi-threaded ap-
plications can more easily run in Shadow. Finally, we
intend to continue studying the Bitcoin implementation
for vulnerabilities and hope to help improve the software
through mitigation techniques that we can show through
simulation to be effective.
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