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Abstract. In this work we focus on tailoring and optimizing the com-
putational Private Information Retrieval (cPIR) scheme proposed in
WAHC 2014 for efficient execution on graphics processing units (GPUs).
Exploiting the mass parallelism in GPUs is a commonly used approach
in speeding up cPIRs. Our goal is to eliminate the efficiency bottleneck of
the Doröz et al construction which would allow us to take advantage of its
excellent bandwidth performance. To this end, we develop custom code
to support polynomial ring operations and extend them to realize the
evaluation functions in an optimized manner on high end GPUs. Specif-
ically, we develop optimized CUDA code to support large degree/large
coefficient polynomial arithmetic operations such as modular multiplica-
tion/reduction, and modulus switching. Moreover, we choose same prime
numbers for both the CRT domain representation of the polynomials and
for the modulus switching implementation of the somewhat homomor-
phic encryption scheme. This allows us to combine two arithmetic do-
mains, which reduces the number of domain conversions and permits us
to perform faster arithmetic. Our implementation achieves 14-34 times
speedup for index comparison and 4-18 times speedup for data aggrega-
tion compared to a pure CPU software implementation.

Keywords: Private information retrieval, homomorphic encryption, NTRU.

1 Introduction

A Private Information Retrieval (PIR) permits Alice to store a database D at a
remote server Bob with the promise that Alice can retrieve D(i) without reveal-
ing i or D(i) to Bob. An information theoretic PIR scheme was first introduced
in [1] where Bob’s knowledge of i was limited using information theoretic ar-
guments. Chor and Gilboa [2, 3] introduced the concept of computational PIRs
(cPIR). In cPIR, Alice is content to have Bob facing instead a computationally
difficult problem to extract any significant information about i or D(i). In [4]
Kushilevitz and Ostrovsky presented the first single server PIR scheme based
on the computational difficulty of deciding the quadratic residuosity of a num-
ber modulo a product of two large primes. Other cPIR constructions include [5]
which is based on the computational difficulty of deciding whether a prime p
divides φ(m) for any composite integer m of unknown factorization where φ()
denotes Euler’s totient function. In [6] another cPIR scheme was presented that
generalizes the scheme in [5] while using a variation on the security assump-
tion. The construction in [6] achieves a communication complexity of O(k + d)
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where k is the security parameter satisfying k > log(N), N is the database size,
and d is the bit-length of the retrieved data. In [7] Lipmaa presented a differ-
ent cPIR scheme that employs an additively homomorphic encryption scheme
with improved communication performance. Later in [8], an efficient PIR scheme
was constructed using a partially homomorphic encryption algorithm. The first
lattice based cPIR construction was proposed by Aguilar-Melchor and Gaborit
[9]. Olumofin and Goldberg [10] revisited the performance analysis and found
that the lattice-based PIR scheme by Aguilar-Melchor and Gaborit [9] to be
an order of magnitude more efficient than the trivial PIR. These schemes uti-
lize a combination of clever approaches and a diverse set of tools to construct
cPIR schemes. Clearly given a fully or somewhat homomorphic encryption (FHE
or SWHE) scheme achieving a cPIR construction would be conceptually triv-
ial. With the recent advances and renewed interest in homomorphic encryption,
new FHE schemes [11–15] and optimizations such as modulus and key switching
[16], batching and SIMD optimizations [17] have become available. The more
recent work by Doröz, Sunar and Hammouri [18] leveraged an NTRU based lev-
eled SWHE scheme along with optimizations to construct an efficient cPIR. The
rather simple cPIR construction has excellent bandwidth performance compared
to previous implementations, i.e. about three orders of magnitude. However, to
enable SWHE evaluation the scheme uses large parameters and therefore the
computational cost is excessively higher than traditional PIR constructions, i.e.
about 1-2 orders of magnitude.

Our Contribution. We present an Nvidia GPU implementation of a cPIR
scheme based on SWHE proposed by Doröz et al. We develop optimized CUDA
code to support large degree/large coefficient polynomial arithmetic operations
such as modular multiplication/reduction, and modulus switching. For efficiency,
we utilize number theoretical transform (NTT) based polynomial multiplication
while the operands are kept in the CRT domain representation. The CUDA
arithmetic library is then used to implement the two modes of the Doröz et
al cPIR [18]. While the bandwidth requirements are the same as in [18] our
implementation is significantly faster. For instance, for a database size of 64K
entries, our index comparison implementation is about 33 times faster while the
data aggregation operation is 18 times faster than the implementation of [18].

2 Background

In this section, we briefly explain the Doröz-Sunar-Hammouri (DSH) SWHE
based PIR construction. First, we give details about the NTRU based SWHE
scheme proposed by López-Alt, Tromer and Vaikuntanathan (ATV) [15]. Second,
we explain the PIR construction proposed by Doröz et al. which is based on
ATV-SWHE scheme.

ATV-SWHE Scheme: The NTRU scheme [19] was originally proposed as a
public key encryption scheme. It was later modified by Stehlé and Steinfeld
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[20] to create a variant whose security is based on the ring learning with er-
ror (RLWE) problem. With a number of optimizations, López-Alt, Tromer and
Vaikuntanathan extended the construction to a multi-key FHE scheme [15].

Doröz, Sunar, and Hammouri [18] tailored the ATV-SWHE to construct an
efficient cPIR. Here we briefly summarize the construction: The polynomials
are sampled from a probability distribution χ on B-bounded polynomials in
Rq := Zq[x]/(xn + 1) where a polynomial is “B-bounded” if all of its coefficients
lie in [−B,B]. The sampled polynomials are used to compute public/secret keys.
The scheme can support XOR and AND operations using polynomial additions
and multiplications respectively. Noise grows significantly in AND operations, so
after each AND operation noise is managed using a technique call modulus switch
that is introduced by Brakerski, Gentry and Vaikuntanathan [12]. In modulus
switch, a decreasing sequence of moduli q0 > q1 > · · · > qd are selected for each
level of the circuit. Also each modulus holds following property: qi|qi+1. The
primitive functions of the DSH scheme is as follows:

– KeyGen: Choose m-th cyclotomic polynomial Φm(x) of degree n = ϕ(m)
as the modulus polynomial. Sample u and g from the distribution χ and
compute f = 2u+ 1 and h = 2g (f)−1 in ring Rqi

= Zqi
[x]/〈Φ(x)〉.

– Encrypt: Sample s and e from χ distribution and compute c = hs + 2e + b,
where b ∈ {0, 1} is message and h is public key.

– Decrypt: Message m is computed by: m = cf (i) (mod 2). The f (i) corre-
sponds to private key forith level that holds: f (i) = f2i ∈ Rqi

.
– XOR: The addition of two ciphertexts c1 = Enc(b1) and c2 = Enc(b2) corre-

sponds to XOR operation, i.e. c1 + c2 = Enc(b1 ⊕ b2).
– AND: The multiplication of two ciphertexts corresponds to AND operation,

i.e. c1 × c2 = Enc(b1 · b2). After each multiplication, noise level is controlled
by applying modulus switch: c̃(x) =

⌊
qi+1

qi
c̃(x)

⌉
2
.

DSH-PIR Scheme: For a given database D with |D| = 2` rows and given
index x ∈ {0, 1}` we may retrieve data dx as follows:

∑
y∈[2`](x = y)dy (mod 2),

where y is an index of the database. The equality check (x = y) is computed
using the bits of the indices as:

∏
i∈[`](xi + yi + 1). Basically, we compare if the

bits of x are same with the bits of y for the same positions. If all the bits are
same, the product yields a 1. Otherwise, the product evaluates to a 0. Therefore,
we can retrieve dy by computing the sums of products between the comparison
results and the corresponding data dy entries. In the protocol, the bits of the
search index xi are given in encrypted form while the comparison index yi is
in cleartext. Therefore, the (x = y) circuit has to compute the product of `
polynomials, i.e.

∏
i∈[`](Enc(xi) + yi + 1). This is evaluated with a depth log2(`)

circuit by using a binary tree. Furthermore, the scheme may be extended into a
symmetric PIR in which also data is encrypted. In other words, we may encrypt
the data as Enc(dy) and multiply it with the corresponding ciphertext. This
increments the depth of circuit level log2(`) + 1.
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Query Modes: Doröz et al [18] propose two query modes: Single Query and
Bundled Query by two complementary uses of a batching technique introduced
by Smart and Vercauteren [16, 17]. The technique relies on the CRT where a pack
of message bits are encoded into a single binary polynomial using inverse-CRT.
This allows us to evaluate a circuit on multiple independent data inputs simulta-
neously by embedding them into the same ciphertext. The working mechanisms
of the two query protocols is as follows:

– Bundled Query. In Bundled Query, a client creates multiple queries and
batches them into a ciphertext, so the server can process multiple requests
at a time. First, the client prepares multiple queries β[j], which j ∈ ε and
ε is the total message slot number, with the following bit representation
{β`−1[j], . . . , β0[j]}. Then, the client encrypts and encodes the message poly-
nomials for each bit index as: β̃i(x) = Enc(CRT−1(βi[1], βi[2], . . . , βi[ε])).
For each bit location we have a ciphertext which is ` in our case. Once the
ciphertexts β̃i(x) are ready, they are sent to the server. The server computes
the PIR using the formula: r(x) =

∑
y∈[2`]

(∏
i∈[`]

(
β̃i(x) + yi(x) + 1

))
dy(x).

Here yi(x) is the batched and encoded row index bits {yi, yi, . . . , yi}, which
results in a single bit result yi(x) = yi, since each message bit has same
value. Once the r(x) is evaluated the server sends the result to the client
who then decrypts and decodes the ciphertext and forms a list of retrieved
values {d0, d1, . . . dε−1} = Decode(Dec(r(x))).

– Single Query. In this mode, the client only gives one index query. The
server encodes the indices and the database entries to perform comparison
operations for different entries in parallel for same index query. Basically,
the client takes the bits of a query β, encrypts each bit β̃i(x) = Enc(βi) and
sends the ciphertexts to the server. The server computes the PIR operation:
r(x) =

∑
y∈[2`]

(∏
i∈[`]

(
β̃i(x) + yi(x) + 1

))
dy(x). However, this time yi(x)

and dy(x) are binary polynomials since we are comparing a single query to
a block of entries. The term yi(x) is computed by encoding bits at the same
locations of different entries, i.e. yi(x) = inverse-CRT{yi[1], . . . , yi[ε]}. Simi-
larly, dy is also equal to inverse-CRT{d0, . . . , dε−1}. The process compares ε
indices simultaneously in each iteration which decreases the overall runtime
of the scheme. Once r(x) is computed, the client receives the computed ci-
phertext which he then decrypts and decodes. If all the bits on the message
slots are zero, than dy = 0 and dy = 1 otherwise.

3 GPU Implementation

Here we present an overview of the NTRU based PIR protocol implementation
on CUDA GPUs. The client sends an encrypted query to the server. The server
homomorphically evaluates the retrieval request, and returns a single ciphertext
to the client. We optimize the scheme to better fit our target GPU device, i.e.
NVIDIA GeForce GTX690. Nevertheless, the parallelization and optimization
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techniques we employ here should work on other GPUs as well. Our GPU device
consists of two GK104 chips where each chip holds 1536 cores and 2 GBytes
of memory. We make use of both chips and almost evenly distribute workload
to the two chips. The performance can be easily improved with a multi-GPUs
setup, since the algorithm we present here has a high degree of parallelism.

Platform Overview and Design Strategy A GPU based server or cluster
consists of multiple GPUs. Every GPU is an efficient many-core processor system
designed to reach high performance by exploiting parallelism in the computa-
tional task. Each core can execute a sequential thread. All cores in the same
group execute the same instruction at the same time. With a GPU with warp
size of 32, the code is executed in groups of 32 threads. Threads are further
grouped into blocks. All threads in the same block are executed on a single
multiprocessor, and therefore are able to share a single software data cache and
memory. With general-purpose computing on GPUs, a portion of code that can
achieve significant speedup when executed in parallel runs on the GPU, while
other code remains on the CPU. Basically, data sets are sent to GPU memory,
processed on the GPU and returned from GPU memory. This will pay off as long
as the speedup of processing on GPU over on CPU outweighs the latency intro-
duced by the input and output transfers. When GPU cores are handling tasks,
besides the computation, memory access latencies also limit the performance
gain. Memory on GPU is classified into several types which we list according
to the access latency from low to high along with sizes for the Nvidia GeForce
GTX 690 GPU: constant memory (64KB), shared memory (48KB per block),
and global memory (4GB). Given the drastically different make up of our tar-
get platform, it becomes clear that when translating our algorithms into GPU
code we need to create a high degree of parallelism and minimize dependencies
between data entries to take advantage of the multi-core architecture. Also data
transfers between GPU and CPU needs to be reduced to a minimum. In our
target application, we are processing a PIR database. The PIR database infor-
mation is preloaded into the GPU memory. With a database index of b bits (e.g.
b = 32, 16 or 8 bits), we send the query packaged into b ciphertexts to the server.
After retrieval the query returns a single ciphertext per database entry bit back
to the client. The entire retrieval computation is performed on the GPUs. For
polynomial coefficient-wise operations, since we chose a large polynomial size
(n = 4096, 8190 or 16384), we achieve a significant level of parallelism without
any effort simply due to the way parameters are selected for security. For poly-
nomial operations we introduce two conversions: CRT and NTT. CRT is able
to divide any type of polynomial operation into independent operations. NTT
is crucial to efficiently support parallel large polynomial multiplication.

GPU Memory We store polynomials as 1D arrays of integers. To prevent
memory contention between the read and write operations by the kernels, we
pre-allocate memory pools on GPUs and divide them into smaller chunks with
enough space for the CRT domain polynomials. We not only avoid the overhead
associated with frequently allocating memory, but also can reclaim memory and
reduce the overall memory usage. We always use the faster memory type avail-
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able, minimize the global memory access in the kernels, and adjust the number
of threads per block to match the shared memory size. We store some data used
to generate database indices in advance, since it is constant and takes only 64
MBytes in our largest setting. The input/output data transfer latencies are par-
tially hidden behind database index generation and inverse-CRT operations. We
use shared memory as data buffers in CRT and NTT kernels to ensure coalesced
memory access.

Mapping the PIR Computation to CUDA Kernels As described earlier,
the Doröz et al. PIR [18] computation is

∑
y∈[2`]

[∏
i∈[`] (xi + yi + 1)

]
dy. The

query retrieval scheme mainly consists of polynomial multiplications over Rq. In
addition, as circuit level increases, a modular reduction operation on ciphertexts,
i.e. modulus switching, is performed on the polynomial coefficients. For ` bits
of data, there are (` − 1) multiplications and (` − 1) modular reductions. We
aim at optimizing these two operations. The input ciphertexts are polynomials
in the ring Rq. The size of q is very large according to our parameter selection
(e.g. 512 bits). We use CRT to convert large polynomials with large integer
coefficients into a set of large polynomials with coefficient size small enough to
permit streamlined processing. In the transformation we use a series of prime
moduli p1, p2, . . . , pl. The result is recovered by computing the CRT inverse.

Chinese Remainder Theorem. With l prime numbers p1, p2, . . . , pl, we
obtain a set of independent polynomials from the polynomial a(x) ∈ Rq as
a(x) = CRT−1{a[1](x), a[2](x), . . . , a[l](x)}. If a(x) = an−1x

n−1+an−2x
n−2+

· · · + a1x + a0, we have: ai = CRT−1{ai[1], ai[2], . . . , ai[l]}, i ∈ Zn. Since
the inverse-CRT returns a result in Zpipi−1...p1 instead of Zq, modular reduction
on coefficients is needed. Wang et al [21] introduced a large integer modular re-
duction implementation on GPUs. Given that a single modular reduction costs
multiple threads, processing all the coefficients in a polynomial would be ineffi-
cient. In [13], the authors proposed a way to combine inverse-CRT and modulo
q reduction steps. We generate q as the product of a sequence of prime num-
bers and use the prime numbers for CRT: qi =

∏l−i
j=1 pj , i < j. The size of the

primes, should be large enough to control the noise growth during homomorphic
evaluations. The upper bound on the prime numbers depends on the polynomial
multiplication scheme which will be explained later. After the initial CRT con-
version on the input ciphertexts, all the computations are performed in the CRT
domain, until we have to compute the inverse-CRT on the output ciphertexts.
Focusing more closely on inverse CRT operation, we notice that after the inver-
sion is carried out the coefficients remain in Zp1p2...pl−i

= Zqi , which means that
modulo q reduction is no longer needed. We can also obtain modulo qj result from
a coefficient in Zqi

for j > i. For all z = CRT−1{z[1], z[2], . . . , z[l− i]} ∈ Zqi
,

given that j > i, we have z (mod qj) = CRT−1{z[1], z[2], . . . , z[l − j]} .

Polynomial Multiplication. In [22], the authors present an efficient polyno-
mial multiplication algorithm on CUDA GPUs. They basically follow Strassen’s
scheme [23] to multiply two polynomials a(x) =

∑n−1
i=0 aix

i and b(x) =
∑n−1

i=0 bix
i.

Consider the n coefficients of a polynomial as elements in a 0 padded array of
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2n elements: a = {a0, a1, . . . , an−1, 0, . . . , 0} and b = {b0, b1, . . . , bn−1, 0, . . . , 0}.
Perform 2n-point NTT on a and b to obtain arrays A = NTT(a) and B =
NTT(b). Compute the element-wise product C = A · B. Finally recover c =
NTT−1(C), in which the elements are the coefficients of c(x) = a(x) · b(x). Four-
step Cooley-Tukey NTT iterations [24] are adopted for a fast NTT computation
and hence create parallelism for CUDA GPU processors. A special prime number
P = 0xFFFFFFFF00000001 is chosen for better performance [25]. Since P should
be larger than the possible largest coefficient of the polynomial product, we have
our limit for the size of CRT prime numbers: pi <

√
P/n, (i = 1, 2, . . . l).

Polynomial Reduction. In the generic NTRU scheme all polynomial opera-
tions are performed in Rq = Zq/〈Φm(x)〉. Polynomial multiplication is therefore
followed by a polynomial reduction. The cyclotomic polynomial modulus Φm(x)
is a factor of the special polynomial (xm− 1). We need to perform a polynomial
reduction after every polynomial multiplication with Barrett Reduction which
by itself costs three polynomial multiplications. Instead we keep the product in
R′q = Zq/〈xm−1〉 form during query retrieval and only further (fully) reduce the
polynomials to Rq = Zq/〈Φm(x)〉 in decryption. Polynomial reduction can be
achieved by c(x) (mod xm−1) = c(x) (mod xm)+c(x)/xm. However, the latter
method could possibly increase the size of polynomial operands greatly. For in-
stance, with parameters (n,m) = (16384, 21845), we have to conduct 65536-point
NTT to multiply two 21845-degree polynomials, instead of 32768-point NTT for
16384-degree multiplication. Nevertheless, assuming the overhead of single sized
multiplication is T , double sized NTT takes about 2T , which is better than the
method with Barrett Reduction [26] that takes more than 4T in total. Moreover,
with parameters (n,m) = (8190, 8191), we can still use the 8192-point NTT.

Modulus Switching. In the NTRU based SWHE, when the circuit level in-
creases, e.g. from level i to level (i+1), polynomials should be scaled from ringRqi

to ring Rqi+1 without disturbing the message embedded within the ciphertext.
This requires a modular reduction operation on coefficients, namely modulus
switching. For a ciphertext c ∈ Rqi at level i, obtain c′ ∈ Rqi+1 at level (i + 1)
as follows. First compute c′ = c (mod 2). Note that c′ will be close to c · qi+1

qi
.

This operation is coefficient independent, hence can be executed in parallel. We
explain the procedure on a single coefficient. Let a be the target coefficient in
Zq. One way is to first compute a′ = ba · qi+1

qi
c. Then if a′ 6= a (mod 2), add or

subtract 1 for a′ to satisfy the equality. The method requires a to stay in Zqi .
Since in our implementation all operands are kept in the CRT domain, with a
straightforward implementation we would have to call the expensive inverse-CRT
in every level of the circuit. A technique to avoid the conversion by performing
modulus switching in the CRT domain was proposed in [13]. Since qi =

∏l−i
j=1 pj

is the product of a sequence of CRT prime numbers, the first step of the previous
method can be represented as a′ = b a

pl−i
c+ε, ε← {−1, 0, 1}. If r = a (mod pl−i),

we have a′·pl−i = a−r+ε·pl−i. Let a∗ = r−ε·pl−i. If and only if a∗ is even, a′ = a
(mod 2). Therefore, a′ = a−a∗

pl−i
∈ Zqi=1 is the result and we only need a∗. Start-

ing from a = CRT−1{a[1], a[2], . . . , a[l− i]}, let a∗ = a (mod pl−i) = a[l− i].
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If a∗ is odd, add or subtract pl−i to a∗ so that a∗ ∈ (−pl−i, 2pl−i) is even.
Let a′[j] = (a[j] − a∗)/pl−i (mod pj), j = 1, 2, . . . , l − i − 1. Then we have
a′ = CRT−1{a′[1], a′[2], . . . , a′[l − i− 1]} as the new coefficient in Zqi+1 .

Algorithm 1 Modulus Switching on Coefficients
Input: Coefficient a = CRT−1{a[1], a[2], . . . , a[l − i]} from level i
Output: Coefficient a′ = CRT−1{a′[1], a′[2], . . . , a′[l − i− 1]} for level (i+ 1)
1: a∗ ← a[l − i]
2: if a∗ = 1 (mod 2) then
3: if a∗ > (pl−i − 1)/2 then
4: a∗ ← a∗ − pl−i

5: else
6: a∗ ← a∗ + pl−i

7: end if
8: end if
9: for j ← 1 to l − i− 1 do

10: a′[j]← (a[j]− a∗)/pl−i (mod pj)
11: end for

CUDA Kernels on Devices As described earlier, the GPU devices receive b
ciphertexts. Let d be the number of circuit levels for computing the product of the
ciphertexts. Using a binary tree: 2d−1 < b 6 2d. In Figure 1, we show the process
of computing a single product term of

∑
y∈[2`]

[∏
i∈[`] (xi + yi + 1)

]
dy. on a GPU

for b = 32. After the last step an additional multiplication operation is required
for generating the response. This consists of either a single multiplication or
multiple multiplications depending on bundled query or single query mechanism.
Ignoring the last step, we have (b− 1) polynomial multiplications or one binary
tree of d depth, and (b− 1) modulus switchings:

– Multiplication. First we convert the polynomials to the CRT domain with
l prime numbers. In the first level we have (l × b) polynomials. In the sub-
sequent levels of the computation tree, l is decremented after each modulus
switching operation. The number of parallel computation threads is initial-
ized with b and is reduced by half after each multiplication level. At the end
we obtain a ((l−d) × 1) polynomials. Ideally we would like to distribute the
workload evenly to all devices. Since the Nvidia GeForce GTX 690 only has
two GPUs, each device is provided with (l × (b/2)) polynomials to process.
Until the last final multiplication the devices work independently.

– Modulus Switching and Reduction. In the second stage we process a
half binary tree with modulus switching on each device. We need 3 kernels
per polynomial per CRT element for each of NTT and INTT, 1 kernel per
polynomial for coefficient wise multiplication in NTT domain and 1 kernel
per polynomial for modulus switching. A polynomial reduction is performed
after multiplication. We hide polynomial reduction at the beginning of modu-
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Fig. 1. Realization of the comparison circuit in the PIR scheme using single GPU for
database with 232 entries.

lus switching and inverse-CRT, instead of an extra kernel only for polynomial
reduction.

4 Performance

We implemented the DSH-PIR with both the Single and Bundled Querying
modes using Nvidia GeForce GTX 6901 running @915 Mhz with 3072 stream
processors and 4 GBytes of memory. In Table 1, we compare our query/response
sizes with DSH scheme [18] for different entry sizes N = 22d . In our imple-
mentation query/response sizes are slightly larger because we choose the closest
modulus in DSH scheme that holds q = 24k. In Table 2, we compare our Bun-
dled/Single Query computation times with DSH implementation which the tim-
ings are normalized with message slot size ε. For an index comparison of a Single
Query, we achieved 15 times speedup for d = 5 and ∼ 33 times for d = {4, 3}

1 The NVIDIA GeForce GTX 690 series actually consist of two GTX 680 series graph-
ical processors.
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Table 1. Polynomial parameters and Query/Response sizes necessary to support var-
ious database sizes N .

Schemes N (log q, n) ε Query Size (MB) Response Size (KB)

DSH [18]
232 (512, 16384) 1024 32 784
216 (250, 8190) 630 3.9 154
28 (160, 4096) 256 0.625 44

Ours
232 (528, 16384) 1024 33 796
216 (264, 8190) 630 4.12 164
28 (168, 4096) 256 0.656 46.8

cases. In data aggregation2, we achieved 4-6 times speedup compared to DSH
Scheme. In Table 3, we compare the Query Size of our scheme with BGN, O-K

Table 2. Index comparison and data aggregation times per entry in the database for
(d, ε) choices of (5, 1024), (4, 630) and (3, 256) on GPU.

Bundled Query (msec) Single Query (msec)
Depth (d) 5 4 3 5 4 3

DSH [18] Index comparison 4.45 0.71 0.31 4.56 2.03 1.29
Data aggregation 0.22 0.09 0.04 37 7.45 3.40

Ours Index comparison 0.26 0.04 0.02 0.31 0.06 0.04
Data aggregation 0.037 0.005 0.004 9.60 1.26 0.71

Speedup Index comparison ×17 ×18 ×15 ×15 ×34 ×32
Data aggregation ×6 ×18 ×10 ×4 ×6 ×5

and DSH schemes for various database sizes. Our ciphertext sizes are (almost)
identical to those of the DSH scheme. When compared to the K-O scheme in
Bundled Query mode, our ciphertext sizes are three orders of magnitude smaller
for d = 5 and an order of magnitude smaller for d = {4, 3}.

In Table 4, we compare our timing and ciphertext size estimates for a real
time application given by Aguilar-Melchor and Gaborit [9]. The information
given in the table is for N = 1024 entries with each entry holding 3 MBytes
of data. We select d = 4 and assume both GPUs are running data aggregation
tasks. In bundled query mode, we are better both in query size and amortized
timings compared to other schemes results with the exception for query size of
Gentry and Ramzan [6].

2 In cases where we extract entries with more than 1-bit size, we use the same index
comparison result to process the remaining bits of a database entry. Also timings
that given on the table are per polynomial operation and they are not normalized.
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Table 3. Comparison of query sizes for databases upto 232, 216 and 28 entries. Band-
width complexity is given in the number of ciphertexts; α denotes the ciphertext size.

BW α Query Size
Compl. d = 5 d = 4 d = 3 d = 5 d = 4 d = 3

Boneh-Goh-Nissim α
√
N 6144 6144 6144 96 MB 384 KB 24 KB

Kushilevitz-Ostrovsky α
√
N 2048 2048 2048 32 MB 128 KB 8 KB

DSH [18] (Single) α logN 1 MB 249 KB 80 KB 32 MB 3.9 MB 640 KB
DSH [18] (Bundled) α logN 1 KB 406 B 130 B 32 KB 6.32 KB 2.5 KB
Ours (Single) α logN 1.03 MB 263 KB 84 KB 33 MB 4.1 MB 672 KB
Ours (Bundled) α logN 1.03 KB 429 B 336 B 33 KB 6.34 KB 2.6 KB

Table 4. Comparison of various schemes for real time applications.

Scheme Query Size Computation Time
Lipmaa 2 Mb 33 h
Gentry and Ramzan 3 Kb 17 h
Aguilar-Melchor and Gaborit 300 Mb 10 min
Ours (Single) 20.6 Mb 8.8 h
Ours (Bundled) 33.4 Kb 1.5 min
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