
HEtest: A Homomorphic Encryption Testing Framework

Mayank Varia1, Sophia Yakoubov1, and Yang Yang2,?

1 MIT Lincoln Laboratory??, {mayank.varia, sophia.yakoubov}@ll.mit.edu
2 Blizzard Entertainment, y4n9@alum.mit.edu

Abstract. In this work, we present a generic open-source software framework that can evaluate the
correctness and performance of homomorphic encryption software. Our framework, called HEtest, auto-
mates the entire process of a test: generation of data for testing (such as circuits and inputs), execution
of a test, comparison of performance to an insecure baseline, statistical analysis of the test results, and
production of a LaTeX report. To illustrate the capability of our framework, we present a case study
of our analysis of the open-source HElib homomorphic encryption software. We stress though that
HEtest is written in a modular fashion, so it can easily be adapted to test any homomorphic encryption
software.

1 Introduction

Homomorphic encryption is a cryptographic primitive that enables computation directly on en-
crypted data. This technology has the potential to change the way that we protect arbitrary com-
putation on the cloud. Moreover, it may be judiciously applied to special-purpose problems such
as database searches in order to develop usable technologies [1] with stronger security guarantees
than were possible before [4, 18, 20].

The last five years have seen substantial research into the design of homomorphic encryption al-
gorithms [2, 3, 5, 7, 9, 11, 23, 24]. Some of these algorithms have been implemented in software [8, 10,
12, 13]. Evaluations of these software implementations allow the research community to determine
the applications that could benefit most from targeted use of homomorphic encryption technology.
However, prior evaluations of homomorphic encryption software were tedious to conduct and ad
hoc in nature. This resulted in evaluations that cannot be directly compared because the data were
produced on different platforms. Additionally, while tests were repeatable in principle, the ad hoc
nature of prior evaluation software made it challenging to reproduce others’ test results.

Our main contribution is to provide a generic, open-source framework for the testing of homo-
morphic encryption schemes. In this paper, we describe the design of our test framework and our
use of this framework to evaluate portions of the HElib software package [12, 13].

Homomorphic encryption. The goal of fully homomorphic encryption (FHE) research is to design
an encryption scheme that is purposely malleable in a specific way to enable computation on
encrypted data. More specifically, an FHE scheme has a special operation Evaluate that takes a
circuit representation C of a program and a series of ciphertexts ci = Enc(mi) and returns an
encryption of C(m1, . . . ,mk).

Due to their number-theoretic properties, many public-key encryption schemes are naturally
homomorphic with respect to a single operation like addition or multiplication [6, 17, 19, 22]. An
intriguing question, initially posed in 1978 by Rivest et al. [21], is whether there exists an en-
cryption scheme that simultaneously permits the evaluation of both addition and multiplication on

? Work performed while at MIT Lincoln Laboratory.
?? This work is sponsored by the Intelligence Advanced Research Projects Activity under Air Force Contract FA8721-

05-C-002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not neces-
sarily endorsed by the United States Government.



ciphertexts. Since these two operations constitute a logically complete set of operations, the vision
described above would follow.

In 2009, the seminal work of Gentry [7] affirmatively answered this long-standing question by
demonstrating an encryption scheme based on ideal lattices that exploits the ring structure of the
ciphertext space to provide Evaluate operations for both addition and multiplication. Gentry split
the FHE problem into two components: the design of a somewhat homomorphic encryption scheme
(SWHE) that permitted a limited number of Evaluate operations and the insight of a bootstrapping
algorithm that achieved fully homomorphic encryption through the use of multiple applications of
SWHE. A slight tweak of this initial scheme was implemented in [8].

After Gentry’s initial work, many cryptographers have designed new FHE algorithms [2, 3, 5, 9,
11, 23, 24] that make substantial improvements along several dimensions:

– Improving the performance of a single addition or multiplication Evaluate operation,
– Increasing the number of Evaluate operations possible in a SWHE scheme before bootstrapping,
– Batching multiple plaintext bits into one ciphertext whose bits are operated on in parallel, and
– Basing the cryptography upon weaker, more accepted number-theoretic assumptions.

Some of these improved algorithms have been implemented in software [10, 12, 13]. However, the
FHE community lacks a simple benchmarking tool that enables simple comparisons between these
homomorphic encryption schemes and with näıve unprotected computation.

Our software. We have designed and developed a software program for evaluating homomor-
phic encryption schemes called HEtest [15, 26]. Our code has been open-sourced for use under a
BSD license [16] and is available for download at https://www.ll.mit.edu/mission/cybersec/

softwaretools/hetest/hetest.html. The HEtest software package comprises four components:

1. A circuit generator that can create configurable instances of boolean circuits. Customizable
options include circuit depth and the desired distribution of gates in a circuit.

2. A baseline that parses and evaluates the circuits as quickly as possible without homomorphic
encryption, for comparison purposes.

3. A test harness that interfaces with any homomorphic encryption software through a commu-
nication protocol. The harness executes test scripts that repeatedly call for key generation,
circuit ingestion (using the circuits generated above), encryption, homomorphic evaluation, and
decryption. During a test, the harness captures and logs metrics pertaining to the correctness
and performance of the homomorphic encryption software.

4. A report generator that (with no human input) analyses the test harness’ logs and produces a
LaTeX report with tables and graphs that summarize the correctness and performance results
(both in absolute terms and relative to the baseline).

The circuit and report generators are written in Python, whereas the baseline and test harness,
which are performance-critical, are written in C++.

Our testing. We used our HEtest software to evaluate submissions to the Security and Privacy
Assurance Research (SPAR) program. The SPAR program was developed in 2010 by the Intelligence
Advanced Research Projects Activity (IARPA). Its objective was to design and build new privacy-
preserving data searching technologies that are fast and expressive enough to use in practice.

The SPAR program comprised nine research teams who worked on three separate problems,
two of which were about the design and implementation of privacy-preserving database or publish-
subscribe schemes [4, 20, 14, 25]. The final component of the project focused on the design of ho-
momorphic encryption schemes, with the aim of producing an efficient SWHE building block that

2



could be used in the design of privacy-preserving search algorithms with strong security guaran-
tees. There were two performers involved in the homomorphic encryption component of SPAR:
the IBM Thomas J. Watson Research Center (hereafter referred to as IBM) and Stealth Software
Technologies, Inc (hereafter referred to as Stealth).

In this paper, we provide a case study for the use of the HEtest framework by describing our
evaluation of the IBM submission to the SPAR project, which is largely based on the open-source
HElib implementation [12, 13]. Thus, the results of our case study can easily be reproduced by
interested readers. We wish to emphasize that our discussion of HElib in this paper is merely as a
case study: we used HEtest to evaluate Stealth’s software as well, and all of the code in HEtest is
written in a modular, extensible fashion, so it can easily be extended to test other homomorphic
encryption software with only minor changes to the data generation and baseline code if support
is needed for different types of circuits.

Organization. The rest of this paper is organized as follows. In Section 2, we provide a definition for
homomorphic encryption and a brief overview of HElib [12, 13]. In Section 3, we describe the process
by which HEtest generates and stores data. Section 4 describes the test execution framework in
HEtest. Section 5 explains HEtest’s automated data analysis and report generation. Finally, Section
6 provides a case study of the use of our framework to study IBM’s HElib software.

2 Overview of Homomorphic Encryption and HElib

A basic public-key encryption scheme has the three algorithms KeyGen, Encrypt, and Decrypt.
KeyGen is a randomized algorithm that inputs a security parameter λ and outputs a public/secret
key pair (pk, sk). Encrypt is a randomized algorithm that takes a public key pk and a plaintext
message m from the plaintext space P and outputs a ciphertext c from the ciphertext space C.
Finally, Decrypt is an algorithm that takes as input a secret key sk and a ciphertext c and outputs
a plaintext message m ∈ P. The computational complexity of these algorithms must be polynomial
in λ.

A homomorphic encryption scheme has an additional algorithm Evaluate, which takes as input
a public key pk, a function represented as a circuit C, and a vector of ciphertexts c = (c1, . . . , cw)
where ci is the encryption of mi. It outputs a ciphertext c′ that is an encryption under pk of
C(m1, . . . ,mw), the result of evaluating the circuit C using m1, . . . ,mw as inputs. The scheme
satisfies the homomorphic property that for all (pk, sk), circuits C, and ci = Encrypt(pk,mi),

Decrypt(sk,Evaluate(pk,C, c1, . . . , cw)) = C(m1, . . . ,mw).

In recent years, one construction of a homomorphic encryption scheme based on the ring-
LWE assumption by Brakerski, Gentry, and Vaikuntanathan [2] has shown promise of becoming
“somewhat practical.” In this scheme, plaintext bits are represented as coefficients of a polynomial
in the ring Fp[x]/(f(x)). Gentry, Halevi, and Smart [11] design a variant of the BGV scheme in which
p = 2 and f(x) is chosen to be the n-th cyclotomic polynomial Φn(x). IBM’s HElib software is an
implementation of this cryptosystem, with further optimizations in ciphertext packing or “batching”
[24]. Specifically, if the polynomial ring Φn(x) can be factored modulo 2 into ` irreducible factors,
then there are ` “slots” in which one can encode a plaintext bit by application of the Chinese
Remainder Theorem for polynomials. Using this construction, addition and multiplication in the
polynomial ring Fp[x]/(f(x)) correspond to element-wise addition and multiplication in the vector
of slots, giving rise to single instruction multiple data (SIMD) style operations.

3



Gate Depth (d)

MULT 1
MULTconst 0.5
ADD 0.1
ADDconst 0
SELECT 0.6
ROTATE3 0.25 to 0.75

Table 1. Depth of each gate
type, as defined by IBM.

If c is the smallest integer such that n divides pc − 1, then Φn(x)
factors into ` = φ(n)/c irreducible polynomials modulo p, where φ(·)
denotes Euler’s totient function. In order to maximize `, one needs to
choose an n that minimizes c. However, n is also constrained by the
choice of security parameter λ and the maximum circuit depth d.

In the HElib cryptosystem, the parameter n was set between 4500
and 45000 for λ = 80 bits of security and d ∈ [4, 24]. These set-
tings yielded batch widths of approximately ` ∈ [256, 1285]. Their
scheme produced ciphertexts with bit-size asymptotically equal to
O(φ(n) · d · log(λ)). Since ciphertext blow-up represents an enormous
cost of computing data homomorphically, packing multiple independent
plaintext bits into a single ciphertext is a substantial improvement to
efficiency.

In HElib, the circuit depth d has a special meaning because the various SIMD operations
introduce different amounts of noise to the ciphertext. For instance, adding two ciphertexts increases
the noise in the resulting ciphertext linearly while multiplying two ciphertexts increases the noise
quadratically. Consequently, MULT increases the circuit depth substantially more than ADD. Table 1
lists the contributions to circuit depth made by the six gate types supported by HElib. We stress
that a gate’s depth is different than its level : the minimum number of gates between it and the
input wires.

3 Test Data

In this section, we describe the process of generating circuits and corresponding inputs on which to
test homomorphic encryption software such as IBM’s HElib or Stealth’s software. We stress that
our tool can generate a diverse set of circuits using various gate types. In this section, we describe
the generation of circuits that IBM supported: deep circuits consisting of arithmetic SIMD gates
with fan-in 2. However, we also used HEtest to evaluate Stealth’s software on wide, shallow Boolean
circuits with large fan-in.

We developed a Python script that generated circuit descriptions and inputs based on config-
urable circuit parameters. Circuit descriptions were output in ASCII-format and stored as text
files, later to be parsed by the test harness described in Section 4.1 and the performers’ software.
In Section 3.1, we discuss the input parameters to our data generation system. In Section 3.2,
we discuss the process by which a circuit and a corresponding input are constructed, given those
inputs. In Section 3.3, we discuss the format in which the test harness expects the circuit and input
data, and in Section 3.4, we discuss the format in which our analysis tools discussed in Section 5
expect the data.

3.1 Generation Parameters

The parameters for circuit generation include desired circuit width w (i.e. number of input wires),
circuit depth d, batch size `, the security parameter λ, and the distribution of gate types that the
circuit comprises. Optionally, a random seed could be specified to reliably reproduce data. If the
seed is omitted, a random one is chosen at runtime. All parameters were contained in a configuration
file that the script read.

Most of our tests were run on circuits consisting of a uniformly selected set of gates over the six
types shown in Table 1; we refer to these tests as ‘mixed.’ However, it was also very useful to be

3 The depth of a ROTATE gate depends on `, the number of plaintexts packed or “batched” into a ciphertext.

4



able to produce circuits consisting entirely of one of the six gate types, so as to be able to compare
the relative efficiency of HElib’s evaluation of these gate types. Note that for circuits composed
entirely of one gate type, a different notion of depth was needed because some gate types do not
contribute to depth d. Therefore, for such single gate type circuits we used the number of levels
num levels in place of depth, referring to the length of the longest path from the output gate to any
of the input wires.

3.2 Circuit and Input Generation

Circuits are generated starting with the input wires and ending with the output gate. A total of
w input wires were created, and for each subsequent level of the circuit, w gates were created for
which either one or two inputs (depending on the gate type) are randomly chosen from amongst
the gates and wires of the two levels above it. If the test type was ‘mixed,’ generation went on
until all of the gates at the last level had depth greater than d; then, a random gate from the
set of gates with the correct depth d was chosen to be the output gate. If the test type was not
‘mixed,’ generation went on until num levels levels had been generated, and a random gate from
the num levelsth level was chosen to be the output gate. Once the output gate was chosen, all gates
and wires that did not contribute to the output were discarded. For each desired input, w binary
strings of length ` were generated.

3.3 Test Suite Representation

Once the test data was generated, it had to be stored in a way that was easily accessible to both the
test harness and the prototype. Each generated security parameter, circuit, and input was stored in
a separate text file. Inputs were naturally represented as lists of binary strings; for instance, here is
an example of an input for a circuit with w = 4 input wires, each expecting an input of size ` = 5:
“[11010,01011,01010,11011].”

Our syntax for describing circuits is somewhat more involved, and we illustrate it here with
an example in both written and graphical form in Figure 2. The first line of Figure 2 specifies the
number of input wires (w), the depth of the circuit (d) as defined by IBM, and the batch size (`).
Following this header, all gates are listed ordered by their level (not depth d). This guarantees
that all inputs to a gate are defined before the gate is defined. (Note, however, that gates on the
same level appear in arbitrary order.) Each gate is identified by a string containing the character
‘G’ followed by a unique id. Note that not all gate ids between 1 and the maximum gate id are
represented; this is because not all gates end up contributing to the output gate, and those that
do not get dropped. The input wires are indexed by a string containing the character ‘W’ followed
by a unique id in 0 . . . w − 1. Following the gate id, on the same line, is the gate type and a list of
the gate’s inputs. These can be pointers to input wires, other gates, or constants if the gate type
requires a constant input. Note that the wires are not defined separately in the circuit description;
they appear only as inputs to gates. Any constants will always be the last of the gate’s inputs.

Once the security parameter, circuit and input files were created, a single test script file cor-
responding to the test suite was produced. It contained the paths to the files that stored each
data object, in the order in which they were meant to be sent to the performer binaries. This test
script facilitates the test execution process. Finally, in order to have a common repository for all
test artifacts, the parameters of each circuit and input were stored in a SQLite database that is
described in Section 3.4.

5



W=4,D=4,L=5

G4:LMULconst(W2,01101)

G6:LMUL(W2,W0)

G5:LROTATE(W2,4)

G8:LMUL(G6,W2)

G9:LMULconst(G5,00101)

G7:LADD(G4,W0)

G13:LMULconst(G8,00000)

G11:LMULconst(G8,11010)

G14:LSELECT(G11,G7,11001)

G16:LSELECT(G13,G9,00001)

G18:LSELECT(G14,G13,11110)

G19:LADDconst(G16,10000)

G22:LMULconst(G19,01000)

G25:LADD(G22,G18)

G26:LMULconst(G25,11010)

Fig. 2. The syntax of a generated circuit (left) and a graphical illustration of the same circuit (right). In the illus-
tration, gates are labeled first by their level (e.g. ‘L4’) and then by their id within that level (e.g. ‘G2’).

3.4 SQLite Database

HEtest uses a SQLite database as a central repository for test information. This database served as
the “glue” that enabled integration of the components of our test framework and the automation
of our entire test process. We use a SQLite database because it is lightweight, SQL-based, and easy
to share and back up.

Our SQLite database is built during the data generation process, and it is initially populated
with some descriptive information about the circuits and inputs such as the circuit depth, the
number of input wires, and the number of gates of each type present. Baseline and performer
test results are later automatically added upon execution of a test, as detailed in Section 4. The
SQLite database is used during automatic generation of a report characterizing the correctness and
performance of the homomorphic encryption prototype, as described in Section 5. Because of all the
circuit- and input-specific information we store, our report can correlate performance with specific
circuit parameters, making for a very detailed analysis. We are also able to add new metrics at any
time, without having to repeat the entire testing process, because the SQLite database contains all
of the necessary information.

4 The Test Framework

The design of our test framework was motivated by three goals. First, we wanted to assess the
performance of homomorphic encryption schemes by measuring the duration of key generation, en-
cryption, decryption, and homomorphic evaluation. Second, we wanted to characterize the overhead
of privacy assurance by comparing the system that uses homomorphic encryption to one that offers
no security. Finally, we wanted to design a test harness that could be used to evaluate arbitrary
homomorphic encryption schemes (such as those from IBM and Stealth) in a black-box manner.

6



The homomorphic encryption software being instrumented by our test framework comprised
two processes: a server that performed homomorphic evaluation and a client that performed key
generation, encryption, and decryption. They are collectively called the system under test, or SUT.

4.1 The Test Harness

The test harness, a program that we developed in C++, spawned the client and server processes
of the SUT. It communicated with the SUT through the client’s and server’s standard input and
output streams. After both processes were properly initialized, the test harness called on them
to repeatedly perform key generation, encryption, circuit ingestion, homomorphic evaluation, and
decryption. A configuration file, read by the test harness on start up, specified the location of files
containing the security parameters, plaintext inputs, and circuits to be used.

In the key generation step, the test harness sends the value of the security parameter to the
client and receives a public key. In the circuit ingestion step, the public key and circuit description
are sent to the server. When the server finishes parsing the circuit description and is ready to accept
inputs, it returns a READY message to the test harness. In the encryption step, the test harness sends
a series of plaintext messages to the client and receives their ciphertexts. Next, in the homomorphic
evaluation step, the ciphertexts are sent to the server. The server evaluates the circuit using the
ciphertexts as input and returns a ciphertext representing the output to the circuit. Finally, in the
decryption step, the test harness forwards the ciphertext returned by the server to the client. The
client decrypts the ciphertext and returns the plaintext message. Figure 3 illustrates these steps.

Communication between the test harness and the SUT was dictated by a simple packet-based
communication protocol that we developed. A packet consisted of a header, either ASCII-encoded
plaintext data or binary-encoded ciphertext data, and a footer. These components were delimited
by linefeeds. Security parameters, public keys, plaintext messages, and circuit descriptions were
encoded in ASCII while ciphertexts were encoded in binary (with a prefix indicating the size
of the binary payload in bytes). Our testing framework assumed that the client and server only
communicate through the test harness interface (as shown in Figure 3), never with each other
directly.

In each of the steps described above, the duration of the cryptographic operation was measured
from when the test harness wrote the first byte of command packet to when last byte of the response
packet was read. Consequently, unavoidable communication overhead such as writing data to pipes
were captured; however, the latency of these calls were negligible (about 10−4 seconds) compared
to those of cryptographic operations. Our test harness captured the following metrics:

1. Evaluation accuracy: The fraction of circuit evaluations that are correct, i.e. the decrypted
result returned by the SUT is equal to the result of directly evaluating the circuit on the
plaintext inputs.

2. Key generation time: A measure of how long it takes for the client to generate cryptographic
keys.

3. Key size: The size of public keys generated by the client prototype

4. Ingestion time: A measure of how long it takes for the server to prepare a circuit for evaluation.

5. Encryption time: A measure of how long it takes for the client to encrypt a plaintext message.

6. Ciphertext size: The average size of ciphertext per bit of plaintext input.

7. Evaluation time: A measure of how long it takes for the server to evaluate a circuit.

8. Decryption time: A measure of how long it takes the client to decrypt a ciphertext.

9. Total elapsed time: The sum of the encryption, evaluation, and decryption times.

7



Client Test Harness Server

λ

pk = KeyGen(λ)

m

c = Enc(sk,m)

pk, C

READY

c

c′ = Evaluate(C, c)

c′

m′ = Dec(sk, c′)

Harness Command SUT Response

Key Generation
KEY

<security parameter>

ENDKEY

KEY

<public key>

ENDKEY

Circuit Ingestion

CIRCUIT

<circuit description>

ENDCIRCUIT

KEY

<public key>

ENDKEY

CIRCUIT

CIRCUIT READY

ENDCIRCUIT

Encryption

PDATA

<input1>

<input2>

ENDPDATA

EDATA

<size>

<ciphertext>

ENDEDATA

Hom. Evaluation

EDATA

<size>

<ciphertext>

ENDEDATA

EDATA

<size>

<ciphertext>

ENDEDATA

Decryption

EDATA

<size>

<ciphertext>

ENDEDATA

PDATA

<output>

ENDPDATA

Fig. 3. Sequence diagram showing data flows during a test (left) and the actual packets sent between the test harness
and SUT client/server (right). Angle brackets denote variables to be replaced by actual values.

4.2 The Baseline

In order to characterize performance in a setting without privacy assurance, we provided a base-
line: a client-server implementation of a circuit evaluator that operates on plaintext inputs. The
client offered stubbed implementations of key generation, encryption, and decryption in order to
adhere to the communication protocol. They returned properly-formed response packets. The server
supported two operations: circuit ingestion and direct evaluation on plaintext inputs.

Like the test harness, we developed the baseline system in C/C++. It was reasonably efficient,
with optimizations that would normally be found in circuit evaluation programs. Most notably,
it short-circuits gate operations when possible (e.g., an AND gate returns false as soon as one of
its inputs is determined to be false). In addition, we provided an API for defining new gate types
should the need arise.

In the circuit ingestion step, the baseline uses a scanner and parser to read textual circuit
descriptions and construct circuits. A scanner, oftentimes called a tokenizer, is a program that
recognizes lexical patterns in text. Any circuit description output by our circuit generator tool that
we described in Section 3 can be read and tokenized by the scanner. These tokens are subsequently
fed into a parser, which constructs circuit gates and eventually builds a circuit.

We recognized that implementing scanners and parsers for circuit descriptions is tedious, error-
prone, and non-extensible. As a result, we used two tools, Flex and Lemon, to programmatically

8



generate these software components. Flex is a scanner generator – given a set of rules (i.e. mappings
between regular expressions and tokens), it outputs C source code, which when compiled, produces
a scanner. The rules that we used to parse IBM-style circuits are found in the ibm-scanner.l

file in our open-source repository. Lemon is a parser generator – given a context-free grammar,
it produces C source code, which when compiled, produces a parser. The grammar for IBM-style
circuits is defined in the ibm-parser.y file. To extend our baseline to evaluate a new gate type, one
would need to add an additional rule, define a new token type, and provide a C++ implementation
of the gate that extends the base gate type.

5 Report Generation

After executing a test, the final step in the HEtest chain is the production of a concise report that
presents the correctness and performance results in such a way that a human can quickly draw
intelligent conclusions about the prototype performance.

In the initial version of our software, this process was mostly performed manually with the aid
of a few analysis scripts that produced the graphs and tables we desired. However, the addition of
any new data necessitated a repetition of the entire process, which was tedious and time-consuming.

To simplify this task, we developed a tool that automatically generated a detailed report de-
scribing the performance and correctness of the prototype. In addition to giving us a summary
of the system’s performance within seconds after the completion of a test, this tool allowed us to
identify odd or unexpected behaviors exhibited by the system in near real-time without having to
manually search through test data.

The report generator read from a centralized SQLite database containing all of the timing and
correctness data, as well as all of the parameters of the tests. It automatically performed analyses
of the correctness of the homomorphic encryption software under test (i.e., whether its outputs
agree with those from the baseline), and it also determined the dependency of the latency on
various factors such as input size, batch size, and circuit depth. It characterized the latency both
in absolute terms and relative to the baseline described in Section 4.2.

In Section 6, we display the power of the report generator by showing the results of an execution
of HEtest on the IBM HElib software. Note that the formats of graphs and tables were stored in
easily-updated template files, so the tool could easily be extended to produce a new type of graph
or table if desired.

6 Experimental Results

In this section, we present some of the auto-generated analyses that we performed over the HElib
test results. All of the statistical analysis and graphs in this section, as well as much of the expository
text, were automatically produced by our report generator tool.

We stress that our use of HElib is mainly as a case study. While we do believe that the data
about HElib in this section will be of interest to some readers, we are including this data principally
to demonstrate the capacity of our HEtest tool.

6.1 Experimental Setup

We ran the test harness and performers’ system on a Dell PowerEdge R710 server machine with
two Intel Xeon X5650 processors and 96 GB of RAM. All software was run on the 64-bit Ubuntu
12.04 LTS Linux distribution.

9



Values of ` Values of d Values of w

378 {6, 7} {4, 10, 20, 50, 100, 1000}
630 12 {4, 10, 20, 50, 100, 200}
600 18 {4, 10, 20, 50, 100}
682 {21, 24} {4, 10, 20, 50, 100}

Table 4. Parameters tested for k = 80, based on batch width `, circuit depth d, and maximum number of inputs w.

Throughout this section, all times will be presented in units of seconds and all sizes will be
presented in units of bytes; for brevity, we will often omit a statement of units. Also in the interest
of brevity, we only present here a subset of our results. For instance, we describe the results for
security parameter k = 80, which provides 80-bits of security, but omit the results for k = 128.

6.2 Real-world Applicability

Before presenting our results, we wish to issue a warning that the data from HEtest does not easily
translate into intuition about the performance of HElib (or any existing homomorphic encryption
scheme) in real-world applications. This is because the optimal representation of the functions in
real-world applications is rarely as a circuit; there is almost always conditional logic involved, and
no existing homomorphic encryption scheme supports such logic directly. In order to use HElib
to securely evaluate a real-world function, the function would first have to be re-written as a
circuit, which would almost surely cause a significant slow-down even if it is computed in the
clear. This complication motivates the creation of our baseline in Section 4.2: it isolates the slow-
down in computing due to homomorphic encryption from that caused by the (inefficient) circuit
representation.

Today, HElib can be used for specific small components of real-world applications that can be
naturally represented as a circuit; we hope that the analyses in this section will illuminate the costs
associated with this.

6.3 Parameters Tested

Table 4 describes the parameter values on which we tested HElib. Note that we only include values
for k = 80; the values of d, ` and w are different for k = 128. We also tested two additional ‘large’
circuit settings, with (` = 682, d = 24, w = 200) and (` = 1285, d = 60, w = 50). For each of the
above combinations, we generated two circuits, with five inputs each. Additionally, for each of the
six gate types, we generated 20 circuits composed entirely of that gate type, with 5 inputs each.
These circuits each had 5 levels, and w = 100. Ten circuits of each gate type had ` = 6, and ten
had ` = 42.

6.4 Overview of Results

We tested HElib for correctness and performance. Our report generator tool automatically deter-
mined that HElib had perfect correctness during the test: for all 1582 circuit/input pairs tested,
the outputs from HElib matched those from our baseline. Additionally, the average ratio between
the total elapsed time of HElib and an insecure baseline was approximately 52,600.

To provide a more detailed analysis of the total elapsed time for HElib and our insecure baseline,
the report generator created the two graphs in Figure 5. The left graph in the figure shows a

10



Fig. 5. Total elapsed time percentiles for HElib and the baseline separately (left) and their ratio (right)

histogram of the total elapsed time for HElib and our baseline over the 1582 circuit/input pairs.
For legibility, the data are grouped into percentiles: the graph shows the time for the fastest 1% of
circuit/input pairs tested (i.e., the 16th fastest test out of 1582), then for the next 1% of tests, and
so on. The right graph shows the ratio between HElib and the baseline; in other words, it is the
quotient between the two curves on the left graph. These figures demonstrate that the overhead of
homomorphic encryption grows as the circuits evaluated become deeper and more complex.

6.5 Key Generation

We found that key generation time and key size were highly correlated with the circuit depth d and
batch width `, but were not correlated with the number of inputs w. Note that the combinations
of d, `, w, and k were selected jointly for our test at IBM’s request, and thus the relationships
between the variables may be more complex than presented here.

Count 25
Mean 2.02 · 108

Std Dev 2.75 · 108

Min 9.28 · 105

Max 7.08 · 108

Table 6. Key sizes, in
bytes

Figure 9 presents a profile of key generation time varying as a function of
circuit depth d and batch width `. In the ranges that we tested, both generation
time and key size are linear in ` and quadratic in d. Our best-fit model of key
generation time is:

t = 0.07d2 − 1.21d+ 0.013`+ 1.4,

with an r2 value of 1.0. Table 6 also provides descriptive statistics for generated
key size.

6.6 Circuit Ingestion

Overall, HElib’s circuit ingestion is very fast, and is negligible compared to the time taken for other
parts of the scheme. We believe that the ingestion times we observed depended primarily on the

Ingestion

Count 81
Mean 0.009
Std Dev 0.017
Min 0.0
Max 0.119

Encryption

Count 999
Mean 0.033
Std Dev 0.304
Min 0.0
Max 5.694

Decryption

Count 999
Mean 0.116
Std Dev 0.36
Min 0.0
Max 5.091

Table 7. Circuit ingestion latency (left), encryption latency (middle), and decryption latency (right), in seconds

11



` Count Fresh CT size Evaluated CT size

6 306 5.41 KB 5.65 KB
42 300 203 KB 212 KB

378 121 593 KB 864 KB
600 51 3.60 MB 3.59 MB
630 60 1.66 MB 1.81 MB
682 151 4.16 MB 6.04 MB

1285 10 42.0 MB 46.8 MB

Table 8. Average sizes of fresh and evaluated ciphertexts, as a function of batch size

simple task of parsing rather than on any complexity of the performer’s scheme. Circuit description
sizes varied in the kilobyte to low megabyte range.

Some basic statistics about circuit ingestion latency are provided in Table 7. Our analysis
reveals that ingestion time was mildly correlated with `, but we attribute this to the fact that the
bit representation of a circuit description in our format increases with ` because gates that have a
constant parameter (such as “add a constant to the input” or “multiply by a constant”) require `
bits to describe.

6.7 Encryption and Decryption

The total encryption time was very fast, with our data (displayed in Table 7) showing that encryp-
tion took just 33 milliseconds on average. However, the collected data are contaminated because
IBM’s software did not adhere to our test harness’ communication protocol, so our encryption timer
erroneously included network transmission time.

Decryption time is also fast in HElib. While it can take up to 5 seconds for the largest cir-
cuits, even this amount of time is negligible compared to the hours such circuits would take for
homomorphic evaluation. See Table 7 for detailed statistics.

Finally, HEtest captures ciphertext sizes for both “fresh” ciphertexts (i.e., after encryption and
before evaluation) and “evaluated” ciphertexts (i.e., after evaluation and before decryption). A
summary of these data are shown in Table 8.

6.8 Homomorphic Evaluation

Evaluation time was highly correlated with d and w. It also showed a small correlation with `, but
the vast majority of this correlation can be explained as a result of the parameters being selected
jointly. The best-fit model for k = 80 is

t = 2.77d2 − 74.6d− 1.43w + 0.215wd+ 403,

with an r2 value of 0.991. Figure 9 shows a graph of evaluation time.

6.9 Evaluation Time By Gate Type

Finally, we ran several circuits through the performers’ system whereby all gates were of the same
type. These tests give us an indication of the time required to compute a single gate of each of the
various types supported by HElib. Our results are shown in Table 10. Here, our measurements are
averaged across all levels of a circuit. If a homomorphic encryption scheme has the property that

12



Fig. 9. Key generation time (left) and homomorphic evaluation time (right), in seconds

Gate Type Count Mean Std Dev Min Max

ADD 101 2.04 · 10−4 1.99 · 10−4 1.10 · 10−5 6.18 · 10−4

ADDconst 101 1.85 · 10−4 1.75 · 10−3 6.00 · 10−5 4.43 · 10−3

MULT 101 1.45 · 10−2 1.39 · 10−2 4.76 · 10−4 3.00 · 10−2

MULTconst 101 1.92 · 10−3 1.82 · 10−3 7.60 · 10−5 5.19 · 10−3

ROTATE 101 1.19 · 10−2 1.14 · 10−2 2.07 · 10−4 2.59 · 10−2

SELECT 101 1.72 · 10−3 1.62 · 10−3 6.10 · 10−5 3.60 · 10−3

Table 10. Evaluation time per gate, in seconds

the performance of gates various substantially by level, this analysis would not be useful. Due to
the special-purpose nature of single gate type tests, note that these data are not included in any
of the analyses done in the prior sections.

7 Conclusion

In this work, we built a comprehensive framework for the test and evaluation of homomorphic
encryption software with a focus on generalizability, test automation, and integration of test com-
ponents. We presented a case study application of our HEtest software to the IBM HElib software.
We stress though that our test framework can be easily adapted to test any other homomorphic
encryption software.

We have open-sourced HEtest under a BSD license [16]. We encourage interested readers
to download our code at https://www.ll.mit.edu/mission/cybersec/softwaretools/hetest/
hetest.html, and we welcome feedback about our software at hetest@ll.mit.edu.

8 Acknowledgements

The authors would like to thank the following people:

– Tim Meunier, for writing the parsers for the test harness output that transfer the test data into
the SQLite database.

13



– Oliver Dain, Nick Hwang and Ben Price, for their help with code reviews and general guidance
throughout the software engineering process.

– Mike Depot and John O’Connor, for their IT support during the tests.

References

1. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries using somewhat homomorphic
encryption. In: Applied Cryptography and Network Security. vol. 7954, pp. 102–118. Springer (2013)

2. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping.
In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. pp. 309–325. ITCS ’12,
ACM, New York, NY, USA (2012), http://doi.acm.org/10.1145/2090236.2090262

3. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: FOCS. pp.
97–106 (2011)

4. Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., Steiner, M.: Highly-scalable searchable symmetric
encryption with support for boolean queries. In: CRYPTO. LNCS, vol. 8042, pp. 353–373. Springer (2013)

5. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In:
EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer (2010)

6. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions
on Information Theory 31(4), 469–472 (1985)

7. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009), crypto.stanford.
edu/craig

8. Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption scheme. In: EUROCRYPT 2011.
vol. 6632, pp. 129–148. Springer (2011)

9. Gentry, C., Halevi, S., Smart, N.: Fully homomorphic encryption with polylog overhead. In: EUROCRYPT 2012.
LNCS, vol. 7237, pp. 465–482. Springer (2012), full version at http://eprint.iacr.org/2011/566

10. Gentry, C., Halevi, S., Smart, N.: Homomorphic evaluation of the AES circuit. In: CRYPTO 2012. LNCS, vol.
7417, pp. 850–867. Springer (2012), full version at http://eprint.iacr.org/2012/099

11. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Public Key
Cryptography - PKC 2012. LNCS, vol. 7293, pp. 1–16. Springer (2012)

12. Halevi, S., Shoup, V.: HElib. https://github.com/shaih/HElib, accessed: 2014-09-23
13. Halevi, S., Shoup, V.: Algorithms in HElib. In: CRYPTO 2014. vol. 8616, pp. 554–571. Springer (2014)
14. IARPA: Broad agency announcement IARPA-BAA-11-01: Security and privacy assurance research (SPAR) pro-

gram. https://www.fbo.gov/notices/c55e38dbde30cb668f687897d8f01e69 (February 2011)
15. MIT Lincoln Laboratory: HEtest. https://www.ll.mit.edu/mission/cybersec/softwaretools/hetest/

hetest.html (February 2011)
16. Open Source Initiative: The BSD 2-clause license. http://opensource.org/licenses/BSD-2-Clause, accessed:

2014-09-23
17. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: EUROCRYPT. pp.

223–238. Springer (1999)
18. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: Protecting confidentiality with en-

crypted query processing. In: ACM Symposium on Operating Systems Principles (SOSP 2011) (2011)
19. Rabin, M.O.: Digitalized signatures and public-key functions as intractable as factorization. MIT Laboratory for

Computer Science. http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-212.pdf (January 1979)
20. Raykova, M., Cui, A., Vo, B., Liu, B., Malkin, T., Bellovin, S.M., Stolfo, S.J.: Usable, secure, private search.

IEEE Security & Privacy 10(5), 53–60 (2012)
21. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Foundations of Secure

Computation pp. 169–180 (1978)
22. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems.

Commun. ACM 21(2), 120–126 (1978)
23. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In:

Public Key Cryptography – PKC 2010. LNCS, vol. 6056, pp. 420–443 (2010)
24. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. In: Designs, Codes and Cryptography.

Springer (2011)
25. Varia, M., Price, B., Hwang, N., Cunningham, R., Hamlin, A., Herzog, J., Poland, J., Reschly, M., Yakoubov, S.:

Automated assessment of secure search systems. Operating Systems Review (OSR) Special Issue on Repeatability
and Sharing of Experimental Artifacts (2015)

26. Yang, Y.: Evaluation of Somewhat Homomorphic Encryption Schemes. Master’s thesis, Massachusetts Institute
of Technology (2013)

14


