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Abstract. Recently, Döttling et al. (ASIACRYPT 2012) proposed the
first chosen-ciphertext (IND-CCA) secure public-key encryption scheme
from the learning parity with noise (LPN) assumption. In this work we
give an alternative scheme which is conceptually simpler and more effi-
cient. At the core of our construction is a trapdoor technique originally
proposed for lattices by Micciancio and Peikert (EUROCRYPT 2012),
which we adapt to the LPN setting. The main technical tool is a new
double-trapdoor mechanism, together with a trapdoor switching lemma
based on a computational variant of the leftover hash lemma.

1 Introduction

The Learning Parity with Noise (LPN) problem has found a wide range of appli-
cations in symmetric cryptography, including encryption [1] and authentication
[2,3,4]. Public-key primitives seem considerably harder to achieve. In particular,
it is still an open problem to construct a public-key encryption scheme from
the (standard) LPN problem. The LPN problem is very attractive, because of
its similarity to the well-studied syndrome decoding problem and its assumed
hardness in a post-quantum world. Further, many LPN based schemes are very
efficient, such that they can be used even in low-cost RFID devices.

The first step towards a public-key encryption (PKE) scheme from LPN was
made by Alekhnovich [5] who proposed a chosen-plaintext (IND-CPA) secure
PKE based on a low-noise variant of LPN (low-noise LPN). A straightforward
variant of Alekhnovich’s PKE scheme can be seen as the LPN analog of Regev’s
encryption scheme from the learning with errors (LWE) problem. The LPN prob-

lem states that the distribution DLPNn,m,p = {(A,As + e) | A
$← Zm×n2 , e

$←
Bmp , s

$← Zn2} is indistinguishable from uniform, where Bp is the the Bernoulli
distribution with parameter p, i.e., Pr[x = 1 : x ← Bp] = p. Whereas in stan-
dard LPN the Bernoulli parameter p is constant (p = 0.1 is a typical choice),
in low-noise LPN we have p = Θ(1/

√
n), where n is the dimension of the LPN
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secret. When we decrease the Bernoulli parameter p, the LPN problem can only
become easier. Indeed, while the best known algorithm for solving standard LPN
runs in time 2O(n/ logn) [6], low-noise LPN can be solved in time 2O(

√
n). Hence,

for low-noise LPN, the dimension of the LPN secret has to be increased accord-
ingly, which results in less efficient schemes. See also [7] for concrete efficiency
considerations.

CCA-secure encryption from low-noise LPN. Recently, Döttling, Müller-
Quade and Nascimento [8] showed how to extend Alekhnovich’s IND-CPA secure
scheme in order to get a chosen-ciphertext (IND-CCA) secure scheme. Like for
Alekhnovich’s scheme, their security proof is in the standard model (in partic-
ular, no random oracles), and relies on the low noise LPN assumption. During
decryption only a certain part of the secret key is known and a q-ary erasure
code is used to reconstruct the missing parts. Due to the additional overhead of
the erasure code, the scheme has to add matrices B1, . . . ,Bq to the public-key,
where the parameter q is estimated in [8] to be at least 400.3 Hence the com-
plexity of the scheme is estimated to be a couple of hundred times worse than
Alekhnovich’s scheme.

CCA-secure encryption from LWE. In a work predating [8], Micciancio
and Peikert [9] extended Regev’s LWE-based encryption scheme into a simple
and efficient IND-CCA secure encryption scheme. Both schemes are randomness-
recovering, but unlike [8], the scheme from [9] does not use erasure codes which
results in considerably more compact (public and secret) keys.

This raises the question, whether it’s possible to shorten the keys in the
LPN setting by using the techniques from [9]. Unfortunately, it turns out that a
straight forward application of their techniques will not work. Informally, using
the leftover hash lemma as in [9] in the (binary) LPN setting results in an error
that cannot be corrected using error correcting codes.

1.1 Our Contributions

In this work, we propose a simple and efficient IND-CCA secure PKE scheme
from low-noise LPN. Compared to the IND-CPA secure scheme by Alekhnovich,
we only loose roughly a factor two in efficiency.4

At a technical level, we design a new (tag-based) double trapdoor function
which has two independent trapdoors. Each of these trapdoors depends on a
hidden tag. If the function is evaluated with respect to a hidden tag, the corre-
sponding trapdoor disappears and the function is hard to invert. For all other
tags, the function can be inverted efficiently using one of the trapdoors. Our
switching lemma (Lemma 4) shows that, under the LPN assumption, the hidden
tags contained in the trapdoors can be switched without being noticed by any
efficient adversary. The main difference to [9] is that we replace the leftover hash

3 Stating a more exact value for q is difficult as in [8] no upper bound is given and the
analysis is only sketched.

4 Interestingly, the factor two between IND-CPA and IND-CCA security is also ob-
served in the Diffie-Hellman world [10,11] and in the lattice world [12].



lemma by a computational variant based on the LPN problem with low noise.
We use this double-trapdoor function to construct a tag-based encryption (TBE)
scheme. (The latter can be efficiently transformed into a CCA-secure encryption
scheme [13].) During the security reduction from low-noise LPN, we replace the
first hidden tag with the challenge tag. Since this step is only computationally
indistinguishable we have to give a security reduction in which the simulator has
no access to the trapdoor being switched to the challenge tag. Here the second
trapdoor is used to answer decryption queries correctly. Once both hidden tags
are switched to the challenge tag, the simulator is not able to decrypt a message
related to this challenge tag which allows us to argue about indistinguishability
of the PKE scheme. We remark that previous LPN or LWE-based switching
techniques (e.g., [9]) relied on purely statistical arguments such that a second
trapdoor was not needed for simulating the decryption queries.

Efficiency. This tag-based encryption scheme directly implies a CCA-secure
PKE scheme [13]. Compared to [8], this results in much smaller key sizes and
comparable ciphertext size. Concretely, our scheme only has to add two matrices
B0,B1 to the public-key and hence we expect the keys of our scheme be to a
couple of hundred times smaller than that of [8]. We remark that our techniques
can be extended to the case of LWE, but the resulting scheme is worse than the
one from [9]. While for LPN replacing the leftover hash lemma is necessary to
decrease the weight of the error, replacing the leftover hash lemma in the LWE
setting actually has the opposite effect.

1.2 Open Problems

Designing an IND-CPA secure PKE from LPN with constant noise remains an
open problem. Already a construction with any noise level ω(1/

√
n) would be

interesting to achieve.

2 Preliminaries

We use bold lower-case letters like a ∈ Zn2 to denote vectors and bold upper-case
letters like A ∈ Zn×n2 for matrices. With |a| we denote the Hamming weight (i.e.,

the number of 1’s) of a. We denote by x
$← X that x is sampled according to

the distribution X. If X is a set, then this denotes that x is sampled uniformly
at random from X. Instead of using ⊕ for addition modulo 2, we use + and −
to get a more generic construction, which adapts more easily to larger fields (for
which addition and subtraction is not the same) as used in the LWE assumption.

2.1 The Bernoulli Distribution

Bp denotes the Bernoulli distribution with parameter 0 ≤ p ≤ 1/2, i.e., x
$← Bp

is the random variable over {0, 1} with Pr[x = 1] = p. To bound the tail of
the sum of independent Bernoulli random variabels, we will use the following
Chernoff bounds



Chernoff bound: For d
$← Bmp and δ > 0:

Pr
d

[|d| > (1 + δ)pm] < e−
min(δ,δ2)

3 pm (1)

in particular, for δ = 1 Pr
d

[|d| > 2pm] < e−pm/3 (2)

2.2 Learning Parity with Noise

Let n ∈ N be the size of the secret solution vector, m > n the number of the
given samples and 0 ≤ p ≤ 1/2 the Bernoulli parameter of the noise distribution.

The LPNn,m,p Problem. The LPNn,m,p problem is the problem of solving a
set of linear equations perturbed by some noise. To define the decision version
of LPN we consider the distribution

DLPNn,m,p = ((A,As + e) | A $← Zm×n2 , e
$← Bmp , s

$← Zn2 ).

The challenge is to distinguish DLPNn,m,p from uniform (A,b) ∈ Zm×n2 × Zm2 .
The advantage of an algorithm A in breaking the LPNn,m,p assumption is

AdvLPNn,m,p(A) = |Pr[A(A,b) = 1]− Pr[A(A′,b′) = 1]|,

where (A,b)
$← DLPNn,m,p and (A′,b′)

$← Zm×n2 × Zm2 .
The hardness of LPNn,m,p depends on the choice of the secret size n, the

amount of samples m and the error distribution Bp. Whereas in the standard
LPN assumption the Bernoulli parameter p is constant, we use the ”low-noise”
version with p ≈ 1/

√
n.

Below we introduce two variants of LPNn,m,p which we’ll use in our construc-
tion, both variants are basically equivalent to the standard LPNn,m,p assump-
tion.

Knapsack LPN. The knapsack LPN distribution [14] is

DKLPNmn,m,p
= ((A,EA) | A $← Zm×(m−n)2 , E

$← Bm×mp ).

and the advantage of an A is defined as

AdvKLPNmn,m,p
(A) = |Pr[A(A,EA) = 1]− Pr[A(A,B′) = 1]|,

where (A,EA)
$← DKLPNmn,m,p

and B′
$← Zm×(m−n)2 .

Knapsack LPN is as hard as LPN, the reduction stated below loses a factor
of m due to a standard hybrid argument because we directly defined the m-fold
knapsack LPN distribution (i.e., E contains m vectors, not just one).

Lemma 1. For all algorithms B there exists an algorithm A that runs in roughly
the same time as A and AdvLPNn,m,p(A) ≥ 1

mAdvKLPNmn,m,p
(B).



Extended Knapsack LPN. The Knapsack LPN problem remains hard in the
presence of additional leakage Ez about E. The extended knapsack EKLPN
distribution is defined as

DEKLPNmn,m,p
= ((A,EA, z,Ez) | A $← Zm×(m−n)2 , E

$← Bm×mp , z
$← Bmp )

and A’s advantage is

AdvEKLPNmn,m,p(A) = |Pr[A(A,EA, z,Ez) = 1]− Pr[A(A,B, z,Ez) = 1]|,

where (A,EA, z,Ez)
$← DEKLPNmn,m,p

and B
$← Zm×(m−n)2 .

The following lemma is a special case of [15, Theorem 3.1], who use a more
general notion of the ELWE problem based on LWE and the leakage vector z is
sampled from an arbitrary distribution (not just Bmp ).

Lemma 2. For all algorithms B there exists an algorithm A that runs in roughly
the same time as A and AdvLPNn,m,p(A) ≥ 1

2mAdvEKLPNmn,m,p
(B).

2.3 Asymptotically Good Codes

In order to state the security of our scheme in asymptotic terms we need asymp-
totically good linear codes, these are [m,Rm, δm] codes with a constant rate R,
constant relative distance δ and arbitrary large block length m. Moreover, we
want the code to be efficiently constructible in order to get a uniform construc-
tion, and of course encoding and decoding need to be efficient to get an efficient
scheme. Such codes exist:

Lemma 3 ([16]). For any rate 0 < R < 1, there exists a binary linear error-
correcting code family which is polynomial time constructible, encodable and de-
codable and can decode from up to b δn2 c errors where δ ≈ 1

2 (1−R).

We emphasis, that for concrete instantiations of the scheme, an arbitrary, suit-
able error correction code can be used and the asymptotic behavior is not im-
portant.

2.4 Game-Based Proofs

We use game-based proofs [17]. A game G consists of an Initialize and a Finalize
procedure, and possibly other procedures. An adversary A is executed in the
game by first calling Initialize. Next, he can make arbitrary calls to the other
procedures, some multiple times, some only once, depending on the specification
of G. Finally, A makes one single call to Finalize which ends the game. The
output of the game, denoted as GA, is defined as the output of Finalize.



2.5 Tag-Based Encryption

A tag-based encryption scheme with tag-space T and message-space M consist
of the following three PPT algorithms TBE = (Gen,Enc,Dec).

– Gen(1k) outputs a secret key sk and a public key pk .
– Enc(pk , τ,M ) outputs a ciphertext c of M ∈M with respect to tag τ ∈ T .
– Dec(sk , τ, C) outputs the decrypted message M of ciphertext C with respect

to tag τ ∈ T , or ⊥.

We require the standard correctness condition Dec(sk , τ,Enc(pk , τ,M )) = M
for all τ,M and all (sk , pk) in the range of Gen(·). To define security, let the
advantage of an adversary A in the selective-tag weak CCA game [18] be

AdvTBE(A) =

∣∣∣∣Pr[GA
TBE = 1]− 1

2

∣∣∣∣ ,
where the games defining GTBE are defined in Figure 1. Here the term selective
models the fact that A has to commit to the challenge tag τ∗ in the beginning,
before seeing the public-key.

Initialize(τ∗)

(sk , pk)← Gen(1k)
Return pk

Challenge(M0,M1) //one time

bM
$← {0, 1};

Return Enc(pk , τ∗,MbM )

Finalize(d)
Return (bM = d)

queryDec(τ, C)//many times
If τ 6= τ∗ return Dec(sk , τ, C)
Else return ⊥

Fig. 1. Games constituting GTBE.

To construct an IND-CCA secure PKE, it is sufficient to construct a secure
TBE (in the above sense) with tag-space T exponential in n [18]. The overhead
of this transformation is small. It essentially consists of a one-time signature or
a message-authentication code plus a commitment.

3 Tag-Based Encryption

3.1 Double Trapdoor Generator

We use a matrix representation Hτ ∈ Zn×n2 for finite field elements τ ∈ F2n

[19,12]. The structure of a finite field implies certain properties: Hτ + Hτ ′ =
Hτ+τ ′ and 0 = H0 for the zero element of the field. In particular all matrices
Hτ −Hτ ′ = Hτ−τ ′ 6= H0 for τ 6= τ ′ are invertible.



Let n and m be two parameters and let G ∈ Zm×n2 be a generator matrix
for an efficiently decodable code. (This was called gadget matrix in [9].) The
trapdoor generator is the following PPT algorithm which takes as input two
tags τ0, τ1 ∈ F2n :

Gentd(1n, τ0, τ1)→ (T0,T1, ek). Sample T0,T1
$← Bm×mp and A

$← Zm×n2

Let B0 := T0A−GHτ0 , B1 := T1A−GHτ1 and ek = (A,B0,B1)

Initialize(t , τ0, τ1, τ
′)//Greal

(T0,T1, ek)← Gentd(1n, τ0, τ1)

z
$← Bmp ; T

$← Bm×mp ;
Return (Tt , ek , z,Tz)

Initialize(t , τ0, τ1, τ
′)//Guniform

(T0,T1, ek)← Gentd(1n, τ0, τ1);
Parse ek = (A,B0,B1)

B′t := Bt ; B′t
$← Zm×n2 ;

ek ′ := (A,B′0,B
′
1);

z
$← Bmp ; T := Tt ;

Return (Tt , ek
′, z,Tz)

Initialize(t , τ0, τ1, τ
′)//Gcorr

τ ′t := τt ; τ ′t := τ ′;
(T0,T1, ek)← Gentd(1n, τ ′0, τ

′
1);

z
$← Bmp ; T := Tt ;

Return (Tt , ek , z,Tz)

Finalize(d) //Greal,uniform,corr

Return d

Fig. 2. Procedures defining games Greal, Guniform, Gcorr. Here ek := (A,B0,B1) =
(A,T0A−GHτ0 ,T1A−GHτ1) as defined in Section 3.1.

Looking ahead, a trapdoor Ti (i ∈ {0, 1}) output by Gentd(1n, τ0, τ1) can be
used to invert the tag-based trapdoor function

fτ (s, e, e′0, e
′
1) = (As + e, (GHτ + B0)s + e′0, (GHτ + B1)s + e′1).

whenever τ 6= τi (for one i ∈ {0, 1}) and the error Tie + e′i is small enough,
so it can be corrected (using the code given by G) as follows: given (c, c0, c1)
(= fτ (s, e, e′0, e

′
1)), compute

(
Ti I

)
·
(
−c ci

)ᵀ
= GHτ−τis−Tie + e′i, use error

correction to decode Hτ−τis, and then the invertability of Hτ−τi (recall that we
assume τ 6= τi) to reconstruct s The remaining inputs e, e′0, e

′
1 can now easily

be computed.

The ”switching lemma” below states that under the LPN assumption, the
output of the trapdoor generator computationally hides the tags τ0, τ1, even if
there is some additional information about the trapdoor leaked. This lemma
will allow us to switch either τ0 or τ1 to an arbitrary tag τ ′ ∈ Zn2 . During the
switching procedure, we still have access to the other trapdoor. This allows us
to answer decryption queries during a CCA security proof.



Lemma 4. For every PPT algorithm A there exists a PPT algorithm B such
that:

|Pr[GA
real = 1]− Pr[GA

corr = 1]| ≤ 3m ·AdvLPNm−n,m,p(B).

where games Greal and Gcorr are defined in Figure 2.

Proof. The proof follows by the following two equations combined with Lemma 1
and 2

|Pr[GA
real = 1]− Pr[GA

uniform = 1]| ≤ AdvKLPNmn,m,p
(B) (3)

|Pr[GA
corr = 1]− Pr[GA

uniform = 1]| ≤ AdvEKLPNmn,m,p
(B), (4)

where game Guniform is also defined in Figure 2.
To prove (3) we construct an algorithm B which on input a DKLPNmn,m,p

or a

random sample, simulates GA
real or GA

uniform, respectively. B(A,B) simulates A’s
view as follows.

Initialize(t , τ0, τ1, τ
′)

z
$← Bmp ; T,Tt

$← Bm×mp ;
Bt := TtA−GHτt ; Bt := B−GHτt ;
ek := (A,B0,B1);
Return (Tt , ek , z,Tz)

Finalize(d)
Return d

We now analyse B(A,B)’s simulation. A is always uniform, z and Tz are
distributed as in the real and random game. B generates τt , Tt and Bt exactly
as Gentd.

KLPN Case: B = TtA implies that Bt = TtA−GHτt has the same distribu-
tion as in Greal. Hence B simulates Greal and Pr[GA

real = 1] = Pr[B(A,B) =

1 | (A,B)
$← DKLPNmn,m,p

].
Uniform Case: B is uniform and this implies that Bt is uniform, too. Since

Bt is independent of Tt , Tz has the correct distribution. Hence B simulates
Guniform and Pr[GA

uniform = 1] = Pr[B(A,B) = 1 | (A,B) uniform].

This concludes the proof of (3).
To prove (4) we use the EKLPNm

m−n,m,p assumption. We reuse B, now with
input B(A, z,B,b) and change it slightly by setting Bt := B −GHτ ′ and re-
placing Tz by b = Ttz during the Initialize procedure. With almost the same
argument B simulates in the uniform case Guniform and in the LPN case Gcorr

correctly.

3.2 Description of the Scheme

Our scheme uses the following parameters whose concrete choices will be justified
later.

– The dimension n of the LPN secret (with n = Θ(k2)) and m ≥ 2n controlling
the security of the scheme. (See Theorem 2.)



– A constant 0 < c < 1/4 defining:
• The Bernoulli parameter p =

√
c/m.

• The bounding parameter β = 2
√
cm to check consistency during decryp-

tion.
• A binary linear error-correcting code G : Zn2 → Zm2 which corrects up

to αm errors for some α with 4c < α < 1.
– Further, we use an efficient error correcting code with generator matrix G2 :
M → Z`2 where the parameter ` ≥ m is chosen such that the encoding
scheme is able to correct at least 2`

√
c/
√
m = 2`p errors (note that G must

correct a constant fraction of errors, whereas G2 only needs to correct a
square root fraction).

The following three algorithms describe our TBE = (Gen,Enc,Dec) based on
LPN with tag space T = F2n \ {0}:

Gen(1k)→ (sk , pk). The algorithm calls the trapdoor generator Gentd(1n, 0, 0)→
(T0,T1, (A,B0,B1)) and picks C

$← Z`×n2 . The private and public key is
defined as

sk := (0,T0) ∈ Zn2 × Zm×m2 , pk := (A,B0,B1,C) ∈ (Zm×n2 )3 × Z`×n2 .

(Recall that Bi = TiA.)
Enc(pk , τ,M )→ C = (c, c0, c1, c2). The algorithm picks

e1
$← Bmp ; e2

$← B`p; T′0,T
′
1

$← Bm×mp and s
$← Zn2

and defines

c := As + e1 ∈ Zm2
c0 := (GHτ + B0)s + T′0e1 ∈ Zm2
c1 := (GHτ + B1)s + T′1e1 ∈ Zm2
c2 := Cs + e2 + G2(M ). ∈ Z`2

Dec(sk , τ, C)→ (M or ⊥). The algorithm parses sk = (τ0,T0) and computes

c̃0 :=
(
T0 I

)
·
(
−c
c0

)
(= GHτ−τ0s + (T′0 −T0)e1).

Then it uses the error correction property of G to reconstruct Hτ−τ0s (from
the error (T′0 −T0)e1), and further computes s = H−1τ−τ0Hτ−τ0s. If

| c−As︸ ︷︷ ︸
e1

| ≤ β ∧ | c0 − (GHτ + B0)s︸ ︷︷ ︸
T′0e1

| ≤ αm

2
∧ | c1 − (GHτ + B1)s︸ ︷︷ ︸

T′1e1

| ≤ αm

2

(5)
is true, compute c2 − Cs = G2(M ) + e2 and reconstruct (using the error
correction property of G2) M and output it, otherwise output ⊥.



The scheme has a couple of straightforward simplifications which we did not
apply in order to facilitate the proof. First, τ0 = 0 can be omitted from sk and
the description of the scheme. Second, the matrix B1 can be chosen uniformly.
(The latter is shown implicitly in the proof.)

We also remark that that scheme is randomness-recovering and can therefore
also be seen as an adaptive tag-based trapdoor function [13], where the domain
consists of sampling (s, e1,T

′
0e1,T

′
1e1, e2) as in Enc.

A discussion how to transform the TBE scheme into a IND-CCA secure
encryption scheme is done in Appendix A.

3.3 Correctness and Equivalence of the Trapdoors

Theorem 1 (Corectness). Let G, G2 be the codes given above. Then with
overwhelming probability over the choice of the public and secret keys and for
all τ ∈ T , M ∈M, Dec(sk , τ, C) outputs M with overwhelming probability over
C ← Enc(pk , τ,M ).

Proof. We start with showing why the chosen β = 2
√
cm, p =

√
c/m are suitable

for our application. The Chernoff bound 2 yields:

Pr
e

$←Bmp

[|e| > β︸︷︷︸
=2pm

] < e−pm/3 = 2−Θ(
√
m) (6)

The analysis of our choice of the constants 4c < α < 1 is a bit more involved. We
start by upper bounding the probability p′ that the inner product tTe of e with

a vector t
$← Bmp is 1, assuming the Hamming weight of e is at most β. Note

that a necessary condition for tTe = 1 is that t[i] = 1 for at least one of the i’s
where e[i] = 1. We use this in the second step below, the third step follows by
the union bound

p′ = Pr
t

[tTe = 1 | |e| ≤ β] ≤ Pr
t

[∃i : (e[i] = 1) ∧ (t[i] = 1) | |e| ≤ β] ≤ βp = 2c

Let T
$← Bm×mp . By the Chernoff bound (1) we have with δ = α/(2p′)− 1 (note

that p′ ≤ 2c < α/2)

Pr
T

[
|Te| > α

2
m | |e| ≤ β

]
= Pr

T
[|Te| > (1 + δ)p′m||e| ≤ β] < e−

min(δ,δ2)
3 p′m.

(7)

Now δp′ = α/2 − p′ ≥ α/2 − 2c > 0 and δ = α/(2p′) − 1 ≥ α/(4c) − 1 > 0 are
lower bounded by constants and therefore

Pr
T

[
|Te| > α

2
m | |e| ≤ β

]
< e−

min(δ,δ2)
3 p′m = 2−Θ(m). (8)

As C is a properly generated ciphertext

|e1| ≤ β ∧ |T0e1| ≤
αm

2
∧ |T1e1| ≤

αm

2



holds with overwhelming probability 1 − 2−Θ(
√
m) by (6) and (8), assume this

is the case. Then by the error correction property of the code G we decode
the correct s from c̃0 := GHτ−τ0s + (T′0 −T0)e1 since the error term satisfies
|(T′0 −T0)e1| ≤ αm. Moreover, the consistency check 5 will pass.

It remains to show that the correct message M is reconstructed. We use G2 to
derive M from c2−Cs = e2+G2(M ), which gives the correct M if the Hamming

weight of e2
$← B`p lies within the 2`

√
c/
√
m = 2`p bits error correction capacity

of G2. Using the Chernoff bound 2 we can upper bound the probability of this
not being the case (the last step uses ` ≥ m, which we assumed is the case)

Pr
e2

[|e2| > 2`p] < e−`p/3 = e−`
√
c/3
√
m = 2−Ω(

√
m)

The next lemma will be central in our security proof. It states that the
output distribution of a decryption oracle is basically independent of which of
two possible secret keys the oracle uses to decrypt.

Lemma 5. Let Dec0 = Dec and let Dec1 be defined like Dec, except that c1
instead of c0 is used to reconstruct s. Then, with overwhelming probability over
the choice of the public and secret keys, Dec0 and Dec1 have the same output
distribution: Let (T0,T1, (A,B0,B1))← Gentd(1n, τ0, τ1), sk0 = (τ0,T0), sk1 =

(τ1,T1) and pk := (A,B0,B1,C) with C
$← Z`×n2 . Then

Pr
pk ,sk0,sk1

[∀τ0, τ1, τ /∈ {τ0, τ1}, C : (Dec0(sk0, τ, C) = Dec1(sk1, τ, C)] ≥ 1− 2−Θ(m)

Proof. If M = Dec0(sk0, τ, C = (c, c0, c1, c2)), then by the consistency check (5)
of Dec = Dec0 we reconstruct some s where

e := c−As with |e| ≤ β
∧ t0 := c0 − (GHτ + B0)s with |t0| ≤ αm/2
∧ t1 := c1 − (GHτ + B1)s with |t1| ≤ αm/2

Using the above notation, the computation of Dec1(sk1, τ, C) can be expressed
as

c̃1 := c1 −T1c = (GHτ + B1)s + t1 −T1As−T1e = GHτ−τ1s + t1 −T1e.

Dec1(sk1, τ, C) reconstructs the same s if the error term |t1−T1e| is at most
≤ αm. We already know that |t1| ≤ αm/2. Thus, by the triangle inequality it is
sufficient to show |T1e| ≤ αm/2 to guarantee the correct decoding of s. By (8),
the probability that this is the case when we chose some e satisfying |e| = β′

(for any β′ ≤ β) at random, is

Pr
e,|e|=β′,T1

[|T1e| ≤ αm/2] ≥1− 2−Θ(m),

We need the above to hold fore every small e, not just a randomly chosen one.
Taking the union bound over all 2log(m)O(

√
m) possible e ∈ Zm2 satisfying |e| ≤

β = 2
√
cm = Θ(

√
m) we further get

Pr
T1

[∀e, |e| ≤ β : |T1e| ≤ αm/2] ≥ 1− 2−Θ(m)+log(m)O(
√
m) = 1− 2−Θ(m)



This shows that with overwhelming probability over the choice of T1 the same
s, and thus also the same message M is computed by Dec1(sk1, τ, C). The proof
that whenever Dec1 outputs some M 6= ⊥, then Dec0 must output the same M
(with overwhelming probability over the choice of T0) is symmetric.

3.4 Proof of Security

Theorem 2 (CCA Security). If the LPN assumption holds, TBE from Sec-
tion 3.2 is secure against selective-tag weak CCA adversaries. In particular, for
every PPT algorithm A there exist PPT algorithms B and C with roughly the
same running time, such that:

AdvTBE(A) ≤ 6m ·AdvLPNm−n,m,p(B) + AdvLPNn,m+`,p
(C) + negl(n).

Proof. Let A be an adversary attacking TBE. The games used in the proof are
given in Figure 3, where G1 is the same as the original TBE security game from
Figure 1.

Initialize(τ∗) //G1

(T0,T1, ek)← Gentd(1n, 0, 0);

e∗
$← Bmp ; s∗

$← Zn2 C
$← Z`×n2 ;

c∗ := As∗ + e∗;

T∗0
$← Bm×mp ; c∗0 := (GHτ∗ + B0)s∗ + T∗0e

∗

T∗1
$← Bm×mp ; c∗1 := (GHτ∗ + B1)s∗ + T∗1e

∗

sk = (0,T0);
Return pk := (ek ,C)

Initialize(τ∗) //G2,3

(T0,T1, ek)← Gentd(1n, 0, τ∗);

e∗
$← Bmp ; s∗

$← Zn2 C
$← Z`×n2

c∗ := As∗ + e∗;

T∗0
$← Bm×mp ; c∗0 := (GHτ∗ + B0)s∗ + T∗0e

∗

T∗1 := T1; c∗1 = T∗1c
∗;

sk = (0,T0); //G2

sk = (τ∗,T1); //G3

Return pk := (ek ,C)

Initialize(τ∗) //G4,5

(T0,T1, ek)← Gentd(1n, τ∗, τ∗)

e∗
$← Bmp ; s∗

$← Zn2 ; C
$← Z`×n2

c∗ := As∗ + e∗; //G4

c∗
$← Zm2 ; //G5

T∗0 := T0; c∗0 = T∗0c
∗

T∗1 := T1; c∗1 = T∗1c
∗

sk = (τ∗,T1)
Return pk := (ek ,C)

queryDec(τ, C) //G1−5

If (τ = τ∗) Return ⊥
Return Dec(sk , τ, C)

Finalize(d) //G1−5

Return (bM = d)

Challenge(M0,M1) //G1−4

bM
$← {0, 1};

e∗2
$← B`p;

c∗2 := Cs∗ + e∗2 + G2(MbM )
Return C∗ = (c∗, c∗0, c

∗
1, c
∗
2)

Challenge(M0,M1) //G5

c∗2
$← Z`2

Return C∗

Fig. 3. The different procedures of the games 1 to 5. G1 is exactly the same as GTBE,
where the message-independent part of a Challenge query is already pre-computed in
Initialize.

From G1 to G2 we switch the hidden trapdoor tag of trapdoor T1 from 0 to
τ∗.

Lemma 6. There exists a PPT algorithm B such that

|Pr[GA
1 = 1]− Pr[GA

2 = 1]| ≤ |Pr[GB
real = 1]− Pr[GB

corr = 1]|
≤ 3m ·AdvLPNm−n,m,p(B),

where games Greal and Gcorr are defined in Figure 2..



Proof. We describe algorithm B who simulates G1 in Greal or G2 in Gcorr.

Initialize(τ∗)
(ek ,T0, e

∗,T∗1e
∗)← Initialize(0, 0, 0, τ∗);

C
$← Z`×n2 ; s∗

$← Zn2 ;
c∗ := As∗ + e∗;

T∗0
$← Bm×mp ;

c∗0 := (GHτ∗ + B0)s∗ + T∗0e
∗;

c∗1 := (GHτ∗ + B1)s∗ + T∗1e
∗;

Return pk := (ek ,C)

queryDec(τ, C)
If (τ = τ∗) Return ⊥
Return Dec(sk = (0,T0), τ, C)

Challenge(M0,M1)

bM
$← {0, 1};

e∗2
$← B`p;

c∗2 := Cs∗ + e∗2 + G2(MbM )
Return C∗

Finalize(d)
Finalize(bM = d)

The definition of Greal and Gcorr imply the correctness of the output of
Initialize. e∗ and T∗1e

∗ have the correct distribution, too. Hence B simulates
G1 in Greal or G2 in Gcorr. The Lemma follows using Lemma 4.

In a next lemma we show that the adversary isn’t able to distinguish whether
the simulator uses the trapdoor T0 or T1 to answer decryption queries. To show
this lemma, we use equivalence of the trapdoors shown in Lemma 5.

Lemma 7. |Pr[GA
2 = 1]− Pr[GA

3 = 1]| ≤ negl(n).

Proof. We have to prove that an adversary can’t figure out which trapdoor is
used to answer decryption queries. Otherwise he is able to distinguish G2 from
G3. Lemma 5 already shows that Dec has the same output for two different
trapdoors with overwhelming probability, if the tags related to the trapdoors
are not queried. In our case, τ0 and τ1 are either 0 or τ∗. The adversary is
not allowed to query 0 6∈ T and τ∗. Hence he has only a negligible chance to
distinguish G2 and G3

From G3 to G4 we switch the hidden trapdoor tag of trapdoor T0 from 0 to
τ∗. Its proof is analogue to the one of Lemma 6 and therefore omitted.

Lemma 8. There exists a PPT algorithm B such that

|Pr[GA
3 = 1]− Pr[GA

4 = 1]| ≤ |Pr[GB
real = 1]− Pr[GB

corr = 1]|
≤ 3m ·AdvLPNm−n,m,p(B),

where games Greal and Gcorr are defined in Figure 2.

In game G5, the last game, we make the challenge ciphertext independent of
the plaintexts M0 and M1.

Lemma 9. There exists a PPT algorithm C such that

|Pr[GA
4 = 1]− Pr[GA

5 = 1]| ≤ AdvLPNn,m+`,p
(C).



Proof. We give a description of C and show, that he simulates G4 and G5 cor-
rectly. C receives a LPN challenge (A,C), (bA,bC) where (bA,bC) = (As +
e1,Cs + e2) or uniform.

Initialize(τ∗)

T0,T1
$← Bm×mp ;

B0 := T0A−GHτ∗ ;
B1 := T1A−GHτ∗ ;
c∗ := bA;
T∗0 := T0; c∗0 := T∗0bA;
T∗1 := T1; c∗1 := T∗1bA;
Return pk := (A,B0,B1,C)

queryDec(τ, C)
If (τ = τ∗) Return ⊥
Return Dec((τ∗,T1), τ, C)

Challenge(M0,M1)

bM
$← {0, 1};

c2 := bC + G2(MbM )
Return C∗

Finalize(d)
Finalize(bM = d)

Now we analyse if C simulates correctly. First note that A and C are uniformly
distributed, as required.

LPN Case: bA = As + e1 and bC = Cs + e2. To show that G4 is simulated
correctly, we have to show, that the distribution of c∗ is correct. We implicitly
set s∗ = s, e∗1 = e1 and e∗2 = e2.

c∗ := bA = As∗ + e∗1

c∗0 := T∗0bA = (GHτ∗ −GHτ∗ + T∗0A)s∗ + T∗0e
∗
1 = (GHτ∗ + B0)s∗ + T∗0e

∗
1

c∗1 := T∗1bA = (GHτ∗ + B1)s∗ + T∗1e
∗
1

c∗2 := bC + G2(MbM ) = Cs∗ + e∗2 + G2(MbM ).

Uniform Case: c∗2 is independent of MbM since bC is uniformly distributed
and hence bC + G2(MbM ) is uniform, too. In this case, C simulates G5.

In G5, the challenge ciphertext is independent of the message and hence from
the challenge bit bM . The best, an adversary can do now, is to guess bM and
output the guess.

Lemma 10. Pr[GA
5 = 1] = Pr[GA

5 = 0] = 1
2 .



Combining the Lemmas 6–10 concludes the theorem:

AdvTBE(A)

=

∣∣∣∣Pr[GA
TBE = 1]− 1

2

∣∣∣∣
≤
∣∣∣∣Pr[GA

2 = 1] + 3m ·AdvLPNm−n,m,p(B)− 1

2

∣∣∣∣
≤
∣∣∣∣Pr[GA

3 = 1] + negl(n) + 3m ·AdvLPNm−n,m,p(B)− 1

2

∣∣∣∣
≤
∣∣∣∣Pr[GA

4 = 1] + negl(n) + 6m ·AdvLPNm−n,m,p(B)− 1

2

∣∣∣∣
≤
∣∣∣∣Pr[GA

5 = 1] + AdvLPNn,m+`,p
(C) + negl(n) + 6m ·AdvLPNm−n,m,p(B)− 1

2

∣∣∣∣
≤ 6m ·AdvLPNm−n,m,p(B) + AdvLPNn,m+`,p

(C) + negl(n).
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A IND-CCA Secure Encryption

There are generic constructions to transform a TBE to an IND-CCA PKE. [20]
is based on one-time signatures (OTS). The other one is based on a message
authentication code (MAC) and a commitment scheme [21].

To transform a TBE to an IND-CCA secure encryption, we do not use a OTS
based on LPN like in [8], since this transformation would be too expensive. This
would cause a large tag, since the the verification key of the OTS is the tag.
Further, the size of the ciphertext grows with a bigger tag and the ciphertext
will be signed with the OTS. In order to use this approach a collision resistant
hash function is necessary to shrink the ciphertext to the message size signed by
the signature.

More efficient is the technique based on a commitment scheme and a MAC
[21]. LPN-based euf MACs have a large secret to which we have to commit [22].
This commitment is used as the tag for the TBE. A large secret key will cause
again a large commitment, large tag and even larger ciphertext. The MAC is used
to create a tag for the ciphertext of a TBE. The advantage of this transformation
is, that we do not need a collision resistant hash function.

In the commitment and MAC-based transformation, the MAC has to be
existential unforgeable given one tag query for an arbitrary message. A pairwise
independent function fulfils this task in a less complex way and with a smaller
secret compared to LPN-based MACs. But now we have to shrink the size of the
ciphertext to the domain of the pairwise independent function. A collision resis-
tant hash function leads to an efficient transformation of a TBE to an IND-CCA
PKE. As alternative to a collision resistant hash function, we could also use an
almost pairwise independent hash function instead of the pairwise independent
hash function. As commitment scheme, we use the simple and efficient construc-
tion of [23]. Their commitment scheme is perfectly binding and computationally
hiding.

B An IND-CPA Secure Public Key Encryption Scheme

The following three algorithms describe an IND-CPA-PKE = (Gen,Enc,Dec).
The scheme is a simplified version of the TBE to achieve just IND-CPA security.
An IND-CPA adversary plays the GTBE without having access to qeryDec. This
makes the proof and hence the scheme much easier, since there is no need for
having access to a trapdoor to answer decryption queries. Further an efficient
error correction code G is required to reconstruct the message. This code corrects
up to αm errors with 4c < α < 1 for Bernoulli parameter p =

√
c/m, and maps

the message spaceM into Z`2. The dimensions n, m−n of the LPN secrets (with
n = Θ(k2)) controll the security of the scheme.



Gen(1k)→ (sk , pk). The algorithm picks A
$← Zm×n2 , T

$← B`×mp and sets C =
TA. The private key is T and the public key pk := (A,C).

Enc(pk ,M )→ C = (c, c2). Sample e1
$← Bmp ; e2

$← B`p and s
$← Zn2 and set

c := As + e1 and c2 := Cs + e2 + G(M ).

Dec(sk , C)→ (M or ⊥). The algorithm computes

c̃ :=
(
T I
)
·
(
−c
c2

)
(= G(M )−Te1 + e2).

Output M , which is reconstructed from c̃ by using G.

A Simple Trapdoor Function. By changing the construction a little bit, one
obtains a simple trapdoor function. A trapdoor T ∈ Zm×n2 output by Gen(1n)
can be used to invert the trapdoor function

fτ (s, e1, e2) = (As + e1, (C + G)s + e2).

s is reconstructed by using the error correction of code G. Details can be seen
in the correctness of the PKE. When s is reconstructed, e1 and e2 are easily
obtained by subtracting As and (C + G)s from the output of the function.

Correctness. The encoding scheme has to correct an error e2 − Te1, for

e1, e2
$← Bmp with overwhelming probability. The correctness follows from the

correctness of the proposed TBE. To give an example, for message space Zn2
and ` = m, the generator matrix G of the TBE can be used. This encoding
scheme is stronger than necessary, since it corrects even an error T2e2 − T1e1

for e1, e2
$← Bmp , T1,T2

$← Bm×mp with overwhelming probability.

Security.

Theorem 3. If the LPN assumption holds, PKE is secure against IND-CPA
adversaries. In particular, for every PPT algorithm A there exist PPT algorithms
B and C with roughly the same running time, such that:

AdvTBE(A) ≤ ` ·AdvLPNm−n,m,p(B) + AdvLPNn,m+`,p
(C) + negl(n).

Proof Sketch. First we switch C = TA to a uniform C. If an adversary
has less advantage in the uniform setting, we will break the KLPN`

m−n,m,p as-
sumption. Then we switch c∗, c∗2 to uniform by using a LPNn,m+`,p instance
A,C,bA,bC and setting c∗ = bA, c∗2 = bB + G(M ). Now the ciphertext is
uniform and the advantage of an adversary is negligible.
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