
Fully Succinct Garbled RAM

Ran Canetti∗ Justin Holmgren†

Abstract

We construct the first fully succinct garbling scheme for RAM programs, assuming the existence of
indistinguishability obfuscation for circuits and one-way functions. That is, the size, space requirements,
and runtime of the garbled program are the same as those of the input program, up to poly-logarithmic
factors and a polynomial in the security parameter. The scheme can be used to construct indistinguisha-
bility obfuscators for RAM programs with comparable efficiency, at the price of requiring sub-exponential
security of the underlying primitives.

In particular, this opens the door to obfuscated computations that are sublinear in the length of their
inputs.

The scheme builds on the recent schemes of Koppula-Lewko-Waters and Canetti-Holmgren-Jain-
Vaikuntanathan [STOC 15]. A key technical challenge here is how to combine the fixed-prefix technique
of KLW, which was developed for deterministic programs, with randomized Oblivious RAM techniques.
To overcome that, we develop a method for arguing about the indistinguishability of two obfuscated
randomized programs that use correlated randomness. Along the way, we also define and construct
garbling schemes that offer only partial protection. These may be of independent interest.

∗Tel-Aviv University and Boston University, canetti@bu.edu. Supported by the Check Point Institute for Information
Security, ISF grant 1523/14, and NSF Frontier CNS1413920 and 1218461 grants.
†MIT, holmgren@mit.edu. Supported in part by NSF Frontier CNS1413920, the Defense Advanced Research Projects Agency

(DARPA) and the U.S. Army Research Office under contract number W911NF-15-C-0226

1

Contents

1 Introduction 1
1.1 Our contribution . 2

1.1.1 Fixed Address Garbling . 3
1.1.2 Full Garbling . 4

1.2 Roadmap . 5

2 Preliminaries 5
2.1 Notation . 5
2.2 Indistinguishability Obfuscation . 6
2.3 The RAM Model . 6

2.3.1 RAM Machines . 6
2.3.2 Memory Configurations . 6
2.3.3 Execution . 7

2.4 Garbling . 7
2.5 Cryptographic Iterators . 8
2.6 Positional Accumulators . 9
2.7 Splittable Signatures . 10

3 Fixed-Transcript Garbling 12
3.1 Construction . 12
3.2 Proof of Security . 13

4 Fixed Memory Garbling 15
4.1 Construction . 15
4.2 Proof of Security . 16

5 Fixed Address Garbling 18
5.1 Construction . 18
5.2 Proof of Security . 19

6 Full Security 22
6.1 Oblivious RAM . 22

6.1.1 Syntax . 22
6.1.2 Correctness . 22
6.1.3 Efficiency . 22
6.1.4 Localized Randomness . 22

6.2 Construction . 23
6.3 Security Proof . 23

7 Persistent Data 27

A ORAM Construction 30
A.1 Localized Randomness . 30

2

1 Introduction

A garbling scheme G converts programs and input values into “opaque” constructs that reveal nothing but
the corresponding output values. That is, G turns a program M into a garbled program M̃ and, separately,
turns a value x into a garbled input x̃, with the guarantee that M̃(x̃) = M(x) and in addition the pair (M̃, x̃)
reveals nothing but M(x). Originally conceived by Yao [Yao86], garbling schemes are a pillar of cryptographic
protocol design, with numerous applications such as secure two-party and multiparty computation protocols,
verifiable delegation schemes, randomized encoding schemes, one time programs, and functional encryption.

A drawback of Yao’s original construction is that the size and runtime of the garbled program are
proportional to the circuit representation of the input program. This holds even if the plaintext program
is represented more succinctly, say as a Turing machine or a RAM program. (Essentially, one has to
first translate the plaintext program to a circuit, and then apply Yao’s garbling method in a gate by gate
manner.) This drawback becomes especially significant in situations where the input x is much larger than
the program’s size or runtime — as in, say, keyword search in a large-but-sorted database — or when the
runtime of the plaintext program varies from input to input.

Noticing this drawback, Goldwasser Kalai et al. [GKP+13] construct a garbling scheme for Turing
machines, namely a scheme where the size, runtime and space requirements of the garbled program are
proportional to those of the Turing machine representation of the plaintext program. To do that, they make
strong extractability assumptions. Namely, they postulate existence of an efficient algorithm for extracting
secrets from a certain class of adversaries.

Noticing the same drawback, Lu and Ostrovsky, and later Gentry Halevi et al. and Garg Lu et al.
[LO13, GHL+14, GLOS15], construct garbling schemes for RAM programs, where the runtime of the garbled
program is proportional only to the runtime of the plaintext program on that input. In [GLOS15] this is
done assuming only one way functions. Still, the size of the garbled program is proportional to the runtime
of the plaintext program.

Bitansky Garg et al. and Canetti Holmgren et al. construct a semi-succinct garbling scheme for RAM
programs, assuming non-succinct Indistinguishability Obfuscation (IO) and injective one way functions
[BGL+15, CHJV15]. That is, they construct garbling schemes where the space and runtime of the gar-
bled program are proportional to the space and runtime of the plaintext program, and where the size of
the garbled program is proportional to the space complexity of the plaintext program. For this they as-
sume existence of non-succinct IO schemes, i.e. schemes where the complexity of the obfuscated program
is polynomial in the size of the circuit representation of the plaintext program. (Indeed, current candidate
indistinguishability obfuscators are such [GGH+13, BGK+14, Zim14, AB15].) We note that, although the
overall parameters of these two schemes are roughly comparable, the underlying techniques are different.

Koppula, Lewko and Waters [KLW15] devise a fully succinct garbling scheme for Turing machines from
non-succinct IO and one way functions, using techniques that extend those of [CHJV15]. That is, in their
garbling scheme the runtime, space and description size of the garbled program are proportional to those of
the Turing machine representation of the plaintext program. This leaves open the following natural question:

Do there exist fully succinct garbling schemes for RAM programs? If so, under what assumptions?

Any advancement on this question directly applies to the many applications of succinct garbling men-
tioned in these works, including delegation of computation, functional encryption and others.

From succinct garbling to succinct obfuscation. In [BGL+15, CHJV15] it is also shown how to turn a
garbling scheme into a full-fledged program obfuscation scheme with comparable efficiency and succinctness
properties, at the price of making stronger assumptions on the underlying cryptographic building blocks.
That is, given non-succinct IO (namely IO for circuits), one-way functions, and a garbling scheme G, they
construct an IO scheme O with similar efficiency and size overhead as that for G. The security of O loses a
factor of D, where D is the size of the domain of inputs to the plaintext program. Using this transformation,
and assuming sub-exponential one-way functions and IO for circuits, [BGL+15, CHJV15, KLW15] show a
fully succinct IO scheme for Turing machines and semi-succinct IO scheme for RAM machines. However:

1

Is there a fully succinct IO scheme for RAM programs? If so, under what assumptions?

We note that, due to the exponential degradation in security in that transform, the security parameter
needs to grow linearly with logD. The size of the obfuscated program thus grows polynomially in the length
of input to the plaintext program. We only know how to get below this bound under significantly stronger
assumptions on the underlying obfuscation scheme [BCP14, IPS15].

1.1 Our contribution

We answer both questions. Given an IO scheme for circuits and one way functions we construct a fully
succinct garbling scheme for RAM programs. That is, the runtime, space, and size of the garbled program
are the same as those of the plaintext program, up to polylogarithmic factors and a polynomial in the security
parameter. The security of the scheme degrades polynomially with the runtime of the plaintext program.
Assuming quasipolynomial security of the underlying primitives, the scheme guarantees full security even
for programs with arbitrary polynomial runtime. Using the transformation of [BGL+15, CHJV15], and
assuming sub-exponential security of the underlying primitives, we obtain a fully succinct IO scheme for
RAM programs.

Furthermore, similarly to the schemes of [CHJV15, BGL+15, KLW15], our garbling scheme supports
persistent data: Multiple machines M1, . . . ,M` can be garbled, along with some (potentially very large)
data, such that machine Mi acts on the data configuration left by Mi−1, and such that having access to
the garbled data and garbled machines gives no information other than y1, ..., y`, where yi is the output of
Mi when executed in sequence on the data after M1, ...,Mi−1. Importantly, in our case of RAM machines,
each machine can run in time that is sublinear in the entire data; for example, each machine may execute a
database query, modifying the database and returning some small result. Our transformation preserves the
sub-linear complexity of the machines.

The preservation of sublinear complexity is powerful also in the context of delegation of computation.
Indeed, consider the task of delegating the computation of sublinear-time RAM programs over large delegated
databases. Indeed, when instantiated with our scheme, the delegation of computation scheme for RAM-IO
(described in [CHJV15]) is the first to guarantee both correctness and privacy of the computation, while
preserving full succinctness and sublinear complexity for the prover.1

Our Techniques. While our result may come across as natural and expected given the results of [KLW15]
and [CHJV15], obtaining it does require new ideas and significant work. Indeed, naive attempts to extend
the techniques of [KLW15] to RAM programs encounter the following problem: The [KLW15] technique
applies when the plaintext machine is deterministic and its memory access pattern is fixed and independent
of the inputs. When the plaintext program is a Turing machine, making sure that the memory access pattern
is fixed incurs only small overhead in complexity. In contrast, hiding the memory access pattern in a RAM
program in an efficiency-preserving way requires the memory access pattern to be randomized. Indeed, this
is the case for Oblivious RAM schemes [GO96]. Furthermore, the security guarantees provided by Oblivious
RAM (ORAM) schemes hold only when the internal random choices of the scheme are hidden from the
adversary. However, in our case these internal random choices are encapsulated in a succinct program that
is only protected by indistinguishability obfuscation.

A second look reveals the following basic discrepancy between the [CHJV15] technique (which is ORAM-
friendly) and the [KLW15] technique (which is not). In both works, security of the garbled program is
demonstrated by gradually moving, in a way that’s indistinguishable to the adversary, from the real garbled
program to a dummy garbled program, where the dummy program has just the result hardwired and is
running a fake computation in all steps but the last one. In [CHJV15], the intermediate, hybrid programs
start with some number, i, of dummy steps, and then continue the computation from the ith intermediate
configuration all the way to the end. To make this technique work with ORAM, [CHJV15] use an ORAM

1In particular, the “generic” method of guaranteeing privacy in delegation schemes by encrypting the data using fully
homomorphic encryption incurs a super-linear complexity overhead. We thank Yael Kalai for this observation.

2

scheme with a strong forward security property: Essentially, the addresses accessed before time i must appear
independent of the underlying access pattern, even given the scheme’s internal state at time i+ 1.

In contrast, [KLW15] move from the real garbled program to the dummy one via intermediate programs
that perform the computation from the beginning until some step, i. From then on, the intermediate program
performs the dummy computation and in the end it outputs its hardwired value. This reversal of the order of
steps in the intermediate programs is the key idea that allows the size of their garbled program to not depend
on the space requirements of the plaintext program. However, this new structure of the hybrid programs
seems incompatible with ORAM techniques: Indeed, the natural way to extend the [KLW15] argument to
this case would be to argue that the program’s memory access pattern at steps i and up is random even given
the program’s state at steps 1 through i− 1. But this does not hold, since all the steps of the computation
up to the transition point i are executed, including the internal random choices of whatever ORAM scheme
is in use.

Our first step towards getting around this difficulty is to identify the following property of ORAM schemes.
Recall that an ORAM scheme translates the memory access requests made by the underlying program
to randomized locations in the actual external memory. We say that an ORAM scheme has localized
randomness if the random variable describing the physical location of the memory cell accessed by the
plaintext program at a certain step of the computation depends only on a relatively small portion of the
entire random input of the ORAM scheme. Furthermore, we require that the location of this portion depends
only on the last step in which this memory cell was accessed, which in of itself is a deterministic function of
the underlying program. To the best of our knowledge, this property of Path ORAMs has not been utilized
in previous work, but we observe that the ORAM of [CP13] has localized randomness. (In fact, it seems
likely that other schemes do as well, or can be slightly modified to be so.) Now, given an ORAM scheme
with localized randomness, we “puncture” the scheme at exactly the points that are necessary for making
the external memory access locations at step i appear random even given the punctured program state at
step i− 1. Furthermore, we can perform this puncturing with minimal overhead in terms of the size of the
obfuscated program.

More concretely, we proceed in two main steps. (The actual construction goes through a number of
smaller steps, for sake of modularity and clarity.) We first build a “fixed-address” garbler which guarantees
that the garbled versions of two machines M0 and M1 with inputs x0 and x1 are indistinguishable as long
they access the same sequence of addresses. We believe that this property is of independent interest. In the
second step we use an ORAM scheme with localized randomness to obtain full garbling. Below we provide
more detail on these two steps.

1.1.1 Fixed Address Garbling

As an intermediary step towards a fully succinct garbling scheme for RAM programs, we define and obtain
the following weaker security property for garbling schemes. We say that a garbling scheme is a fixed-address
garbler if for any two same-size deterministic programs M0 and M1, and any same-length input values x0

and x1, it holds that (M̃0, x̃0) ≈ (M̃1, x̃1) as long as (a) M0(x0) = M1(x1) and (b) The sequence of memory
addresses accessed by M0 when run on x0 is identical to the sequence of memory addresses accessed by
M1 when run on x1. (Here M̃ and x̃ are the garbled versions of M and x, respectively.) Furthermore, the
sequence of addresses accessed by M̃ on input x̃ is identical to the sequence of addresses accessed by M on
input x.

The fact that M̃ preserves the access pattern of M provides potential efficiency and practical applicability
gains that are not possible in the context of fully secure and succinct garbling of RAM programs, since in
the latter the access pattern is inherently randomized. For instance, the garbled machine necessarily has the
same fine-grain cache performance as the original one. In contract, ORAM-based techniques need to resort
to coarse-grain cache or other work-arounds which impact cache performance.

We construct a fully succinct fixed-address garbling scheme. As a preliminary step, we construct a
garbling scheme that is fixed-address, except that (M̃0, x̃0) ≈ (M̃1, x̃1) only when the two computations
have the exact same memory access pattern, including the contents of the memory cells accessed. (We
call such schemes fixed-memory garbling schemes.) Here our technique follows the steps of the [KLW15]

3

machine-hiding encoding scheme. In particular we use the same underlying primitives, namely positional
accumulators, cryptographic iterators, and splittable signatures. (We somewhat simplify their interfaces.)
We note however that the [KLW15] construction cannot be used in a “black box” way and needs to be redone
in the RAM model.

We then move from fixed-memory garbling to fixed-address garbling. Similarly to the move in [KLW15]
from machine-hiding encoding to garbling, this step requires encrypting the memory contents in an IO-
friendly scheme. We stress however that our situation is different: In their oblivious Turing machine model
the memory access pattern contains no information. In contrast, as argued in more detail below, in our
case the access pattern can in of itself contain information that is hard to compress in a security-preserving
manner. The way we argue about the security of the scheme must change accordingly.

Concretely, to garble M we transform it to a program M ′ which interleaves two executions of M , on
two parallel tracks ‘A’ and ‘B’ of memory. Whenever M would access a memory address, M ′ accesses the
corresponding address in both tracks ‘A’ and ‘B’. At each point in time, tracks ‘A’ and ‘B’ both store memory
contents corresponding to an execution of M . We then apply the fixed-memory garbling scheme to M ′. Let
M̃ ′ denote the resulting program.

To argue fixed-address security, consider two programs M0 and M1 and input values x0 and x1 that
satisfy the fixed-address requirements. To show that (M̃ ′0, x̃0) ≈ (M̃ ′1, x̃1), we consider an intermediate
hybrid in which M ′0 is replaced by a new machine M01 which now executes M0 on track ‘A’ but M1 on
track ‘B’. Indistinguishability of the intermediate hybrid from either end is shown by demonstrating how to
indistinguishably switch from a machine that outputs the result of track ‘A’ to a machine that outputs the
result of track ‘B’.

1.1.2 Full Garbling

Our final and main step is a construction of a succinct fully secure garbler for RAM machines from a
succinct fixed-address garbler. Our construction is fully general; it does not use any special properties of the
fixed-address garbler, not even the address-preserving property which we explicitly highlighted above.

Recall that for a fully secure garbler we require that (M̃0, x̃0) ≈ (M̃1, x̃1) whenever M0(x0) = M1(x1), and
in addition he runtime and space requirement of M0 on x0 is the same as the runtime and space requirement
of M1 on x1.

Furthermore, recall that hiding the memory access pattern in an efficiency preseving way is done by
Oblivious RAM (ORAM) techniques, which make crucial use of randomness that remains secret within the
program. In contrast, our fixed-address garbler guarantees security only when the access pattern of the
underlying machine is fixed.

Our first step towards making use of a fixed-address garbler is to “derandomize” the ORAM scheme by
setting its randomness to be the result of applying a puncturable PRF to the program’s input. This indeed
means that, for any givn input, the access pattern is fixed. Still, it is not clear how to argue security of the
scheme; in particular, the access pattern of M̃0 when run on x̃0 may well be different than the access pattern
of M̃1 when run on x̃1.

For this purpose, we use the localized randomness property sketched above and described in more detail
here. Localized randomness requires a particularly structured relationship between the random tape R
of an ORAM and the addresses a1, . . . ,at that it accesses. Here each ai is itself a sequence of addresses
ai,1, . . . , ai,η, accessed in the emulation of the underlying RAM machine’s ith step. Specifically, we require
that (for given underlying memory operations op1, . . . , opt), each ai is influenced only by a small subset Di

of the bits of R, and each bit of R influences at most one of ai. The ORAM must also come with a p.p.t.
algorithm OSample such that OSample(i) has the same distribution as ai, independently of op1, . . . , opt. A
simple analysis in Appendix A shows that the ORAM of Chung and Pass [CP13, SCSL11] has this property.

To analyze the composition of a fixed-address garbler with a localized-randomness ORAM, we adapt the
punctured programming technique of [SW14]. To simulate a garbled program whose output is y and runs in
time T , apply a fixed-address garbler to the program that for each i from 1 to T , simulates addresses ai to
access using Sim(F (i)) for some puncturable PRF F , and output the resulting garbled program. We need

4

to prove that this simulation is indistinguishable from the real garbled machine M , in a sequence of hybrids
which changes each ai to Sim(F (i)).

This argument is reminiscent of the proof of security for the [CLTV15] construction of a probabilistic iO
(PIO) obfuscator, with the complication that a1 through at are generated adaptively. This complication is
handled by switching the ai’s in reverse order – starting with at and ending with a1. Here it is crucial to
note that, despite the adaptivity, a1 through at are mutually independent random variables by the localized
randomness property of the ORAM scheme.

To switch ai to Sim(F (i)), we first hard-code ai, and then puncture the ORAM’s PRF on exactly the
points which determine ai. ORAM locality implies that this set is small and that the puncturing does not
affect any aj for j 6= i, so the security of the fixed access garbler is applicable. We then indistinguishably
replace ai with Sim(F (i)). Finally we remove the hard-codings and unpuncture all the PRFs, relying again
on security of the fixed-access garbler.

1.2 Roadmap

As mentioned, we build up our main construction in four stages, at each stage strengthening the security
properties. In the first two stages, we directly apply the techniques of [KLW15] to produce a very weak
garbling scheme for RAM machines. For ease of exposition, we separate this into two parts: In Section 3,
we give a garbler which only guarantees indistinguishability of the garbled programs as long as the entire
execution transcripts of the two plaintext machines look identical; that is, if they specify the same sequence
of internal local states, same addresses accessed, and same values written to memory. We call such schemes
fixed transcript garblers. In Section 4, we upgrade this garbling scheme to a fixed-memory garbler, which no
longer needs the machines to have the same internal local states.

Our main technical contributions are the construction of a fixed-address garbler in Section 5, and its
combination with a local ORAM in Section 6 to build a full RAM garbler. Section 7 presents the application
to persistent data.

In Appendix A, we describe the ORAM of Chung and Pass [CP13], and explain why it has the desired
locality properties.

2 Preliminaries

2.1 Notation

• N denotes the set {0, 1, 2, . . .} For any integer n ∈ N, [n] denotes the set {0, 1, . . . , n− 1}.

• For a set X and a set Y , Y X denotes the set of all functions from X to Y . When X = N, f ∈ Y N is
also identified as the infinite sequence (f(0), f(1), . . .).

• For n ∈ N, Xn denotes the set of n-tuples of elements of X.

• X∗ denotes ∪i∈NXi.

• For a set S ⊂ [n], S = {i1, . . . , i`} with i1 < · · · < i`, and a sequence ~a = (a0, . . . , an−1) ∈ Xn, we write
~aS to denote the tuple (ai1 , . . . , ai`). We use analogous notation for subsequences of infinite sequences
(XN). More generally, if f is a function from X to Y , and if S is a subset of X, we write f(S) to
denote {f(x) : x ∈ S}. If S is an ordered set, f(S) inherits the same ordering.

• For a finite set S, we write `S to denote the worst-case length of binary strings encoding elements of
S (typically this will be dlog(|S|)e). We identify S with a subset of {0, 1}`S .

• For a randomized algorithm A, we write A(x; r) to denote running A on input x with randomness r.

5

2.2 Indistinguishability Obfuscation

We assume the existence of an indistinguishability obfuscator [BGI+01, GGH+13].

Syntax. An indistinguishability obfuscator for circuits is a p.p.t. algorithm iO which takes as input a
security parameter 1λ, a circuit C, and outputs a circuit C̃.

Correctness. For all x, Pr[iO(1λ, C)(x) = C(x)] = 1.

Security. If |C0| = |C1| and C0(x) = C1(x) for every x, then iO(1λ, C0) ≈ iO(1λ, C1).

2.3 The RAM Model

2.3.1 RAM Machines

In this work, a RAM machine M is defined as a tuple (Σ, Q, Y, C), where:

• Σ is a finite set, which is the possible contents of a memory cell. For example, Σ = {0, 1}.

• Q is the set of all possible “local states” of M , containing some initial state q0. (We think of Q as a
set that grows polynomially as a function of the security parameter. That is, a state q ∈ Q can encode
cryptographic keys, as well as “local memory” of size that is bounded by some fixed polynomial in the
security parameter.)

• Y is the output space of M .

• C is a circuit implementing a transition function which maps Q× (Σ∪{ε})→ (Q×OΣ)∪Y . Here OΣ

denotes the set of memory operations with Σ as the alphabet of possible memory symbols. Precisely,
OΣ = (N×Σ). That is, C takes the current state and the value returned by the memory access function,
and returns a new state, a memory address, a read/write instruction, and a value to be written in case
of a write.

We write |M | to denote the tuple (`Σ, `Q, `Y , |C|), where `Σ is the length of a binary encoding of Σ, and
similarly for `Q and `Y .

2.3.2 Memory Configurations

A memory configuration on alphabet Σ is a function s : N→ Σ ∪ {ε}. Let ‖s‖0 denote |{a : s(a) 6= ε}| and,
in a horrific abuse of notation, let ‖s‖∞ denote max({a : s(a) 6= ε}), which we will call the length of the
memory configuration. A memory configuration s can be implemented (say with a balanced binary tree) by
a data structure of size O(‖s‖0), supporting updates to any index in O(log ‖s‖∞) time.

We can naturally identify a string x = x1 . . . xn ∈ Σ∗ with the memory configuration sx, defined by

sx(i) =

{
xi if i ≤ |x|
ε otherwise

Looking ahead, efficient representations of sparse memory configurations (in which ‖s‖0 < ‖s‖∞) are
convenient for succinctly garbling computations where the space usage is larger than the input length.

6

2.3.3 Execution

We now define what it means to execute a RAM machine M = (Σ, Q, Y, C) on an initial memory configuration
s0 ∈ ΣN to obtain M(s0).

Define a0 = 0. For i > 0, iteratively define (qi, ai, vi) = C(qi−1, si−1(ai−1)) and define the ith memory
configuration si as

si(a) =

{
vi if a = ai

si−1(a) otherwise

If C(qt−1, st−1(at−1)) = y ∈ Y for some t, then we say that M(s0) = y. If there is no such t, we say that
M(s0) = ⊥. When M(s0) 6= ⊥, it is convenient to define the following functions:

• Define the running time of M on s0 as the above t, and denote it Time(M, s0).

• Define the space usage of M on s0 as maxt−1
i=0(‖si‖∞), and denote it Space(M, s0).

• Define the execution transcript of M on s0 as ((q0, a0, v0), . . . , (qt−1, at−1, vt−1), y), and denote it
T (M, s0).

• Define the resultant memory configuration of M on s0 as st, and denote it NextMem(M, s0).

2.4 Garbling

Syntax. A garbling scheme for RAM progams is a tuple of p.p.t. algorithms (KeyGen,GbPrg,GbMem,Exec).

• Key Generation: KeyGen(1λ, S, T) takes the security parameter λ in unary, a space bound S and a
time bound T in binary, and outputs a secret key SK.

• Machine Garbling: GbPrg(SK,M) takes as input a secret key SK and a RAM machine M , and
outputs a RAM machine M̃

• Memory Garbling: GbMem(SK, s) takes as input a secret key SK and a memory configuration s,
and then outputs a memory configuration s̃.

We are interested in garbling schemes which are correct, efficient, and secure.

Correctness. A garbling scheme is said to be correct if for all RAM machines M and all memory config-
urations s such that Time(M, s) ≤ T and Space(M, s) ≤ S, we have

Pr

M̃(s̃) = M(s)

∣∣∣∣∣∣
SK ← KeyGen(1λ, S, T)

M̃ ← GbPrg(SK,M)
s̃← GbMem(SK, s)

 ≥ 1− negl(λ).

Efficiency. A garbling scheme is said to be efficient if:

1. KeyGen, GbPrg, and GbMem are all probablistic polynomial-time algorithms. In particular, we empha-
size that:

• The bounds T and S are encoded in binary, so the time to garble does not significantly depend
on either of these quantities.

• The running time of GbMem is polynomial in ‖s‖0, the number of non-empty addresses in s. In
fact in our scheme the running time is linear in ‖s‖0.

2. Time(M̃, s̃) = Õ(Time(M, s)) (hiding polylogarithmic factors in S), and Space(M̃, s̃) ≤ S.

7

Security. A garbling scheme is said to be secure if there is an efficient algorithm Sim such that for all RAM
machines M and memory configurations s with Time(M, s) ≤ T and Space(M, s) ≤ S, no p.p.t. algorithm
can distinguish

M̃, s̃

∣∣∣∣∣∣
SK ← KeyGen(1λ, S, T)

M̃ ← GbPrg(SK,M)
s̃← GbMem(SK, s)

from
Sim(1λ,M(s),Time(M, s), T, S, |M |, ‖s‖0).

2.5 Cryptographic Iterators

Roughly speaking, a cryptographic iterator is a family of collision-resistant hash functions which is iO-friendly
when used to authenticate a chain of values. In particular, we think of using a hash function H to hash a
chain of values mk, . . . ,m1 as H(mk‖H(mk−1‖ · · ·H(m1‖0λ))), which we shall denote as Hk(mk, . . . ,m1).
A cryptographic iterator provides two indistinguishable ways of sampling the hash function H. In addition
to “honest” sampling, one can also sample H so that for a specific sequence of messages (m1, . . . ,mk),
Hk(mk, . . . ,m1) has exactly one pre-image under H.

Below, we give the exact same definition of cryptographic iterators as in [KLW15], only renaming Setup-Itr
to Setup and renaming Setup-Itr-Enforce to SetupEnforce. Formally, a cryptographic iterator for the message
spaceM = {0, 1}n consists of the following probabilistic polynomial-time algorithms. Setup and SetupEnforce
are randomized algorithms, but Iterate is deterministic, corresponding to our above discussion of a hash
function.

We recall that [KLW15] construct iterators from IO for circuits and puncturable PRFs.

Setup(1λ, T)→ PP, itr0
Setup takes as input the security parameter λ in unary and a binary bound T on the number of
iterations. Setup then outputs public parameters PP and an initial iterator value itr0.

SetupEnforce(1λ, T, (m1, . . . ,mk))→ PP, itr0
SetupEnforce takes as input the security parameter λ in unary, a binary bound T on the number of
iterations, and an arbitrary sequence of messages m1, . . . ,mk, each in {0, 1}n for k < T . SetupEnforce
then outputs public parameters PP and an initial iterator value itr0.

Iterate(PP, itrin,m)→ itrout
Iterate takes as input public parameters PP, an iterator itrin, and a message m ∈ {0, 1}n. Iterate then
outputs a new iterator value itrout. It is stressed that Iterate is a deterministic operation; that is, given
PP , each sequence of messages results in a unique iterator value.

We will recursively define the notation Iterate0(PP, ...) = itr0, and

Iteratek(PP, itr, (m1, . . . ,mk)) = Iterate(PP, Iteratek−1(PP, itr, (m1, . . . ,mk−1)),mk).

A cryptographic iterator must satisfy the following properties.

Indistinguishability of Setup
For any time bound T and any sequence of messages m1, . . . ,mk with k < T , it must be the case that

Setup(1λ, T) ≈ SetupEnforce(1λ, T, (m1, . . . ,mk)).

Enforcing
Sample (PP, itr0)← SetupEnforce(1λ, T, (m1, . . . ,mk)).

The enforcement property requires that when (PP, itr0) are sampled as above, Iterate(PP, a, b) =
Iteratek(PP, itr0, (m1, . . . ,mk)) if and only if a = Iteratek−1(PP, itr0, (m1, . . . ,mk−1)) and b = mk.

8

2.6 Positional Accumulators

Positional accumulators (PAs) are an iO-friendly version of the well-known Merkle commitments [Mer88].
Merkle commitments (also known as Merkle trees) provide a short computationally-binding commitment
of a large database, which can be succinctly and locally opened for a particular address of the database.
Merkle trees have many other nice properties. In particular, as one changes the underlying database, the
corresponding commitment can be efficiently updated with authentication.

The key additional property of PA’s is that this authentication is in some sense “pseudo-information
theoretic”. More precisely, the public parameters can be (indistinguishably) alternately generated so that
for a commitment of specific memory contents M∗ and a specific address addr∗, the only valid opening of
address addr∗ is the correct one.

More formally, a positional accumulator consists of the following polynomial-time algorithms. SetupAcc
and SetupAccEnforceUpdate are randomized, while Update and LocalUpdate are deterministic. For a given
memory configuration x, there is a uniquely defined accumulator value acx. The procedures Update and
LocalUpdate allow for efficient local update and opening. The memory operations supported are of the form
ReadWrite(addri 7→ vi) for some address addri and value vi. This writes to memory, while returning the
previous value stored at addri.

SetupAcc(1λ, S)→ PP, ac0, store0

The setup algorithm takes as input the security parameter λ in unary and a bound S (in binary) on the
memory addresses accessed. SetupAcc produces as output public parameters PP, an initial accumulator
value ac0, and an initial data store store0.

This algorithm will be run by the garbler’s key generation algorithm. The initial accumulator value
will be part of the initial state of the garbled program, and the initial store value will be part of the
garbled input. Throughout the execution of a garbled machine, the accumulator value will be a part
of the local CPU state, while the data store will be maintained externally by the evaluator.

Update(PP, storein, op)→ storeout, aux
The prep-update algorithm takes as input the public parameters PP, data store storein

2, and operation
op. PrepUpdate then outputs a new data store storeout and some auxiliary information aux.

This algorithm will be run by the evaluator of a garbled machine. Informally speaking, aux contains
the results of executing op, together with enough information to authenticate these results against a
corresponding accumulator value, as well as produce the next accumulator value.

LocalUpdate(PP, acin, op, aux)→ (v, acout) or ⊥
The local update algorithm takes as inputs the public parameters PP, an accumulator value acin, a
memory operation op, and some auxiliary information aux. LocalUpdate then either outputs a value v
and a new accumulator value acout, or LocalUpdate outputs ⊥.

This algorithm will be run by the garbled machine itself. Informally speaking, it will be computationally
intractable to find a value of aux which induces a non-⊥ output of LocalUpdate other than the honestly
generated one.

SetupAccEnforceUpdate(1λ, S, op1, . . . , opk)→ PP, ac0, store0

The alternate setup algorithm additionally take as inputs a sequence of memory operations op1, . . . , opk
for some integer k. SetupAccEnforceUpdate outputs public parameters PP, an initial accumulator value
ac0, and an initial data store store0.

This algorithm will be run by the hybrid garblers in the security proof. The difference from the output
of SetupAcc is that the output of SetupAccEnforceUpdate satisfies an additional information theoretic
“enforcing” property.

A positional accumulator must satisfy the following properties.

2Technically for evaluation to be efficient, the input storein should be a pointer to a data store

9

Correctness
Let op0, . . . , opk be any arbitrary sequence of memory operations.

We first define the “correct” v∗i as follows. Say that opi accesses address addri. If no opj for j < i
accesses addri, then v∗i is ε. Otherwise, let ji be the largest j such that j < i and opj accesses addri.
We define v∗i such that opj is of the form ReadWrite(addri 7→ v∗i).

Correctness requires that for all j ∈ {0, . . . , k}

Pr

vj = v∗j

∣∣∣∣∣∣∣∣
PP, ac0, store0 ← SetupAcc(1λ, S)

For i = 0, . . . , k:
storei+1, auxi ← Update(PP, storei, opi)
(vi, aci+1)← LocalUpdate(PP, aci, opi, auxi)

 = 1

Note we are implicitly requiring that for each i, LocalUpdate(PP, aci, opi, auxi) does not output ⊥.

Setup Indistinguishability
For any sequence of operations op0, . . . , opk, any space bound S, and any p.p.t. algorithm A, setup
indistinguishability requires that

SetupAcc(1λ, S) ≈ SetupAccEnforceUpdate(1λ, S, op0, . . . , opk)

Enforcing
Enforcing requires that for all space bounds S, all sequences of operations op1, . . . , opk, and all aux′,
we have

Pr

v ∈
{

(v∗i , ack+1),⊥
}
∣∣∣∣∣∣∣∣∣∣∣

PP, ac0, store0 ← SetupAccEnforceUpdate(1λ, S, op0, . . . , opk)

For i = 0, . . . , k − 1
storei+1, auxi ← Update(PP, storei, opi)
(vi, aci+1)← LocalUpdate(PP, aci, opi, auxi)

v ← LocalUpdate(PP, ack, opk, aux
′)

 = 1

Again, we are implicitly requiring that for each i ∈ {0, . . . , k − 1}, LocalUpdate(PP, aci, opi, auxi) does
not output ⊥.

Syntactic Differences from [KLW15] Our definition of positional accumulators is syntactically sim-
plified from [KLW15]. Still, the [KLW15] construction satisfies this definition. The main difference is that
[KLW15] has separate enforcing setup algorithms for read operations and write operations, as well as having
separate update and local-update algorithms.

2.7 Splittable Signatures

A splittable signature scheme for a message space M is a signature scheme whose keys are constrainable to
certain subsets ofM – namely point sets, the complements of point sets, and the empty set. These punctured
keys are required to satisfy indistinguishability and correctness properties similar to the asymmetrically
constrained encapsulation of [CHJV15]. Additionally, they must satisfy a “splitting indistinguishability”
property.

More formally, a splittable signature scheme syntactically consists of the following polynomial-time algo-
rithms. Setup and Split are randomized algorithms, and Sign and Verify are deterministic.

Setup(1λ)→ skM, vkM
Setup takes the security parameter λ in unary, and outputs a secret key skM and a verification key
vkM for the whole message space. We will sometimes write the unconstrained keys skM and vkM as
just sk and vk, respectively.

10

Split(skM,m)→ sk{m}, skM\{m}, vk∅, vk{m}, vkM\{m}
Split takes as input an unconstrained secret key skM and a message m, and outputs secret keys and
verification keys which are constrained on the set {m} and its complement M\ {m}. We note that
sk{m} can just be Sign(sk,m)

Sign(skS ,m)→ σ
Sign takes a possibly constrained secret key skS and a message m ∈ S, and outputs a signature σ.

Verify(vk,m, σ)→ 0 or 1
Verify takes a possibly constrained verification key vk, a message m, and a signature σ. Verify outputs
0 or 1. If Verify outputs 1, we say that vk accepts σ as a signature of m; otherwise, we say that vk
rejects σ.

A splittable signature scheme must satisfy the following properties.

Correctness
For any message m∗, sample sk{m∗}, skM\{m∗}, skM, vk∅, vk{m∗}, vkM\{m∗}, and vkM as

(skM, vkM)← Setup(1λ)

and

(sk{m∗}, skM\{m∗}, vk∅, vk{m∗}, vkM\{m∗})← Split(skM,m
∗)

Correctness requires that with probability 1 over the above sampling:

1. For all m ∈M, Verify(vkM,m,Sign(skM,m)) = 1

2. For all sets S ∈
{
{m∗},M\ {m∗}

}
, for all m ∈ S, Sign(skS ,m) = Sign(skM,m). Furthermore,

Verify(vkS ,m, ·) is the same function as Verify(vkM,m, ·).

3. For all sets S ∈
{
∅, {m∗},M\{m∗},M

}
, for all m ∈M\S, and for all σ, Verify(vkS ,m, σ) = 0.

Verification Key Indistinguishability
Sample sk{m∗}, skM\{m∗}, skM, vk∅, vk{m∗}, vkM\{m∗}, and vkM as in the above definition of correct-
ness.

Verification Key Indistinguishability requires that the following indistinguishabilities hold:

1. vk∅ ≈ vkM

2. sk{m∗}, vk{m∗} ≈ sk{m∗}, vkM

3. skM\{m∗}, vkM\{m∗} ≈ skM\{m∗}, vkM

Splitting Indistinguishability
Sample sk{m∗}, skM\{m∗}, vk{m∗}, and vkM\{m∗} as in the above definition of correctness. Repeat this
sampling, obtaining sk′{m∗}, sk

′
M\{m∗}, vk

′
{m∗}, and vk′M\{m∗}

Splitting indistinguishability requires that

sk{m∗}, skM\{m∗}, vk{m∗}, vkM\{m∗} ≈ sk′{m∗}, skM\{m∗}, vk
′
{m∗}, vkM\{m∗}

11

Syntactic Differences from [KLW15] The definition of splittable signatures in [KLW15] is superficially
different from ours, but equivalent. Specifically, they do the following differently:

• They give different names for the different types of keys - they omit a subscript of a M for their
“normal” keys, and use a subscript of “one” or “abo” in place of {m} and M\ {m}, respectively.

• Their sk{m} is just defined as Sign(skM,m), and is thus not an output of Split.

• They generate vk∅ as an output of Setup instead of as an output of Split.

• They have a separate algorithm Sign and Signabo for the different types of signing keys.

Our notational changes allow us to state the security properties more concisely.

3 Fixed-Transcript Garbling

We first construct a garbling scheme with a very weak security definition. Both the construction and the
security proof closely follow the techniques of [KLW15], adapting them to RAM machines.

Definition 3.1. A garbling scheme (KeyGen,GbPrg,GbMem) is said to be fixed-transcript secure if for all
RAM machines M0 and M1 and all memory configurations s such that:

• |M0| = |M1|

• T (M0, s) = T (M1, s)

for all p.p.t. algorithms A,

Pr

A(1λ, M̃b, s̃) = b

∣∣∣∣∣∣∣∣
SK ← KeyGen(1λ, S, T)
b← {0, 1}
M̃b ← GbPrg(SK,Mb)
s̃← GbMem(SK, s)

 ≤ 1

2
+ negl(λ)

Theorem 3.1. There exists a fixed-transcript secure garbling scheme for RAM machines.

3.1 Construction

Similarly to [KLW15], the idea here is to keep a Merkle-tree-hash of the memory, using an IO-friendly hash
function (namely, the positional accumulator). The root of the tree is signed by the RAM machine, using an
IO-friendly signature scheme (namely, the splittable signature). In addition, to help argue global consistency
of the computation over multiple steps, the RAM machine uses the iterator to keep a succinct record of its
local state.

More precisely let M = (Σ, Q, Y, C) be a RAM machine. Recall that the transition function C has two
inputs – an internal state q ∈ Q and a memory symbol σ ∈ Σ – and produces either an “official” output
y ∈ Y , or a tuple (q′, op) ∈ Q× (N× Σ).

Construction 3.2. We define (KeyGen,GbPrg,GbMem), and we also describe a RAM algorithm Eval in
pseudocode for clarity of exposition.

• KeyGen(1λ, T, S) samples (Acc.PP, ac0, store0) ← SetupAcc(1λ), (Itr.PP, itr0) ← Itr.Setup(1λ), and a
puncturable PRF F ← PPRF.KeyGen(1λ). It then outputs SK = (Acc.PP, Itr.PP, ac0, store0, itr0, F).

• GbMem(SK, s) computes (skA0 , vk
A
0) ← SetupSpl(1λ;F (0)). Let a1 < . . . < a‖s‖0 be the non-empty

addresses of s. GbMem iteratively computes stores = store‖s‖0 and acs = ac‖s‖0 :

For i = 1, . . . , ‖s‖0:
(storei, auxi)← Update(PP, storei−1,ReadWrite(ai 7→ s(ai)))
(σi, aci)← LocalUpdate(PP, aci−1,ReadWrite(ai 7→ s(ai)), auxi)

12

GbMem then outputs a memory configuration which contains stores, acs, itr0, and Spl.Sign(skA0 , (⊥,ReadWrite(0 7→
0), acs, itr0).3

• GbPrg(SK,M) first generates P̃ ← iO(P) for a “core circuit” P , defined in Algorithm 1. GbPrg then
compiles this program description into a real RAM machine M̃ such that for all memory configurations
s̃, M̃(s̃) = Eval(P̃ , s̃) (Eval is described below).

• Eval(P̃ , s̃) starts with a memory configuration s̃ containing (store0, ac0, σ0), initializes op0 = ReadWrite(0 7→
0) and q0 = ⊥, and repeats the following steps for i ∈ {1, 2, . . .} until termination.

1. storei, auxi ← Acc.Update(Acc.PP, storei−1, opi−1)).

2. Compute out← P̃ (i− 1, qi−1, opi−1, aci−1, itri−1, σi−1, auxi−1). If out ∈ Y ∪ {⊥}, halt and output
out. Otherwise, parse outi as (qi, opi, aci, itri, σi).

An efficient implementation of Eval will reuse the same local variable to store op0, op1, . . ., and similarly
with aux1, aux2, . . . and ac0, ac1, It should also update store in-place, rather than reading all of storei,
and writing back all of storei+1.

Input: Timestamp t, state q, memory operation op, accumulator ac, iterator itr, signature σ,
auxiliary information aux

Data: Transition function C0, Puncturable PRF F , accumulator public parameters Acc.PP, iterator
public parameters Itr.PP

1 if t > T or t < 0 then return ⊥;

2 (vkAt , sk
A
t)← Spl.Setup(1λ;F (t));

3 if Spl.Verify(vkAt , (q, op, ac, itr), σ) = 0 then return ⊥;
4 Parse Acc.LocalUpdate(Acc.PP, ac, op, aux) as (v, ac′) or else return ⊥;
5 if C0(q, v) = y ∈ Y then return y;
6 Parse C0(q, v) as (q′, op′);

7 (vkAt+1, sk
A
t+1)← Spl.Setup(1λ;F (t+ 1));

8 itr′ ← Itr.Iterate(Itr.PP, itr, (q, op, ac, itr, aux));

9 σ′ ← Spl.Sign(skAt+1, (q
′, op′, ac′, itr′));

10 return (q′, op′, ac′, itr′, σ′);

Algorithm 1: Circuit P

3.2 Proof of Security

Theorem 3.3. If Spl is a splittable signature scheme, Itr is a cryptographic iterator, Acc is a positional
accumulator, and iO is an indistinguishability obfuscator, then Construction 3.2 is a fully succinct, efficient,
fixed-transcript secure garbling scheme for RAM machines.

Proof. Correctness, efficiency, and succinctness are easy to see. Correctness follows from the correctness of
the splittable signatures, cryptographic iterators, and positional accumulators. Efficiency follows from the
fact that the size of C̃ depends only polylogarithmically on the time bound T . Succinctness follows from the
fact that storex will have Õ(|x|) non-empty addresses, and is represented succinctly.

It suffices to show indistinguishability of (P̃ , s̃,Acc.PP, Itr.PP) in the two cases, as M̃, s̃ can be publicly
derived from these values. We show a sequence of indistinguishable hybrid distributions starting with the
case M = M0, and ending with the case M = M1. These hybrids are essentially identical to the ones in
[KLW15], so we just give an overview of these hybrids.

3Here we are apparently assuming that M has a starting state of ⊥ and first reads (and writes) the 0th address, but we can
ensure these properties without loss of generality.

13

Hybrids Overview At a high level, we only modify the circuit C in our hybrids, switching the execution
from machine M0 (with transition function C0) to machine M1 (with transition function C1). Specifically,
we use the variables in the definition of Eval to refer to the honest evaluation of M0(x) or M1(x). Since the
transcripts are the same, we don’t need to distinguish which execution we refer to.

1. We add a new branch to C. Instead of just checking that vkAt accepts ((q, op, ac, itr), σ), we also check
(when t ≤ T) against the key vkBt , which is derived from a different puncturable PRF G. When only
vkBt accepts ((q, op, ac, itr), σ), we proceed as before except that we compute with C1 instead of C0,
and we sign outputs with skBt+1 instead of with skAt+1.

The indistinguishability of this change follows by O(t) applications of the indistinguishability of punc-
tured keys, together with the security of iO.

2. We hard-code vkA0 and vkB0 , and puncture F and G at {0}. This change preserves functionality and is
hence indistinguishable by iO.

3. We replace vkA0 and vkB0 by keys punctured on the setsM\{(q0, op0, ac0, itr0)} and {(q0, op0, ac0, itr0)}
respectively. These changes are indistinguishable by the indistinguishability of punctured keys.

4. We generate Acc.PP using SetupAccEnforceUpdate so that aux0 is the only value for aux such that
LocalUpdate(Acc.PP, ac0, op0, aux) 6= ⊥, and is in fact equal to s0, ac1. This is indistinguishable by the
positional accumulator’s setup indistinguishability.

5. We are guaranteed that C0(q0, s0) = C1(q0, s1), so we modify C so that it uses C1 in both the ‘A’ and
the ‘B’ branch at time 0, which preserves functionality and is thus indistinguishable by iO.

6. We generate Acc.PP normally, which is an indistinguishable change due to the positional accumulator’s
setup indistinguishability.

7. We modify C so that at time 0, instead of signing with skA1 in branch ‘A’ and skB1 in branch B, we do
the same thing in both branches. Namely, we use skA1 if and only if (q, op, ac, itr) = (q0, op0, ac0, itr0).
This is functionally equivalent because vkA0 and vkB0 accept disjoint sets of messages, and hence this
change is indistinguishable by iO. Note the ‘A’ branch and ‘B’ branch are now identical.

8. We generate Itr.PP using SetupEnforce so that itr′ = itr1 if and only if (q, op, ac, itr, aux) is equal to
(q0, op0, ac0, itr0, aux0). This change is indistinguishable by the iterator’s setup indistinguishability.

9. Instead of choosing whether to use skA1 or skB1 based on the value of (q, op, ac, itr), we choose based
on the value of (q′, op′, ac′, itr′). This is functionally equivalent because itr′ is equal to itr1 (and in
fact (q′, op′, ac′) is equal to (q1, op1, ac1)) if and only if (q, op, ac, itr, aux) = (q0, op0, ac0, itr0, aux0), and
therefore this change is indistinguishable by the security of iO.

10. We generate Itr.PP normally, which is indistinguishable by the iterator’s indistinguishability of setup.

11. Instead of checking whether the signature σ on (q, ac, itr) verifies under one of vkA0 (which is punctured
at M\ {(q0, op0, ac0, itr0)}) and vkB0 (which is punctured at {(q0, op0, ac0, itr0)}), we only check that
it verifies under the unpunctured vkA0 . This is indistinguishable by the splittable signature’s splitting
indistinguishability property.

12. We unpuncture F and G at 0 and un-hardcode vkA0 and vkB0 . This is functionally equivalent and hence
indistinguishable by iO.

13. We repeat steps 2 through 12 for timestamps 1 through the worst-case running time bound T instead
of just for timestamp 0 as was described above. In this way, we progressively change the computation
from using C0 (M0’s transition function) to C1 (M1’s transition function), starting at the beginning of
the computation.

14

4 Fixed Memory Garbling

We now use a fixed transcript garbling scheme to satisfy a slightly stronger notion which we call fixed-memory
garbling. In fixed-memory garbling, the garblings of two different machines are indistinguishable as long as
the memory accesses are the same. Notably, it is possible for the two machines to have differing local states.

Definition 4.1 (Fixed Memory Security). A garbling scheme (KeyGen,GbPrg,GbMem) is said to be fixed-
memory secure if for all RAM machines M0 and M1, memory configurations s, all time bounds T and space
bounds S satisfying:

• Time(M0, s) ≤ T

• Space(M0, s) ≤ S

• M0(s) = M1(s)

• |M0| = |M1|

• Writing T (M0, s) = ((q0, a0, v0), . . . , (qt−1, at−1, vt−1)) and T (M1, s) = ((q′0, a
′
0, v
′
0), . . . , (q′t′−1, a

′
t′−1, v

′
t′−1)),

it holds that t = t′ and for each i ∈ [t], ai = a′i and vi = v′i.

it holds that for all p.p.t. adversaries A

Pr

A(1λ, M̃b, s̃) = b

∣∣∣∣∣∣∣∣
SK ← KeyGen(1λ, T, S)
b← {0, 1}
M̃b ← GbPrg(SK,M)
s̃← GbMem(SK, s)

 ≤ 1

2
+ negl(λ)

4.1 Construction

Given a garbling scheme (KeyGen′,GbPrg′,GbMem′) satisfying fixed transcript security, we build a garbling
scheme (KeyGen,GbPrg,GbMem) satisfying fixed-memory security. All we need to do is mask the internal
state for each timestamp with a different pseudorandom value.

Construction 4.1. We define (KeyGen,GbPrg,GbMem):

• KeyGen(1λ, T, S) samples K ← KeyGen′(1λ, T, S) and a puncturable PRF F , and outputs (K,F, T, S).

• GbPrg((K,F, T, S),M = (Σ, Q, Y, C)) outputs GbPrg′(K,M ′ = (Σ, Q′, Y, C ′)), where Q′ = [T] ×
{0, 1}`Q , and C ′ is defined in Algorithm 2. q′0, the initial state for M ′, is defined as (0, F (0)⊕ q0),

• GbMem((K,F, T, S), s) outputs GbMem(K, s).

Input: state q, memory symbol σ
Data: Puncturable PRF F , underlying transition function C

1 Parse q as (t, cq);
2 qin := F (t)⊕ cq;
3 out := C(qin, σ);
4 if out ∈ Y then return out;
5 else
6 Parse out as (qout, op);
7 return ((t+ 1, F (t+ 1)⊕ qout), op);

8 end

Algorithm 2: Transition function C ′

15

4.2 Proof of Security

Theorem 4.2. If (KeyGen′,GbPrg′,GbMem′) is a fixed transcript secure garbling scheme, then Construc-
tion 4.1 defines a fully succinct, efficient, fixed memory secure garbling scheme for RAM machines.

Proof. Given RAM machines M0 and M1 and a memory configuration s, a time bound T , and a space bound
S, recall we want to show the indistinguishability of two “real-world” distributions, which we denote RW0

and RW1. Let t∗ denote Time(M, s). We first define t∗ + 1 hybrid distributions H0, . . . ,Ht∗ .

Real World b: For b ∈ {0, 1}, the distribution RWb is defined as the distribution on (M̃, s̃) obtained by
sampling:

1. KFT ← KeyGen′(1λ, T, S), and a puncturable PRF F .

2. M̃ ← GbPrg′(KFT ,M
′
b), where the RAM machine M ′b = (Σ, Q′, Y, C ′b) with Q′ = [T] × Q. The

transition function C ′b is given in Algorithm 2, with the hard-coded C equal to the transition function
of Mb.

3. s̃← GbMem′(KFT , s).

Hybrid Hi: Hybrid Hi is defined as the distribution on (M̃, s̃) obtained by sampling:

1. KFT ← KeyGen′(1λ, T, S), and a puncturable PRF F .

2. M̃ ← GbPrg′(KFT ,M
′
i), where the RAM machine M ′i = (Σ, Q′, Y, C ′i) with Q′ = [T] × Q. The

transition function C ′i is given in Algorithm 3, with the hard-coded C0 equal to the transition function
of M0 and C1 equal to the transition function of M1. If the tx− ith internal state (respectively memory
operation) in T (M1, s) is q′tx−i (respectively op′tx−i), then the hard-coded constant qtx−i in C ′i is equal
to (tx − i, F (tx − i)⊕ q′tx−i), and optx−i = op′tx−i.

3. s̃← GbMem′(KFT , s).

Input: state q, memory symbol σ
Data: Puncturable PRF F , underlying transition functions C0 and C1, a string qtx−i and operation

optx−i
1 Parse q as (t, cq);
2 if t = tx − i then return (q∗, op∗) ;
3 if t < tx − i then (qout, op)← C0(F (t)⊕ cq, σ) ;
4 else (qout, op)← C1(F (t)⊕ cq, σ) ;
5 return ((t+ 1, F (t+ 1)⊕ qout), op);

Algorithm 3: Transition function C0,i

Evidently H0 is indistinguishable from RW0 and Htx is indistinguishable from RW1 by the security of
the fixed transcript garbler. In order to complete the proof that RW0 ≈ RW1, we just need to show the
following claim.

Claim 4.2.1. For all i such that 0 ≤ i < tx, Hi ≈ Hi+1.

Proof. We define hybrid distributions Hi,1 and Hi,2 such that Hi ≈ Hi,1 ≈ Hi,2 ≈ Hi+1.

16

Hybrid Hi,1: Hybrid Hi,1 is defined as the distribution on (M̃, s̃) obtained by sampling:

1. KFT ← KeyGen′(1λ, T, S), and a puncturable PRF F .

2. M̃ ← GbPrg′(KFT ,M
′
i,1), where the RAM machine M ′i,1 = (Σ, Q′, Y, C ′i,1) with Q′ = [T] × Q. The

transition function C ′i,1 is given in Algorithm 4, with the hard-coded C0 equal to the transition function
of M0 and C1 equal to the transition function of M1.

If the tx− ith internal state (respectively memory operation) in T (M1, s) is q1
tx−i (respectively op1

tx−i),
then the hard-coded constant qtx−i in C ′i,1 is equal to (tx − i, F (tx − i)⊕ q1

tx−i), and optx−i = op1
tx−i.

If the tx − i − 1th internal state (respectively memory operation) in T (M0, s) is q0
tx−i−1 (respectively

op0
tx−i−1), then the hard-coded constant qtx−i−1 in C ′i,1 is equal to (tx− i− 1, F (tx− i− 1)⊕ q0

tx−i−1),

and optx−i−1 = op0
tx−i−1.

3. s̃← GbMem′(KFT , s).

Input: state q, memory symbol σ
Data: Punctured PRF F ′ = F{tx − i}, underlying transition functions C0 and C1, strings qtx−i and

qtx−i−1, operations optx−i and optx−i−1, output y = M0(s)
1 Parse q as (t, cq);
2 if t = tx then return y ;
3 if t = tx − i− 1 then return (qtx−i−1, optx−i−1) ;
4 if t = tx − i then return (qtx−i, optx−i) ;
5 else if t < tx − i then (qout, op)← C0(F (t)⊕ cq, σ) ;
6 else (qout, op)← C1(F (t)⊕ cq, σ) ;
7 return ((t+ 1, F (t+ 1)⊕ qout), op)

Algorithm 4: Transition function C0,i,1

Hybrid Hi,2: Hybrid Hi,2 is defined as the distribution on (M̃, s̃) obtained by sampling:

1. KFT ← KeyGen′(1λ, T, S), and a puncturable PRF F .

2. M̃ ← GbPrg′(KFT ,M
′
i,2), where the RAM machine M ′i,1 = (Σ, Q′, Y, C ′i,2) with Q′ = [T] × Q. The

transition function C ′i,2 is given in Algorithm 4, with the hard-coded C0 equal to the transition function
of M0 and C1 equal to the transition function of M1.

If the tx− ith internal state (respectively memory operation) in T (M1, s) is q1
tx−i (respectively op1

tx−i),
then the hard-coded constant qtx−i in C ′i,1 is equal to (tx − i, F (tx − i)⊕ q1

tx−i), and optx−i = op1
tx−i.

qtx−i−1 and optx−i−1 are defined analogously.

3. s̃← GbMem′(KFT , s).

We now need to show that
Hi ≈ Hi,1 ≈ Hi,2 ≈ Hi+1

The first and third indistinguishabilities are shown via reduction to the fixed transcript security of the
underlying garbling scheme. The second indistinguishability is shown via reduction to the pseudorandomness
of F at the selectively punctured point tx − i.

This concludes the proof of Theorem 4.2.

17

5 Fixed Address Garbling

We now use a fixed memory garbling scheme to construct a slightly stronger notion of garbling. Namely,
we will now hide the data in memory, but not yet the addresses which are accessed. As discussed in the
introduction, in applications where the memory access pattern is known not to leak sensitive information,
this notion of garbling may be significantly more efficient. In particular, it preserves the efficacy of cache,
for which real-world RAM programs are extensively optimized.

Definition 5.1. A garbling scheme (KeyGen,GbPrg,GbMem) is said to be fixed-address secure if for all
RAM machines M , memory configurations s, time bounds T , and space bounds S satisfying the following
conditions:

• Space(M0, s0) ≤ S and Time(M0, s0) ≤ T .

• {a : s0(a) 6= ε} = {a : s1(a) 6= ε}

• If T (M0, s) = ((q0, a0, v0), . . . , (qt−1, at−1, vt−1)) and T (M1, s) = ((q′0, a
′
0, v
′
0), . . . , (q′t′−1, a

′
t′−1, v

′
t′−1)),

then t = t′ and for each i ∈ [t], ai = a′i.

• M0(x0) = M1(x1)

• |M0| = |M1|

for all p.p.t. adversaries A, it holds that

Pr

A(1λ, M̃b, s̃) = b

∣∣∣∣∣∣∣∣
SK ← KeyGen(1λ, T, S)
b← {0, 1}
M̃b ← GbPrg(SK,M)
s̃← GbMem(SK, s)

 ≤ 1

2
+ negl(λ)

5.1 Construction

Given a garbling scheme (KeyGen′,GbPrg′,GbMem′) satisfying fixed-memory security, we build a garbling
scheme (KeyGen,GbPrg,GbMem) satisfying fixed-address security.

Overview. Our construction of Garble(M,x, T, S) applies Garble′ to a transformed version of the machine
M and a correspondingly transformed of the input x. The transformed machine, which we will denote by
M ′, differs from M in three ways:

• M ′ executes two copies of M in parallel (thereby using twice as much memory). We think of these
as an ‘A’ execution and a ‘B’ execution. We think of the external storage of M ′ as correspondingly
consisting of an ‘A’ track and a ‘B’ track. We implement the ‘A’ and ‘B’ tracks by modifying the
memory alphabet Σ to hold two symbols.

• M ′ writes metadata alongside each value to indicate the time and address at which it is written.

• M ′ authenticates each value it writes: instead of writing (t, a, v, v) to an address a, it writes (t, a, F ((t, a))⊕
v,G((t, a))⊕ v, where F and G are puncturable pseudorandom functions.

Construction 5.1. We define (KeyGen,GbPrg,GbMem):

• KeyGen(1λ, T, S) samples K ← KeyGen′(1λ, T, S), as well as puncturable PRFs F and G and outputs
(K,F,G, T, S).

• GbPrg((K,F,G, T, S),M = (Σ, Q, Y, C)) outputs GbPrg′(K,M ′ = (Σ′, Q′, Y, C ′)), where Σ′ = [T] ×
[S]×{0, 1}`Σ ×{0, 1}`Σ , Q′ = [T]×Q×Q, and C ′ is defined in Algorithm 5. The initial state q′0 ∈ Q′
of M ′ is defined as (0, q0, q0).

18

• GbMem((K,F,G, T, S), s) samples s̃← GbMem(K, s′), where

s′(a) =

{
(0, a, F ((0, a))⊕ s(a), G((0, a))⊕ s(a)) if s(a) 6= ε

ε otherwise

Data: Underlying transition function C, puncturable PRFs F and G
Input: State q, symbol σ

1 Parse q as (tq, qA, qB);
2 Parse σ as (tσ, aσ, σA, σB);
3 Compute out← C(qA, F ((tσ, aσ))⊕ σA);
4 if out ∈ Y then return out;
5 Parse out as (qout, (aout, opout, σout));
6 return ((tq + 1, qout, qout), (aout, opout, (tq, aout, F ((tq, aout))⊕ σout, G((tq, aout))⊕ σout);

Algorithm 5: C ′

5.2 Proof of Security

Theorem 5.2. If (KeyGen′,GbPrg′,GbMem′) is a fixed memory secure garbling scheme, and if one-way
functions (and hence puncturable PRFs) exist, then Construction 5.1 defines a fully succinct, fixed address
secure garbling scheme for RAM machines.

Proof. For RAM machines M0 and M1, memory configurations s0 and s1, and and a time bound T and a
space bound S, we want to show that two “real world” distributions, which we will denote by RW0 and
RW1, are indistinguishable.

Real world b: The distribution RWb is defined as the distribution on (M̃, s̃) obtained by sampling:

1. KFM ← KeyGen′(1λ, T, S), and puncturable PRFs F and G.

2. M̃ ← GbPrg′(KFM ,M
′
b), where the RAM machine M ′b’s transition function C ′b is given in Algorithm 5.

In C ′b, the hard-coded transition function C is given by the transition function of Mb.

3. s̃← GbMem(KFM , s
′
b), where

s′b(a) =

{
(0, a, F ((0, a))⊕ sb(a), G((0, a))⊕ sb(a)) if sb(a) 6= ε

ε otherwise

Hybrid H01: Hybrid H01 is defined as the distribution on (M̃, s̃) obtained by sampling:

1. KFM ← KeyGen′(1λ, T, S), and puncturable PRFs F and G.

2. M̃ ← GbPrg′(KFM ,M
′
01), where the RAM machine M ′01’s transition function C ′01 is given in Algo-

rithm 6.

3. s̃← GbMem(KFM , s
′
01), where

s′01(a) =

{
(0, a, F ((0, a))⊕ s0(a), G((0, a))⊕ s1(a)) if s0(a) 6= ε

ε otherwise

Lemma 5.3. RW0 ≈ H01

Proof. (of Lemma 5.3)
We show a sequence of t∗ + 1 indistinguishable hybrid distributions H00,i for i = 0, . . . , t∗ such that

H0 ≈ H00,0 ≈ · · · ≈ H00,t∗ ≈ H01.

19

Data: Transition functions C0 and C1, Puncturable PRF F
Input: State q, symbol σ

1 Parse q as (tq, qA, qB);
2 Parse σ as (tσ, aσ, σA, σB);
3 Compute outA ← C0(qA, F ((tσ, aσ))⊕ σA);
4 Compute outB ← C1(qB , G((tσ, aσ))⊕ σB);
5 if outA ∈ Y then return outA;

6 Parse outA as (qAout, (a
A
out, σ

A
out));

7 Parse outB as (qBout, (a
B
out, σ

B
out)) // In honest execution, aAout = aBout

8 return ((tq + 1, qAout, q
B
out), (a

A
out, (tq, a

A
out, F ((tq, a

A
out))⊕ σAout, G((tq, a

A
out))⊕ σBout);

Algorithm 6: RAM machine M01

Hybrid H00,i: Informally, H00,i is the garbling of a machine M ′00,i and memory s′00,i which execute M0

on track A and M1 on track B, but only for the first i steps of computation. After this, M00,i ignores the
contents of track B. Instead, M ′00,i only executes M0 on track A, but writes the same underlying symbols
(masked independently) to both track A and track B.

Formally, Hybrid H00,i is defined as the distribution on (M̃, s̃) obtained by sampling:

1. KFM ← KeyGen′(1λ, T, S), and puncturable PRFs F and G.

2. M̃ ← GbPrg′(KFM ,M
′
00,i), where the RAM machine M ′00,i’s transition function C ′00,i is given in

Algorithm 7.

3. s̃← GbMem(KFM , s
′
00,i), where

s′00,i(a) =

{
(0, a, F ((0, a))⊕ s0(a), G((0, a))⊕ s1(a)) if s0(a) 6= ε

ε otherwise

Data: RAM transition functions C0 and C1, Puncturable PRFs F and G
Input: State q, symbol σ

1 Parse q as (tq, qA, qB);
2 Parse σ as (tσ, aσ, σA, σB);
3 Compute outA ← C0(qA, F ((tσ, aσ))⊕ σA);
4 if outA ∈ Y then return outA;

5 Parse outA as (qAout, (a
A
out, σ

A
out));

6 if tq ≤ i then
7 Compute outB ← C1(qB , G((tσ, aσ))⊕ σB);

8 Parse outB as (qBout, (a
B
out, σ

B
out)) // In honest execution, aAout = aBout

9 return ((tq + 1, qAout, q
B
out), (a

A
out, (tq, a

A
out, F ((tq, a

A
out))⊕ σAout, G((tq, a

A
out))⊕ σBout);

10 else return ((tq + 1, qAout, q
A
out), (a

A
out, (tq, a

A
out, F ((tq, a

A
out))⊕ σAout, G((tq, a

A
out))⊕ σAout) ;

Algorithm 7: Algorithm M00,i

Claim 5.3.1. RW0 ≈ H00,0

Proof. Starting with the process for sampling RW0, one can first replace M ′0 by M ′00,0 without changing the
addresses accessed. By fixed-address security of the underlying garbling scheme, this is an indistinguishable
change.

We now only need to change s′0 into s′00,0 – in other words, changing track ‘B’ to initially store encryptions
of s1 instead of s0. This is indistinguishable because M ′00,0 never needs to decrypt (or encrypt) values from

20

track ‘B’ at time 0. A standard sequence of hybrids puncturing and unpuncturing the PRF G shows that
this change is indistinguishable, which leaves us with the process for sampling H00,0

Claim 5.3.2. For each 1 ≤ i ≤ t∗, H00,i−1 ≈ H00,i

Proof. We make a sequence of indistinguishable changes to the process for sampling H00,i−1, and end up
with a process for sampling H00,i. In particular, we modify the machine M ′00,i−1 until we get M ′00,i.

Let σ0
i denote the value written by M0 at time i, and let σ1

i denote the value written by M1 at time i.
Let ai denote the corresponding address to which M0 and M1 write at time i. This address is well-defined
because M0 accesses the same addresses on input x0 as M1 does on input x1.

We first modify M ′00,i−1 so that at time i, it writes (i, c0i) to address ai on track B, where c0i is a hard-

coded ciphertext equal to G((i, ai)) ⊕ σ0
i . We also change it to only use a punctured G′ = G{(i, ai)}, as in

Algorithm 8 (with hard-coded c∗ = c0i). This change is indistinguishable by fixed memory security.
Next the hard-coded value for c∗ is changed from c0i to c1i = (i, G((i, ai))⊕ σ1

i). The indistinguishability
of this change follows from the pseudorandomness of G at the selectively punctured point (i, ai).

After these changes, M ′00,i−1 on s′00,i−1 accesses the same addresses and writes the same values as M00,i

on s′00,i. So by the fixed memory security of the underlying garbling scheme, this hybrid is indistinguishable
from H00,i.

Data: RAM transition functions C0 and C1, ciphertext c∗, Puncturable PRF F , Punctured PRF
G′ = G{(i, ai)}

Input: State q, symbol σ
1 Parse q as (tq, qA, qB);
2 Parse σ as (tσ, aσ, σA, σB);
3 Compute outA ← C0(qA, F ((tσ, aσ))⊕ σA);
4 Compute outB ← C1(qB , G((tσ, aσ))⊕ σB);
5 if outA ∈ Y then return outA;

6 Parse outA as (qAout, (a
A
out, σ

A
out));

7 Parse outB as (qBout, (a
B
out, σ

B
out)) // In honest execution, aAout = aBout

8 if tq < i then
9 return ((tq + 1, qAout, q

B
out), (a

A
out, (tq, a

A
out, F ((tq, a

A
out))⊕ σAout, G((tq, a

A
out))⊕ σBout);

10 else if tq = i then
11 return ((tq + 1, qAout, q

B
out), (a

A
out, (tq, a

A
out, F ((tq, a

A
out))⊕ σAout, c∗);

12 else return ((tq + 1, qAout, q
A
out), (a

A
out, (tq, a

A
out, F ((tq, a

A
out))⊕ σAout, G((tq, a

A
out))⊕ σAout) ;

Algorithm 8: Hybrid transition function C ′

Claim 5.3.3. H00,t∗ ≈ H01

Proof. Line 10 of C ′00,t∗ (described in Algorithm 7) is never activated on input s′00,t∗ because M0 terminates
after t∗ steps. It’s easy to see then that M ′00,t∗ on input s′00,t∗ accesses the same addresses and writes the
same values as M ′01 on input s′01. So the claim follows from fixed-memory security.

Lemma 5.3 follows by combining claims 5.3.1, 5.3.2, and 5.3.3.

Lemma 5.4. H01 ≈ RW1

Proof. This follows analogously and symmetrically to Lemma 5.3.

The fixed-access security of (KeyGen,GbPrg,GbMem) follows from Lemmas 5.3 and 5.4.

21

6 Full Security

This section constructs a secure garbling scheme for RAM machines, as in defined in Section 2.4, from any
fixed-address garbling scheme. As sketched and motivated in the Introduction, this is done by combining the
fixed address garbling scheme with an oblivious RAM (ORAM) scheme that has a special property, namely
localized randomness. We start by formally defining oblivious RAM schemes and localized randomness, and
then present and prove security of the garbling scheme.

6.1 Oblivious RAM

6.1.1 Syntax

An oblivious RAM is a tuple of p.p.t. algorithms (Setup,OMem,OProg)

• Setup(1λ, S) takes a security parameter in unary and a space bound S, and outputs a secret key SK.

• OProg(SK,M) takes a secret key SK and a RAM machine M , and outputs a probabilistic RAM
machine M ′.

• OMem(SK, s) takes a secret key SK and a memory configuration s, and outputs a memory configura-
tion s′

6.1.2 Correctness

For all RAM machines M , space bounds S, and memory configurations s such that Space(M, s) ≤ S,

Pr

M ′(s′) = M(s)

∣∣∣∣∣∣
SK ← Setup(1λ, S)
M ′ ← OProg(SK,M)
s′ ← OMem(SK, s)

 ≥ 1− negl(λ)

6.1.3 Efficiency

There is a function
η : N→ N

η(S) = Θ(polylog(S))

such that whenever Space(M, s) ≤ S for a RAM machine M , a memory configuration s, and a space bound
S,

Pr

Time(M ′, s′) = η(S) · Time(M, s)

∣∣∣∣∣∣
SK ← Setup(1λ, S)
M ′ ← OProg(SK,M)
s′ ← OMem(SK, s)

 = 1.

6.1.4 Localized Randomness

Let T = Time(M, s) and η = η(S) for some RAM machine M , memory configuration s, and space bound S.
Consider the deterministic function

addr′M,s,S,λ : {0, 1}N → NηT

addr′M,s,S,λ(~r) = ~a

where ~r is used as a random tape to sequentially sample

SK ← Setup(1λ, S)
M ′ ← OProg(SK,M)
s′ ← OMem(SK, s)
~a← addr(M ′, s′)

22

Definition 6.1. An ORAM (Setup,OProg,OMem) is said to have localized randomness if there is a de-
terministic algorithm Sim such that for all RAM machines M , memory configurations s, and space bounds
S ≥ Space(M, s) and Time(M, s) = t, there exist sets R1, . . . , Rt ⊆ N such that,

• For each i, |Ri| ≤ poly(logS, λ).

• For each i 6= j, Ri ∩Rj = ∅.

• For each i,

Pr
[
addr′M,s,S,λ(~r){η(i−1),...,ηi−1} = Sim(~rRi)

∣∣~r ← {0, 1}N] ≥ 1− negl(λ).

In Appendix A, we observe that a modification of the Chung-Pass ORAM [CP13] satisfies these properties.

6.2 Construction

Our garbling scheme is very simple; essentially, we just compose the fixed address garbler on top of an
ORAM scheme with localized randomness. That is, to garble a machine M , we first transform it via the
ORAM, and then apply the fixed address garbler to that transformed machine.

Construction 6.1. Let (KeyGen′,GbPrg′,GbMem′) be a fixed-address garbling scheme, and let (Setup,OProg,OMem)
be an ORAM scheme with localized randomness. We define a garbling scheme (KeyGen,GbPrg,GbMem):

• KeyGen(1λ, T, S) samples KFA ← KeyGen′(1λ, T, S) and KORAM ← Setup(1λ, S), and a puncturable
PRF F and outputs (KFA,KORAM , F).

• GbPrg((KFA,KORAM , F),M) outputs GbPrg′(KFA,OProg(KORAM ,M)F).

• GbMem((KFA,KORAM), s) outputs GbMem′(KFA,OMem(KORAM , s)).

6.3 Security Proof

Theorem 6.2. If (KeyGen′,GbPrg′,GbMem′) is a fixed address secure garbling scheme for RAM machines,
then Construction 6.1 defines a (fully secure) garbling scheme for RAM machines.

Proof Overview We proceed through a sequence of hybrid distributions, changing M ′ so that instead
of running OProg(M), it accesses a simulated sequence of memory addresses. We make this change one
timestep at a time, so in hybrid t∗ − i, OProg(M) is run for i steps before switching to the simulated access
pattern.

To prove these hybrids indistinguishable, we make crucial use of the ORAM’s localized randomness.
Indeed, locality allows us to isolate the randomness that determines the particular addresses we are trying to
change. In conjunction with our fixed address garbler, which lets us ignore low-level RAM machine details,
we then use the punctured programming method to change the addresses accessed. Finally, as an edge case
of this same technique, we change the memory configuration s̃ to be simulatable given ‖s‖0, the number of
non-empty addresses of s.

Proof. For any RAM machine M and memory configuration s with Time(M, s) = t∗ ≤ T and Space(M, s) ≤
S, we give a sequence of tx + 2 indistinguishable hybrid distributions H0 through Ht∗+1.

Real World: We want to show the simulability of the distribution on (M̃, S̃) which is obtained by sampling:

1. KFA ← KeyGen′(1λ, T, S), and KORAM ← Setup(1λ, S).

2. M̃ ← GbPrg(KFA,M)

3. s̃← GbMem(KFA,OMem(KORAM , s)).

23

Hybrid Hi: For 0 ≤ i ≤ t∗, Hybrid Hi is defined as the distribution on (M̃, s̃) obtained by sampling:

1. KFA ← KeyGen′(1λ, T, S), KORAM ← Setup(1λ, S), and puncturable PRFs F and G.

2. M̃ ← GbPrg(KFA,Mi), where the RAM machine Mi’s transition function is given in Algorithm 9.

3. s̃← GbMem(KFA,OMem(KORAM , s)).

Data: Puncturable PRF F , puncturable PRF G, underlying transition function C ′, y = M(s), the set
Si, the running time t∗ = Time(M, s)

Input: State (t, qin), symbol σ
1 Let (i′, j′) be integers such that t = ηi′ + j′ for 0 ≤ j′ < η;
2 if i′ < t∗ − i then
3 (qout, op) := C ′F (qin, σ);
4 return ((t+ 1, qout), op);

5 else if t∗ − i ≤ i′ < t∗ then return ((t+ 1, qin), (Sim(G(i′))j′ ,⊥)) ;
6 else return y;

Algorithm 9: Hybrid transition function Ci.

Hybrid Ht∗+1: Hybrid Ht∗+1 is defined as the distribution on (M̃, s̃) obtained by sampling:

1. KFA ← KeyGen′(1λ, T, S), KORAM ← Setup(1λ, S), and puncturable PRFs F and G..

2. M̃ ← GbPrg(KFA,Mt∗+1), where the RAM machine Mt∗+1’s transition function is given in Algo-
rithm 10. Mt∗+1’s initial state is (0,⊥).

3. s̃← GbMem(KFA,OMem(KORAM , s⊥)), where

s⊥(a) =

{
⊥ if a < ‖s‖0
ε otherwise

Data: Puncturable PRF G, y = M(s), the running time t∗ = Time(M, s)
Input: State (t, qin), symbol σ

1 Let (i′, j′) be integers such that t = ηi′ + j′ for 0 ≤ j′ < η;
2 if i′ < t∗ then return ((t+ 1, qin), (Sim(G(i′))j′ ,⊥));
3 else return y;

Algorithm 10: Hybrid transition function Ct∗+1.

One can easily check that Htx+1 can be sampled given only M(s), ‖s‖0, T , S, and Time(M, s). It remains
to prove the following three lemmas.

Lemma 6.3. The “real world” distribution is indistinguishable from H0.

Lemma 6.4. For all i with 0 ≤ i < t∗, Hi ≈ Hi+1.

Lemma 6.5. Ht∗ ≈ Ht∗+1

Lemmas 6.3 and 6.5 follow immediately from fixed-access security.

Proof. (of Lemma 6.4)

24

We give a sequence of indistinguishable hybrid distributions Hi ≈ Hi,1 ≈ · · · ≈ Hi,4 ≈ Hi+1.

Hybrid Hi,1: Hybrid Hi,1 is defined as the distribution on (M̃, s̃) obtained by sampling:

1. KFA ← KeyGen′(1λ, T, S), KORAM ← Setup(1λ, S), and puncturable PRFs F and G.

2. M̃ ← GbPrg(KFA,Mi,1), where the RAM machine Mi,1’s transition function is given in Algorithm 11,
with the hard-coded values p, ι1, . . . , ιp and b1, . . . , bp defined so that Si = {ι1, . . . , ιp}, and bj = F (ιj).
The hard-coded values ~a = (a0, . . . , aη−1) are defined as ~a = Sim(b1, . . . , bp).

3. s̃← GbMem(KFA,OMem(KORAM , s)).

Data: Punctured PRF F ′ = F{Si}, puncturable PRF G, underlying transition function C ′,
y = M(s), the set Si = {ι1, . . . , ιp}, bits b1, . . . , bp, addresses a0, . . . , aη−1, the running time
t∗ = Time(M, s)

Input: State (t, qin), symbol σ
1 Let (i′, j′) be integers such that t = ηi′ + j′ for 0 ≤ j′ < η;

2 Define F̄ ′ such that F̄ ′(x) =

{
bj if x = ιj

F ′(x) otherwise
;

3 if i′ < i then

4 (qout, op) := C ′F̄
′
(qin, σ);

5 return ((t+ 1, qout), op);

6 else if i′ = i then return ((t+ 1, qin), (aj ,⊥)) ;
7 else if i < i′ < t∗ then return ((t+ 1, qin), (Sim(G(i′))j′ ,⊥)) ;
8 else return y;

Algorithm 11: Hybrid transition function Ci,1.

Hybrid Hi,2: Hybrid Hi,2 is defined as the distribution on (M̃, s̃) obtained by sampling:

1. KFA ← KeyGen′(1λ, T, S), KORAM ← Setup(1λ, S), and puncturable PRFs F and G.

2. M̃ ← GbPrg(KFA,Mi,2), where the RAM machine Mi,2’s transition function is given in Algorithm 11,
with the hard-coded values p, ι1, . . . , ιp and b1, . . . , bp defined so that Si = {ι1, . . . , ιp}, and each bj is
drawn from {0, 1} independently and uniformly at random. The hard-coded values ~a = (a0, . . . , aη−1)
are defined as ~a = Sim(b1, . . . , bp).

3. s̃← GbMem(KFA,OMem(KORAM , s)).

25

Hybrid Hi,3: Hybrid Hi,3 is defined as the distribution on (M̃, s̃) obtained by sampling:

1. KFA ← KeyGen′(1λ, T, S), KORAM ← Setup(1λ, S), and puncturable PRFs F and G.

2. M̃ ← GbPrg(KFA,Mi,3), where the RAM machine Mi,3’s transition function is given in Algorithm 12,
with the hard-coded values ~a = (a0, . . . , aη−1) sampled as ~a = Sim(b1, . . . , bp) for uniformly random
(b1, . . . , bp) ∈ {0, 1}p.

3. s̃← GbMem(KFA,OMem(KORAM , s)).

Data: Puncturable PRF F , punctured PRF G′ = G{i}, underlying transition function C ′, y = M(s),
addresses a0, . . . , aη−1, the running time t∗ = Time(M, s)

Input: State (t, qin), symbol σ
1 Let (i′, j′) be integers such that t = ηi′ + j′ for 0 ≤ j′ < η;
2 if i′ < i then
3 (qout, op) := C ′F (qin, σ);
4 return ((t+ 1, qout), op);

5 else if i′ = i then return ((t+ 1, qin), (aj ,⊥)) ;
6 else if i < i′ < t∗ then return ((t+ 1, qin), (Sim(G(i′))j′ ,⊥)) ;
7 else return y;

Algorithm 12: Hybrid transition function Ci,3.

Hybrid Hi,4: Hybrid Hi,4 is defined as the distribution on (M̃, s̃) obtained by sampling:

1. KFA ← KeyGen′(1λ, T, S), KORAM ← Setup(1λ, S), and puncturable PRFs F and G.

2. M̃ ← GbPrg(KFA,Mi,4), where the RAM machine Mi,4’s transition function is given in Algorithm 12,
with the hard-coded values ~a = (a0, . . . , aη−1) sampled as ~a = Sim(G(i)).

3. s̃← GbMem(KFA,OMem(KORAM , s)).

Claim 6.5.1. For all i with 0 ≤ i < t∗, Hi ≈ Hi,1

Proof. This follows from fixed-access security.

Claim 6.5.2. For all i with 0 ≤ i < t∗, Hi,1 ≈ Hi,2

Proof. This follows from the pseudorandomness of F at the (selectively) punctured points {ι1, . . . , ιp} in a
straight-forward way.

Claim 6.5.3. For all i with 0 ≤ i < t∗, Hi,2 ≈ Hi,3

Proof. This follows from fixed-access security. Indeed, ι1, . . . , ιp are defined so that changing F (ιj) can only
possibly change the addresses accessed at time tx− i. But at time tx− i, the accessed addresses a0, . . . , aη−1

are hard-coded with the same values in both M ′i,2 and M ′i,3.

Claim 6.5.4. For all i with 0 ≤ i < t∗, Hi,3 ≈ Hi,4

Proof. This follows from the pseudorandomness of G at the selectively punctured point tx − i in a straight-
forward way.

Claim 6.5.5. For all i with 0 ≤ i < t∗, Hi,4 ≈ Hi+1

Proof. This follows from fixed-access security because M ′i,4 and M ′i+1 access the same sequence of addresses.

26

This concludes the proof of Lemma 6.4.

7 Persistent Data

The garbled RAM construction and security proof above can be generalized to a setting in which the garbled
RAM programs act on a persistent database. That is, the updates that a garbled RAM program makes to
a database D are accessible to the next garbled program to be executed on that database.

Definition 7.1. A RAM garbling scheme with persistent data is a tuple of p.p.t. algorithms (KeyGen,GbPrg,GbMem):

KeyGeneration. KeyGen(1λ, T, S) takes as input a security parameter λ in unary, as well as time and space
bounds T and S, and outputs a secret key SK.

Program Garbling. GbPrg(SK,Mi, i) takes as input a secret key SK, a RAM machine Mi and an index
i, and outputs a RAM program M̃i.

Memory Garbling. GbMem(SK, s) takes a secret key SK and a memory configuration s, and outputs a
memory configuration database s̃.

Definition 7.2. A RAM garbling scheme with persistent data is said to be correct if for every memory
configuration s0, for every ` = poly(λ), and every tuple of RAM machines (M1, . . . ,M`), it holds that the
outputs of the garbled machines, when run in sequence on the garbled data, equal the outputs of the plaintext
machines when run in sequene on the plaintext data. That is:

Pr


y1 = y′1 ∧ · · · ∧ y` = y′`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

SK ← KeyGen(1λ)
s̃0 ← GbMem(SK, s0)
For i = 1, . . . , `

M̃i ← GbPrg(SK,Mi, i)
yi ←Mi(si−1)

y′i ← M̃i(s̃i−1)
si ← NextMem(Mi, si−1)

s̃i ← NextMem(M̃i, s̃i−1)


≥ 1− negl(λ)

Definition 7.3. A RAM garbling scheme with persistent data is said to be secure if there is a p.p.t. algorithm
Sim such that for all memory configurations s0, all ` = poly(λ), and all RAM machines M1, . . . ,M`, no p.p.t.
algorithm A can correctly distinguish between

(s̃0, M̃1, . . . , M̃`)

∣∣∣∣∣∣∣∣
SK ← KeyGen(1λ)
s̃0 ← GbMem(SK, s0)
For i = 1, . . . , `

M̃i ← GbPrg(SK,Mi, i)

and

Sim(y1, . . . , y`, |s0|, |M0|, . . . , |M`|, 1λ)

∣∣∣∣∣∣
For i = 1, . . . , `
yi ←Mi(si−1)
si ← NextMem(Mi, si−1)

with probability greater than 1
2 + negl(λ).

Theorem 7.1. If there is an indistinguishability obfuscator for circuits and there exist one-way functions,
then there is a correct, secure RAM garbling scheme with persistent data.

27

Proof. (Sketch.) The scheme and the analysis are straightforward extensions of the single-machine case. That
is, the memory garbling is identical to the single-machine case, except that “step 0” is attached to the root
of the merkle tree before signing; The ith machine is garbled by applying the machine garbling algorithm of
the single-machine case, with the exception that now the signature on the root of the Merkle tree is expected
to contain also “step i − 1”, and the root of the Merkle-tree-hash of the final memory configuration is
signed together with “step i”. (All machines are garbled with the same accumulator, iterator, and splittable
signature parameters.)

Correctness, efficiency and succinctness are straightforward. For security, recall that the single-machine
simulator generates a dummy (but legal) initial memory configuration, and a dummy machine that first
verifies the signature on the memory configuration and then runs a dummy computation for a fixed number
of steps at the end of which a hardcoded value is output. Here we extend this simulation strategy in the
natural way. That is, the simulator first generates a dummy legal initial memory configuration. The ith
dummy machine first checks the signature on its initial memory configuration, and verifies that the signed
string has “step i − 1” encoded in it. Then the machine runs a dummy computation for a fixed number of
steps, outputs the hardcoded value, and signs the final memory configuration along with “step i”. Analysis
of the simulator is extended in a natural way. In particular, it can be done in the same modular way as in
the single-machine case.

We note that our notion of garbling with persistent data generalizes garbling with a long output. Recent
work [LPST15] has shown that full “compactness” is impossible in this setting. Indeed, the combined size
of M̃1, . . . , M̃` in our scheme grows proportionally to the total output length.

Acknowledgements

This work was done in part while the authors were visiting the Simons Institute for the Theory of Computing,
supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through
NSF grant #CNS-1523467.

References

[AB15] Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order graded encod-
ing. In Dodis and Nielsen [DN15], pages 528–556.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Theory of
Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA,
February 24-26, 2014. Proceedings, pages 52–73, 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1–18, 2001.

[BGK+14] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting obfus-
cation against algebraic attacks. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances
in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages
221–238. Springer Berlin Heidelberg, 2014.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct randomized
encodings and their applications. In Ronitt Rubinfeld, editor, Symposium on the Theory of
Computing (STOC), 2015.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct garbling
and indistinguishability obfuscation for ram programs. In Ronitt Rubinfeld, editor, Symposium
on the Theory of Computing (STOC), 2015.

28

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Probabilistic indistin-
guishability obfuscation. In TCC, 2015.

[CP13] Kai-Min Chung and Rafael Pass. A simple ORAM. IACR Cryptology ePrint Archive, 2013:243,
2013.

[DN15] Yevgeniy Dodis and Jesper Buus Nielsen, editors. Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part
II, volume 9015 of Lecture Notes in Computer Science. Springer, 2015.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability and functional encryption for all circuits. In FOCS, pages 40–49,
2013.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel Wichs.
Garbled RAM revisited. In EUROCRYPT, pages 405–422, 2014.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 555–564, 2013.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled ram from one-way
functions. In Ronitt Rubinfeld, editor, Symposium on the Theory of Computing (STOC), 2015.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams.
Journal of the ACM (JACM), 43(3):431–473, 1996.

[IPS15] Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs obfuscation and its
applications. In Dodis and Nielsen [DN15], pages 668–697.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation for
turing machines with unbounded memory. In Ronitt Rubinfeld, editor, Symposium on the Theory
of Computing (STOC), 2015.

[LO13] Steve Lu and Rafail Ostrovsky. How to garble ram programs? In Thomas Johansson and
PhongQ. Nguyen, editors, Advances in Cryptology EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 719–734. Springer Berlin Heidelberg, 2013.

[LPST15] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing randomized en-
codings and applications. Cryptology ePrint Archive, Report 2015/720, 2015. http://eprint.

iacr.org/.

[Mer88] Ralph C Merkle. A digital signature based on a conventional encryption function. In Advances
in CryptologyCRYPTO87, pages 369–378. Springer, 1988.

[SCSL11] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with o((logn)3)
worst-case cost. In ASIACRYPT, pages 197–214, 2011.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In STOC, pages 475–484, 2014.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings of the 27th Annual
Symposium on Foundations of Computer Science, SFCS ’86, pages 162–167, Washington, DC,
USA, 1986. IEEE Computer Society.

[Zim14] Joe Zimmerman. How to obfuscate programs directly. IACR Cryptology ePrint Archive, 2014:776,
2014.

29

http://eprint.iacr.org/
http://eprint.iacr.org/

A ORAM Construction

Memory Layout Recall that for a RAM machine M and a (dense) memory configuration s, the Chung-
Pass ORAM begins by partitioning s into blocks of size α for some constant α > 1. These blocks are labeled
with their addresses, randomly shuffled, and a position map Pos1 is generated, with Pos1(i) storing the
shuffled position of block i. For i = 1, . . . , log(‖s‖0), Posi is also randomly shuffled in blocks of size α, with
Posi+1 storing this shuffling.

For each i, there is a balanced binary tree Ti of buckets in memory, with each bucket sized to hold
polylog(λ) blocks. When posi(x) = y, it means that the block labeled x is present in this tree in one of the
buckets from the root to leaf y.

Memory Accesses To obliviously access an address a in this data structure, one first looks up Pos‖s‖0(a)
from private registers or a brute-force ORAM. Having computed Posi(a), one now looks up Posi−1(a) by
reading each bucket on the path to the Posi(a)th leaf in Ti, searching for the block which is labeled a (or more
precisely ba/αic) and retrieving its contents. This block is not written back to the bucket, but is instead
assigned a new position pos∗. Labeled as such, it is inserted into the root bucket in Ti. Next, and this step
is crucial to prevent buckets from overflowing, the path in Ti from root to a random leaf is traversed, with
each block moved to the leafmost admissible bucket along this path.

Remark 1. While the Chung-Pass ORAM is defined for dense initial memory configurations, one can apply it
to sparse memory configurations with only polylogarithmic overhead. For example, one can densely encode
a balanced binary tree representing the sparse memory configuration, and then apply the ORAM to this
dense encoding.

However, we allow the transformed memory configuration to be sparse – this enables the space bound
S to be larger than the initial memory size ‖s0‖. In particular, a shuffling of blocks of ‖s0‖ in the address
space [S] can be represented with size O(‖s0‖ logS). This new sparseness feature, introduced in the name
of efficiency, also introduces a new security requirement: The sparsity pattern (the non-empty addresses) of
the transformed initial memory configuration must be independent of the plaintext memory configuration’s
contents (but not length).

A.1 Localized Randomness

In order to assert the localized randomness property, we must define an algorithm Sim, and given a RAM
machine M and memory configuration s with Time(M, s) = t, we must define subsets S1, . . . , St of the
ORAM randomness such that the addresses accessed on the ith access when using randomness ~r are given
by Sim(~rSi

).
Sim takes a random string r and interprets it as labeling two leaf nodes in each tree T‖s‖0 , . . . , T1. For

each such leaf node `, Sim outputs the addresses of each bucket on the path from the root to `.
Suppose that M on s accesses addresses a1, . . . , at. The set Si is defined by considering, for each j ∈

{1, . . . , ‖s‖0}, ki,j = max{k : k < i ∧ ak/αj = ai/α
j}. Then Si is defined as the concatenation of, for each

j, the randomness used in choosing the new positions pos∗ in Tj on the kthj underlying access, as well as the
randomness in choosing the random path along which blocks should be flushed towards the root.

30

	Introduction
	Our contribution
	Fixed Address Garbling
	Full Garbling

	Roadmap

	Preliminaries
	Notation
	Indistinguishability Obfuscation
	The RAM Model
	RAM Machines
	Memory Configurations
	Execution

	Garbling
	Cryptographic Iterators
	Positional Accumulators
	Splittable Signatures

	Fixed-Transcript Garbling
	Construction
	Proof of Security

	Fixed Memory Garbling
	Construction
	Proof of Security

	Fixed Address Garbling
	Construction
	Proof of Security

	Full Security
	Oblivious RAM
	Syntax
	Correctness
	Efficiency
	Localized Randomness

	Construction
	Security Proof

	Persistent Data
	ORAM Construction
	Localized Randomness

