
Method to Protect Passwords in Databases for Web
Applications

Scott Contini

ABSTRACT
Trying to make it more difficult to hack passwords has a
long history [3, 14, 20, 16]. However the research commu-
nity has not addressed the change of context from traditional
Unix mainframe systems to web applications which face new
threats (DoS) and have fewer constraints (client-side com-
putation is allowed). In absence of updated guidance, a
variety of solutions are scattered all over the web, from am-
ateur to somewhat professional. However, even the best ref-
erences have issues such as incomplete details, misuse of ter-
minology, assertion of requirements that are not adequately
justified, and too many options presented to the developer,
opening the door to potential mistakes. The purpose of this
research note is to present a solution with complete details
and a concise summary of the requirements, and to pro-
vide a solution that developers can readily implement with
confidence, assuming that the solution is endorsed by the
research community. The proposed solution involves client-
side processing of a heavy computation in combination with
a server-side hash computation. It follows a similar approach
to a few other proposals on the web, but is more complete
and justified than any that we found.

1. INTRODUCTION
The way many modern web applications protect passwords
in databases is similar to the the way operating systems pro-
tect passwords in databases. But are the security require-
ments for these two different scenarios the same? Maybe
not.

A good survey on password protection in modern operating
systems is [3]. The initial ideas for protecting passwords
in Unix operating systems came from Morris and Thomp-
son [14]. Their goal was to design a system that would
make it hard for hackers to find even poorly chosen pass-
words assuming the database was public. This assumption
is important because in practice it is hard to keep databases
secret. Morris and Thompson used a slow one-way function
to encode passwords, the output of which was stored in the

database. The purpose of it being slow was so that it would
impede hackers from determining passwords via trial and
error or via dictionary attacks. They also introduced the
concept of salt which prevented an attacker from going after
multiple accounts at once, and also staved off precomputed
table attacks. While it was good for its time, their solution
soon became insufficient due to increases in hardware per-
formance which made dictionary attacks and precomputed
tables viable again.

Improved solutions came in 1999 with bcrypt [20] and in
2000 with PKCS #5 V2.0 [13, 11]. bcrypt was actually
specifically designed to fill the gap that Unix systems had,
namely the problem with the algorithm becoming less se-
cure due to hardware advances outpacing general purpose
computing advances. On the other hand, PKCS #5 was
originally intended to be a password based key derivation
function (PBKDF): that is, a function that turns a pass-
word into a cryptographic key, used to encrypt and decrypt
documents. Since PBKDFs have similar requirements to
functions used to protect passwords in databases, Version 2
of the standard made a passing remark that it could also be
applicable to storing encoded passwords in databases. We
will discuss this more in Section 1.4.

In 2009 Colin Percival introduced scrypt [16] which is an
improvement upon bcrypt. As noted in [18], the main threat
against bcrypt in 1999 was ASICs with low gate counts, but
today the threat is FPGAs and bcrypt was not designed to
protect against that threat.

In the above cases, a function is being provided that develop-
ers can put passwords into to get an encoded result. The so-
lutions are improvements upon [14] for protecting passwords
in Unix systems. But do the same assumptions for protect-
ing passwords in traditional Unix systems apply to today’s
web systems? Prior to making hand waving arguments sug-
gesting that it should be easy to translate their ideas into the
web context, one should do a little web searching to see the
confusion web developers have in implementing such a solu-
tion. Crackstation.net [7] gives good examples of the issues
that developers struggle with including which side (client or
server) does the heavy computation, how to choose the salt,
the threat of denial of service, etc....

In fact, the web is scattered with advice on how to properly
implement such a solution for a web base system, ranging
from amateur to somewhat professional. The problem is

that it is not so easy for a web developer to distinguish be-
tween the amateur and professional recommendations since
there is no authoritative standard or publication telling de-
velopers how they should do it. This gap needs to be filled
by the research and/or standards community.

Our research aims to fill this gap by providing such a solu-
tion. For developers who just want to know what the final
answer is, we direct them to Section 4. The rest of the paper
is aimed at a research audience.

1.1 What about SRP and related work?
SRP [24], the Secure Remote Password Protocol, was in-
troduced in 1998 as a way for a client to authenticate to a
server without revealing the password to the server. Unlike
the operating system based solutions, SRP was designed for
web usage. It has a number of desirable security proper-
ties, such as not requiring a TLS connection for its security.
However, it does not prevent offline guessing attacks in the
event of a database leak. This was noted in [20], including
the point that SRP can be combined with their solution to
deal with the database leak scenario. Still, neither of these
papers address a threat that we believe should be addressed:
denial of service attacks which force the server to consume
heavy resources.

1.2 Our Contributions
This note will attempt to make the following research con-
tributions:

• A claim that the security requirements for protect-
ing passwords in modern web applications are differ-
ent from that of traditional Unix mainframes, and the
advice given by the research community has not ad-
dressed this change. Notably, modern web applications
have to defend against denial of service attacks whereas
traditional Unix mainframes did not worry about this.

• A recognition that there are numerous developers try-
ing to craft various solutions to this problem on the
web due to the lack of guidance from the research com-
munity.

• A recommended solution to the problem is given which
partially overlaps with some independent solutions off
the web, but additionally fills in gaps that others do
not.

• A consolidation of various suggestions from solutions
on the web.

• An identification of the exact requirements needed to
solve the problem.

• An identification of wrong/inaccurate requirements given
by various proposals on the web.

• An identification and correction of the misuse of ter-
minology.

In general, what is needed is for the research community to
address the problem that many web developers are trying
to solve, and to give a blessing to some solution. This note
aims to provide such a solution.

1.3 Requirements for Protecting Passwords
The solution presented in this article is based upon resisting
certain types of attacks. Upon listing the attacks, we can
derive security requirements from them. Provided that the
threats we list correctly represent the real threats to web sys-
tems, we can conclude that our solution satisfactorily meets
what web developers require for protecting online systems.

We limit ourselves to attacks that the server can defend
against. For example, attacks such as phishing and client-
side key loggers are outside the scope of what the server
can protect against. With that in mind, we claim that the
threats in scope to stored password-based web systems are:

• An attacker might get access to the database (exam-
ples: SQL injection, insecure backups, snooping ad-
min), potentially allowing him to get access to every
body’s passwords.

• Attacker might be able to launch denial of service (DoS),
possibly distributed (DDoS), attacks on the password
verificiation mechanism by forcing the server to con-
sume heavy resources.

The second one deserves some discussion. The threat of
a denial of service that exploits the password verification
method has been discussed in software development circles
[7, 18, 21, 5, 9]. In fact, there was a security patch for the
Django framework due to a related denial of service possibil-
ity but in this case they blamed it on the fact that they did
not limit password size [6]. However, the general threat of
a DoS or DDoS is a real one due to the imbalance between
client-side request and server-side computation time.

There are a number of ways that DoS can be performed in
the TCP/IP protocol suite – see the survey paper [2]. The
way many web applications implement authentication opens
the door to another way that they could be vulnerable to the
consumption of a scarce, limited, or non-renewable resource:
namely CPU time. One might argue that standard defenses
such as Crackstation.net’s recommendation of Captchas [7]
can apply here, but it is far more elegant to have a solution
that inherently protects against this threat without annoy-
ing legitimate users. See also Section 3.3 for another defense
option.

From the threats listed above, we derive the following three
requirements:

1. Access to the database must be resistant to both online
and offline password guessing attacks.

2. The server must not be vulnerable to “pass the hash
attacks” [15]. This means that if the attacker gets a
hold of the database, that should not allow him to
trivially impersonate anybody by simply sending the
information stored in the database to the server.

3. Verification of the data provided by the user should be
fast.

The problem is that the research community has not ad-
dressed these requirements that may seem contradictory at
first glance. In fact, none of the publications [3, 14, 20, 16]
mention the DoS threat, or consider the possibility that the
secure/heavy computation can be done on the client-side.
Perhaps the reason for this is timing, since the first DDoS
occurred in 1999 [12] and the trend to client-side computa-
tion has largely been pushed by html5 which is only now
being accepted as the new standard for web markup lan-
guage.

Going in the direction of client-side computation, we can
offer an additional “nice to have” feature for such a solution
is that the server never sees the user’s plaintext password1,
similar as to [24]. For example, think of the Heartbleed at-
tack which would leak exactly what the server received from
the client, or think of a dishonest system administrator who
monitors memory. For users who had the same password on
multiple systems2, the compromise of a single system that
receives a plaintext password would imply that the attacker
could get access to other systems that the user shares that
password on.

1.4 A Note about Terminology
There is a lot of confusion about terminology when reading
various sources on this topic. Much of this seems to be due
to PKCS #5 V2.0 [13].

PKCS #5 was originally written as a method to turn a pass-
word into a cryptographic key for the purpose of encryption
or decryption. For example, if one wants to encrypt a docu-
ment using a user-entered password, the password typically
is short for the purpose of memorisation and usability (hu-
mans make errors in typing long passwords which hurts us-
ability), yet keys required for encryption are long. Thus the
method in PKCS turns the short password into a long cryp-
tographic key which can be used to encrypt and decrypt a
document.

Version 1.5 of the PKCS #5 standard was designed for only
this purpose, and there is no mention of using it for other
purposes such as password based authentication. It is only
Version 2 of PKCS #5 that the door opens to other uses.

It in Version 2.0 of PKCS #5 where the term password based
key derivation function (PBKDF) is introduced. It is also in
Version 2.0 of the standard where they suggest that it can
additionally be used for protecting passwords in databases
for the purpose of authenticating users. At this time, they
also blur the definition of “key” as seen in the text quoted
below:

A general approach to password-based cryptog-
raphy, as described by Morris and Thompson for
the protection of password tables, is to combine
a password with a salt to produce a key. The salt
can be viewed as an index into a large set of keys

1If done in Javascript, then secure client-side controls such
as in [17] would also be needed to enforce this.
2We are all told that we should not do it, but most people
do due to the complexity of managing multiple passwords,
including the complexity of password manager tools.

derived from the password, and need not be kept
secret.

The above text refers to the “key” as the output of a cryp-
tographic function (a PBKDF). But Morris and Thompson
did not use the word “key” in this way. They used it to
mean the cryptographic key of the cipher that they were us-
ing as a one-way-function. In their case, the password and
salt were combined to form the cryptographic key, which
is used to encrypt a constant value. The output was re-
ferred to “encrypted result” (not “key”) and was stored in
the database table. In summary, Morris and Thompson
used the word “key” consistently with cryptographic liter-
ature whereas PKCS #5 does not.

PKCS #5 V2.0 then goes on to suggest that it is straight-
forward to define password-based encryption and message
authentication schemes from the standard, but then takes it
one step further:

It is expected that the password-based key deriva-
tion functions may find other applications than
just the encryption and message authentication
schemes defined here.... Another application is
password checking, where the output of the key
derivation function is stored (along with the salt
and iteration count) for the purposes of subse-
quent verification of a password.

The last sentence is the invitation for the expanded use. It’s
worth noting that the NIST Special Publication 800-132 [22]
does not allow the use of the PKCS #5 PBKDF2 in this way
for FIPS certification.

Encoded passwords used for authentication are not crypto-
graphic keys. So calling the encoded passwords “keys” or
using the term “password based key derivation function” to
describe the encoding process is an abuse of terminology.
This abuse is seen in many places online including [7, 9, 5].
Thomas Pornin has also pointed out this terminology abuse
[19].

Having said that, it is indeed true that the requirements
for the function that processes passwords to be protected
in a database overlap with that of a PBKDF. So therefore
PBKDF2 is an acceptable function for protecting passwords
in web applications even though the terminology behind it
for this context is wrong.

In this document, we will refer to the function performing
the heavy computation involving direct input of the pass-
word (bcrypt, PBKDF2, scrypt, etc...) as a password pro-
cessing function (PPF) and the output of it as the encoded
password.

The PPFs [20, 16, 13] take at least a salt, password, and
cost parameters. The cost refers to the amount of effort to
attack it, and is related to the number of iterations used in
the PPF. PPFs may take other parameters (such as output
size), which we will refer to as “misc”. We will thus refer to

the PPF computation as

PPF (salt, password, cost,misc)

2. DRAFTING A FIRST SOLUTION
The problem with using a PPF alone to protect passwords
in databases is that it does not seem to allow meeting re-
quirements (1) through (3) in Section 1.3. To see this, note
that:

• If the PPF computation is done on the client-side, then
the resulting value will match what is in the database.
This means that any attacker who gets access to the
database can bypass the PPF by simply passing the
known hashed value to the server (pass-the-hash).

• If the PPF computation is done on the server-side,
then requirements (1) and (2) above are met, but goal
(3) is not because it puts the burden on the server to
do a heavy computation to verify the authenticity of
the user.

Crackstation.net acknowledges these shortcomings and rec-
ommends a few options to deal with them. One of them
actually has potential (where “key stretching” is meant to
mean using a PPF on the user entered password):

If you are worried about the computational bur-
den, but still want to use key stretching in a web
application, consider running the key stretching
algorithm in the user’s browser with JavaScript.
The Stanford JavaScript Crypto Library includes
PBKDF2. The iteration count should be set low
enough that the system is usable with slower
clients like mobile devices, and the system should
fall back to server-side computation if the user’s
browser doesn’t support JavaScript. Client-side
key stretching does not remove the need for server-
side hashing. You must hash the hash generated
by the client the same way you would hash a
normal password.

The paragraph suggests that one can do the PPF on the
client-side as long as one hashes the result on the server-
side. Similar ideas have been expressed by [21, 5, 9].

Let’s explore this more. Consider the following implemen-
tation:

• Database stores { username, salt, hash(s) } where

s = PPF (salt, password, cost,misc)

for each user. Note that neither s nor password is
stored.

• For user to authenticate, client gets salt and computes
ς = PPF (salt, p, cost,misc) where p is the user entered
password and sends { ς, username } to server via secure
TLS connection.

• Server computes hash(ς) and checks it against the
hash(s) in the database for that user. It accepts if and
only if there is a match.

For now ignore the issue of the salt coming from the server
to the client and consider how this solution satisfies the re-
quirements above:

• Access to the database resistant to password guess-
ing attacks seems to be preserved. The attacker must
either compute the PPF computation using a dictio-
nary of words or he must invert the hash. The former
is time consuming: this is the purpose of PPF. The
latter is impossible for a secure hash3: hash functions
are designed to be non-reversible.

• The server is not vulnerable to a pass the hash attack.
Whatever the server receives, it is going to hash it and
then compare the result to the database. In order to
pass-the-hash, the attacker would need to know s or
a second preimage of hash(s) which are not avail-
able from the database. Knowing these values is hard
according the the definition of secure hash function.

• Verification of the data on the server-side is quick. The
server only needs to compute the hash of an small
amount of data4 and do a database lookup. These
operations do not require heavy resources.

Thus, the goals are met.

3. SOME IMPLEMENTATION REQUIREMENTS
To make a full solution, we need to be more specific about
the requirements for salt.

The original purpose for the salt [14] was to force an attacker
who has access to the database to hack each user’s password
individually rather than to hack all passwords at once. The
salt was to assure that two users in a system do not have the
same encoded password even if they had the same password.
A better and stronger requirement is that two users should
not have the same encoded password even if they are on
different systems. Morris and Thompson also noted the salts
impede the possibility of preparing precomputed tables in
advance that allow looking up passwords for users.

As we move to a web based solution, particularly a client-
side solution, we find new requirements for the salt.

3.1 Analyzing Crackstation.net’s Solution
Crackstation.net identifies the following issue with the salt
coming from the server:

“The obvious solution is to make the client-side
script ask the server for the user’s salt. Don’t

3Assuming the input space is large enough. This can be met
by requiring the output of the PPF to be at least 128-bits.
4Of course, the server should verify that the data is small
before computing the hash in order to avoid the [6] vulner-
ability.

do that, because it lets the bad guys check if a
username is valid without knowing the password.
Since you’re hashing and salting (with a good
salt) on the server too, it’s OK to use the user-
name (or email) concatenated with a site-specific
string (e.g. domain name) as the client-side salt.”

The point about bad guys learning valid usernames in the
system is a real one for web base-systems since it helps out-
siders identify targets. In the event of not being able to
get the system database, being able to find valid targets is
a fallback path for hacking user accounts. This threat is
commonly known as account enumeration [1].

What about the server-side salt? The following three claims
are made, none of which are justified:

• “Every time a user creates an account or changes their
password, the password should be hashed using a new
random salt. Never reuse a salt.”

• “The salt also needs to be long, so that there are many
possible salts. As a rule of thumb, make your salt is
[sic] at least as long as the hash function’s output.”

• “Salt should be generated using a Cryptographically
Secure Pseudo-RandomNumber Generator (CSPRNG)....
As the name suggests, CSPRNGs are designed to be
cryptographically secure, meaning they provide a high
level of randomness and are completely unpredictable.
We don’t want our salts to be predictable, so we must
use a CSPRNG.”

Although these choices feel wise, the approach of throwing
everything but the kitchen sink for defense without being
clear of what we are defending against is not scientific, and
potentially introduces unnecessary complexity. So we there-
fore would like to analyze the solution to identify more exact
requirements, and tailor our recommendation accordingly.

The first two claims from Crackstation.net seem to be for
the same purpose: preventing salt reuse. The third claim of
unpredictability could potentially have another purpose.

Although [14] implied that different users should have dif-
ferent salts, what is not clear is why the user’s salt must
change when his password changes. More specifically, to the
recommendation of using a client-side salt of username (or
email) concatenated with a site-specific string (e.g. domain
name), what are the dangers of server-side salt reuse?

Thomas Pornin gives his rationale [19] for the dangers of salt
reuse, but much of it is already precluded by the client-side
salt choice. The exception is this one claim that seems to
be wrong:

“...because people tend to generate their pass-
words “in sequence”: if you learn that Bob’s old
password is“SuperSecretPassword37”, then Bob’s
current password is probable “SuperSecretPass-
word38” or “SuperSecretPassword39”.”

Generating passwords in sequence is a problem independent
of salt. Regardless of whether or not the salt is reused, if
one password is known then the other can be readily guessed
(either online or offline attack). Using the same salt does not
leak extra information for passwords in sequence.

In our case, the server-side salt is never exposed to users
that do not hack the system. So we start by assuming that
the database has been exposed to a hacker and ask what
advantages does he have by knowing that salts are reused?
To exploit this, we would also need to assume that the at-
tacker can discover future databases, so that he can mount
offline attacks against targeted users. As a consequence,
the attacker can do a heavy precomputation early so he can
quickly lookup future versions of users’ passwords later. In
other words, a one-time computation which stores a large set
of encoded passwords for a list of targeted users allows the
attacker to do future password searches very inexpensively
via a simple table lookup.

But does Crackstation.net’s requirements above prevent such
an attack? Hardly. In fact, there is a slight modification to
the above attack which only makes it mildly more difficult to
carry out. Rather than the one-time precomputation which
computes a set of encoded passwords for a targeted set of
users, the hacker instead does a precomputation that in-
volves only the PPF for those users. In other words, the
values of ς for various password possibilities. The results
are stored in a set of files indexed by the username. Then,
the next time the attacker discovers the database, he will
know the real server-side salts – how they were generated
or how big they are are irrelevant to him. He simply hashes
the various ς values from the large files with the correspond-
ing real server-side salts to see if he discovers the targeted
users’ encoded passwords. These subsequent computations
are very fast since they bypass recomputing the PPF.

The conclusion bifurcates according to whether or not the
reader believes that protecting against future accesses to the
database is a realistic threat or not. If the reader does not
believe it, then server-side salt adds no value at all because
an attacker can’t mount a new offline attack without getting
the new database. If the reader does believe it, and we
believe they should, then we just showed that as long as the
PPF is computed on the client-side only, server-side salting
prior to the final hash computation offers almost no value.

3.2 Proposed Solution for Salt
At this point one might modify Crackstation.net’s solution
in order to put more of a burden on the server-side, but that
is exactly what we want to avoid according to our require-
ments given in Section 1.3. The only way to deal with this
problem properly is to bring variability into the client-side
PPF function. But how to do so in such a way that does
not leak information about valid users in the system to those
who do not discover the database?

The key point here is that we only have to prevent that
leakage to those who do not discover the database: those
who have discovered it already know the users.

We propose the following solution. Let σ be a system level
secret that changes every year. The value of σ will be used

to create pseudo-salts for users that do not exist in the
database.

At any time a user changes his password or a new user is cre-
ated in the system, a randomly generated value υ is stored
in the corresponding row of the database for that user. The
salt for that user is taken to be hash(username ‖ domain-
name ‖ υ), but this is not stored for a reason explained
below.

When a user tries to authenticate, the server first looks up
the user in the database. If the user is found, then the
system uses the corresponding υ in the database to compute
the salt and return it to the client. If the user is not found,
then the system computes the pseudo-salt using the current
system-level σ value, and sends it to the client.

By this design, a salt (which might be a pseudo-salt) is al-
ways returned to the client so we avoid the problem of ab-
sence of a salt revealing whether the username is valid or
not. We also always compute a salt in order to prevent tim-
ing attacks from leaking whether a user was valid or not.

Obviously, if a new randomly generated value was sent to the
client when a user was not present in the database, then two
consecutive calls for that username would reveal whether
the username was real or not. By fixing υ for a year (or
similar long period) we aim to obstruct hackers from using
this attack. Still, if a hacker was persistent enough to try
this attack, what can he learn?

• If the attacker tries the same username twice more
than a year apart and gets the same salt, then he learns
that the username is indeed in the database and that
user has not changed his password over that time pe-
riod.

• If the attacker tries the same username twice within
one year and gets the same salt, then he learns that
either the user is in the database and the password has
not changed in that time frame, or else the username is
not in the database and the current σ has not changed.

• If the attacker tries the same username twice more
than a year apart and gets different salts, then he
learns that either the username does not exist in the
database (σ has changed in this time period), or it is
in the database but the password has changed in that
time, or the user was newly created within that time
frame.

• If the attacker tries the same username twice within
one year and gets different salts, then he learns that
either the username is not in the database and the
current σ has changed, or else it is in the database but
the password has changed in that time, or the user was
newly created within that time frame.

While the first bullet point directly gives the attacker in-
formation that he is after, the remaining three cannot be
used so directly. Perhaps by querying many users and an-
alyzing the results the attacker can derive more valuable
information, but from a practical point of view, the attacker
is greatly inhibited.

3.2.1 Requirements for σ and υ

For our solution, the uniqueness of salts is already a conse-
quence of having the username and domainname being input
into the hash function. But what else do we require for σ

and υ?

• We do not want an attacker to be able to determine
σ from his queries for salts. Therefore it should be at
least 128-bits.

• If an attacker finds out a past value of σ, we do not
want him to be able to guess future values of σ. This is
to cover the case that he gets access to the database at
some point in time but not again in the future. For this
reason, we require it to be generated by a CSPRNG.

• We do not want the attacker to know when a value of υ
is being used instead of the system secret σ. Therefore,
the values of υ must have the same security require-
ments as σ (at least 128-bits and generated from a
CSPRNG).

One last point that needs to be made is that some PPFs
limit the size of the salt. For example, bcrypt allows only
128-bit salt [20]. It is okay to truncate the to meet this
restriction.

3.3 Server-side resource requirements
The requirement of using a hash to compute a salt means
that in total, the server needs to compute 2 hashes to com-
plete an authentication request (whether it is successful or
not). There is no requirement to store any state on the
server side in this process.

An interesting solution to DoS is presented in [4]. From
our viewpoint, [4] is ideally applied as a defense against
SSL/TLS DoS threats, so it is not necessarily incompati-
ble with our solution. Nevertheless, it is interesting to do
an ‘apples-to-oranges’ comparison between the two.

In the face of a DoS attack, [4] always computes a single hash
computation to verify whether or not the client is legitimate
(i.e. the puzzle has been solved). If the hash check verifies,
it also has to check that the client nonce has not been used
before (database lookup). The server stores values of client
nonces already used only for clients that passed the puzzle
test.

Our solution (Section 4) requires one more hash computa-
tion and potentially one more database lookup, but has the
benefit that it does not store any state information. It also
has the benefit that it is not protected by IP [10].

4. PUTTING IT ALL TOGETHER
If you’re a developer, you might only care about the final
recommendation. This section is it. The terminology in Sec-
tion 1.4 defines PPF. All communication happens through
a secure TLS session.

• Database stores { username, hash(s), υ } where

s = PPF (salt, password, cost,misc)

for each user.

– Each user has a different υ which is generated by
a CSPRNG and is at least 128-bits.

– The user’s υ changes whenever his password changes.

– The value s originally comes from the client via
TLS when the user sets his password. It is tran-
sient on the server.

– hash is a cryptographic hash function such as
SHA256.

– The salt is taken to be hash(username ‖ domain-
name ‖ υ). It is not stored in the database but
instead is recomputed when required. If the salt
could be longer than what is allowed for the PPF
(such as in bcrypt [20]), then instead use as many
bits as possible from the hash.

– cost should be set to about 1 second computation
time on the slowest device that is supported.

– The output length of the PPF (which might be
part of the misc parameter) should be at least
128-bits.

• Database stores system level secret σ that changes
approximately once per year. σ is generated by a
CSPRNG and is at least 128-bits.

• For user to authenticate, the following operations hap-
pen.

– Client gets username and password from user.

– Client sends a request with username to the server
to get salt, cost, misc.

– Server only accepts usernames within the allowed
size limit. If it is not, the server rejects it and
does not continue.

– Server looks up username in database. If user ex-
ists, then it computes salt as hash(username ‖ do-
mainname ‖ υ) for that user’s υ value. If user does
not exist, then it computes salt as hash(username
‖ domainname ‖ σ) for the system secret σ value.
The salt, cost, and misc are sent to the client.

– The client computes

ς = PPF (salt, p, cost,misc)

where p is the user entered password and sends
{ ς, username } to server via secure TLS connec-
tion.

• Server verifies that ς is the expected length, and if not,
it rejects it and does not continue.

• Server computes hash(ς) regardless of whether or not
the user exists in database. Server accepts user if and
only if user exists5 and its computation of the hash
matches the value in the database.

It accepts if and only if there is a match.

5To avoid storing state information, this should be done by
a new database lookup.

This idea is similar in spirit from ideas proposed by Crack-
station.net [7], Foy Stip and David Wachtfogel [21], and hb-
Cyber and Thomas Pornin[9]. However we provide a com-
plete solution based upon analysis with all of the devilish
details worked out, and we have also shown that solutions
such as [7] are not backed up by analysis.

In [9] Thomas Pornin remarks:

Client-side hashing works, conceptually. The prob-
lem, though, is that of power. In a Web context,
client uses Javascript, and Javascript is feeble for
computing intensive tasks. The client already
uses a system which may have a relatively small
CPU (it could be a cheap smartphone, for in-
stance), but Javascript adds its own overhead,
which is huge (because it is interpreted, hard to
JIT, and lacks decent integer types).

While this is indeed a legitimate concern for mobile apps
[8], it is likely that it will not be in the near future due
to the W3 crypto initiative which is making cryptographic
functionality available through the browser [23], thus not
needed to be implemented in Javascript.

In the event of a database leak, what matters most is the
hacker’s computation cost compared to the PPF speed of
the weakest device supported by the web application. Our
design assumes that a legitimate user on a slow device will
not be bothered by a 1 second delay for the login PPF com-
putation. It is important for system designers to under-
stand that there is a tradeoff between security and support
for constrained devices. In systems that protect high val-
ued assests (such as online banking), security requirements
should take precedent over a wide range of usability (i.e. low
powered devices). In other systems (such as online bulletin
board systems), the wide range of usability may be more
important. Generally, the amount of effort expended by the
attacker will be correlated to the value of the assets he can
potentially obtain.

Acknowledgements
This research was conducted in the course of employment
at Covata. The author would like to thank Blair Strang
and David Yeung for their valuable reviews and feedback on
various versions of the article.

5. REFERENCES
[1] Testing for user enumeration and guessable user

accounts (owasp-at-002). https://www.owasp.org/
index.php/Testing_for_User_Enumeration_and_

Guessable_User_Account_(OWASP-AT-002), October
2012.

[2] M. Abliz. Internet denial of service attacks and
defense mechanisms. Technical Report TR-11-178,
Univeristy of Pittsburgh, March 2011.

[3] S. Alexander. Password protection for modern
operating systems. j-LOGIN, 29(3), June 2004.

[4] T. Aura, P. Nikander, and J. Leiwo. Dos-resistant
authentication with client puzzles. In Revised Papers
from the 8th International Workshop on Security

Protocols, pages 170–177, London, UK, UK, 2001.
Springer-Verlag.

[5] Authors.
https://news.ycombinator.com/item?id=7626587,
April 2014.

[6] J. Bennett. Security releases issued. https://www.
djangoproject.com/weblog/2013/sep/15/security/,
September 2013.

[7] Crackstation.net. Salted password hashing: doing it
right.
https://crackstation.net/hashing-security.htm,
February 2014.

[8] D. Crawford. Why mobile web apps are slow.
http://sealedabstract.com/rants/why-mobile-

web-apps-are-slow/, July 2013.

[9] hbCyber. Stackexchange post on secure
authentication: partial client-side key stretching.
http://security.stackexchange.com/questions/

43023/secure-authentication-partial-client-

side-key-stretching-please-review-crit,
September 2013.

[10] A. Juels and J. Brainard. Cryptographic
countermeasures against connection depletion attacks,
Mar. 27 2007. US Patent 7,197,639.

[11] B. Kaliski. PKCS #5: Password-based cryptography
specification version 2.0, September 2000. RFC 2898.

[12] G. C. Kessler. Defenses against distributed denial of
service attacks.
http://www.garykessler.net/library/ddos.html,
November 2000.

[13] R. Laboratories. PKCS #5: Password-based
cryptography standard. http://www.emc.com/emc-
plus/rsa-labs/standards-initiatives/pkcs-5-

password-based-cryptography-standard.htm.

[14] R. Morris and K. Thompson. Password security: A
case history. COMMUNICATIONS OF THE ACM,
22:594–597, 1979.

[15] NSA. Reducing the effectiveness of pass-the-hash.
http://www.nsa.gov/ia/_files/app/Reducing_the_

Effectiveness_of_Pass-the-Hash.pdf, November
2013.

[16] C. Percival. Stronger key derivation via sequential
memory-hard functions. BSDCan, 2009.

[17] R. A. Popa, E. Stark, S. Valdez, J. Helfer,
N. Zeldovich, F. Kaashoek, and H. Balakrishnan.
Building web applications on top of encrypted data
using Mylar. In 11th USENIX Symposium on
Networked Systems Design and Implementation
(NSDI), Seattle, WA, April 2014.

[18] T. Pornin. Stackexchange post on bcrypt vs PBKDF2.
http://security.stackexchange.com/questions/

4781/do-any-security-experts-recommend-bcrypt-

for-password-storage/6415/, August 2011.

[19] T. Pornin. Stackexchange post.
http://security.stackexchange.com/questions/

211/how-to-securely-hash-passwords/31846/, June
2013.

[20] N. Provos. A future-adaptable password scheme. In In
Proceedings of the 1999 USENIX, Freenix track (the
on-line version, page 99, 1999.

[21] F. Stip. Client side password hashing post on

stackexchange.
http://security.stackexchange.com/questions/

23006/client-side-password-hashing/23012,
October 2012.

[22] M. S. Turan, E. Barker, W. Burr, and L. Chen. NIST
special publication 800-132: Recommendation for
password-based key derivation.
http://csrc.nist.gov/publications/nistpubs/

800-132/nist-sp800-132.pdf, December 2010.

[23] w3c. Web cryptography api.
http://www.w3.org/TR/WebCryptoAPI/, December
2043.

[24] T. Wu. The secure remote password protocol. In In
Proceedings of the 1998 Internet Society Network and
Distributed System Security Symposium, pages 97–111,
1998.

