
Salsa20 Cryptanalysis: New Moves and Revisiting Old Styles

Subhamoy Maitra1, Goutam Paul1, Willi Meier2

1 Indian Statistical Institute, Kolkata, India
{subho,goutam.paul}@isical.ac.in

2 FHNW, Windisch, Switzerland
willi.meier@fhnw.ch

Abstract. In this paper, we revisit some existing techniques in Salsa20 cryptanalysis, and provide
some new ideas as well. As a new result, we explain how a valid initial state can be obtained from
a Salsa20 state after one round. This helps in studying the non-randomness of Salsa20 after 5
rounds. In particular, it can be seen that the 5-round bias reported by Fischer et al. (Indocrypt
2006) is a special case of our analysis. Towards improving the existing results, we revisit the idea
of Probabilistic Neutral Bit (PNB) and how a proper choice of certain parameters reduce the
complexity of the existing attacks. For cryptanalysis against 8-round Salsa20, we could achieve the
key search complexity of 2247.2 compared to 2251 (FSE 2008) and 2250 (ICISC 2012).

Keywords: Stream Cipher, Salsa20, Salsa20/12, Non-Randomness, Round Reversal, Probabilistic Neu-
tral Bit (PNB), ARX Cipher.

1 Introduction

Salsa20 [2] was designed by Bernstein in 2005 as a candidate for eStream [9] and Salsa20/12 has been
accepted in the eStream software portfolio. It has generated serious attention in the domain of cryptanal-
ysis and quite a few results have been published in this direction [3, 4, 8, 1, 5, 7, 6] that show weaknesses
of this cipher in reduced rounds. The main ideas in all these papers are circled around the following two
issues.

– Put some input difference at the initial state and then try to obtain certain bias in some output
differential.

– Once you can move forward a few rounds with the above strategy, try to come back a few rounds
from a final state after a certain rounds obtaining further non-randomness.

Combining the above ideas, one may find some non-randomness in Salsa20 for forward plus backward
many rounds. The first result on Salsa20 cryptanalysis by [3] used this idea to move forward 3 rounds
from the initial state and to come back 2 rounds from the final state for an attack on 5-round Salsa20.
Later in [1], biased differentials till 4 forward rounds have been exploited and then the attack considered
moving backwards from the final state for 4 rounds to obtain an 8-round attack on Salsa20.

Before proceeding further, let us briefly explain the structure of Salsa20 stream cipher. This cipher
considers 16 words, each 32-bit. We may refer to this as the Salsa state and a state can be written in
4× 4 matrix format as follows:

X =

x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

 =

c0 k0 k1 k2
k3 c1 v0 v1
t0 t1 c2 k4
k5 k6 k7 c3

 .

The rightmost matrix shows the initial state, that takes four predefined constants c0, . . . , c3,
1 256-bit key

k0, . . . , k7, 64-bit nonce v0, v1 and 64-bit counter t0, t1. Since this is with 256-bit keys, we can refer it as
256-bit Salsa. Similarly, one can use the same cipher with 128-bit key, where ki = ki+4, for 0 ≤ i ≤ 3
and the constants are c0, . . . , c3.2 One may note the little differences in c1, c2 for the 128-bit and 256-bit

1 c0 = 0x61707865, c1 = 0x3320646e, c2 = 0x79622d32, c3 = 0x6b206574.
2 c0 = 0x61707865, c1 = 0x3120646e, c2 = 0x79622d36, c3 = 0x6b206574.

version. In this paper, we are considering 256-bit key throughout. However, studying similar techniques for
128-bit key will also be interesting.

The basic nonlinear operation of Salsa20 is the quarterround function. Each quarterround(a, b, c, d)
consists of four ARX rounds, each of which comprises of one addition (A), one cyclic left rotation (R)
and one XOR (X) operation as given below.

b = b⊕ ((a + d) ≪ 7),
c = c⊕ ((b + a) ≪ 9),
d = d⊕ ((c + b) ≪ 13),
a = a⊕ ((d + c) ≪ 18).

 (1)

Each columnround works as four quarterrounds on each of the four columns of the state matrix and each
rowround works as four quarterrounds on each of the four rows of the state matrix. In Salsa20 (one can call
it Salsa20/20), ten times the columnround and ten times the rowround are applied alternatively on the
initial state. One may note that this can be considered as application of the columnround and transpose of
the state matrix [6] twenty times. This helps in understanding the cipher better as in this case every
round of Salsa20 becomes identical.

To be precise, in each round, we first apply quarterround on all the four columns in the follow-
ing order: quarterround(x0, x4, x8, x12), quarterround(x5, x9, x13, x1), quarterround(x10, x14, x2, x6), and
quarterround(x15, x3, x7, x11), and then a transpose(X) as follows.

X =

x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

→ XT =

x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15

 .

By X(r), we mean that r such rounds have been applied on the initial state X. Hence X(0) is the same
as the initial state X. Finally, after R rounds we have X(R). Then a keystream block of 16 words or 512
bits is obtained as

Z = X +X(R).

For Salsa20, R = 20. However, the one accepted in eStream [9] software portfolio is Salsa20/12, where
R = 12. Naturally, more rounds will provide better security and less rounds will provide higher speed.

One may note that each Salsa20 round is reversible as the state-transition operations are reversible. In
other words, if X(r+1) = round(X(r)), then X(r) = reverseround(X(r+1)), where reverseround is the inverse
of round and consists of first transposing the state and then applying the inverse of quarterround for each
column as follows.

a = a⊕ ((d + c) ≪ 18),
d = d⊕ ((c + b) ≪ 13),
c = c⊕ ((b + a) ≪ 9),
b = b⊕ ((a + d) ≪ 7).

 (2)

Consider that one obtains a state X(1) after one round of Salsa20. Now to know whether it is a valid
state after one round, one needs to come back by one reverse round and then check whether the constants
in the diagonal elements are indeed the specified ones. This is the constraint for 256-bit Salsa20. However,
for 128-bit Salsa20, one needs to have another constraint related to the key words apart from matching
the constants. That is, we need to have ki = ki+4, for 0 ≤ i ≤ 3.

Let us now present a few more notations. We have already denoted xi as the i-th word of the matrix
X. By xi,j , we mean the j-th bit (0-th bit is the least significant bit) of xi. Given two states X(r), X ′(r),

we denote ∆
(r)
i = x

(r)
i ⊕ x

′(r)
i . By ∆

(r)
i,j = x

(r)
i,j ⊕ x

′(r)
i,j , we mean the difference between two states at the

j-th bit of the i-th word after r many rounds. That is, ‘∆
(0)
7,31 = 1’ means that we have two initial states

X(0), X ′(0) that differ at the 31-st (most significant) bit of the 7-th word (a nonce word) and they are
same at all the other bits of the complete state. In such a case, one can obtain significant biases after
4 rounds. That is, in general, we are interested to input a difference at the initial state (call it Input
Differential or ID) and then try to obtain some bias corresponding to combinations of some output bits
(call it Output Differential or OD). Most naturally, one can compute

Pr(∆(r)
p,q = 1|∆(0)

i,j = 1) =
1

2
(1 + εd),

where the probability is estimated for a fixed key and all the possible choices of nonce and counter words
v0, v1 and t0, t1 respectively, other than the constraints imposed due to the input differences on keys or
nonces/counters3. The term εd is a measure of the amount of the bias away from the probability of a
random event and is naturally referred as the bias in the literature.

Now we present the advantage of coming back one round. Consider that one likes to put some input
differences in a state to obtain some output differential after a few rounds. Let X(1), X ′(1) be the two

initial states that differ in a few places and we obtain some bias Pr(∆
(r)
p,q = 1|∆(1)

i,j = 1) = 1
2 (1+ εd). That

is, actually we consider (r − 1) rounds here. If it is possible to get back one round each from X(1), X ′(1)

such that X(0), X ′(0) are valid initial states with differentials ∆
(0)
i1,j1

, ∆
(0)
i2,j2

, . . . etc, then we can consider

the situation Pr(∆
(r)
p,q = 1|∆(0)

i1,j1
= 1, ∆

(0)
i2,j2

= 1, . . .) = 1
2 (1 + εd). That is, we can exploit the bias as if it

is after r rounds. This helps in analysing Salsa20 by one additional round.

Outline & Contribution

– In Section 2, we provide experimental details of biases for single bit ID and single bit OD after 4
rounds. These biases might have been studied in existing works, but we did not obtain any compre-
hensive list in published literature. In fact, in this process, we obtain some biases which are more
significant than the published ones. We use some of these biases in the later sections.

– In Section 3, we explain how one can come back to a valid initial state from a Salsa20 state after
one round. This helps in interpreting many four round biases as five round ones and provides a
generalized framework for the 5-round biased differential pointed out in [4].

– In Section 4, we revisit the cryptanalysis of Salsa20/8 as described in [1]. Interestingly, we note that
with experiments the median of certain biases are 4 times more than what observed in [1]. Further, we
look at the trade-off between carefully choosing more PNBs at the cost of accepting less probability
for distinguishing the correct key from the wrong keys. In the process, we show that the same 36
PNBs as considered in [1] as well as more (36 + 5 = 41) PNBs can be exploited to obtain a key
recovery attack with key search complexity of 2247.2. The earlier results in this direction were 2251 [1]
and 2250 [7].

2 Biases after 4 rounds and some interesting patterns

We experimented with all combinations of single bit ID with single bit OD after four rounds. It is
natural to ask why one should consider ID in all the input bits. We study all these as we will later
consider the IDs as if they appear after one round and then we will try to come back one round in
reverse direction.

During the experimentation, we decided that we will consider probabilities which are at least 2−10

away from the random probability 1
2 . That is we consider the cases where the probabilities are either less

than 1
2 (1− 1

29) = 1
2 −

1
210 or more than 1

2 (1 + 1
29) = 1

2 + 1
210 . We note that working with 225 samples for

each case is enough to study such biases from the basic idea of distinguishers (see [1] and the references
therein).

In [1], the strongest bias reported after four rounds was Pr(∆
(4)
1,14 = 1|∆(0)

7,31 = 1) = 1
2 (1 − 0.1314),

that has been used for the cryptanalysis of Salsa20/8. In addition to all the known biases including the

above, we observed quite a few stronger biases than the ones in [1], for example, Pr(∆
(4)
11,17 = 1|∆0

8,31 =

1) = 1
2 (1 + 0.1642), Pr(∆

(4)
6,26 = 1|∆(0)

7,31 = 1) = 1
2 (1− 0.1954), Pr(∆

(4)
11,26 = 1|∆0

8,31 = 1) = 1
2 (1− 0.1914)

etc.
¿From the experimental data, we find a few interesting observations. With an ID ∆0

1,j or ∆0
6,j or

∆0
11,j or ∆0

12,j , the maximum negative bias after 4 rounds occurs in the OD’s ∆4
12,(j+2) or ∆4

1,(j+2)

or ∆4
6,(j+2) or ∆4

11,(j+2) respectively4. That is, the word positions in the ID and OD forms a cycle

1 7→ 12 7→ 11 7→ 6 7→ 1, where w 7→ u implies that an ID ∆0
w,j causes the maximum negative bias in the

OD ∆0
u,j+2. In the next section, we would see that these are precisely the word positions that help us

3 Since most of the biases in literature are obtained through experimentation, these biases are estimated over a
large number of experiments.

4 The ‘+’ in (j + 2) denotes addition modulo 32 here.

to reduce a search of biased differentials after 5 rounds to a search of those after 4 rounds through one
round reversal. A detailed study of multiple bit IDs and multiple bit ODs are also interesting and a few
very high biases have been reported in [1, 7]. However, those biases could not be exploited efficiently to
obtain better cryptanalytic results yet. The complete details of all the biases will be available in the full
version of this paper.

3 Reversing one round of Salsa20

There are several state of the art works that studied biases in Salsa20. The most significant biases, by
considering some output differential given some input difference, could be obtained after 3, 4 and 5
rounds [3, 4, 8, 1, 5, 7, 6] and these biases have been exploited suitably to obtain several cryptanalytic and
non-randomness results in Salsa20 till 8 rounds. One of the most significant biases after 5 rounds has been

reported in [4, Section 3.3]. They considered the differentials ∆
(0)
2 = 0x00000100, ∆

(0)
6 = 0x00001000,

∆
(0)
14 = 0x80080000. This shows an output bias after 5 rounds as follows:

Pr(∆
(5)
6,1 = 1|∆(0)

2 = 0x00000100, ∆
(0)
6 = 0x00001000, ∆

(0)
14 = 0x80080000)

≈ 1

2
(1 + 0.000772). (3)

Note that this probability is less than 1
2 −

1
212 and thus, the negative bias in absolute terms is more than

1
211 . The experimental data we present here is after 230 runs which is enough to assess these biases with
high confidence.

However, one observation here is very interesting, which shows that after one round, in certain cases,

this generates a differential in only one bit, namely, ∆
(1)
11 = 0x80000000. At the same time, there are

many cases where there exist other differentials in addition to ∆
(1)
11 = 0x80000000. This provides the

main motivation of our study. We note that if one can start with some differentials such that after one
round the differential is only at a single bit, then we will have sharper bias.

We look at the problem from another direction. Consider the input difference ∆
(1)
11 = 0x80000000. In

this case,

Pr(∆
(5)
6,1 = 1|∆(1)

11 = 0x80000000) ≈ 1

2
(1 + 0.004274), (4)

which is a much sharper bias. At the same time, one may note that if one comes back by reversing one

round, this keeps both the states valid and the differentials are such that ∆
(0)
2 = 0x00000100, ∆

(0)
6 =

0x00001000, ∆
(0)
14 = 0x8??80000). We will get into detailed proof later and also the characterization of

? positions, but if one starts with such differentials, then we obtain a bias much sharper than what
described in [4, Section 3.3].

In fact, noting the pattern by going back in reverse direction by one round, with this idea we could
immediately improve the bias mentioned in (3) from [4] as

Pr(∆
(5)
6,1 = 1|∆(0)

2 = 0x00000100, ∆
(0)
6 = 0x00001000, ∆

(0)
14 = 0x80180000)

≈ 1

2
(1 + 0.001884). (5)

We have included one additional bit of differential in the word 14 to obtain a better bias over [4].

Before proceeding further let us describe the differential patterns. Given two states X(r), X ′(r), we
represent the differential state matrix as

∆(r) =

∆

(r)
0 ∆

(r)
1 ∆

(r)
2 ∆

(r)
3

∆
(r)
4 ∆

(r)
5 ∆

(r)
6 ∆

(r)
7

∆
(r)
8 ∆

(r)
9 ∆

(r)
10 ∆

(r)
11

∆
(r)
12 ∆

(r)
13 ∆

(r)
14 ∆

(r)
15

 ,

where ∆
(r)
i = x

(r)
i ⊕ x

′(r)
i . As described in [4], we actually have the following scenario from the initial

state to the state after application of one forward round.
0 0 0x00000100 0
0 0 0x00001000 0
0 0 0 0
0 0 0x80080000 0

⇒

0 0 0 0
0 0 0 0

0x???????? 0x???????? 0x???????? 0x80000000
0 0 0 0

 .

Had one managed the unknown places to zero in the differential pattern after one round, the bias
described in [4] would have been much sharper. In this direction, we look at this by reversing one round.

0 0 0x00000100 0
0 0 0x00001000 0
0 0 0 0
0 0 0x???80000 0

⇐

0 0 0 0
0 0 0 0
0 0 0 0x80000000
0 0 0 0

 .

Thus one important question is to characterize the bits in the 14-th word. Next, we present the main
theoretical result in this direction.

Theorem 1. Let X(0) be an arbitrary valid initial state. Suppose, after the first round, we modify X(1) =

round(X(0)) to X ′(1) with the differential ∆
(1)
11,31. Then reverseround(X ′(1)) yields a valid initial state X ′(0)

with the differential

∆(0) =

0 0 0x00000100 0
0 0 0x00001000 0
0 0 0 0
0 0 0x???80000 0

 .

Proof. The first step in reverseround(X(1)) is transpose(X(1)), which changes the differential ∆
(1)
11,31 to

the differential ∆
(1)
14,31. In the next step, reverse of quarterround would be applied to each column in-

dependently. Since position 14 appears in the 3rd column, let us focus on the effect of the inverse of
quarterround on this column. All other columns would have 0 differentials after the inverse. From Equa-
tions (2), we can write the relevant equations as follows.

x
(0)
10 = x

(1)
10 ⊕ ((x

(1)
2 + x

(1)
6) ≪ 18),

x
(0)
6 = x

(1)
6 ⊕ ((x

(1)
14 + x

(1)
2) ≪ 13),

x
(0)
2 = x

(1)
2 ⊕ ((x

(0)
10 + x

(1)
14) ≪ 9),

x
(0)
14 = x

(1)
14 ⊕ ((x

(0)
6 + x

(0)
10) ≪ 7).

 (6)

The same equations hold for x′ as well. Now, let us analyze the differentials.

In the first equation, all the words of x(1) and x′(1) are identical. Hence, ∆
(0)
10 = 0. This proves that

the state X ′(0) is a valid initial state.
In the second equation, x(1) and x′(1) differ only in the MSB of the word 14, which causes a differential

only in the MSB of the sum. After 13-bit left rotation, this differential moves to the bit position 12 of

the term to the right of ‘⊕’. Hence, ∆
(0)
6 = 0x00001000.

In the third equation, again x(1) and x′(1) differ only in the 31st bit of the word 14, which causes
a differential only in the 31st bit of the sum. After 9-bit left rotation, this differential moves to the bit

position 8 of the term to the right of ‘⊕’. Hence, ∆
(0)
2 = 0x00000100.

In the fourth equation, the sum will have a differential in the bit position 12 due to ∆
(0)
6,12 = 1. There

may be differentials to the left of the bit position 12, due to carry propagation. After 7-bit left rotation,
the differential in the bit position 12 moves to the bit position 19 of the term to the right of ‘⊕’. Hence,

∆
(0)
14 = 0x???80000. ut

The value of ‘???’ in ∆
(0)
14 depends on x

(0)
6 , which is nothing but the nonce v0. Again, both v0 = x

(0)
6

and v′0 = x
′(0)
6 (that differ in bit position 12 only) is added to the same constant c2 = x

(0)
10 = x

′(0)
10 =

0x79622d36, which has 3 consecutive 0s in the bit positions 14, 15, 16 and again in the bit positions 18,

19, 20 (these positions move to the left by 7 positions after the rotations). So in most cases, the effect of
the carry is absorbed before it reaches from position 19 (i.e., 12 rotated by 7 positions) to position 31.

Thus, the most frequent value of ∆
(0)
14 is observed to be 0x8??80000.

Though there are multiple possible values of ∆
(0)
14 for ∆

(1)
11 = 0x80000000, the value of ∆

(0)
14 is uniquely

determined for a given nonce. We can explicitly write

∆
(0)
14 = 0x80000000⊕ [(c2 + v0) ≪ 7]⊕ [(c2 + (v0 ⊕ 0x00001000)) ≪ 7]. (7)

With all these constraints on the initial state, one can obtain the bias as described in (4).

Let us discuss another example here. We consider the ID at the 31st bit of the 6th word and the

OD at the 1st bit of the 1st word. By Theorem 2, once ∆
(1)
6,31 is applied to a valid state after one round,

the resulting state when reversed, yields another valid initial state. Similar to Theorem 1, one can show
that the differential matrix goes through the following transition.

0 0x00001000 0 0
0 0 0 0
0 0x???80000 0 0
0 0x00000100 0 0

⇐

0 0 0 0
0 0 0x80000000 0
0 0 0 0
0 0 0 0

 .

Similar to Equation (7), the value of ∆
(0)
9 is uniquely determined for a given key as follows

∆
(0)
9 = 0x80000000⊕ [(c1 + k0) ≪ 7]⊕ [(c1 + (k0 ⊕ 0x00001000)) ≪ 7].

Let Sd be the set of such valid input differences. We then map four-round biases with the ID-OD pair

(∆
(0)
6,31, ∆

(4)
1,1) to five-round biases with the ID-OD pair (∆(0), ∆

(5)
1,1), where ∆(0) ∈ Sd. In this case,

1
2 (1 + εd) = 0.501552 and so εd = 0.003104.

If we introduce an arbitrary differential after one round to convert X(1) to X ′(1), then reversing X ′(1)

does not always yield a valid initial state. In the next result, that is a generalization of Theorem 1, we
study the positions of those differentials and surprisingly, the word positions where the differentials are
considered, coincide with the interesting cycle-forming positions discussed in Section 2.

Theorem 2. Let X(0) be an arbitrary valid initial state. Suppose, after the first round, we complement
any combination of the 128 bits of the words x1, x6, x11 and x12 of X(1) to obtain X ′(1). Then X ′(0) =
reverseround(X ′(1)) is always a valid initial state.

Proof. The first step in reverseround(X(1)) is transpose(X(1)), which changes the word positions 1, 6,
11 and 12 to 4, 9, 14 and 3 respectively. In the next step, reverse of quarterround would be applied to
each column independently. Thus, the differentials in word positions 4, 9, 14 and 3 affect only the first,
second, third and the fourth columns respectively.

Due to symmetry, the reverse equations for any column would be similar to the system of equations (6)
(the equations for the 3rd column). Note that in every column, the diagonal element is reversed first
using two word positions excluding the positions 4, 9, 14, 3 (respectively for the 1st, 2nd, 3rd and 4th
columns). Thus, in X ′(0) = reverseround(X ′(1)), the diagonal elements have zero differentials with those
of X(0) ensuring that X ′(0) is a valid initial state. ut

This idea helps us in translating the biases after 4 rounds to that of 5 rounds by reversing one round.
One should also note that the reversal of one round is independent of the exactly chosen values of the
constants c0, c1, c2, c3 in Salsa20.

One interesting question is: if one introduces some differential in any bit combinations other than those of
the words x1, x6, x11 and x12 of X(1), would reversing one round lead to an invalid initial state? The answer

is not necessarily. It depends on the key/nonce/counter values. For example, one may introduce ∆
(1)
8

= 0x80000000 and ∆
(1)
9 = 0x80000000 together to X(1) to generate X ′(1). During reversal, the transpose

operation shifts the positions of these differentials to the word positions 2 and 6 respectively. Now one
may look at the first equation in the system of equations (6). Since the two words that are added have

differentials in the MSBs, the sum would have zero differential. Thus, ∆
(0)
10 would become 0, implying

that X ′(0) is a valid initial state. The structure of the differential states are as follows.
0 0 0x80000000 0
0 0 0x80001000 0
0 0 0 0
0 0 0x???80040 0

⇐

0 0 0 0
0 0 0 0

0x80000000 0x80000000 0 0
0 0 0 0

 .

It would be an interesting combinatorial problem to characterize all such states.

4 Revisiting PNBs and improved cryptanalysis of Salsa 20/8

The cryptanalysis on Salsa20 that we discuss now is a known plain text only attack. The 512-bit key
stream of Salsa20/R is X + X(R). In the known plain text model X + X(R) is completely available to
the attacker. However, the 256 key bits are not available, thus only rest 256 bits of X are known. The
motivation is to guess the 256 key bits of Salsa20/R with a key search complexity less than 2256, the
complexity for exhaustive search.

The concept of Probabilistic Neutral Bits (PNBs) was exploited against Salsa20 in [1] in this frame-
work. Before describing our parameters for an improved attack complexity, we first provide a brief and
simple description of the generic attack using PNBs on Salsa20/R. For detailed understanding and formal
definitions in this area, one may refer to [1, Section 3].

Suppose X, X ′ are two valid initial states with a given ID ∆
(0)
i,j = 1, for which we observe a high

bias εd in an OD ∆
(r)
p,q after r < R Salsa rounds. Thus, Pr(∆

(r)
p,q = 1|∆(0)

i,j = 1) = 1
2 (1 + εd), where

∆(r) = X(r) ⊕ X ′(r). The two keystream blocks after R rounds are given by Z = X + X(R) and
Z ′ = X ′ +X ′(R).

Suppose, in both X and X ′, we complement a particular key bit position k to yield the states X and
X ′ respectively. Next, we reverse the states Z −X and Z ′ −X ′ by R − r rounds to yield the states Y

and Y ′ respectively. Let Γp,q = Yp,q ⊕ Y ′p,q. If the bias in the event (∆
(r)
p,q ⊕ Γp,q = 0|∆(0)

i,j = 1) is high5,

then we call the key bit k a probabilistic neutral bit (PNB). If Pr(∆
(r)
p,q ⊕ Γp,q = 0|∆(0)

i,j = 1) = 1
2 (1 + γk),

then γk is called the neutrality measure of the key bit. One should run this experiment for each key bit
several times over randomly chosen nonces and counters6. By repeating this for all the 256 key bits, a
subset of the key bits is identified, which are called the PNBs. Typically, a threshold probability 1

2 (1+γ)
is chosen to filter the PNBs. In other words, if γk ≥ γ, then the key bit k is included in the set of the
PNBs. Suppose the size of this subset is n and therefore the number of non-PNB bits are m = 256− n.
The main idea behind the key recovery is to search these two sets separately.

After the set of PNBs is determined, the actual attack considers search over the key bits which are not
PNBs and by considering a distinguisher it is possible when the correct keys can be identified. The attack
algorithm is clearly described in [1]. However, for practical simulations, it is not possible to complete this
attack as the complexity is very high. Nevertheless, we need to obtain certain biases properly to estimate
the complexity of the attack and that can be achieved by trying out the following.

While studying the PNBs, in X and X ′, we complemented a particular key bit position k to yield the
states X and X ′ respectively. However, in this case, we assign random values to all the PNBs and keep
the correct values of the keys in other places. That is, we assign correct key values to the m non-PNB
key bits and assign random binary values to the n PNB key bits in both X and X ′ to yield the states X̂
and X̂ ′ respectively. Then we reverse the states Z − X̂ and Z ′ − X̂ ′ by R− r rounds to yield the states

Ŷ and Ŷ ′ respectively. Let Γ̂p,q = Ŷp,q ⊕ Ŷ ′p,q and Pr(Γ̂p,q = 1|∆(0)
i,j = 1) = 1

2 (1 + ε̂). A higher value of ε̂
means that the PNBs have been chosen properly and even without knowing the n PNBs it is possible to
identify the rest of the key bits which are not PNBs.

Next, we assign random binary values to all the 256 key bits in both X and X ′ to yield the states X̃
and X̃ ′ respectively. Then we reverse the states Z − X̃ and Z ′ − X̃ ′ by R− r rounds to yield the states

Ỹ and Ỹ ′ respectively. Let Γ̃p,q = Ỹp,q ⊕ Ỹ ′p,q and Pr(Γ̃p,q = 1|∆(0)
i,j = 1) = 1

2 (1 + ε̃).

5 That is, ∆
(r)
p,q = Γp,q with high probability, given the ID.

6 We experiment this for 224 samples corresponding to each key bit, which is sufficient to identify the biases.

In actual key recovery attack, if the biases ε̂ and ε̃ can be efficiently distinguished, i.e., if the gap
between the biases is significant with ε̃ ≈ 0 (as it corresponds to a random event and should not have any
bias), then we can conclude that the assignment X̂ yields the correct values for the non-PNB bits. This
is what that needs to be experimented while choosing the set of PNBs. This also provides the estimate of
ε̂ that will be involved in the obtaining the complexity. To follow the same notation as in [1], we denote
ε = ε̂ in following discussion.

In [1], the bias in the event (Γ̂p,q = ∆
(r)
p,q) is denoted by εa. In [1], the estimation of this bias is as

follows. The key is fixed and one can vary the nonces and the counters to calculate one εa. Then we
consider many randomly chosen keys to obtain a set of εa’s and finally compute the median ε∗a’s from
this set. Similarly, the median ε∗d is estimated from the values of several εd’s corresponding to different
keys. Finally one can estimate ε∗ as the median value of ε’s. The idea of using median is that, one can
guarantee that the estimated probabilities will work for at least half of the keys. We will also use the
same measure for our experiments.

It was commented in [1] that one can approximate ε as εd · εa. However, for our experiments, we
calculate all the values ε, εd and εa separately. We have also checked that the approximation ε ≈ εd · εa
is not satisfied very closely and we will present experimental evidence related to it in the next section.

Following [1], if the number of samples used is N and if the probability of false alarm is Pfa = 2−α,
the complexity of the attack is then given by

2m(N + 2nPfa) = 2mN + 2256−α, (8)

where the required number of samples is

N ≈

(√
α log 4 + 3

√
1− (ε∗)2

ε∗

)2

(9)

for probability of non-detection Pnd = 1.3× 10−3.

4.1 Revisiting the complexity of attack in [1]

In [1], for R = 8, for the forward rounds, r = 4 and the ID-OD pair had been (∆
(0)
7,31, ∆

(4)
1,14). In this

case, 1
2 (1 + ε∗d) = 0.5657, i.e., ε∗d = 0.1314. Taking γ = 0.12, n = 36 PNBs have been reported in [1] (see

Table 1 for exact key bits) and they estimated ε∗ = 0.00015 as the median bias over all keys.

In this case, m = 256 − 36 = 220. The authors of [1] used the following result for estimating the
complexity. Taking α = 8, one obtains N ≈ 230.73 ≈ 231 and thus, the total complexity becomes
2220(231 + 236 · 2−8), which is approximately 2251 [1]. In [7], this complexity has been improved by
additionally considering two-step Column Chaining Distinguishers (CCD) that provides the reduced
complexity of 2250.

However, we have got much improved results than [1] with our experiments. Note that the exact
experimental figures related to the number of samples are not available in the paper [1]. We have checked
with total 236 samples as follows. We take 210 randomly chosen keys and for each of them we take 226

randomly chosen counters and nonces. For each of these keys, we take the average data ε and then
we consider the median of those ε’s which comes to be ε∗ = 0.00060. Surprisingly, we obtain 4 times
more median bias than what observed in [1] for both ε∗a and ε∗. With this estimate, keeping all the other
parameters same, the complexity of [1] can be revised as follows. In this case, we obtain N ≈ 226.73 and
thus, the total complexity becomes 2220(226.73 + 236 · 2−8) ≈ 2246.73 + 2248.

We can then reduce the complexity further by playing around with α. The key idea is that the
larger of the terms 2mN and 2256−α dominates the complexity expression in Equation (8). We can take
α = 12.82 and in that case we obtain the complexity as 2220(227.11 + 223.18) ≈ 2220 · 227.2 = 2247.2. Note
that during this optimization process, we have kept Pnd fixed at 1.3× 10−3, same as in [1].

Regarding the assumption ε ≈ εa · εd in [1], we have considered the average µε of 1024 samples of
|ε− εa · εd| and the value of µε

ε∗ comes out to be 0.000096
0.00060 = 0.16. The approximation is not close as 0.16

is significantly away from zero.

4.2 Adding more PNBs

For our study, we look at the PNBs more carefully. We use the same ID-OD pair to be (∆
(0)
7,31, ∆

(4)
1,14).

Lowering γ, one can find many more PNBs. However, not all of them may be good candidates as the
bias ε∗ gets reduced too. Taking γ = 0.0488 (but we do not consider all the key bits having γk ≥ γ and
only consider them selectively; we describe this in detail little later), and 224 samples for each key bit,
we found the optimized list of PNBs to include 5 additional key bits as in Table 2(a), other than the
36 key bits mentioned in [1]. Thus, in our analysis, n = 41 and m = 256 − 41 = 215. After the PNBs
are identified, we used 243 samples. These are 27 different keys and for each key we take an average
of 236 randomly chosen counters and nonces. Note that in this case we need more samples than as in
Section 4.1. This is because in this case the biases are much less. Our experiment shows that the median
ε∗ = 0.000106. For α = 12.82, we obtain the complexity as 2215(232.11 + 228.18) ≈ 2215 · 232.2 = 2247.2.
This is similar to the complexity obtained in Section 4.1.

4.3 Exact choices of the PNBs

Now let us consider the exact details of choosing the PNBs. If one considers γ = 0.12 as in [1], the one
obtains the 36 PNBs and the corresponding γk’s as in Table 1. The number of the key bit k and the
corresponding γk are presented one below the other in each cell of tables.

26 27 28 29 30 31
0.7341 0.6210 0.4892 0.3546 0.2343 0.1536

71 72 120 121 122 148
0.3372 0.1965 0.3691 0.2447 0.1407 0.1269

165 166 167 168 169 170
0.9978 0.9960 0.9927 0.9870 0.9767 0.9590

171 172 173 174 175 176
0.9287 0.8801 0.8042 0.6907 0.5473 0.3755

177 210 211 212 224 225
0.2011 0.6059 0.4108 0.2431 0.4473 0.2682

242 243 244 245 246 247
0.7791 0.6761 0.5473 0.4010 0.2549 0.1302

Table 1. Key-bits and the corresponding biases γk ≥ 0.12 for the 36 PNBs of the 8-round attack [1].

We consider lower γ = 0.0488 and the additional key bits with γk ≥ γ = 0.0488 (other than those in
Table 1) are presented in Table 2(a) (these we include as PNBs) and Table 2(b) (these we do not include
as PNBs). Note that the PNBs 108 and 226 have quite high values of γ and thus including those are
quite logical. On the other hand, the PNBs 73, 178 and 248 have quite low values of γ. What we consider
in these three cases is that they follow a good sequence of PNBs with high values of γ, for example 71,
72, 73, then 165, . . ., 177, 178 and 242, . . . , 247, 248. The choices of including (or not including) the key
bits in the PNB set is done by detailed experimental investigation and obtaining a theoretical reasoning
of this will be very interesting (could be elusive too).

73 108 178 226 248
0.0882 0.1146 0.0682 0.1180 0.0488

40 123 130 149 213
0.0493 0.0665 0.0510 0.0525 0.1061

(a) (b)

Table 2. (a) Biases γk ≥ 0.0488 for our additional 5 PNBs. (b) Key bits not in the set of PNBs in spite of
γk ≥ 0.0488.

In [1], the authors indeed commented that “we note that the described complexities may be improved
by choosing a smaller γ”. However, this requires quite some amount of human intervention using trial and

error. It seems quite hard to obtain any improvement using automatized search given some parameter
values as mentioned in [1, Section 3.5]. Further we have studied the experimental biases carefully and
for εa, ε the biases are found to be much more significant (four times) than what reported in [1], though
we obtain the similar result for εd. It will be interesting to have further experiments with the other
4-round biases (as described in Section 2, and also for more than one bit ID and OD scenarios) and the
corresponding PNBs. However, we have made quite a good amount of investigations by trial and error
and it will be challenging to obtain improved results in this direction.

5 Conclusion

In this paper we have studied the Salsa20 stream cipher in detail. While most of the existing analysis
on Salsa20 are from experimental efforts, in this paper we try to exploit some theoretical structures too.
First we experimentally study the biases for single bit ID, single bit OD for Salsa20/4. Next we present
a theoretical effort to understand how two Salsa20 states with certain differentials after one round can
be reversed to valid initial states. This helps us to translate some 4-round biases of Salsa20 to 5-round
biases. Our idea clarifies and generalizes an example of 5-round bias in [4]. Further we concentrate on
PNBs as explained in [1]. We experimentally study how one can increase the number of PNBs with
limited reduction in biases. Interesting we note that one can properly choose parameters so that results
of [1, 7] can be improved. We show that Salsa20/8 can be cryptanalysed with a key search complexity
of 2247.2. Using our idea of biases after 5 rounds and coming back 4 rounds from the 9th round, one
can exploit similar ideas of PNBs as in Section 4 for obtaining non-randomness in related-key scenario
of Salsa20/9. However, we could only obtain a complexity slightly less than the exhaustive search and
one may need to explore it further towards significant results. Finally, it should be mentioned that our
works, as well as all the existing results in Salsa20 cryptanalysis, are on reduced rounds and they do not
pose any security threat against Salsa20/12, which is in the eStream software portfolio.

References

1. J. -P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger. New Features of Latin Dances: Analysis
of Salsa, ChaCha, and Rumba. FSE 2008, LNCS 5086, pp. 470-488, Springer.

2. D. J. Bernstein. Snuffle 2005: the Salsa20 encryption function http://cr.yp.to/snuffle.html

3. P. Crowley. Truncated differential cryptanalysis of five rounds of Salsa20. SASC 2006. http://www.

ciphergoth.org/crypto/salsa20/

4. S. Fischer, W. Meier, C. Berbain, J. -F. Biasse, M. J. B. Robshaw. Non-randomness in eSTREAM candidates
Salsa20 and TSC-4. INDOCRYPT 2006. LNCS 4329, pp. 2-16, Springer.

5. T. Ishiguro, S. Kiyomoto, and Y. Miyake. Latin Dances Revisited: New Analytic Results of Salsa20 and
ChaCha. ICICS 2011, LNCS 7043, pp. 255-266, Springer. See corrections in http://eprint.iacr.org/2012/065

6. N. Mouha and B. Preneel. Towards Finding Optimal Differential Characteristics for ARX: Application to
Salsa20. Cryptology ePrint Archive: Report 2013/328, http://eprint.iacr.org/2013/328

7. Z. Shi, B. Zhang, D. Feng and W. Wu. Improved Key Recovery Attacks on Reduced-Round Salsa20 and
ChaCha. ICISC 2012, LNCS 7839, pp. 337-351, Springer.

8. Y. Tsunoo, T. Saito, H. Kubo, T. Suzaki, and Hiroki Nakashima. Differential Cryptanalysis of Salsa20/8.
SASC 2007. http://www.ecrypt.eu.org/stream/papersdir/2007/010.pdf

9. The ECRYPT Stream Cipher Project. eSTREAM Portfolio of Stream Ciphers. http://www.ecrypt.eu.org/
stream/

