
Online Authenticated-Encryption and its
Nonce-Reuse Misuse-Resistance

Viet Tung Hoang1,2 Reza Reyhanitabar3 Phillip Rogaway4 Damian Vizár3

1 Dept. of Computer Science, Georgetown University, USA
2 Dept. of Computer Science, University of Maryland, College Park, USA

3 EPFL, Lausanne, Switzerland
4 Dept. of Computer Science, University of California, Davis, USA

June 25, 2018

Abstract. A definition of online authenticated-encryption (OAE), call it OAE1, was given by Fleischmann,
Forler, and Lucks (2012). It has become a popular definitional target because, despite allowing encryption to
be online, security is supposed to be maintained even if nonces get reused. We argue that this expectation is
effectively wrong. OAE1 security has also been claimed to capture best-possible security for any online-AE
scheme. We claim that this understanding is wrong, too. So motivated, we redefine OAE-security, providing
a radically different formulation, OAE2. The new notion effectively does capture best-possible security for a
user’s choice of plaintext segmentation and ciphertext expansion. It is achievable by simple techniques from
standard tools. Yet even for OAE2, nonce-reuse can still be devastating. The picture to emerge is that no
OAE definition can meaningfully tolerate nonce-reuse, but, at the same time, OAE security ought never have
been understood to turn on this question.

Keywords: Authenticated encryption, CAESAR competition, misuse resistance, nonce reuse, online AE,
symmetric encryption.

Table of Contents

1 Introduction . 1
2 OAE1 Definition . 4
3 CPSS Attack . 5
4 Broader OAE1 Critique . 6
5 OAE2: Reformalizing Online-AE . 7
6 Achieving OAE2 . 13
7 Weakening OAE2 . 16
8 Escalating Claims, Diminishing Guarantees . 20
9 Concluding Remarks . 21
Acknowledgments . 22
References . 24
A Anticipated Objections . 24
B Related Work . 25
C MRAE Resists CPSS . 29
D Separating OAE1[𝑛] and OAE2[0, 𝑛] . 29
E Deferred Proofs . 30

E.1 Proof of Theorem 1 . 30
E.2 Proof of Proposition 1 . 33
E.3 Proof of Proposition 2 . 35
E.4 Proof of Theorem 2 . 35
E.5 Proof of Theorem 3 . 36

1

1 Introduction

Between nAE & MRAE. With typical nonce-based authenticated-encryption (nAE) schemes [53,55],
nonces must never repeat when encrypting a series of messages; if they do, it is possible—and routine—
that all security will be forfeit.5 To create some breathing room around this rigid requirement, Rogaway
and Shrimpton defined a stronger authenticated-encryption (AE) notion, which they called misuse-
resistant AE (MRAE) [56]. In a scheme achieving this, repeating a nonce has no adverse impact on
authenticity, while privacy is damaged only to the extent that an adversary can detect repetitions of
(𝑁, 𝐴, 𝑀) triples, these variables representing the nonce, associated data (AD), and plaintext.

While it’s easy to construct MRAE schemes [56], any such scheme must share a particular ineffi-
ciency: encryption can’t be online. When we speak of encryption being online we mean that it can be
realized with constant memory while making a single left-to-right pass over the plaintext 𝑀 , writing
out the ciphertext 𝐶, also left-to-right, during that pass. The reason an MRAE scheme can’t have
online encryption is simple: the definition entails that every bit of ciphertext depends on every bit of
the plaintext, so one can’t output the first bit of a ciphertext before reading the last bit of plaintext.
Coupled with the constant-memory requirement, single-pass MRAE becomes impossible.

Given this efficiency/security tension, Fleischmann, Forler, and Lucks (FFL) put forward a security
notion [28] that slots between nAE and MRAE. We call it OAE1. Its definition builds on the idea of
an online cipher due to Bellare, Boldyreva, Knudsen, and Namprempre (BBKN) [15]. Both definitions
depend on a constant 𝑛, the blocksize. Let B𝑛 = {0, 1}𝑛 denote the set of 𝑛-bit strings, or blocks. An
online cipher is a blockcipher ℰ : 𝒦×B*

𝑛 → B*
𝑛 (meaning each ℰ(𝐾, ·) is a length-preserving permutation)

where the 𝑖th block of ciphertext depends only on the key and the first 𝑖 blocks of plaintext. An OAE1-
secure AE scheme is an AE scheme where encryption behaves like an (𝑁, 𝐴)-tweaked [44] online cipher
of blocksize 𝑛 followed by a random, (𝑁, 𝐴, 𝑀)-dependent tag.

Problems with OAE1. FFL assert that OAE1 supports online-AE and nonce-reuse security. We
disagree with the second claim, and even the first.

To begin, observe that as the blocksize 𝑛 decreases, OAE1 becomes weaker, in the sense that the
ability to perform a chosen-plaintext attack (CPA) implies the ability to decrypt the ciphertext of an
𝑚-block plaintext with (2𝑛 − 1)𝑚 encryption queries. Fix a ciphertext 𝐶 = 𝐶1 · · ·𝐶𝑚 𝑇 with 𝐶𝑖 ∈ B𝑛,
a nonce 𝑁 , and an AD 𝐴. Using just an encryption oracle Enc, we want to recover 𝐶’s plaintext
𝑀 = 𝑀1 · · ·𝑀𝑚 with 𝑀𝑖 ∈ B𝑛. Here’s an attack for 𝑛 = 1. If Enc(𝑁, 𝐴, 0) = 𝐶1 set 𝑀1 = 0;
otherwise, set 𝑀1 = 1. Next, if Enc(𝑁, 𝐴, 𝑀1 0) = 𝐶1𝐶2 set 𝑀2 = 0; otherwise, set 𝑀2 = 1. Next, if
Enc(𝑁, 𝐴, 𝑀1𝑀2 0) = 𝐶1𝐶2𝐶3 set 𝑀3 = 0; otherwise, set 𝑀3 = 1. And so on, until, after 𝑚 queries, one
recovers 𝑀 . For 𝑛 > 1 generalize this by encrypting 𝑀1 · · ·𝑀𝑖−1 𝑀𝑖 (instead of 𝑀1 · · ·𝑀𝑖−1 0) with 𝑀𝑖

taking on values in B𝑛 until one matches 𝐶1 · · ·𝐶𝑖 or there’s only a single possibility remaining. The
worst-case number of Enc queries becomes (2𝑛 − 1)𝑚. We call this the trivial attack.

The trivial attack might suggest hope for OAE1 security as long as the blocksize is fairly large,
like 𝑛 = 128. We dash this hope by describing an attack, what we call a chosen-prefix / secret-suffix
(CPSS) attack, that breaks any OAE1-secure scheme, for any 𝑛, in the sense of recovering 𝑆 from given
an oracle for ℰ𝑁,𝐴

𝐾 (𝐿 ‖ · ‖ 𝑆), for an arbitrary, known 𝐿. See Section 3. The idea was introduced, in a
different setting, with the BEAST attack [27].

While many real-world settings won’t enable a CPSS attack, our own take is that, for a general-
purpose tool, such a weakness effectively refutes any claim of misuse resistance. If the phrase is to
mean anything, it should entail that the basic characteristics of nAE are maintained in the presence of

5 Throughout this paper we ignore an annoying discursive problem surrounding the word nonce. The word is usually
understood to mean something that does not repeat (in some context); if it does repeat, it’s not a nonce. This would make
the phrase nonce repetition a logical absurdity. For a more neutral term, Bernstein has advocated message number [17].
Others use IV (initialization vector). We will stick with nonce for a value that nominally ought not repeat, yet might.

2

OAE1 (from FFL [28]) OAE2 (new to this paper)
Definitional idea Online cipher followed by a tag Aencrypt each segment
Segmentation Fixed-size blocks of Variable-size segments of

scheme-determined lengths user-determined lengths
Typical block/segment size 5–16 bytes 1–10000 bytes? Not cryptographer’s decision
Ciphertext expansion 𝜏 bits per message (eg, 𝜏 = 128) 𝜏 bits per segment (eg, 𝜏 = 128)
Message space 𝑀 ∈ B*

𝑛 for blocksize 𝑛 𝑀 ∈{0, 1}* (one view) or 𝑀 ∈{0, 1}** (another)
Decryption also online? No, not in general Yes, automatically
Can aencrypt infinite streams? No, messages must end Yes, messages can be conceptually infinite
OK to repeat nonces? No, attacks are always possible No, attacks are always possible

Fig. 1: Approaches to formulating online-AE. It is a thesis of this paper that OAE1 misformulates the desired goal
and wrongly promises nonce-reuse misuse-resistance.

nonce-reuse. An AE scheme satisfying nAE (employing non-repeating nonces) or MRAE (without that
restriction) would certainly be immune to such an attack.

We next pull back and take a more philosophical view. We argue that the definition of OAE1 fails in
quite basic ways to capture the intuition for what secure online-AE (OAE) ought to do. First, schemes
targeting OAE1 conflate the blocksize of the tool being used to construct the scheme and the memory
restrictions or latency requirements that motivate OAE in the first place [62]. These two things are
unrelated and ought to be disentangled. Second, OAE1 fails to define security for plaintexts that aren’t
a multiple of the blocksize. But constructions do just that, encrypting arbitrary bit strings or byte
strings. Third, OAE1 measures privacy against an idealized object that’s an online cipher followed by
a tag. But having such a structure is not only unnecessary for achieving online encryption, but also
undesirable for achieving good security. Finally, while OAE1 aims to ensure that encryption is online,
it ignores decryption. The elision has engendered an additional set of definitions for RUP security,
“releasing unverified plaintext” [7]. We question the utility of online encryption when one still needs
to buffer the entire ciphertext before any portion of the (speculative) plaintext may be disclosed, the
implicit assumption behind OAE1.

An alternative: OAE2. There are environments where online encryption is needed. The designer
of an FPGA or ASIC encryption/decryption engine might be unable to buffer more than a kilobyte of
message. An application like SSH needs to send across a character interactively typed at the keyboard.
Netflix needs to stream a film [47] that is “played” as it is received, never buffering an excessive amount
or incurring excessive delays. A software library might want to support an incremental encryption
and decryption API. Whatever the setting, we think of the plaintext and ciphertext as having been
segmented into a sequence of segments. We don’t control the size of segments—that’s a user’s purview—
and different segments can have different lengths.

Thus the basic problem that OAE2 formalizes involves a (potentially long, even infinite) plaintext 𝑀
that gets segmented by the user to (𝑀1, . . . , 𝑀𝑚). We must encrypt each segment 𝑀𝑖 as soon as it arrives,
carrying forward only a constant-size state. Thus 𝑀 gets transformed into a segmented ciphertext
(𝐶1, . . . , 𝐶𝑚). Each 𝐶𝑖 must enable immediate recovery of 𝑀𝑖 (the receiver can no more wait for 𝐶’s
completion than the sender can wait for 𝑀 ’s). We don’t insist that |𝐶𝑖| = |𝑀𝑖|; in fact, the user will
do better to grow each segment, |𝐶𝑖| > |𝑀𝑖|, to support expedient verification of what has come so far.
See Fig. 1 for a brief comparison of OAE1 and OAE2.

After formulating OAE2, which we do in three approximately-equivalent ways, we describe simple
means to achieve it. We don’t view OAE2 as a goal for which one should design a fundamentally new
AE scheme; the preferred approach is to use a conventional AE scheme and wrap it in a higher-level
protocol. We describe two such protocols. The first, CHAIN, can be used to turn an MRAE scheme
(e.g., SIV) into an OAE2 scheme. The second, STREAM, can be used to turn an nAE scheme (e.g.,

3

OCB) into a nonce-based OAE scheme. That aim, nOAE, is identical to OAE2 except for insisting that,
on the encryption side, nonces don’t repeat. Finally, we consider a weakening of OAE2, we call it dOAE,
stronger than nOAE and achievable with online processing of each segment.

For reasons of length, the treatment of nOAE, dOAE, and STREAM appear only in the full version
of this paper [33]. Also see the full version for proofs and a more complete discussion of related work.

We emphasize that moving from OAE1 to OAE2 does not enable one to safely repeat nonces; an
OAE2-secure scheme will still be susceptible to CPSS attack, for example. In that light, we would not
term an OAE2 scheme misuse resistant. What makes OAE2 “better” than OAE1 is not added robustness
to nonce-reuse (at least none that we know how to convincingly formalize) but a better modeling of the
problem at hand, and a more faithful delivery on the promise of achieving best-possible security for an
online-AE scheme. In view of the fact that, with OAE2, one must still deprecate nonce reuse, we would
view nOAE as the base-level aim for online-AE.

Related work. A crucial idea for moving beyond BBKN’s and FFL’s conceptions of online encryption
is to sever the association of the blocksize of some underlying tool and the quantum of text a user is
ready to operate on. A 2009 technical report of Tsang, Solomakhin, and Smith (TSS) [62] expressed this
insight and provided a definition based on it. TSS explain that AE à la Boldyreva and Taesombut [23]
(or BBKN or FFL, for that matter) “processes and outputs . . . blocks as soon as the next input block
is received” [62, p. 4], whence they ask, “what if the input is smaller than a block?”, even a bit, or
what “if the input is a [segment] . . . of arbitrary length?” TSS maintain that such situations occur in
practice, and they give examples [62, Section 8].

There are major difference in how TSS proceed and how we do. They insist on schemes in which
there is ciphertext expansion only at the beginning and end, and their definition is oriented towards that
assumption. They do not authenticate the segmented plaintext but the string that is their concatenation.
Our formalization of OAE2 lets the adversary run multiple, concurrent sessions of online encryption
and decryption, another novum. In the end, the main commonality is some motivation and syntax.

Bertoni, Daemen, Peeters, and Van Assche (BDPV) present a mechanism, the duplex construction,
to turn a cryptographic permutation 𝑓 into an object very much like what we are calling an OAE2
scheme [19]. BDPV consider encrypting and authenticating a sequence of messages (𝐵1, 𝐵2, . . .) having
corresponding headers (𝐴1, 𝐴2, . . .). Asserting that it is “interesting to authenticate and encrypt a
sequence of messages in such a way that the authenticity is guaranteed not only on each (𝐴, 𝐵) but also
on the sequence received so far” [19, p. 323], they encrypt each (𝐴𝑖, 𝐵𝑖) to a ciphertext 𝐶𝑖 and a tag 𝑇𝑖,
the process depending on the prior (𝐴𝑗 , 𝐵𝑗) values. The authors explain that “Intermediate tags can
also be useful in practice to be able to catch fraudulent transactions early” [19, p. 323]. BDPV provide
a definition for the kind of AE they speak of [19, Section 2]. It resembles both OAE2 and nOAE, and
inspired dOAE. See Appendix B for more details, and for further discussion of related work.

A real-world need. Netflix recently described a protocol of theirs, MSL, for streaming video [47].
The movie is broken into variable-length segments and each segment is independently encrypted and
authenticated, with the ordering of the segments itself authenticated. MSL is based on Encrypt-then-
MAC composition, where the encryption is AES-CBC with PKCS#5 padding and the MAC is HMAC-
SHA256. The choice suggests that even in real-time applications, use of a two-pass AE scheme for each
segment can be fine, as long as segments are of appropriate length. MSL resembles an instantiation
of STREAM. The current paper provides foundations for the problem that Netflix faced, offering
definitions and generic solutions with good provable security.

Even before the Netflix announcement, practitioners had been publicly asking for such a tool. For
example, Stephen Touset writes: “I asked DJB [Dan Bernstein] [if] he had any intent to add a streaming
API to an authenticated cipher. His response was . . . that one should never release a decrypted plaintext
before verifying the authenticator. However, this got me to thinking. . . . Is it possible, or even advisable,
to mimic a streaming interface?” [61].

4

proc initialize Real1𝛱

𝐾 ←← 𝒦

proc Enc(𝐻, 𝑀)
if 𝐻 ̸∈ ℋ or 𝑀 ̸∈ B*

𝑛 then
return ⊥

return ℰ(𝐾, 𝐻, 𝑀)

proc Dec(𝐻, 𝐶)
if 𝐻 ̸∈ ℋ then return ⊥
return 𝒟(𝐾, 𝐻, 𝐶)

proc initialize Ideal1𝛱

for 𝐻 ∈ ℋ do 𝜋𝐻 ←← OPerm[𝑛]
for (𝐻, 𝑀) ∈ ℋ× B*

𝑛 do 𝑅𝐻,𝑀 ←← {0, 1}𝜏

proc Enc(𝐻, 𝑀)
if 𝐻 ̸∈ ℋ or 𝑀 ̸∈ B*

𝑛 then return ⊥
return 𝜋𝐻(𝑀) ‖𝑅𝐻,𝑀

proc Dec(𝐻, 𝐶)
return ⊥

Fig. 2: OAE1 security. Defining security for a block-based AE scheme 𝛱 = (𝒦, ℰ ,𝒟) with header space ℋ, blocksize 𝑛,
and ciphertext expansion 𝜏 . See the accompanying text for the definition of OPerm[𝑛].

Errata. The CHAIN construction in the proceedings version [34] of our paper was buggy due to an
improper domain separation constant. The problem has been corrected in the current paper. The specific
details of the bugs are discussed at the end of Section 6.

2 OAE1 Definition

All OAE definitions of widespread use spring from FFL [28], who married the definition of an online
cipher from Bellare, Boldyreva, Knudsen, and Namprempre [15] with the definition of authenticity of
ciphertexts (also called integrity of ciphertexts) [16,42,55]. In this section we recall the FFL definition,
staying true to the original exposition as much possible, but necessarily deviating to correct an error.
We call the (corrected) definition OAE1.

Syntax. For any 𝑛 ≥ 1 let B𝑛 = {0, 1}𝑛 denote the set of 𝑛-bit blocks. A block-based AE scheme is a
triple 𝛱 = (𝒦, ℰ ,𝒟) where the key space 𝒦 is a nonempty set with an associated distribution and where
the encryption algorithm ℰ and decryption algorithm 𝒟 are deterministic algorithms with signatures
ℰ : 𝒦 × ℋ × B*

𝑛 → {0, 1}* and 𝒟 : 𝒦 × ℋ × {0, 1}* → B*
𝑛 ∪ {⊥}. The set ℋ associated to 𝛱 is the

header space. FFL assumes that it is ℋ = B+
𝑛 = 𝒩 × 𝒜 with 𝒩 = B𝑛 and 𝒜 = B*

𝑛 the nonce space
and AD space. The value 𝑛 associated to 𝛱 is its blocksize. Note that the message space ℳ of 𝛱 must
be ℳ = B*

𝑛 and the blocksize 𝑛 will play a central role in the security definition. We demand that
𝒟(𝐾, 𝑁, 𝐴, ℰ(𝐾, 𝑁, 𝐴, 𝑀)) = 𝑀 for all 𝐾 ∈ 𝒦, 𝑁 ∈ 𝒩 , 𝐴 ∈ 𝒜, and 𝑀 ∈ B*

𝑛.
To eliminate degeneracies it is important to demand that |ℰ(𝐾, 𝐻, 𝑀)| ≥ |𝑀 | for all 𝐾, 𝐻, 𝑀 and

that |ℰ(𝐾, 𝐻, 𝑀)| depends on at most 𝐻 and |𝑀 |. To keep things simple, we assume that the ciphertext
expansion |ℰ(𝐾, 𝐻, 𝑀)| − |𝑀 | is a constant 𝜏 ≥ 0 rather than an arbitrary function of 𝐻 and |𝑀 |.

Security. Let OPerm[𝑛] be the set of all length-preserving permutations 𝜋 on B*
𝑛 where 𝑖th block

of 𝜋(𝑀) depends only on the first 𝑖-blocks of 𝑀 ; more formally, a length-preserving permutation
𝜋 : B*

𝑛 → B*
𝑛 is in OPerm[𝑛] if the first |𝑋| bits of 𝜋(𝑋𝑌) and 𝜋(𝑋𝑌 ′) coincide for all 𝑋, 𝑌, 𝑌 ′ ∈ B*

𝑛.
Despite its being infinite, one can endow OPerm[𝑛] with the uniform distribution in the natural way.
To sample from this we write 𝜋 ←← OPerm[𝑛].

Fix a block-based AE scheme 𝛱 = (𝒦, ℰ ,𝒟) with ℰ : 𝒦×ℋ×B*
𝑛 → {0, 1}*. Then we associate to 𝛱

and an adversary A the real number Advoae1
𝛱 (A) = Pr[A Real1 ⇒ 1]− Pr[A Ideal1 ⇒ 1] where games

Real1 and Ideal1 are defined in Fig. 2. Adversary A may not ask a Dec query (𝐻, 𝐶) after an Enc
query (𝐻, 𝑀) returned 𝐶. Informally, 𝛱 = (𝒦, ℰ ,𝒟) is OAE1 secure if Advoae1

𝛱 (A) is small for any
reasonable A . Alternatively, we can speak of OAE1[𝑛] security to emphasize the central role in defining
security of the scheme’s blocksize 𝑛.

Discussion. The OAE1 definition effectively says that, with respect to privacy, a ciphertext must
resemble the image of a plaintext under a random online permutation (tweaked by the nonce and

5

AD) followed by a 𝜏 -bit random string (the authentication tag). But the original definition from FFL
somehow omitted the second part [28, Definition 3]. The lapse results in a definition that makes no sense,
as ℰ must be length-increasing to provide authenticity. The problem was large enough that it wasn’t
clear to us what was intended. Follow-on work mostly replicated this [2, 29]. After discussions among
ourselves and checking with one of the FFL authors [45], we concluded that the intended definition is
the one we have given.

LCP leakage. Say that a block-based AE scheme 𝛱 = (𝒦, ℰ ,𝒟) with blocksize 𝑛 is LCP[𝑛] (for
“longest common prefix”) if for all 𝐾, 𝐻, 𝑀 , and 𝑖 ≤ |𝑀 |/𝑛, the first 𝑖 blocks of ℰ𝐻

𝐾 (𝑀) depend only
on the first 𝑖 blocks of 𝑀 . While all schemes we know claiming to be OAE1[𝑛] are also LCP[𝑛], an
OAE1[𝑛]-secure scheme isn’t necessarily LCP[𝑛]. This is because the requirement for OAE1[𝑛] security
is to be computationally close to an object that is LCP[𝑛], and something being computationally close to
something with a property 𝑃 doesn’t mean it has property 𝑃 . Indeed it is easy to construct an artificial
counterexample; for example, starting with a OAE1[𝑛]-secure scheme that is LCP[𝑛], augment the key
with 𝑛 extra bits, 𝐾 ′, and modify encryption so that when the first block of plaintext coincides with 𝐾 ′,
then reverse the bits of the remainder of the plaintext before proceeding. OAE1 security is only slightly
degraded but the scheme is no longer LCP[𝑛]. Still, despite such counterexamples, an OAE1[𝑛]-secure
scheme must be close to being LCP[𝑛]. Fix 𝛱 as above and consider an adversary A that is given an
oracle ℰ𝐾(·, ·) for 𝐾 ←← 𝒦. Consider A to be successful if it outputs 𝐻 ∈ ℋ and 𝑋, 𝑌, 𝑌 ′ ∈ B*

𝑛 such
that the first |𝑋|/𝑛 blocks of ℰ𝐻

𝐾 (𝑋𝑌) and ℰ𝐻
𝐾 (𝑋𝑌 ′) are different (i.e., the adversary found non-LCP

behavior). Let Advlcp
𝛱 (A) be the probability that A is successful. Then it’s easy to transform A into

an equally efficient adversary B for which Advoae1
𝛱 (B) = Advlcp

𝛱 (A). Because of this, there is no real
loss of generality, when discussing OAE1[𝑛] schemes, to assume them LCP[𝑛]. In the next section we
will do so.

3 CPSS Attack

Section 1 described the trivial attack to break OAE1-secure schemes with too small a blocksize. We
now describe a different fixed-header CPA attack, this one working for any blocksize. We call the attack
a chosen-prefix, secret-suffix (CPSS) attack. The attack is simple, yet devastating. It is inspired by the
well-known BEAST (Browser Exploit Against SSL/TLS) attack [27].

Let 𝛱 = (𝒦, ℰ ,𝒟) be a block-based AE scheme with blocksize 𝑛 satisfying LCP[𝑛]. We consider a
setting where messages 𝑀 = 𝑃 ‖ 𝑆 that get encrypted can be logically divided into a prefix 𝑃 that is
controlled by an adversary, then a suffix 𝑆 that is secret, fixed, and not under the adversary’s control.
The adversary wants to learn 𝑆. We provide it the ability to obtain an encryption of ℰ𝐻

𝐾 (𝑃 ‖ 𝑆) for
any 𝑃 it wants—except, to be realistic, we insist that 𝑃 be a multiple of 𝑏 bits. This is assumed for 𝑆
too. Typically 𝑃 and 𝑆 must be byte strings, whence 𝑏 = 8; for concreteness, let us assume this. Also
for concreteness, assume a blocksize of 𝑛 = 128 bits. Assume that ℰ can in fact operate on arbitrary
byte-length strings, but suffers LCP leakage on block-aligned prefixes (this is what happens if one pads
and then applies an OAE1-secure scheme). Finally, assume |𝑆| is a multiple of the blocksize.

To recover 𝑆, the adversary proceeds as follows. First it selects an arbitrary string 𝑃1 whose byte
length is one byte shorter than 𝑝 blocks, for an arbitrary 𝑝 ≥ 1. (For example, it would be fine to have
𝑃1 = 0120.) The adversary requests ciphertext 𝐶1 = ℰ𝐻

𝐾 (𝑃1 ‖ 𝑆). This will be used to learn 𝑆1, the first
byte of 𝑆. To do so, the adversary requests ciphertexts 𝐶1,𝐵 = ℰ𝐻

𝐾 (𝑃1 ‖ 𝐵 ‖ 𝑆) for all 256 one-byte
values 𝐵. Due to LCP leakage, exactly one of these values, the one with 𝐵 = 𝑆1, will agree with 𝐶1
on the first 𝑝 blocks. At this point the adversary knows the first byte of 𝑆, and has spent 257 queries
to get it. There is an obvious strategy to reduce this to 256 queries: omit one of the 256-possible byte
values for 𝐵 and use this for 𝑆1 if no other match is found.

Now the adversary wants to learn 𝑆2, the second byte of 𝑆. It selects an arbitrary string 𝑃2 that is
two bytes short of 𝑝 blocks, for any 𝑝 ≥ 1. The adversary requests the ciphertext 𝐶2 = ℰ𝐻

𝐾 (𝑃2 ‖ 𝑆); and

6

it requests ciphertexts 𝐶2,𝐵 = ℰ𝐻
𝐾 (𝑃2 ‖ 𝑆1 ‖ 𝐵 ‖ 𝑆) for all 256 one-byte values 𝐵. Due to LCP leakage

and the fact that we have matched the first byte 𝑆1 of 𝑆 already, exactly one of these 256 values, call
it 𝑆2, will agree with 𝐶2 on the first 𝑝 blocks. At this point the adversary knows 𝑆2, the second byte
of 𝑆. It has used 257 more queries to get this. This can be reduced to 256 as before.

Continuing in this way, the adversary recovers all of 𝑆 in 256 |𝑆|/8 queries. In general, we need
2𝑏|𝑆|/𝑏 queries to recover 𝑆. Note that the adversary has considerable flexibility in selecting the values
that prefix 𝑆: rather than this being completely chosen by the adversary, it is enough that it be a known,
fixed value, followed by the byte string that the adversary can fiddle with. That is, the CPSS attack
applies when the adversary can manipulate a portion 𝑅 of values 𝐿 ‖𝑅 ‖𝑆 that get encrypted, where 𝐿
is known and 𝑆 is not.

How practical? It is not uncommon to have protocols where there is a predictable portion 𝐿 of a
message, followed by an adversarially mutable portion 𝑅 specifying details, followed by further informa-
tion 𝑆, some or all of which is sensitive. This happens in HTTP, for example, where the first portion of
the request specifies a method, such as GET, the second specifies a resource, such as /img/scheme.gif/,
and the final portion encodes information such as the HTTP version number, an end-of-line character,
and a session cookie. If an LCP-leaking encryption scheme is used in such a setting, one is asking for
trouble.

Of course we do not suggest that LCP leakage will always foreshadow a real-world break. But the
whole point of having general-purpose notions and provable-security guarantees is to avoid relying on
application-specific characteristics of a protocol to enable security. If misuse comes as easily as giving
adversaries the ability to manipulate a middle portion 𝐿 ‖𝑅 ‖ 𝑆 of plaintexts, one has strayed very far
indeed from genuine misuse-resistance.

MRAE and CPSS. In Appendix C we evidence that MRAE provides a modicum of misuse resistance
that OAE1 lacks by establishing the rather obvious result that any MRAE-secure scheme resists CPSS
attack.

4 Broader OAE1 Critique

The CPSS attack suggests that the OAE1 definition is “wrong” in the sense that it promises nonce-
reuse security but compliant protocols are susceptible to realistic fixed-nonce attacks. In this section we
suggest that OAE1’s defects are more fundamental—that the definition fails to capture the intuition
about what something called “online-AE” ought do. Our complaints are thus philosophical, but only in
the sense that assessing the worth of a cryptographic definition always includes assessing the extent to
which it delivers on some underlying intuition.

The blocksize should not be a scheme-dependent constant. A reasonable syntactic requirement for online-
AE would say that the 𝑖th bit of ciphertext should depend only on the first 𝑖 bits of plaintext (and, of
course, the key, nonce, and AD). This would make online-AE something akin to a stream cipher. But
the requirement above is not what OAE1 demands—it demands that the 𝑖th block depends only on the
first 𝑖 blocks of plaintext. Each of these blocks has a fixed blocksize, some number 𝑛 associated to the
scheme and its security definition. Thus implicit in the OAE1 notion is the idea that there is going to
be some buffering of the bits of an incoming message before one can output the next block of bits. It
is not clear if this fixed amount of buffering is done as a matter of efficiency, simplicity, or security. In
schemes targeting OAE1-security, the blocksize is usually small, like 128 bits, the value depending on
the width of some underlying blockcipher or permutation used in the scheme’s construction.

That there’s a blocksize parameter at all implies that, to the definition’s architects, it is desirable, or
at least acceptable, to buffer some bits of plaintext before acting on them—just not too many. But the
number of bits that are reasonable to buffer is application-environment specific. One application might
need to limit the blocksize to 128 KB, so as to fit comfortably within the L2 cache of some CPU. Another

7

application might need to limit the blocksize to 1 KB, to fit compactly on some ASIC or FPGA. Another
application might need to limit the blocksize to a single byte, to ensure bounded latency despite bytes
arriving at indeterminate times. The problem is that the designer of a cryptographic scheme is in no
position to know the implementation-environment’s constraint that motivates the selection of a blocksize
in the first place. By choosing some fixed blocksize, a scheme’s designer simultaneously forecloses on an
implementation’s potential need to buffer less and an implementation’s potential ability to buffer more.
Any choice of a blocksize replaces a user’s environment-specific constraint by a hardwired choice from
a primitive’s designer.

(Before moving on let us point out that, if it is the amount of memory available to an implementation
that is an issue, the right constraint is not the blocksize 𝑛, where block 𝐶𝑖 depends only on prior blocks,
but the requirement that an implementation be achievable in one pass and 𝑛 bits of memory. These are
not the same thing [57, p. 241]. And the former is a poor substitute for the latter since context sizes
vary substantially from scheme to scheme. While one could build an OAE notion by parameterizing its
online memory requirement, we find it more appealing to eliminate any such parameter.)

Security must be defined for all plaintexts. The OAE1[𝑛] notion only defines security when messages are
a multiple of 𝑛 bits. What should security mean when the message space is larger, like ℳ = {0, 1}*?
Saying “we pad first, so needn’t deal with strings that aren’t multiples of the blocksize” is a complete
non-answer, as it leaves unspecified what the goal is one is aiming to achieve by padding on the message
space of interest—the one before padding is applied.

There are natural ways to try to extend OAE1[𝑛] security to a larger message space; see, for example,
the approach used for online ciphers on {0, 1}≥𝑛 [57]. This can be extended to OAE1. But it is not the
only approach, and there will still be issues for dealing with strings of fewer than 𝑛 bits. In general,
we think that an online-AE definition is not really meaningful, in practice, until one has specified what
security means on the message space ℳ = {0, 1}*.

Decryption too must be online. If one is able to produce ciphertext blocks in an online fashion one
had better be able to process them as they arrive. Perhaps the message was too long to store on the
encrypting side. Then the same will likely hold on the decrypting side. Or perhaps there are timeliness
constraints that one needs to act on a message fragment now, before the remainder of it arrives. Think
back to the Netflix scenario. It would be pointless to encrypt the film in an online fashion only to have
to buffer the entire thing at the receiver before it could play.

But online decryption is not required by OAE1 security, and it is routine that online decryption of
each provided block would be fatal. We conjecture that it is an unusual scenario where it is important
for encryption be computable online but irrelevant if decryption can be online as well.

The OAE1 reference object is not ideal. The reference object for OAE1[𝑛] security pre-supposes that
encryption resembles an online-cipher followed by a random-looking tag. But it is wrong to think of
this as capturing ideal behavior. First, it implicitly assumes that all authenticity is taken care of at the
very end. But if a plaintext is long and one is interested in encryption being online to ensure timeliness,
then waiting until the end of a ciphertext to check authenticity make no sense. If one is going to act on
a prefix of a plaintext when it’s recovered, it better be authenticated. Second, it is simply irrelevant,
from a security point of view, if, prior to receipt of an authentication tag, encryption amounts to length-
preserving permutation. Doing this may minimize ciphertext length, but that is an efficiency issue, not
a basic goal. And achieving this particular form of efficiency is at odds with possible authenticity aims.

5 OAE2: Reformalizing Online-AE

We provide a new notion for online-AE. We will call it OAE2. To accurately model the underlying goal,
not only must the security definition depart from that used by nAE and MRAE, but so too must a

8

scheme’s basic syntax. In particular, we adopt an API-motivated view in which the segmentation of a
plaintext is determined by the caller.

After defining the syntax we offer three ways to quantify the advantage an adversary gets in attack-
ing an OAE2 scheme. We term these advantage measures OAE2a, OAE2b, OAE2c. The notions are
essentially equivalent. We provide quantitative results to make this essentially precise.

Why describe three different advantage measures of OAE2 security? We think it helps clarify just
what OAE2 really is. The measures have different characteristics. The first, OAE2a, is a vector-oriented
formulation. It employs a fairly easy-to-understand reference object. The second advantage measure,
OAE2b, is a string-oriented formulation. It employs a tighter and more realistic accounting of the
adversary’s actual resource expenditure. The third advantage measure, OAE2c, is more aspirational in
character. Yet it is the easiest notion to work with, at least for proving schemes OAE2-secure. The
OAE2c measure only makes sense if the segment-expansion 𝜏 is fairly large.

We begin with a bit of notation.

Segmented strings. Denote by {0, 1}** = ({0, 1}*)* the set of segmented-strings: a segmented string
𝑋 ∈ {0, 1}** is a vector (or list) of strings. Each of its components, which we call a segment, is a
string. The segmented-string with zero components is the empty list 𝛬. This is different from the empty
string 𝜀. The number of components in a segmented-string 𝑋 is denoted |𝑋|, while the 𝑖th component of
𝑋, 𝑖 ∈ [1..|𝑋|], is denoted 𝑋[𝑖]. Note that indexing begins at 1. For 𝑋 ∈ {0, 1}** and 1 ≤ 𝑖 ≤ 𝑗 ≤ |𝑋|,
by 𝑋[𝑖..𝑗] we mean the (𝑗− 𝑖 + 1)-vector (𝑋[𝑖], 𝑋[𝑖 + 1], · · ·𝑋[𝑗]). If 𝑋 ∈ {0, 1}** and 𝑋 ∈ {0, 1}* then
𝑋 ‖𝑋 is the |𝑋|+ 1 vector consisting of the components of 𝑋, in order, followed by 𝑋. Keep in mind
that this is not concatenation of strings but, instead, appending a string to vector of strings to get a
longer vector of strings. We emphasize that a segmented string is not a string.

Scheme syntax. A segmented-AE scheme is a tuple 𝛱 = (𝒦, ℰ ,𝒟) where the key space 𝒦 is a nonempty
set with an associated distribution and both encryption ℰ = (ℰ .init, ℰ .next, ℰ .last) and decryption
𝒟 = (𝒟.init,𝒟.next,𝒟.last) are specified by triples of deterministic algorithms. Associated to 𝛱 are its
nonce space 𝒩 ⊆ {0, 1}* and its state space 𝒮. For simplicity, a scheme’s AD space 𝒜 = {0, 1}*, message
space ℳ = {0, 1}*, and ciphertext space 𝒞 = {0, 1}* are all strings. While an AD will be provided with
each plaintext segment, a single nonce is provided for the entire sequence of segments. The signature of
the components of ℰ and 𝒟 are as follows:

ℰ .init : 𝒦 ×𝒩 → 𝒮 𝒟.init : 𝒦 ×𝒩 → 𝒮
ℰ .next : 𝒮 ×𝒜×ℳ→ 𝒞 × 𝒮 𝒟.next : 𝒮 ×𝒜× 𝒞 → (ℳ×𝒮) ∪ {⊥}
ℰ .last : 𝒮 ×𝒜×ℳ→ 𝒞 𝒟.last : 𝒮 ×𝒜× 𝒞 →ℳ∪ {⊥}

When an algorithm takes or produces a point 𝑆 ∈ 𝒮 from its state space, it is understood that a fixed
encoding of 𝑆 is employed.

Given a segmented-AE scheme 𝛱 = (𝒦, ℰ ,𝒟) there are induced encryption and decryption algo-
rithms ℰ, 𝒟 : 𝒦 × 𝒩 × {0, 1}** × {0, 1}** → {0, 1}** (note the change to bold font) that operate, all
at once, on vectors of plaintext, ciphertext, and AD. These maps are defined in Fig. 3. Observe how
Dec(𝐾, 𝑁, 𝐴, 𝐶) returns a longest 𝑀 whose encryption (using 𝐾, 𝑁 , and 𝐴) is a prefix of 𝐶; in essence,
we stop at the first decryption failure, so |𝐶| = |𝑀 | if and only if 𝐶 is entirely valid. We require the
following validity condition for any segmented-AE scheme 𝛱 = (𝒦, ℰ ,𝒟) with induced (ℰ, 𝒟): if 𝐾 ∈ 𝒦,
𝑁 ∈ 𝒩 , 𝐴 ∈ {0, 1}**, 𝑀 ∈ {0, 1}**, and 𝐶 = ℰ(𝐾, 𝑁, 𝐴, 𝑀), then 𝑀 = 𝒟(𝐾, 𝑁, 𝐴, 𝐶).

Ciphertext expansion. We focus on segmented-AE schemes with constant segment-expansion, defined
as follows: associated to 𝛱 is a number 𝜏 ≥ 0 such that if 𝐾 ∈ 𝒦, 𝑁 ∈ 𝒩 , 𝐴 ∈ {0, 1}**, 𝑀 ∈ {0, 1}**,
𝑚 = |𝐴| = |𝑀 |, and 𝐶 = ℰ(𝐾, 𝑁, 𝐴, 𝑀), then |𝐶[𝑖]| = |𝑀 [𝑖]|+ 𝜏 for all 𝑖 ∈ [1..𝑚]. Thus each segment
grows by exactly 𝜏 bits, for some constant 𝜏 . We call 𝜏 the segment-expansion of 𝛱.

We favor constant segment-expansion because we think it runs contrary to the spirit of online-AE
to furnish interior segments with an inferior authenticity guarantee than that afforded to the whole

9

algorithm ℰ(𝐾, 𝑁, 𝐴, 𝑀)
𝑚← |𝑀 |; if 𝑚 = 0 or |𝐴| ̸= |𝑀 | then return 𝛬
(𝐴1, . . . , 𝐴𝑚)← 𝐴
(𝑀1, . . . , 𝑀𝑚)←𝑀
𝑆0 ← ℰ .init(𝐾, 𝑁)
for 𝑖← 1 to 𝑚− 1 do

(𝐶𝑖, 𝑆𝑖)← ℰ .next(𝑆𝑖−1, 𝐴𝑖, 𝑀𝑖)
𝐶𝑚 ← ℰ .last(𝑆𝑚−1, 𝐴𝑚, 𝑀𝑚)
return (𝐶1, . . . , 𝐶𝑚)

algorithm 𝒟(𝐾, 𝑁, 𝐴, 𝐶)
𝑚← |𝐶|
if 𝑚 = 0 or |𝐴| ̸= |𝐶| then return 𝛬
(𝐴1, . . . , 𝐴𝑚)← 𝐴; (𝐶1, . . . , 𝐶𝑚)← 𝐶
𝑆0 ← 𝒟.init(𝐾, 𝑁)
for 𝑖← 1 to 𝑚− 1 do

if 𝒟.next(𝑆𝑖−1, 𝐴𝑖, 𝐶𝑖) = ⊥ then
if 𝑚 = 1 return 𝛬
else return (𝑀1, . . . , 𝑀𝑖−1)

else (𝑀𝑖, 𝑆𝑖)← 𝒟.next(𝑆𝑖−1, 𝐴𝑖, 𝐶𝑖)
𝑀𝑚 ← 𝒟.last(𝑆𝑚−1, 𝐴𝑚, 𝐶𝑚)
if 𝑀𝑚 =⊥ then return (𝑀1, . . . , 𝑀𝑚−1)
else return (𝑀1, . . . , 𝑀𝑚)

Fig. 3: Operating on segmented strings. The figure shows the algorithms ℰ and 𝒟 that are induced by the segmented
encryption scheme 𝛱 = (𝒦, ℰ ,𝒟).

message. After all, much of the point of online-AE is to allow a decrypting party to safely act on
a ciphertext segment as soon as its available. Still, there is an obvious efficiency cost to expanding
every segment. See the heading “Multivalued segment-expansion” for the case where the amount of
segment-expansion is position dependent.

Online computability. We say that a segmented-AE scheme 𝛱 = (𝒦, ℰ ,𝒟) has online-encryption
if its state space 𝒮 is finite and there’s a constant 𝑤 such that ℰ .next and ℰ .last use at most 𝑤 bits
of working memory. The value 𝑤 excludes memory used for storing an algorithm’s inputs or output;
we elaborate below. Similarly, scheme 𝛱 has online-decryption if its state space 𝒮 is finite and there’s
a constant 𝑤 such that 𝒟.next and 𝒟.last use at most 𝑤 bits of working memory. A segmented-AE
scheme is online if it has online-encryption and online-decryption. In accounting for memory above,
the model of computation provides input values on a read-only input tape; the input’s length is not a
part of the working memory accounted for by 𝑤. Similarly, algorithms produce output by writing to a
write-only output tape in a left-to-right fashion. The number of bits written out has nothing to do with
the working memory 𝑤.

Our security definitions don’t care if a segmented-AE scheme is online: that’s an efficiency require-
ment, not a security requirement. Yet a good part of the purpose of the segmented-AE syntax is to
properly deal with schemes that have such efficiency constraints.

First OAE2 definition: OAE2a. We begin by defining the ideal behavior for an OAE scheme. Let
Inj(𝜏) denote the set of all 𝜏 -expanding injective functions—the set of all functions 𝑓 : {0, 1}* → {0, 1}*
that are injective and satisfy |𝑓(𝑥)| = |𝑥|+𝜏 . Endow this set with the uniform distribution in the natural
way. We write 𝑓 ←← Inj(𝜏) to denote uniformly sampling a random, 𝜏 -expanding injective function. Now
define a distribution on functions IdealOAE(𝜏) as follows:

for 𝑚 ∈ Z+, 𝑁 ∈ {0, 1}*, 𝐴 ∈ ({0, 1}*)𝑚, 𝑀 ∈ ({0, 1}*)𝑚−1 do
𝑓𝑁,𝐴,𝑀 ,0 ←← Inj(𝜏); 𝑓𝑁,𝐴,𝑀 ,1 ←← Inj(𝜏)

for 𝑚 ∈ Z+, 𝐴 ∈ ({0, 1}*)𝑚, 𝑋 ∈ ({0, 1}*)𝑚, 𝛿 ∈ {0, 1} do
𝐹 (𝑁, 𝐴, 𝑋, 𝛿)← (𝑓𝑁,𝐴[1..1],𝛬,0(𝑋[1]), 𝑓𝑁,𝐴[1..2],𝑋[1..1],0(𝑋[2]),

𝑓𝑁,𝐴[1..3],𝑋[1..2],0(𝑋[3]), . . . , 𝑓𝑁,𝐴[1..𝑚−1],𝑋[1..𝑚−2],0(𝑋[𝑚− 1]),
𝑓𝑁,𝐴[1..𝑚],𝑋[1..𝑚−1],𝛿(𝑋[𝑚]))

return 𝐹

Thus 𝐹 ←← IdealOAE(𝜏) grows by accretion, the 𝑖th component of 𝐹 (𝑁, 𝐴, 𝑋, 0) depending on 𝑁 ,
𝐴[1..𝑖], and 𝑋[1..𝑖]. It must be decryptable (hence the injectivity) and have the mandated length. The
final input to 𝐹 , the flag 𝛿, indicates if the argument 𝑋 is complete: a 1 means it is, a 0 means it’s not.

10

proc initialize Real2A𝛱

𝐾 ←← 𝒦

proc Enc(𝑁, 𝐴, 𝑀)
if 𝑁 ̸∈𝒩 or |𝐴| ̸= |𝑀 | then return ⊥
return ℰ(𝐾, 𝑁, 𝐴, 𝑀)

proc Dec(𝑁, 𝐴, 𝐶)
if 𝑁 ̸∈𝒩 or |𝐴| ̸= |𝑀 | then return ⊥
return 𝒟(𝐾, 𝑁, 𝐴, 𝐶)

proc initialize Ideal2A𝛱

𝐹 ←← IdealOAE(𝜏)

proc Enc(𝑁, 𝐴, 𝑀)
if 𝑁 ̸∈ 𝒩 or |𝐴| ̸= |𝑀 | then return ⊥
return 𝐹 (𝑁, 𝐴, 𝑀 , 1)

proc Dec(𝑁, 𝐴, 𝐶)
if 𝑁 ̸∈ 𝒩 or |𝐴| ̸= |𝐶| then return ⊥
if ∃𝑀 s.t. 𝐹 (𝑁, 𝐴, 𝑀 , 1) = 𝐶 then return 𝑀
𝑀 ← the longest vector in

{𝑀 : 𝐹 (𝑁, 𝐴, 𝑀 , 0)[𝑖] = 𝐶[𝑖] for 𝑖 ∈ [1..|𝑀 | − 1]}
return 𝑀

Fig. 4: OAE2a security. The segmented-AE scheme 𝛱 = (𝒦, ℰ ,𝒟) has nonce space 𝒩 and segment-expansion 𝜏 . It
induces algorithms ℰ, 𝒟 as per Fig. 3. The distribution IdealOAE(𝜏) is described in the text.

Fig. 4 defines games Real2A𝛱 and Ideal2A𝛱 for a 𝜏 -expanding segmented-AE scheme 𝛱. Given an
adversary A with oracles Enc and Dec determined by these games, let Advoae2a

𝛱 (A) = Pr[A Real2A𝛱 ⇒
1]−Pr[A Ideal2A𝛱 ⇒ 1] be the adversary’s distinguishing advantage. This is our first measure of OAE2
security.

Discussion. The security notion may be described as follows. A user wants to encrypt a segmented
message 𝑀 = (𝑀1, . . . , 𝑀𝑚) into a ciphertext 𝐶 = (𝐶1, . . . , 𝐶𝑚) using 𝐾, 𝑁, 𝐴. He wants to do
this as well as possible subject to the constraint that segments grow by exactly 𝜏 bits and 𝑀1 · · ·𝑀𝑖

are recoverable from 𝐾, 𝑁, (𝐴1, . . . , 𝐴𝑖), (𝐶1, . . . , 𝐶𝑖). As with robust-AE [35], the phrase “as well as
possible” targets an achievable (instead of aspirational) goal. Specifically, it is formalized by comparing
the real object to a random element from IdealOAE(𝜏) and its inverse, the later understood to invert
as many components as possible, stopping at the first point one can’t proceed.

The definition of IdealOAE(𝜏) is complex enough that an example may help. Consider encrypting a
segmented plaintext 𝑀 = (𝐴, 𝐵, 𝐶, 𝐷) with a fixed key, nonce, and AD. Let (𝑈, 𝑉, 𝑋, 𝑌) be the result.
Now encrypt 𝑀 ′ = (𝐴, 𝐵, 𝐶). We want this to give (𝑈, 𝑉, 𝑍), not (𝑈, 𝑉, 𝑋), as the final segment is
special: processed by ℰ .last instead of ℰ .next, it is as though 𝑀 = (𝐴, 𝐵, 𝐶, 𝐷) means (𝐴, 𝐵, 𝐶, 𝐷$),
while 𝑀 = (𝐴, 𝐵, 𝐶) means (𝐴, 𝐵, 𝐶$), where the $-symbol is an end-of-message sentinel. Written like
this, it is clear that the two segmented ciphertexts should agree on the first two components but not
the third. Correspondingly, possession of (𝑈, 𝑉, 𝑋, 𝑌) ought not enable a forgery of (𝑈, 𝑉, 𝑋). All of this
understanding gets quietly embedded into the definition of IdealOAE(𝜏), whose member functions get
a final argument 𝛿 with semantics indicating if the message is complete. Thus 𝐹 (𝑁, 𝐴, (𝐴, 𝐵, 𝐶), 0) is
what 𝑀 = (𝐴, 𝐵, 𝐶) should map to if more segments are to come, while 𝐹 (𝑁, 𝐴, (𝐴, 𝐵, 𝐶), 1) is what
it should map to if 𝐶 is the final segment of 𝑀 .

Second OAE2 definition: OAE2b. Fig. 5 gives a more fine-grained and string-oriented measure for
OAE2 security. The adversary, instead of providing 𝑁, 𝐴, 𝑀 and getting a vector 𝐶 = Enc(𝑁, 𝐴, 𝑀),
can adaptively grow 𝐴 and 𝑀 one component at a time. Similarly, instead of providing a segmented
ciphertext 𝑁, 𝐴, 𝐶 and getting 𝑀 = Dec(𝑁, 𝐴, 𝐶), it can adaptively grow 𝐴, 𝐶. As before, we as-
sociate to a 𝜏 -expanding segmented-AE scheme 𝛱 = (𝒦, ℰ ,𝒟) and an adversary A the real number
Advoae2b

𝛱 (A) = Pr[A Real2B𝛱 ⇒ 1]− Pr[A Ideal2B𝛱 ⇒ 1] that is its distinguishing advantage.
The OAE2a and OAE2b measures are essentially equivalent. The essentially of this sentence entails

a simple result explaining how to convert an adversary for one definition into an adversary for the other.
First, given an oae2a-style adversary A we can construct an equally effective oae2b-style adversary B: it
translates each Enc(𝑁, (𝐴1, . . . , 𝐴𝑚), (𝑀1, . . . , 𝑀𝑚)) asked by adversary A into an Enc.init, then 𝑚−1
Enc.next calls, then an Enc.last call, assembling the answers into a segmented ciphertext (𝐶1, . . . , 𝐶𝑚).
Similarly, it translates Dec(𝑁, (𝐴1, . . . , 𝐴𝑚), (𝐶1, . . . , 𝐶𝑚)) calls into Dec.init, Dec.next, Dec.last calls.

11

proc initialize Real2B𝛱

𝐼, 𝐽 ← 0; 𝐾 ←← 𝒦

proc Enc.init(𝑁)
if 𝑁 ̸∈ 𝒩 then return ⊥
𝐼 ← 𝐼 + 1; 𝑆𝐼 ← ℰ .init(𝐾, 𝑁)
return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 ̸∈ [1..𝐼] or 𝑆𝑖 = ⊥ then return ⊥
(𝐶, 𝑆𝑖)← ℰ .next(𝑆𝑖, 𝐴, 𝑀)
return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 ̸∈ [1..𝐼] or 𝑆𝑖 = ⊥ then return ⊥
𝐶 ← ℰ .last(𝑆𝑖, 𝐴, 𝑀)
𝑆𝑖 ← ⊥; return 𝐶

proc Dec.init(𝑁)
if 𝑁 ̸∈ 𝒩 then return ⊥
𝐽 ← 𝐽 + 1; 𝑆′

𝐽 ← 𝒟.init(𝐾, 𝑁)
return 𝐽

proc Dec.next(𝑗, 𝐴, 𝐶)
if 𝑗 ̸∈ [1..𝐽] or 𝑆′

𝑗 = ⊥ then return ⊥
(𝑀, 𝑆′

𝑗)← 𝒟.next(𝑆′
𝑗 , 𝐴, 𝐶)

return 𝑀

proc Dec.last(𝑗, 𝐴, 𝐶)
if 𝑗 ̸∈ [1..𝐽] or 𝑆′

𝑗 = ⊥ then return ⊥
𝑀 ← 𝒟.last(𝑆′

𝑗 , 𝐴, 𝐶)
𝑆′

𝑗 ← ⊥
return 𝑀

proc initialize Ideal2B𝛱

𝐼, 𝐽 ← 0; 𝐹 ←← IdealOAE(𝜏)

proc Enc.init(𝑁)
if 𝑁 ̸∈ 𝒩 then return ⊥
𝐼 ← 𝐼 + 1; 𝑁𝐼 ← 𝑁 ; 𝐴𝐼 ← 𝛬; 𝑀𝐼 ← 𝛬
return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 ̸∈ [1..𝐼] or 𝑀 𝑖 = ⊥ then return ⊥
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝑚← |𝑀 𝑖|
𝐶 ← 𝐹 (𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 0); return 𝐶[𝑚]

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 ̸∈ [1..𝐼] or 𝑀 𝑖 = ⊥ then return ⊥
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝑚← |𝑀 𝑖|
𝐶 ← 𝐹 (𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 1); 𝑀 𝑖 ← ⊥; return 𝐶[𝑚]

proc Dec.init(𝑁)
if 𝑁 ̸∈ 𝒩 then return ⊥
𝐽 ← 𝐽 + 1; 𝑁 ′

𝐽 ← 𝑁 ; 𝐴′
𝑗 ←← 𝛬; 𝐶𝐽 ← 𝛬

return 𝐽

proc Dec.next(𝑗, 𝐴, 𝐶)
if 𝑗 ̸∈ [1..𝐽] or 𝐶𝑗 = ⊥ then return ⊥
𝐴′

𝑗 ← 𝐴𝑗 ‖𝐴; 𝐶𝑗 ← 𝐶𝑗 ‖ 𝐶; 𝑚← |𝐶𝑗 |
if ∃𝑀 s.t. 𝐹 (𝑁 ′

𝑗 , 𝐴′
𝑗 , 𝑀 , 0) = 𝐶𝑗

then return 𝑀 [𝑚]
else 𝐶𝑗 ← ⊥; return ⊥; fi

proc Dec.last(𝑗, 𝐴, 𝐶)
if 𝑗 ̸∈ [1..𝐽] or 𝐶𝑗 = ⊥ then return ⊥
𝐴′

𝑗 ← 𝐴 ‖𝐴; 𝐶𝑗 ← 𝐶𝑗 ‖ 𝐶; 𝑚← |𝐶𝑗 |
if ∃𝑀 s.t. 𝐹 (𝑁 ′

𝑗 , 𝐴′
𝑗 , 𝑀 𝑗 , 1) = 𝐶𝑗

then 𝐶𝑗 ← ⊥; return 𝑀 [𝑚]
else 𝐶𝑗 ← ⊥; return ⊥ fi

Fig. 5: OAE2b security. The segmented-AE scheme 𝛱 = (𝒦, ℰ ,𝒟) has nonce space 𝒩 and segment-expansion 𝜏 .

Adversary B gets exactly the oae2b-advantage that A had as oae2a-advantage. It runs in almost the
exact same time.

Simulation in the other direction is less efficient. Given an adversary A attacking the oae2b-security
of a 𝛱, we construct an adversary B for attacking the oae2a-security of the same scheme. Adversary B
maintains lists 𝑁𝑖, 𝐴𝑖, 𝑀 𝑖 that are initialized in the natural way with each Enc.init call (incrementing 𝑖,
initially zero, with each Enc.init). Calls of the form Enc.next(𝑖, 𝐴, 𝑀), when valid, result in appending 𝐴
to 𝐴𝑖 and 𝑀 to 𝑀 𝑖, making an Enc(𝑁𝑖, 𝐴𝑖‖𝜀, 𝑀 𝑖‖𝜀) call, and returning its |𝑀 𝑖|-th component. Calls of
the form Enc.last(𝑖, 𝐴, 𝑀) result in making an Enc(𝑁𝑖, 𝐴𝑖‖𝐴, 𝑀 𝑖‖𝑀) call, returning its last component,
resetting 𝑀 𝑖 to ⊥ before doing so. Calls of the form Dec.init, Dec.next, and Dec.last are treated
analogously, maintaining 𝑁 ′

𝑖 , 𝐴′
𝑖, 𝐶𝑖 values. Once again the simulation is perfect, so Advoae2a

𝛱 (B) =
Advoae2b

𝛱 (A). But now there is a quadratic slowdown in running time: the argument lists can grow
long, as can return values, only one component of which is used with each call.

While the OAE2a definition is more compact, the improved concision for the adversary’s queries
in the OAE2b definition ultimately make it preferable, particularly as this concision better models the
real-world semantics, where an adversary might be able to incrementally grow a plaintext or ciphertext
with the unwitting cooperation of some encrypting or decrypting party. We note that we could achieve
greater concision still by introducing a shorthand that would allow the adversary to grow a tree and
not just a chain. But this would not seem to model anything meaningful in the real-world.

12

proc initialize Real2C𝛱 Forge2C𝛱 ←
𝐼 ← 0; 𝐾 ←← 𝒦
𝒵 ← ∅

proc Enc.init(𝑁)
if 𝑁 ̸∈ 𝒩 then return ⊥
𝐼 ← 𝐼 + 1; 𝑆𝐼 ← ℰ .init(𝐾, 𝑁)
𝑁𝐼 ← 𝑁 ; 𝐴𝐼 ←𝑀 𝐼 ← 𝐶𝐼 ← 𝛬
return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 ̸∈ [1..𝐼] or 𝑆𝑖 = ⊥ then return ⊥
(𝐶, 𝑆𝑖)← ℰ .next(𝑆𝑖, 𝐴, 𝑀)
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝐶𝑖 ← 𝐶𝑖 ‖ 𝐶
𝒵 ← 𝒵 ∪ {(𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 0)}
return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 ̸∈ [1..𝐼] or 𝑆𝑖 = ⊥ then return ⊥
𝐶 ← ℰ .last(𝑆𝑖, 𝐴, 𝑀); 𝑆𝑖 ← ⊥
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝐶𝑖 ← 𝐶𝑖 ‖ 𝐶
𝒵 ← 𝒵 ∪ {(𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 1)}
return 𝐶

proc finalize (𝑁, 𝐴, 𝐶, 𝑏) ←
if |𝐴| ̸= |𝐶| or |𝐴|=0 or (𝑁, 𝐴, 𝐶, 𝑏)∈𝒵 then return false
𝑆 ← 𝒟.init(𝐾, 𝑁); 𝑚← |𝐶| ←
for 𝑖← 1 to 𝑚− 𝑏 do ←

(𝑀, 𝑆)← 𝒟.next(𝑆, 𝐴[𝑖], 𝐶[𝑖]) ←
if 𝑀 = ⊥ then return false ←

if 𝑏 = 1 and 𝒟.last(𝑆, 𝐴[𝑚], 𝐶[𝑚]) = ⊥ then return false
return true ←

proc initialize Rand2C𝛱

𝐼 ← 0
𝐸(𝑥)← undef for all 𝑥

proc Enc.init(𝑁)
if 𝑁 ̸∈ 𝒩 then return ⊥
𝐼 ← 𝐼 + 1
𝑁𝐼 ← 𝑁 ; 𝐴𝑖 ←𝑀 𝑖 ← 𝛬
return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 ̸∈ [1..𝐼] or 𝑁𝑖 = ⊥ then return ⊥
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝑀 𝑖 ←𝑀 𝑖 ‖𝑀
if 𝐸(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 0) = undef then

𝐸(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 0)←← {0, 1}|𝑀|+𝜏

𝐶 ← 𝐸(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 0)
return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 ̸∈ [1..𝐼] or 𝑁𝑖 = ⊥ then return ⊥
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝑀 𝑖 ←𝑀 𝑖 ‖𝑀
if 𝐸(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 1) = undef then

𝐸(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 1)←← {0, 1}|𝑀|+𝜏

𝐶 ← 𝐸(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 1); 𝑁𝑖 ← ⊥
return 𝐶

Fig. 6: OAE2c security. Privacy and authenticity are separately defined, the first by comparing games Real2C and
Rand2C, and the second using game Forge2C, which includes the additional lines indicated.

There are a couple of further reasons to favor OAE2b. One is that it more directly captures the
possibility of “infinite” (non-terminating) plaintexts (an infinite “stream” of messages). This is simply
the setting where Enc.last and Dec.last are never called. Second, the OAE2b definition makes it easier
to define nonce-respecting adversaries for the OAE setting. Such adversaries may adaptively grow a
plaintext based on a single nonce, but it may grow only one plaintext for any given nonce. Building on
the OAE2a formulation this is awkward to say, but building on the OAE2b formulation, it is natural.
We will return to this in Section 7.

Third OAE2 definition: OAE2c. Let 𝛱 be a segmented-AE scheme with segment-expansion 𝜏 and
nonce-space 𝒩 . Our final formulation of OAE2 security uses a two-part definition, separately defin-
ing privacy and authenticity requirements. With games defined in Fig. 6, we let Advoae2-priv

𝛱 (A) =
Pr[A Real2C𝛱 ⇒ 1] − Pr[A Rand2C𝛱 ⇒ 1]. Similarly, define Advoae2-auth

𝛱 (A) = Pr[A Forge2C𝛱], mean-
ing the probability that A returns a value that, when provided as input to the procedure finalize,
evaluates to true. Informally, OAE2c security for a scheme 𝛱 means that reasonable adversaries get
small oae2-priv advantage and small oae2-auth advantage.

Definition OAE2c is simpler than prior games in the sense that, for privacy, no decryption oracles
are provided and the reference experiment simply returns the right number of uniformly random bits.
For the authenticity portion of the definition, forgeries are defined to allow any (𝑁, 𝐴, 𝐶) that the
adversary does not trivially know to be valid, the adversary marking in 𝐶 has terminated (𝑏 = 1) or
not (𝑏 = 0). Set 𝒵 records the tuples that the trivially adversary knows by virtue of encryption queries.

13

The following propositions show that OAE2b and OAE2c are close, assuming that the segment-
expansion 𝜏 is fairly large. The proofs are in Appendices E.2 and E.3.

Proposition 1 (oae2c ⇒ oae2b). Let 𝛱 be a segmented-AE scheme with ciphertext expansion 𝜏 .
There are explicit given reductions 𝑅1 and 𝑅2 with the following property. For any adversary A , adver-
saries B1 = 𝑅1(A) and B2 = 𝑅2(A) satisfy Advoae2b

𝛱 (A) ≤ Advoae2-priv
𝛱 (B1)+𝑝 ·Advoae2-auth

𝛱 (B2)+
𝑞2/2𝜏 , where 𝑝 and 𝑞 are the number of decryption chains and the number of queries of A , respectively.
For each 𝑖 ∈ {1, 2}, adversary B𝑖 uses about the same running time as A , and the length of its queries
is also at most that of A ’s queries.

Proposition 2 (oae2b ⇒ oae2c). Let 𝛱 be a segmented-AE scheme with ciphertext expansion 𝜏 .
There are explicit given reductions 𝑅1 and 𝑅2 with the following property. For any adversaries A1
and A2, adversaries B1 = 𝑅1(A1) and B2 = 𝑅2(A2) satisfy Advoae2-priv

𝛱 (A1) ≤ Advoae2b
𝛱 (B1) + 𝑞2/2𝜏

and Advoae2-auth
𝛱 (A2) ≤ Advoae2b

𝛱 (B2)+ℓ/2𝜏 , where 𝑞 is the number of A1’s queries and ℓ is the number
of segments in A2’s output. For each 𝑖 ∈ {1, 2}, adversary B𝑖 uses about the same running time as A𝑖,
and the length of its queries is at most that of A𝑖’s queries.

Multivalued segment-expansion. It is easy to extend the definitions of this section to schemes for
which the segment-expansion varies according to segment position. In particular, one could use one ex-
pansion value, 𝜎, for plaintext components other than the last, and a different expansion value, 𝜏 , at the
end. For such a (𝜎, 𝜏)-expanding scheme, distribution IdealOAE(𝜏) would be adjusted to IdealOAE(𝜎, 𝜏)
in the natural way.

The main reason for considering multivalued segment-expansion is to clarify how OAE2 security
relates to prior notions in the literature. In particular, OAE2 resembles OAE1 where the segment-
expansion is (0, 𝜏) and where all segments are required to have some fixed length 𝑛. Yet even then the
definitions would be very different: the OAE2 version would be stronger, since an online decryption
capability is not allowed to compromise OAE2 security, whereas the capability may compromise OAE1
security. It is easy to give a separating example; see Appendix D.

Another potential reason to consider multivalued segment-expansion is as a way to save on bits;
obviously one will use fewer total bits, over a sequence of two or more segments, if only the last is
expanded. But we suspect that this benefit is rarely worth its cost. If segments are 1 KByte (which is
fairly short) and tags are 128 bits (which is fairly long), the difference (in total number of needed bits)
between authenticating every segment and authenticating only the last one will always be less than 2%.
This seems a small price to pay to have each and every segment properly authenticated.

Why vector-valued AD? In modeling OAE it is unclear if one ought think of the AD as a fixed
string that is known before the plaintext begins to arrive, or if, instead, one should think of the AD as
vector-valued, its 𝑖th segment available when the 𝑖th segment of plaintext is. We adopted the second
view (switching from the first at the urging of the Keyak team) for closer concordance with prior
work [19] and for greater generality: a string-valued AD of 𝐴 can be regarded as a vector-valued AD
of 𝐴 = (𝐴, 𝜀, 𝜀, . . .). More philosophically, the two conceptions correspond to whether one thinks of
breaking up a fixed plaintext 𝑀 into a sequence of segments 𝑀𝑖 or one regards the 𝑀𝑖 values as more
autonomous, each encrypted when available, each with its own associated context. With plaintexts and
AD both vector-valued, one conceptually extends across time a channel that securely transmit pairs of
strings, one component with privacy and both with authenticity. All that said, the authors are uncertain
of the actual utility of vector-valued over string-valued AD.

6 Achieving OAE2

In the special case that each segmented-string has only one component, OAE2 degenerates to the notion
of a pseudorandom injection (PRI) [56]. The notion is close to MRAE [56], with a gap 𝑞2/2𝑠+𝜏 + 𝑞/2𝜏

14

proc initialize RealPRI𝛱

𝐾 ←← K

proc Enc(𝑁, 𝐴, 𝑀)
if 𝑁 ̸∈ 𝒩 or 𝐴 ̸∈ 𝒜 then return ⊥
return E(𝐾, 𝑁, 𝐴, 𝑀)

proc Dec(𝑁, 𝐴, 𝐶)
if 𝑁 ̸∈ 𝒩 or 𝐴 ̸∈ 𝒜 then return ⊥
return D(𝐾, 𝑁, 𝐴, 𝐶)

proc initialize IdealPRI𝛱

for (𝑁, 𝐴) ∈ 𝒩 ×𝒜 do 𝜌𝑁,𝐴 ←← Inj(𝜏)

proc Enc(𝑁, 𝐴, 𝑀)
if 𝑁 ̸∈ 𝒩 or 𝐴 ̸∈ 𝒜 then return ⊥
return 𝜌𝑁,𝐴(𝑀)

proc Dec(𝑁, 𝐴, 𝐶)
if 𝑁 ̸∈ 𝒩 or 𝐴 ̸∈ 𝒜 then return ⊥
return 𝜌−1

𝑁,𝐴(𝐶)

Fig. 7: PRI security. Defining security for an AE scheme 𝛱 = (K, E, D) with expansion 𝜏 , nonce space 𝒩 , and AD space
𝒜. Here Inj(𝜏) is the set of all injective functions 𝑓 : {0, 1}* → {0, 1}* such that |𝑓(𝑥)| = |𝑥| + 𝜏 for all 𝑥 ∈ {0, 1}*. For
each 𝑦 ∈ {0, 1}* let 𝑓−1(𝑦) = 𝑥 if there’s an 𝑥 ∈ {0, 1}* such that 𝑓(𝑥) = 𝑦, and 𝑓−1(𝑦) = ⊥ otherwise.

where 𝑞 is the number of queries and 𝑠 is the length of the shortest plaintext queried. Below we construct
an OAE2-secure scheme from a PRI-secure scheme. The scheme could be SIV [56] if 𝜏 is large, say
𝜏 = 128, or AEZ scheme [35], for arbitrary 𝜏 . We begin by recalling the PRI notion.

Pseudorandom injections. Let 𝛱 = (K, E, D) be a conventional AE scheme, meaning that (i) the
key space K is a nonempty set with an associated distribution, (ii) E : K×𝒩 ×𝒜×{0, 1}* → {0, 1}* is
the encryption scheme, and (iii) D : K×𝒩×𝒜×{0, 1}* → {0, 1}*∪{⊥} is the decryption scheme. Both E
and D are deterministic, and decryption reverses encryption, meaning that for every 𝑁 ∈ 𝒩 , 𝐴 ∈ 𝒜,
𝑀 ∈ {0, 1}*, and 𝐾 ∈ K, we have D𝑁,𝐴

𝐾 (E𝑁,𝐴
𝐾 (𝑀)) = 𝑀 . We insist there be a constant 𝜏 associated

to 𝛱, its ciphertext-expansion, where |E𝑁,𝐴
𝐾 (𝑀)| = |𝑀 |+ 𝜏 for all 𝑁 ∈ 𝒩 , 𝐴 ∈ 𝒜, 𝑀 ∈ {0, 1}*, 𝐾 ∈ K.

Define Advpri
𝛱 (A) = Pr[A RealPRI𝛱 ⇒ 1]− Pr[A IdealPRI𝛱 ⇒ 1] using Fig. 7’s games.

Achieving OAE2 security. Fix integers 𝑛 ≥ 𝜏 ≥ 0. For a string 𝑋 ∈ {0, 1}* and 1 ≤ 𝑖 ≤ 𝑗 ≤ |𝑋|, let
𝑋[𝑖, 𝑗] denote the substring of 𝑋 from the 𝑖th bit to the 𝑗th bit (inclusive). Let ⟨·⟩ denote an encoding
that maps a pair (𝐴, 𝑑) ∈ {0, 1}* × {0, 1, 2, 3, 4, 5} to a string ⟨𝐴, 𝑑⟩ ∈ {0, 1}*. For example, one can
represent 𝑑 by a three-bit string, and append this to 𝐴. Let 𝛱 = (K, E, D) be a conventional AE scheme
of ciphertext-expansion 𝜏 , nonce space {0, 1}𝑛, and AD space {0, 1}*. Fig. 8 defines a segmented-AE
scheme CHAIN[𝛱, ⟨·⟩, 𝑛] = (𝒦, ℰ ,𝒟) with segment expansion 𝜏 , nonce space {0, 1}𝑛, AD space {0, 1}*,
and state space K× {0, 1}𝑛. The proof of the following theorem is in Appendix E.1.

Theorem 1. Let 𝛱, ⟨·⟩, 𝑛, and CHAIN[𝛱, ⟨·⟩, 𝑛] be as above. There is an explicit reduction 𝑅 with
the following property. For any adversary A , adversary B = 𝑅(A) satisfies Advoae2b

CHAIN[𝛱,⟨·⟩,𝑛](A) ≤
Advpri

𝛱 (B) + 2𝑞2/2𝑛 where 𝑞 is the number of A ’s queries. Adversary B uses about the same running
time as A and the total length of B’s queries is that of A plus at most 5𝑞𝑛 bits.

Discussion. In ℰ .next and 𝒟.next, the state is computed via 𝑀 [1, 𝑛] ⊕ 𝐶[1, 𝑛]. One might instead
xor the 𝑛-bit suffix of 𝑀 and 𝐶; this makes no difference. On the other hand, suppose one uses just
𝐶[1, 𝑛], eliminating the xor with 𝑀 [1, 𝑛]. Call this variant CHAIN1[𝛱, ⟨·, ⟩, 𝑛]. The method is insecure
for small 𝜏 . Here is an attack for the case 𝜏 = 0. The adversary makes a single query (𝑁, 𝐴, 𝐶) to
the decryption oracle, where 𝑁 is arbitrary, 𝐴 = (𝜀, 𝜀, 𝜀) and 𝐶 = (0𝑛, 0𝑛, 0𝑛, 0𝑛). Let the answer
be 𝑀 = (𝑀1, 𝑀2, 𝑀3, 𝑀4). The adversary will output 1 only if 𝑀2 = 𝑀3. In the Ideal2B game
the strings 𝑀2 and 𝑀3 are independent random strings. However, in game Real2B we always have
𝑀2 = 𝑀3 = D𝐾(0𝑛, ⟨𝜀, 0⟩, 0𝑛). Hence the adversary can win with advantage 1 − 2−𝑛. In contrast, for
large 𝜏 , scheme CHAIN1[𝛱, ⟨·, ⟩, 𝑛] is OAE2 secure.

To achieve OAE2 with multivalued segment-expansion, use an RAE-secure underlying scheme [35],
a generalization of PRI that allows one to select an arbitrary ciphertext-expansion for each query. The
construction is modified in the natural way.

15

proc ℰ .init(𝐾, 𝑁) ℰ algorithms
return (𝐾, 𝑁, 0)

proc ℰ .next(𝑆, 𝐴, 𝑀)
(𝐾, 𝑉, 𝑑)← 𝑆; 𝐶 ← E𝐾(𝑉, ⟨𝐴, 𝑑⟩, 𝑀)
if |𝑀 | ≥ 𝑛 then 𝑉 ← (𝐶[1, 𝑛]⊕𝑀 [1, 𝑛])
else 𝑉 ← (E𝐾(𝑉, ⟨𝐴, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛))[1, 𝑛]
return (𝐶, (𝐾, 𝑉, 1))

proc ℰ .last(𝑆, 𝐴, 𝑀)
(𝐾, 𝑉, 𝑑)← 𝑆
if 𝑑 = 0 then 𝑑← 3 else 𝑑← 2
return E𝐾(𝑉, ⟨𝐴, 𝑑⟩, 𝑀)

proc 𝒟.init(𝐾, 𝑁) 𝒟 algorithms
return (𝐾, 𝑁, 0)

proc 𝒟.next(𝑆, 𝐴, 𝐶)
(𝐾, 𝑉, 𝑑)← 𝑆; 𝑀 ← D𝐾(𝑉, ⟨𝐴, 𝑑⟩, 𝐶)
if 𝑀 = ⊥ then return (⊥,⊥)
if |𝑀 | ≥ 𝑛 then 𝑉 ← 𝐶[1, 𝑛]⊕𝑀 [1, 𝑛]
else 𝑉 ← (E𝐾(𝑉, ⟨𝐴, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛))[1, 𝑛]
return (𝑀, (𝐾, 𝑉, 1))

proc 𝒟.last(𝑆, 𝐴, 𝐶)
(𝐾, 𝑉, 𝑑)← 𝑆
if 𝑑 = 0 then 𝑑← 3 else 𝑑← 2
return D𝐾(𝑉, ⟨𝐴, 𝑑⟩, 𝐶)

N

M1

EK

C1

τ

M2

EK

C2

M3

EK

C3

0

τ τ

A1 A2 A31 2

Fig. 8: The CHAIN construction for OAE2. Top: Encryption scheme 𝛱 = (K, E, D), secure as a PRI with expansion 𝜏 ,
is turned into a segmented-AE scheme CHAIN[𝛱, ⟨·⟩, 𝑛] = (𝒦, ℰ ,𝒟) with 𝒦 = K. Bottom: Illustration of the scheme.
Each segment of (𝑀1, 𝑀2, 𝑀3) has at least 𝑛 bits. Trapezoids represent truncation to 𝑛 bits.

Bugs in the proceedings version. Note that in the CHAIN construction, when we encrypt a
segmented message 𝑀 = (𝑀1, . . . , 𝑀𝑚) with a segmented AD 𝐴 = (𝐴1, . . . , 𝐴𝑚), the first message
segment 𝑀1 is encrypted with AD ⟨𝐴1, 0⟩, whereas any middle message segment 𝑀𝑖 (with 1 < 𝑖 < 𝑚) is
encrypted with AD ⟨𝐴𝑖, 1⟩. The distinction in the treatment of the first segment and the middle ones is
crucial for security. In the proceedings version [34], we instead encrypted middle segments 𝑀𝑖 with AD
⟨𝐴𝑖, 0⟩, which leads to the following attack. The adversary would pick any arbitrary nonce 𝑁 , and query
(𝑁, 𝐴, 𝑀) to the encryption oracle to get 𝐶 = (𝐶1, 𝐶2, 𝐶3), where 𝑀 = (0𝑛, 0𝑛, 0𝑛) and 𝐴 = (𝜀, 𝜀, 𝜀).
It then queries (𝑁 ′, 𝐴′, 𝑀 ′) to the encryption oracle to get 𝐶 ′ = (𝐶 ′

1, 𝐶 ′
2), where 𝑁 ′ = 𝐶1, 𝐴′ = (𝜀, 𝜀)

and 𝑀 ′ = (0𝑛, 0𝑛). The adversary then outputs 1 if 𝐶 ′
1 = 𝐶2, and outputs 0 otherwise. In game Real2A

we always have 𝐶 ′
1 = 𝐶2. In contrast, in game Ideal2A, the chance that 𝑁 ′ ̸= 𝑁 is at least 1 − 1/2𝑛,

and given 𝑁 ′ ̸= 𝑁 ′, the conditional probability that 𝐶 ′
1 = 𝐶2 is at most 1/2𝑛. In other words, in game

Ideal2A, the chance that 𝐶1 = 𝐶2 is at most 2/2𝑛. Hence the adversary wins with advantage at least
1− 2/2𝑛.

Note that when the segmented message has only one component, meaning 𝑚 = 1, then we have
to encrypt 𝑀1 with ⟨𝐴1, 3⟩. If we instead use ⟨𝐴1, 2⟩ then one can attack the scheme as follows. The
adversary would pick any arbitrary nonce 𝑁 , and query (𝑁, 𝐴, 𝑀) to the encryption oracle to get
𝐶 = (𝐶1, 𝐶2), where 𝑀 = (0𝑛, 0𝑛) and 𝐴 = (𝜀, 𝜀). It then queries (𝑁 ′, 𝐴′, 𝑀 ′) to the encryption oracle
to get 𝐶 ′ = (𝐶 ′

1), where 𝑁 ′ = 𝐶1, 𝐴′ = (𝜀) and 𝑀 ′ = (0𝑛). The adversary then outputs 1 if 𝐶 ′
1 = 𝐶2,

and outputs 0 otherwise. Again this adversary wins with advantage at least 1− 2/2𝑛.
On the other hand, in processing a very short segment 𝑀 [𝑖] (meaning |𝑀 [𝑖]| < 𝑛), we update the

state via 𝑉 ← (E𝐾(𝑉, ⟨𝐴, 4⟩, 𝑀 [𝑖] ‖ 0𝑛))[1, 𝑛] if 𝑖 = 1, otherwise 𝑉 ← (E𝐾(𝑉, ⟨𝐴, 5⟩, 𝑀 [𝑖] ‖ 0𝑛))[1, 𝑛].

16

If we instead always use 𝑉 ← (E𝐾(𝑉, ⟨𝐴, 4⟩, 𝑀 [𝑖] ‖ 0𝑛))[1, 𝑛] for every 𝑖 ≥ 1 then one can break
the scheme as follows. The adversary first picks an arbitrary nonce 𝑁 and queries (𝑁, 𝐴, 𝑀) to the
encryption oracle, where 𝐴 = (𝜀, 𝜀, 𝜀) and 𝑀 = (0𝑛, 0, 0), to receive 𝐶 = (𝐶1, 𝐶2, 𝐶3). Next, it queries
(𝑁 ′, 𝐴′, 𝑀 ′) to the encryption oracle, where 𝑁 ′ = 𝐶1 ⊕𝑀 [1], 𝐴′ = (𝜀, 𝜀), and 𝑀 ′ = (0, 0), to receive
𝐶 ′ = (𝐶 ′

1, 𝐶 ′
2). The adversary outputs 1 if 𝐶 ′

2 = 𝐶3, and outputs 0 otherwise. In the ideal world, the
chance that the adversary outputs 1 is merely 1/2𝜏+1. In contrast, in the real world:

– On the one hand, for the first query, the state 𝑉1 that we produce after processing the first segment
is 𝑀 [1]⊕ 𝐶1 = 𝑁 ′, and 𝐶3 ← E𝐾(𝑉2, ⟨𝜀, 2⟩, 0), where 𝑉2 ← (E𝐾(𝑉1, ⟨𝜀, 4⟩, 0𝑛+1))[1, 𝑛].

– On the other hand, for the second query, the state 𝑉 ′
1 that we produce after processing the first

segment is (E𝐾(𝑁 ′, ⟨𝜀, 4⟩, 0𝑛+1))[1, 𝑛] = 𝑉2, and 𝐶 ′
2 is E𝐾(𝑉 ′

1 , ⟨𝜀, 2⟩, 0) = 𝐶3.

Thus in the real world, the adversary always outputs 1. Hence the adversary wins with advantage
1− 2−(𝜏+1).

The old proof of Theorem 1 missed the bugs above: it claims incorrectly that the last game in the
game chain corresponds to the ideal game, and also incorrectly analyzes the collision of the state 𝑉 for
very short segments. Those mistakes are corrected in this version.

7 Weakening OAE2

The CPSS attack applies to OAE2-secure schemes as much as to OAE1-secure ones, suggesting that,
even for OAE2, users should still be directed not to repeat a nonce. In this section we explore the extent
to which OAE2 can be simplified if one insists on such a restriction.

Notions nOAE and dOAE. We consider two different relaxations of OAE2. The first, nOAE, effectively
demands of the encrypting party that it not reuse any nonce. Apart from that, everything’s the same
as with OAE2. If nonces are reused, then nothing is guaranteed. Potentially all security is forfeit. The
nOAE notion is adequate for settings where the encrypting party does what it’s supposed to do: it never
repeats a nonce. When saying that nonces don’t get repeat we mean, informally, that the adversary can
adaptively grow only one segmented plaintext (one chain, one might say) per nonce.

The second weakening of OAE2 we consider, dOAE, slots between nOAE2 and OAE2. Now nonces
may be reused; what’s required is that one not encrypt (𝑁, (𝐴1, . . . , 𝐴𝑚−1, 𝐴𝑚), (𝑀1, . . . , 𝑀𝑚−1, 𝑀𝑚))
and then encrypt (𝑁, (𝐴1, . . . , 𝐴𝑚−1, 𝐴𝑚), (𝑀1, . . . , 𝑀𝑚−1, 𝑀 ′

𝑚)) with 𝑀𝑚 ̸= 𝑀 ′
𝑚 and where either both

messages are either incomplete (more segments are to come) or both are complete (the segmented string
is over). It’s as though the effective-nonce for plaintext segment 𝑀𝑚 was defined to be 𝑁 , (𝐴1, . . . , 𝐴𝑚),
(𝑀1, . . . , 𝑀𝑚−1), and an indication as to whether the message is complete; and, on encryption, no
effective-nonce may repeat. This is a much more liberal requirement than demanding that nonces not
repeat. We name this notion dOAE, as a nod to the idea coming from the paper on the duplex con-
struction by Bertoni, Daemen, Peeters, and Van Assche [19].

The advantage of weakening OAE2 to either nOAE or dOAE is that simpler or more efficient con-
structions becomes possible. Our constructions will illustrate these efficiency advantages. More specif-
ically, good OAE2-security requires that every plaintext segment be processed in full before any bit of
that ciphertext segment can issue: online processing of segments is impossible. Plus, segments must be
processed in order, and the AD for each segment must be processed prior to processing the plaintext
segment. In contrast, for dOAE and nOAE, online processing of individual segments is possible. This
facilitates use of more standard and efficient AE schemes can be used as building blocks. For dOAE,
segments must still be processed sequentially, and the AD of a segment must still be processed before the
segment. But there are nOAE-secure schemes (such as STREAM) in which these restrictions vanish.

The nOAE and dOAE definitions can be formalized using any of the three approaches from Section 5.
This would give rise to approximately-equivalent notions nOAEa, nOAEb, nOAEc, and approximately-
equivalent notions dOAEa, dOAEb, dOAEc. The reader will be relieved that we don’t intend to give six

17

proc initialize nReal𝛱 nForge𝛱 ←

𝐼 ← 0; 𝒳 ← 𝒴 ← ∅ dReal𝛱 dForge𝛱 ←←
𝒦 ←← 𝒦

proc Enc.init(𝑁)
if 𝑁 ̸∈ 𝒩 then return ⊥
if 𝑁 ∈ 𝒳 then return ⊥ else 𝒳 ← 𝒳 ∪ {𝑁} ←
𝐼 ← 𝐼 + 1; 𝑁𝐼 ← 𝑁 ; 𝐴𝐼 ←𝑀 𝐼 ← 𝐶𝐼 ← 𝛬
𝑆𝐼 ← ℰ .init(𝐾, 𝑁); return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 ̸∈ [1..𝐼] or 𝑆𝑖 = ⊥ then return ⊥
if (𝑁𝑖, 𝐴𝑖 ‖𝐴, 𝑀 𝑖 ‖𝑀 ′, 0) ∈ 𝒳 for some 𝑀 ′ ̸= 𝑀 ←←

then return ⊥ ←←
(𝐶, 𝑆𝑖)← ℰ .next(𝑆𝑖, 𝐴, 𝑀)
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝐶𝑖 ← 𝐶𝑖 ‖ 𝐶
𝒳 ← 𝒳 ∪ {(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 0)} ←←
𝒴 ← 𝒴 ∪ {(𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 0)}
return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 ̸∈ [1..𝐼] or 𝑆𝑖 = ⊥ then return ⊥
if (𝑁𝑖, 𝐴𝑖 ‖𝐴, 𝑀 𝑖 ‖𝑀 ′, 1) ∈ 𝒳 for some 𝑀 ′ ̸= 𝑀 ←←

then return ⊥ ←←
𝐶 ← ℰ .last(𝑆𝑖, 𝐴, 𝑀); 𝑆𝑖 ← ⊥
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝑀 𝑖 ←𝑀 𝑖 ‖𝑀
𝒳 ← 𝒳 ∪ {(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 1)} ←←
𝒴 ← 𝒴 ∪ {(𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 1)}
return 𝐶

proc finalize (𝑁, 𝐴, 𝐶, 𝑏)
if |𝐴| ̸= |𝐶| or |𝐴|=0 or (𝑁, 𝐴, 𝐶, 𝑏) ∈ 𝒴

then return false
𝑆 ← 𝒟.init(𝐾, 𝑁); 𝑚← |𝐶|
for 𝑖← 1 to 𝑚− 𝑏 do

(𝑀, 𝑆)← 𝒟.next(𝑆, 𝐴[𝑖], 𝐶[𝑖])
if 𝑀 = ⊥ then return false

if 𝑏 = 1 and 𝒟.last(𝑆, 𝐴[𝑚], 𝐶[𝑚]) = ⊥
then return false

return true

proc initialize nRand𝛱 ←

𝐼 ← 0; 𝒳 ← ∅ dRand𝛱 ←←
𝐸(𝑥)← undef for all 𝑥

proc Enc.init(𝑁)
if 𝑁 ̸∈ 𝒩 then return ⊥
if 𝑁 ∈𝒳 then return ⊥ else 𝒳←𝒳 ∪ {𝑁} ←
𝐼 ← 𝐼 + 1; 𝑁𝐼 ← 𝑁 ; 𝐴𝑖 ←𝑀 𝑖 ← 𝛬
return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 ̸∈ [1..𝐼] or 𝑁𝑖 = ⊥ then return ⊥
if (𝑁𝑖, 𝐴𝑖 ‖𝐴, 𝑀 𝑖 ‖𝑀 ′, 0) ∈ 𝒳 for some 𝑀 ′ ̸= 𝑀 ←←

then return ⊥ ←←
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝑀 𝑖 ←𝑀 𝑖 ‖𝑀
𝒳 ← 𝒳 ∪ {(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 0)} ←←
if 𝐸(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 0) = undef

then 𝐸(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 0)←← {0, 1}|𝑀|+𝜏

𝐶 ← 𝐸(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 0)
return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 ̸∈ [1..𝐼] or 𝑁𝑖 = ⊥ then return ⊥
if (𝑁𝑖, 𝐴𝑖 ‖𝐴, 𝑀 𝑖 ‖𝑀 ′, 1) ∈ 𝒳 for some 𝑀 ′ ̸= 𝑀 ←←

then return ⊥ ←←
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝑀 𝑖 ←𝑀 𝑖 ‖𝑀
𝒳 ← 𝒳 ∪ {(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 1)} ←←
if 𝐸(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 1) = undef

then 𝐸(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 1)←← {0, 1}|𝑀|+𝜏

𝐶 ← 𝐸(𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 1)
𝑁𝑖 ← ⊥
return 𝐶

Fig. 9: nOAE and dOAE security. Games nForge/dForge include the finalize procedure; games nReal/dReal don’t.
Games nReal/nForge/nRand include lines marked like this ←; the other games include those marked like this ←←.

new advantage measures in this section. We choose the third (the ‘c’) approach for defining dOAE and
nOAE, the definition that used separate privacy and authenticity parts. We make this choice because
this approach is easiest to work with and because we want users to select a reasonably large segment
expansion 𝜏 , which becomes an implicit requirement for good security.

Definitions for nOAE and dOAE. Let 𝛱 be a segmented-AE scheme with segment-expansion 𝜏 and
nonce-space 𝒩 . Fig. 9 defines games nReal, nForge, dReal, dForge, nRand, and dRand. The games
are only slightly tweaked from corresponding games Real2C, Forge2C, and Rand2C. Specifically, we
now return ⊥ if an adversary asks a disallowed queries, as implicitly defined by the code. Let

Advnoae-priv
𝛱 (A) = Pr[A nReal𝛱 ⇒ 1]− Pr[A nRand𝛱 ⇒ 1] and Advnoae-auth

𝛱 (A) = Pr[A nForge𝛱]
Advdoae-priv

𝛱 (A) = Pr[A dReal𝛱 ⇒ 1]− Pr[A dRand𝛱 ⇒ 1] and Advdoae-auth
𝛱 (A) = Pr[A dForge𝛱]

18

proc ℰ .init(𝐾, 𝑁) ℰ algorithms
return (𝐾, 𝑁, 1)

proc ℰ .next(𝑆, 𝐴, 𝑀)
(𝐾, 𝑁, 𝑖)← 𝑆; 𝑆 ← (𝐾, 𝑁, 𝑖 + 1)
𝐶 ← E𝐾(⟨𝑁, 𝑖, 0⟩, 𝐴, 𝑀)
return (𝐶, 𝑆)

proc ℰ .last(𝑆, 𝐴, 𝑀)
(𝐾, 𝑁, 𝑖)← 𝑆; return E𝐾(⟨𝑁, 𝑖, 1⟩, 𝐴, 𝑀)

proc 𝒟.init(𝐾, 𝑁) 𝒟 algorithms
return (𝐾, 𝑁, 1)

proc 𝒟.next(𝑆, 𝐴, 𝐶)
(𝐾, 𝑁, 𝑖)← 𝑆; 𝑀 ← D𝐾(⟨𝑁, 𝑖, 0⟩, 𝐴, 𝐶)
if 𝑀 = ⊥ then return (⊥,⊥)
𝑆 ← (𝐾, 𝑁, 𝑖 + 1); return (𝑀, 𝑆)

proc 𝒟.last(𝑆, 𝐴, 𝑀)
(𝐾, 𝑁, 𝑖)← 𝑆; return D𝐾(⟨𝑁, 𝑖, 1⟩, 𝐴, 𝐶)

N

M1

EK

C1

τ

M2

EK

C2

M3

EK

C3

τ τ

01 N 02 N 13

A1 A2 A3

Fig. 10: The STREAM construction for nOAE. Encryption scheme 𝛱 = (K, E, D) secure as an nAE with ciphertext
expansion 𝜏 is turned into a segmented-AE scheme 𝛱 ′ = (𝒦, ℰ ,𝒟) = STREAM[𝛱, ⟨·⟩] with key space 𝒦 = K.

We remark that there are two ways to formalize the weakening of OAE2 to nOAE and dOAE: forbid
the adversary from asking particular queries, or allow the adversary to ask any queries, but give it a
useless value if it asks a disallowed query. We have elected the second approach because it result in more
self-contained pseudocode.

We now show how to translate the classic nAE to nOAE. We must first recall the nAE notion.

nAE security. A nonce-based AE scheme (an nAE scheme) is a triple 𝛱 = (K, E, D) where K is a
nonempty set endowed with a distribution and ℰ : 𝒦 × 𝒩 × 𝒜 × {0, 1}* → {0, 1}* is the encryption
algorithm and 𝒟 : 𝒦 × 𝒩 × 𝒜 × {0, 1}* → {0, 1}* ∪ {⊥} is the decryption algorithm. There must be
a number 𝜏 , the ciphertext expansion, such that if 𝐶 = ℰ𝑁,𝐴

𝐾 (𝑀) = 𝐸𝐾(𝑁, 𝐴, 𝑀) = ℰ(𝐾, 𝑁, 𝐴, 𝑀)
then |𝐶| = |𝑀 | + 𝜏 . Encryption and decryption reverse one another: 𝒟𝐾(𝑁, 𝐴, 𝐶) = 𝑀 ∈ {0, 1}*
iff ℰ𝐾(𝑁, 𝐴, 𝑀) = 𝐶 ∈ {0, 1}*. We assume that 𝜀 ∈ 𝒜. Define the nAE security of 𝛱 against an
adversary A as Advnae

𝛱 (A) = Pr[𝐾 ←← K : A ℰ𝐾(·,·,·),𝒟𝐾(·,·,·) ⇒ 1] − Pr[A $(·,·,·),⊥(·,·,·) ⇒ 1], where
$(·, ·, ·) is an oracle that returns 𝐶 ←← {0, 1}|𝑀 |+𝜏 for any input (𝑁, 𝐴, 𝑀) and ⊥(·, ·, ·) is an oracle that
returns ⊥ for any input. The adversary is prohibited from repeating a nonce 𝑁 in queries to its first
oracle and from asking (𝑁, 𝐴, 𝐶) to its second oracle after receiving 𝐶 from a prior query (𝑁, 𝐴, 𝑀) to
its first oracle.

Constructing an nOAE-secure scheme. Fix an encoding function ⟨·⟩ that maps a tuple of strings
(𝑁, 𝑖, 𝑑) ∈ 𝒩 ′ × ℐ × {0, 1} to a string ⟨𝑁, 𝑖, 𝑑⟩. Here ℐ = N or else ℐ = {1, 2, . . . , max} for some
max ∈ N (the maximum number of segments in any message). Let 𝛱 = (K, E, D) be an nAE scheme
with AD space 𝒜, and nonce space 𝒩 that includes all possible values of ⟨𝑁, 𝑖, 𝑑⟩. Such an nAE scheme
is said to be compatible with the encoding function. We now describe the STREAM construction,
defined and illustrated in Fig. 10, to turn 𝛱 and ⟨·⟩ into an nOAE-secure segmented-AE scheme
STREAM[𝛱, ⟨·⟩] whose AD space is 𝒜 and whose nonce space is 𝒩 ′. The theorem below shows

19

that 𝛱 ′ = STREAM[𝛱, ⟨·⟩] = (𝒦, ℰ ,𝒟) achieves nOAE security. The proof is in Appendix E.4. For it
we assume that, if 𝒩 ′ = [1..max], then the adversary asks no query resulting in an ⟨𝑁, 𝑖, 𝑑⟩ value with
𝑖 > max.

Theorem 2. Fix an encoding scheme ⟨·⟩ and a compatible nAE scheme 𝛱. There are explicitly given
reductions 𝑅1 and 𝑅2 with the following property. For any adversaries A1 and A2, adversaries B1 =
𝑅1(A1) and B2 = 𝑅2(A2) satisfy Advnoae-priv

STREAM[𝛱,⟨·⟩](A1) ≤ Advnae
𝛱 (B1) and Advnoae-auth

STREAM[𝛱,⟨·⟩](A2) ≤
Advnae

𝛱 (B2). For each 𝑖 ∈ {1, 2}, adversary B𝑖 uses about the same running time as A𝑖, and the total
length of its queries is at most that of A𝑖’s queries plus the total length of induced nonces of ℰ on
running A𝑖’s queries.

Discussion. The state space for 𝛱 ′ = STREAM[𝛱, ⟨·⟩] is the set 𝒮 of points in 𝒦×𝒩 ′ ×ℐ. This set
is infinite when ℐ = N, the setting where one places no limit on the number of possible segments. It is
also infinite if 𝒩 ′ is. This means that, depending on these choices, the segmented-AE scheme 𝛱 ′ might
not qualify as “online” under the definition given in Section 5.

In practice, however, the construction either is online or can easily be made so. One normally would
set a limit max on the number of possible segments, and one would usually limit the length of nonces,
too. We have therefore elected to present STREAM in what we regard as its simplest form, even if
the algorithm, in that form, would not qualify as online for some encoding schemes.

As for the nonce space 𝒩 ′ of 𝛱 ′, we note that the usual reason that nAE schemes sport a fairly
large nonce space, like 𝒩 ′ = {0, 1}96, is that there may be a large number of messages encrypted under
a single key. In the nOAE setting, we doubt that this will routinely be so. For here one needs one nonce
for each stream (segmented message), and, in many settings, the number of streams associate to a key
will be one—or at least few. As a concrete example, if one were starting with an nAE scheme with
nonce space of 15 or fewer bytes [43], one might select an encoding function ⟨𝑁, 𝑖, 𝑑⟩ that concatenates
an 8-byte 𝑁 , a 6-byte encoding of 𝑖, and a 1-byte encoding of 𝑑.

Using STREAM for Netflix. Recall that Netflix is currently using an nAE scheme to encrypt each
segment of a movie independently, with the segment positioning used as AD. Compared to this solution,
STREAM is more efficient. If the nAE scheme is OCB then we save one blockcipher call per segment,
since we don’t have to process the positioning as AD. The saving may be even more, since for Netflix’s
solution, if a user is viewing several movies at the same time6, then the AD of each segment must
contain the movie ID. In contrast, for STREAM, we only need to specify the movie ID in the AD of
the first segment of each movie; subsequent ciphertext segments of the same nonce will be associated to
the same movie. Moreover, in STREAM, we only have to generate a nonce per movie, whereas Netflix
has to generate a nonce per segment.

On the other hand, suppose that one uses STREAM to encrypt movies. If a user skips around—say
she’s jumping to the 100th segment after watching the first one, and then goes back to the 20th one and
keeps watching till the end of the movie—then it’s tempting to use the same nonce to encrypt the re-
quested segments. But this reveals user’s watching pattern: an adversary will know that the user watched
the 100th segment twice, since the same ciphertext segment is transmitted twice. We instead suggest
that one should treat this as a request for three segmented-strings: (𝑀1, 𝑀2, · · ·), (𝑀100, 𝑀101, · · ·), and
(𝑀20, 𝑀21, · · ·) and use three distinct nonces.

Constructing a dOAE-secure scheme. If we consider only one-segment strings, then the dOAE
notion degenerates to nAE0, a variant of nAE that guarantees security only if one never reuses (𝑁, 𝐴).
Formally, let 𝛱 = (K, E, D) be a nonce-based AE scheme with ciphertext expansion 𝜏 . Define the nAE0
security of 𝛱 against an adversary A as

Advnae0
𝛱 (A) = Pr[𝐾 ←← K : A ℰ𝐾(·,·,·),𝒟𝐾(·,·,·) ⇒ 1]− Pr[A $(·,·,·),⊥(·,·,·) ⇒ 1],

6 Actually, Netflix forbids users from opening two movies at the same time, but this is allowed by other movie providers
such as Amazon Instant Video.

20

where $(·, ·, ·) is an oracle that returns 𝐶 ←← {0, 1}|𝑀 |+𝜏 for any input (𝑁, 𝐴, 𝑀) and ⊥(·, ·, ·) is an
oracle that returns ⊥ for any input. The adversary is prohibited from repeating a pair (𝑁, 𝐴) in queries
to its first oracle and from asking (𝑁, 𝐴, 𝐶) to its second oracle after receiving 𝐶 from a prior query
(𝑁, 𝐴, 𝑀) to its first oracle. An nAE0-secure AE scheme can be easily realized; for example, apply a
PRF to distill an effective nonce 𝑁 ′ from (𝑁, 𝐴), then use 𝑁 ′ as a nonce on an nAE-secure scheme.
Theorem 3 below shows that the CHAIN[𝛱, ⟨·⟩, 𝑛] construction of Section 6 is dOAE-secure if 𝛱 is
nAE0-secure. The proof is in Appendix E.5.

Theorem 3. Let 𝛱, ⟨·⟩, 𝑛, and CHAIN[𝛱, ⟨·⟩, 𝑛] be as in Section 6. There are explicit reductions
𝑅1 and 𝑅2 with the following property. For any adversaries A1 and A2, adversaries B1 = 𝑅(A1) and
B2 = 𝑅2(A2) satisfy Advdoae-priv

CHAIN[𝛱,⟨·⟩,𝑛](A1) ≤ 2 Advnae0
𝛱 (B1) + 𝑝2/2𝑛 and Advdoae-auth

CHAIN[𝛱,⟨·⟩,𝑛](A2) ≤
2 Advnae0

𝛱 (B2) + 𝑞2/2𝑛, where 𝑝 is the number of A1’s queries and 𝑞 is the number of A2’s queries plus
the number of segments of A2’s output. For each 𝑖 ∈ {1, 2}, adversary B𝑖 uses about the same running
time as A𝑖. The total length of B1’s queries is that of A1 plus at most 5𝑛𝑝 bits, whereas the total length
of B2’s queries is that A2 plus at most 5𝑛𝑞 bits.

Remark. As mentioned in Section 6, a prior version of the CHAIN construction is buggy, susceptible
to OAE2-attacks. One can also mount the same attacks to break the dOAE security of that buggy
version. The old proof of Theorem 3 missed those bugs, committing similar mistakes as the old proof
of Theorem 1; those mistakes are corrected in this version.

8 Escalating Claims, Diminishing Guarantees

A survey of the literature shows increasingly strong rhetoric surrounding nonce-reuse security of online
schemes. We document this trend. In doing so we identify some of the notions (all quite weak, in our
view) that have come to be regarded as nonce-reuse misuse-resistant.

Shifting language. The paper defining MRAE [56] never suggested that nonce-reuse was OK; it said
that an MRAE scheme must do “as well as possible with whatever IV is provided” [56, p. 1]. Elaborating,
the authors “aim for an AE scheme in which if the IV is a nonce then one achieves the usual notion for
nonce-based AE; and if the IV does get repeated then authenticity remains and privacy is compromised
only to the extent that [one reveals] if this plaintext is equal to a prior one, and even that . . . only if
both the message and its header have been used with this particular IV” [56, p. 12–13].

The FFL paper indicates that the authors wish “to achieve both simultaneously: security against
nonce-reusing adversaries . . . and support for on-line-encryption” [28, p. 197]. While the authors under-
stood that they were weakening MRAE, they saw the weakening as relatively inconsequential: they say
that their scheme, McOE, “because of being on-line, satisfies a slightly weaker security definition against
nonce-reusing adversaries” [28, p. 198] (emphasis ours). The paper did not investigate the definitional
consequences of this weakening.

An early follow-on to FFL, the COPA paper, asserts that OAE1 schemes are distinguished by “not
relying on the non-reuse of a nonce” [9, p. 438]. Andreeva et al. classify AE schemes according to the
type of initialization vector (IV) one needs: either random, nonce, or arbitrary. A scheme satisfying
OAE1 is understood to be an arbitrary-IV scheme, where “no restrictions on the IV are imposed, thus
an adversary may choose any IV for encryption” [7, p. 9]. The authors add that “Often a deterministic
AE scheme does not even have an IV input” [7, p. 9]. The linguistic progression reaches its logical
conclusion in the rebranding of OAE1-secure schemes as nonce-free, as seen, for example, in recent talks
of Guo [32, slide 2] and Lauridsen [21, Slides 4, 6].

We have thus seen a transformation in language, played out over eight years, taking us from a
strong definition (MRAE) pitched as trying to capture the best one can do when a nonce gets reused
to a comparatively weak definition (OAE1) nowadays pitched as being so strong so as to render nonces

21

OAE1 Leaks equality of block-aligned prefixes, formalized by comparing ℰ𝐾 with: a random 𝑛-bit-blocksize online
permutation tweaked by the nonce, AD and plaintext; followed by a random 𝜏 -bit function of the nonce, AD, and
plaintext. Schemes1: COPA [9], Deoxys [38], Joltik [39], KIASU [40], Marble [32], McOE [28], SHELL [64], POET [1,2],
Prøst-COPA [20] Schemes2: ++AE [52]
OAE1a Leaks equality of block-aligned prefixes, formalized by comparing ℰ𝐾 with: a random 𝑛-bit-blocksize online
function tweaked by the nonce, AD and plaintext; followed by a random 𝜏 -bit function of the nonce, AD, and plaintext.
Schemes1: APE [6], ELmD [25], ELmE [26], Prøst-APE [20]
OAE1b Leaks equality of block-aligned prefixes, formalized by comparing ℰ𝐾 with: a random 𝑛-bit-blocksize online
function tweaked by the nonce and plaintext (but not the AD); followed by a random 𝜏 -bit function of the nonce, AD,
and plaintext. The relaxation enables a compliant scheme to process the plaintext before the AD is presented. However
it also renders a compliant scheme vulnerable to CCA, CPSS, and NM attacks even if AD values are unique. Schemes1:
COBRA [12]
OAE1c Leaks equality of any blocks at the same position. E.g., if ciphertexts 𝐶 and 𝐶′ arise from 4-block plaintexts
𝑃 = A ‖ B ‖ C ‖D and 𝑃 ′ = E ‖ B ‖ F ‖D then 𝐶2 = 𝐶′

2 and 𝐶4 = 𝐶′
4. Security is formalized by comparing ℰ𝐾 with: a

function from 𝑛 bits to 𝑛 bits tweaked by the nonce and an integer, the position; followed by a random tag. Schemes1:
Minalpher [60]
OAE1d Leaks equality of block-aligned prefixes and the XOR of the block directly following this prefix. E.g., if 𝐶, 𝐶′

arise from 4-block plaintexts 𝑃 = A ‖ B ‖ C ‖ D and 𝑃 ′ = A ‖ B ‖ E ‖ F we always have 𝐶1 = 𝐶′
1, 𝐶2 = 𝐶′

2, and
𝐶3 ⊕𝐶′

3 = C⊕ E. Ciphertexts 𝐶, 𝐶′ arising from 4-block plaintexts 𝑃 = A ‖ B ‖C ‖D and 𝑃 ′ = E ‖ F ‖G ‖H will have
𝐶1⊕𝐶′

1 = A⊕E. Schemes2: Artemia [5] CBEAM [58], ICEPOLE [51], iFeed [67], Jambu [65], Keyak [18], MORUS [66],
NORX [13], STRIBOB [59]
NAE1 Retains full security as long as all (𝑁, 𝐴) pairs are unique among the encryption queries. If a pair repeats, all
privacy is lost, but authenticity remains unchanged. Schemes1: CLOC [36], SILC [37]
NAE0 Retains full security as long as all (𝑁, 𝐴) pairs are unique among the encryption queries. If a pair repeats, all
security is forfeit. Schemes1: NORX [13], Trivia-ck [24] Schemes2: OTR [48]

Fig. 11: A menagerie of OAE notions and schemes. All of the schemes are CAESAR submissions except ElmE and
McOE. Schemes1 lists proposals that claim some flavor of nonce-reuse misuse resistance. Schemes2 lists proposals that
didn’t, yet are or were marked as such in the AE Zoo [14] or AFL survey [4].

superfluous. Meanwhile, the best-one-can-do positioning of MRAE was mirrored in the online setting.
The COPA authors indicate that their mode achieves “the maximum attainable for single pass schemes”
[8, p. 7]. Identical language is found in the COBRA submission [11, p. 7]. In our view, such claims are
wrong; there would seem to be a significant gap between OAE1 and OAE2 security.

Weaker notions. Concurrent with the rhetoric for what OAE1 delivers being ratcheted up, weakened
variants of OAE1 have proliferated. We document this trend in Fig. 11, which introduces a variety of
OAE notions. They are all weaker than OAE1 except for OAE1a; by standard arguments, OAE1 and
OAE1a are quantitatively close if the blocksize is reasonably large. In this race to the bottom, it may
seem as though the scheme comes first and whatever properties it provides is branded as some form
misuse resistance.

The number of different OAE definitions, and their meanings, has never been clear. The evolution of
what’s been indicated in the Nonce-MR column of the AE Zoo [14] illustrates the struggle of researchers
trying to accurately summarize the extent of nonce-reuse misuse-resistance for tens of AE schemes. Our
own attempt at sorting this out, Fig. 11, is not definitive. We do not formalize the notions in this table
except for OAE1. (Some of the definitions are obvious, some are not.) The table is based on both author
assertions (Schemes1) and assertions of others (Schemes2). The OAE1x notions only consider security
for messages that are blocksize multiples.

9 Concluding Remarks

The definitional enterprise in cryptography has always been a dialectical one. It should be understood
that there is no insult in critiquing a definition; in fact, critique is acknowledgment that something has
become significant enough to attend to.

22

Acknowledgments

The authors appreciate the excellent comments received from the Keyak/Ketje team: Joan Daemen,
Guido Bertoni, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer. Their feedback called our
attention to the duplexing-the-sponge paper [19] and led to our decision to generalize to vector-valued
AD and to remove the key 𝐾 from .next and .last calls. We appreciate further comments and corrections
from Farzaneh Abed, Nasour Bagheri, Dan Bernstein, Danilo Gligoroski, Stefan Lucks, Samuel Neves,
and Kenny Paterson. We thank Eik List for pointing out a bug in the CHAIN construction’s treatment
of very short segments.

Much of the work on this paper was done while Phil Rogaway was visiting Ueli Maurer’s group at
ETH Zürich. Many thanks to Ueli for hosting that sabbatical. Rogaway was also supported by NSF
grants CNS-1228828 and CNS-1314885. Reyhanitabar and Vizár were partially supported by Microsoft
Research under the Swiss Joint Research Centre MRL Contract No. 2014-006 (DP1061305).

References

1. Abed, F., Fluhrer, S., Foley, J., Forler, C., List, E., Lucks, S., McGrew, D., Wenzel, J.: The POET Family of On-Line
Authenticated Encryption Schemes (Version 1.01). CAESAR submission (2014)

2. Abed, F., Fluhrer, S., Forler, C., List, E., Lucks, S., McGrew, D., Wenzel, J.: Pipelineable On-Line Encryption.
Cryptology ePrint report 2014/297 (2014) Also FSE 2014. LNCS, vol. 8540. Springer (2015)

3. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: Don’t Panic! The Cryptographer’s Guide to Robust
(On-line) Encryption: Draft, March 11, 2015. https://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/
Mediensicherheit/Research/Drafts/nonce-misuse-oae.pdf

4. Abed, F., Forler, C., Lucks, S.: General Overview of the First-Round CAESAR Candidates for Authenticated Encryp-
tion. Cryptology ePrint report 2014/792 (2014)

5. Alizadeh, J., Aref, M. R., Bagheri, N.: Artemia v1. CAESAR submission (2014)
6. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: APE: Authenticated

Permutation-Based Encryption for Lightweight Cryptography. In: FSE 2014. LNCS, vol. 8540. Springer (2015)
7. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How to Securely Release Unverified

Plaintext in Authenticated Encryption. In: ASIACRYPT (1) 2014. LNCS, vol. 8873, pp. 105–125. Springer (2015)
8. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: AES-COPA v.1. CAESAR sub-

mission (2014)
9. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: Parallelizable and Authenticated

Online Ciphers. In: ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer (2013)
10. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.: Parallelizable (Authenticated)

Online Ciphers. DIAC presentation (2013)
11. Andreeva, E., Luykx, A., Mennink, B., Yasuda, K.: AES-COBRA v1. CAESAR submission (2014)
12. Andreeva, E., Luykx, A., Mennink, B., Yasuda, K.: COBRA: A Parallelizable Authenticated Online Cipher without

Block Cipher Inverse. In: FSE 2014. LNCS, vol. 8540. Springer (2015)
13. Aumasson, J. P., Jovanovic, P., Neves, S.: NORX v1. CAESAR submission (2014)
14. Authenticated Encryption Zoo. https://aezoo.compute.dtu.dk
15. Bellare, M., Boldyreva, A., Knudsen, L., Namprempre, C.: Online Ciphers and the Hash-CBC Construction. In:

CRYPTO 2001. LNCS, vol. 2139, pp. 292–309. Springer (2001)
16. Bellare, M., Rogaway, P.: Encode-Then-Encipher Encryption: How to Exploit Nonces or Redundancy in Plaintexts for

Efficient Cryptography. In: ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer (2000)
17. Bernstein, D.: Cryptographic competitions: CAESAR. http://competitions.cr.yp.to
18. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR submission: Keyak v1. CAESAR

submission (2014)
19. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the Sponge: Single-Pass Authenticated Encryption

and Other Applications. In: SAC 2011 (Selected Areas in Cryptography). LNCS, vol. 7118, pp. 320–337. Springer
(2012). Earlier version in: The Second SHA-3 Candidate Conference (2010)

20. Bilge Kavun, E., Lauridsen, M., Leander, G., Rechberger, C., Schwabe, P., Yalçın, T.: Prøst v1.1. CAESAR submission
(2014)

21. Bogdanov, A., Lauridsen, M., Tischhauser, E.: AES-Based Authenticated Encryption Modes in Parallel High-
Performance Software. DIAC presentation (2014)

22. Boldyreva, A., Degabriele, J.P., Paterson, K., Stam, M.: Security of Symmetric Encryption in the Presence of Cipher-
text Fragmentation. EUROCRYPT 2012. LNCS, vol. 7237, pp. 682–699. Springer (2012)

23. Boldyreva, A., Taesombut, N.: Online Encryption Schemes: New Security Notions and Constructions. In: CT-RSA
2014. LNCS, vol. 2964, pp. 1–14. Springer (2004). Full version on the first authors’ webpage.

https://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Mediensicherheit/Research/Drafts/nonce-misuse-oae.pdf
https://www.uni-weimar.de/fileadmin/user/fak/medien/professuren/Mediensicherheit/Research/Drafts/nonce-misuse-oae.pdf
https://aezoo.compute.dtu.dk
http://competitions.cr.yp.to

23

24. Chakraborti, A., Nandi, M.: TriviA-ck-v1. CAESAR submission. (2014)
25. Datta, N., Nandi, M.: ELmD v1.0. CAESAR submission. (2014)
26. Datta, N., Nandi, M.: ELmE: A Misuse Resistant Parallel Authenticated Encryption. In: ACISP 2014. LNCS, vol. 8544,

pp. 306–321. Springer (2014)
27. Duong, T., Rizzo, J.: Here Come The ⊕ Ninjas. Manuscript (2011).
28. Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-Line Authenticated Encryption

Schemes. In: FSE 2012. LNCS, vol. 7549, pp. 196–215. Springer (2012)
29. Fleischmann, E., Forler, C., Lucks, S., Wenzel, J.: McOE: A Foolproof On-line Authenticated Encryption Scheme.

Cryptology ePrint report 2011/644 (2013)
30. Fouque, P.-A., Joux, A., Martinet, G., Valette, F.: Authenticated On-Line Encryption. In: SAC 2003. LNCS, vol. 3006,

pp. 145–159. Springer (2003)
31. Fouque, P.-A., Martinet, G., Poupard, G.: Practical Symmetric On-line Encryption. In: FSE 2003. LNCS, vol. 3006,

pp.145–159. Springer (2003)
32. Guo, J.: Marble Specification Version 1.0. CAESAR submission (2014). Also DIAC presentation (2014)
33. Hoang, V. T., Reyhanitabar, R., Rogaway, P., Vizár, D: Online Authenticated-Encryption and its Nonce-Reuse Misuse-

Resistance. Cryptology ePrint Archive, Report 2015/189 (2015).
34. Hoang, V. T., Reyhanitabar, R., Rogaway, P., Vizár, D: Online Authenticated-Encryption and its Nonce-Reuse Misuse-

Resistance. In: CRYPTO 2015, LNCS, vol. 9215, pp. 493–517. Springer (2015)
35. Hoang, V. T., Krovetz, T., Rogaway, P.: Robust Authenticated Encryption: AEZ and the Problem that it Solves. In:

EUROCRYPT 2015. LNCS, vol. 9056, pp. 15–44. Springer (2015)
36. Iwata, I., Minematsu, K., Guo, J., Morioka, S.: CLOC: Compact Low-Overhead CFB. CAESAR submission. (2014)
37. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: SILC: SImple Lightweight CFB. CAESAR submission.

(2014)
38. Jean, J., Nikolić, I., Peyrin, T.: Deoxys v1. CAESAR submission. (2014)
39. Jean, J., Nikolić, I., Peyrin, T.: Joltik v1. CAESAR submission. (2014)
40. Jean, J., Nikolić, I., Peyrin, T.: KIASU v1. CAESAR submission. (2014)
41. Joux, A., Martinet, G., Valette, F.: Blockwise Adaptive Attakers: Revisiting the (In)security of Some Provably Secure

Encryption Modes: CBC, GEM, IACBC. In: CRYPTO 2002. LNCS, vol. 2442, pp. 17–30. Springer (2002)
42. Katz, J., Yung, M.: Unforgeable Encryption and Chosen Ciphertext Secure Modes of Operation. In: FSE 2000. LNCS,

vol. 1978, pp. 284–299. Springer (2001)
43. Krovetz, T., Rogaway, P.: The OCB Authenticated-Encryption Algorithm. RFC 7253. Internet Research Task Force

(IRTF) and Crypto Forum Research Group (CFRG) (2014)
44. Liskov, M., Rivest, R., Wagner, D.: Tweakable Block Ciphers. J. of Cryptology, 24(3), pp. 588–614. Springer (2011)
45. Lucks, S.: Personal communication (2014)
46. McGrew, D., Fluhrer, S., Lucks, S., Forler, C., Wenzel, J., Abed, F., List, E.: Pipelineable On-Line Encryption. In:

FSE 2014. LNCS, vol. 8540. Springer (2015)
47. Miaw, W.: Netflix / msl. (2014). https://github.com/Netflix/msl/wiki
48. Minematsu, K.: AES-OTR v1. CAESAR submission (2014)
49. Minematsu, K.: Parallelizable Rate-1 Authenticated Encryption from Pseudorandom Functions. Cryptology ePrint

Archive, Report 2013/628 (2013)
50. Möller, B.: Security of CBC Ciphersuites in SSL/TLS: Problems and Countermeasures. https://web.archive.org/web/

20120630143111/http://www.openssl.org/~bodo/tls-cbc.txt
51. Morawiecki, P., Gaj, K., Homsirikamol, E., Matusiewicz, K., Pieprzyk, J., Rogawski, M., Srebrny, M., Wójcik, M.:

ICEPOLE v1. CAESAR submission (2014)
52. Recacha, F.: ++AE v1.0. CAESAR submission (2014)
53. Rogaway, P.: Authenticated-Encryption with Associated-Data. In: ACM CCS 2002. ACM Press, pp. 98–107 (2002)
54. Rogaway, P.: Problems with Proposed IP Cryptography. Manuscript (1995)
55. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A Block-Cipher Mode of Operation for Efficient Authenticated

Encryption. In: ACM CCS 2001, pp. 196–205. ACM Press (2001)
56. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-Wrap Problem. In: EUROCRYPT 2006. LNCS,

vol. 4004, pp. 373–390. Springer (2006)
57. Rogaway, P., Zhang, H.: Online Ciphers from Tweakable Blockciphers. In: CT-RSA 2011. LNCS, vol. 6558, pp. 237–249.

Springer (2011)
58. Saarinen, M.-J. O.: The CBEAMr1 Authenticated Encryption Algorithm. CAESAR submission (2014)
59. Saarinen, M.-J. O.: The STRIBOBr1 Authenticated Encryption Algorithm. CAESAR submission (2014)
60. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui, M., Hirose, S.: Minalpher v1. CAESAR

submission (2014)
61. Touset, S.: Streaming API to Authenticated Encryption. Cryptography Stack Exchange (16 Jan 2013). Also see

response by “fgrieu” (23 Jan 2013) http://crypto.stackexchange.com/questions/6008
62. Tsang, P., Solomakhin, R., Smith, S.: Authenticated Streamwise On-line Encryption. Dartmouth Computer Science

Technical Report TR2009-640 (2009)

https://github.com/Netflix/msl/wiki
 https:// web.archive.org/web/20120630143111/http://www.openssl.org/~bodo/tls-cbc.txt
 https:// web.archive.org/web/20120630143111/http://www.openssl.org/~bodo/tls-cbc.txt
http://crypto.stackexchange.com/questions/6008

24

63. Vaudenay, S.: CBC padding: Security Flaws Induced by CBC Padding — Applications to SSL, IPSEC, WTLS,
In: EUROCRYPT 2002. LNCS, vol. 2332, pp. 534–545. Springer (2002)

64. Wang, L.: SHELL v1. CAESAR submission (2014)
65. Wu, H., Huang, T.: JAMBU Lightweight Authenticated Encryption Mode and AES-JAMBU (v1). CAESAR submission

(2014)
66. Wu, H., Huang, T.: The Authenticated Cipher MORUS (v1). CAESAR submission (2014)
67. Zhang, L, Wu, W., Sui, H., Wang, P.: iFeed[AES] v1. CAESAR submission (2014)

A Anticipated Objections

Criticizing a definition that many people are invested in might be contentious. We would like to antici-
pate some possible objections to our work.

Objection 1. What OAE2 is formalizing is fine, but it isn’t closely related to what OAE1 tried to do.
OAE1 aims to capture misuse-resistant online-AE. The blocksize is fixed because our tools are like that.
OAE2 aims to capture something quite different, what one might call streaming AE. It’s an utterly
different problem, and criticizing OAE1 because it doesn’t solve that which OAE2 solves is completely
unfair.

The critique goes wrong by conflating our normative claim with the objection’s descriptive one.
The descriptive claim is that OAE1 and OAE2 are very different notions. Agreed; they certainly are.
The normative claim is that OAE1 solves the “wrong” problem. Wrong in the sense that something
deservedly called nonce-reuse misuse-resistance is impossible for online schemes, and wrong in the sense
that OAE1 fails to capture the real-world characteristics of the problem that practitioners actually need
to have solved.

Objection 2. OAE1 is only trying to achieve a reasonable level of security. It doesn’t aim to achieve a
super-strong notion like MRAE, which ends up too inefficient for some applications. It is only a “second
line of defense” [4, p. 8], and one that is certainly better than nothing.

The objection amounts to saying that it’s fine that a notion is weak if the authors didn’t intend
otherwise. We agree—assuming it is clearly communicated how strong or weak the notion is. Section 8
documents the opposite, at least in the years after FFL. In general, we find it is reasonable to term
an AE scheme nonce-reuse misuse-resistant if what it achieves when nonces are reused is comparable
to what an nAE scheme achieves with a proper nonce. This is of course subjective, due to the word
comparable, yet we think that OAE1—as well as OAE2—fail this test.

Objection 3. AE that is not online is completely useless for a bunch of applications. If you really think
that the users of these applications don’t deserve as much misuse resistance as they can get, then say
so.

We concur that there are users who need online-AE, and they do deserve to have cryptographers
attending to this need. Where we disagree is more specific, and turns on the question of whether OAE1 is
the right definition for satisfying users’ needs, and if it actually does provide users as much nonce-reuse
misuse-resistance as they can get.

We would hasten to add in that the same users also deserve clear discourse about what the definitions
do and don’t imply. Echoing our response to Objection 2, if reusing a scheme’s nonce greatly weakens
a security guarantee, it seems best to avoid calling it misuse-resistant, arbitrary-IV , or nonce-free. Our
language should try to signal the opposite, that, absent some application-specific analysis, nonces must
not be reused.

Objection 4. The paper gives two constructions, one for OAE2 (CHAIN) and another for nOAE
(STREAM). Attending to the former setting suggests that the authors believe that nonces might get
reused in some contexts, and, when this happens, that OAE2 and CHAIN are appropriate. But this
contradicts the authors’ claim that all formulations of OAE are useless if nonces get reused.

25

First, we try to avoid words like useless; a more accurate description of our claim would be that,
in the presence of nonce-reuse, online-AE schemes are incapable of achieving what we’d regard as a
desirable security notion. But to more directly answer the question: the OAE2 definition is stronger
than nOAE, and, unlike nOAE, it does capture a reasonable approximation of best-possible security
for an OAE scheme (even in the presence of nonce-reuse). For this reason we believe OAE2 worth
formalizing and investigating, which includes giving a construction. But our doing so is not license to
reuse the nonce. We discourage users from doing so.

B Related Work

There are several definitions in the literature that relate to those developed here. In this section we
sketch some of them and compare them with OAE1, OAE2, or nOAE.

BDPV. In advance of proving security for their duplex construction, Bertoni, Daemen, Peeters, and
Van Assche (BDPV) [19] provided novel syntax and security definitions for AE. They did not name
their notion, so we will call it duplex-AE. It resembles both OAE2 and nOAE, and inspired dOAE.

Beginning with syntax, the encryption algorithm ℰ of a duplex-AE scheme takes a key 𝐾 ∈ 𝒦 and
segmented strings 𝐴 ∈ {0, 1}** and 𝑀 ∈ {0, 1}** having an equal number of components. The algorithm
returns, deterministically, 𝐶 ‖ 𝑇 = ℰ𝐾(𝐴, 𝑀). This is the ciphertext and tag that the final plaintext
segment of 𝑀 , namely 𝑀 = 𝑀 [|𝑀 |], encrypts to. Ciphertext 𝐶 must have the same length as 𝑀
while tag 𝑇 is a 𝜏 -bit string (for some scheme-dependent constant 𝜏). The decryption syntax is similar:
given 𝐴 and 𝐶 with the same number of components, 𝒟𝐾(𝐴, 𝐶, 𝑇) is either a plaintext 𝑀 ∈ {0, 1}* of
the same length as 𝐶’s final segment 𝐶 = 𝐶[|𝐶|], or else it’s a distinguished error value.

To be considered secure, a duplex-AE scheme must satisfy privacy and authenticity requirements.
The first says that the map from (𝐴, 𝑀) to ℰ𝐾(𝐴, 𝑀) should resemble a random oracle—one that
always returns |𝑀 [|𝑀 |]| + 𝜏 random bits. This requirement is levied only for adversaries that meet
the following nonce-requirement: if an adversary queries (𝐴 ‖𝐴, 𝑀 ‖𝑀) then it makes no subsequent
query of (𝐴 ‖𝐴, 𝑀 ‖𝑀 ′) with 𝑀 ̸= 𝑀 ′. (Here 𝐴 and 𝑀 are segmented strings with an equal number
of components, while 𝐴, 𝑀, 𝑀 ′ are strings.) The authenticity requirement, on the other hand, says that
reasonable adversaries can only rarely forge, where forging means outputting an (𝐴, 𝐶, 𝑇) for which
𝒟𝐾(𝐴, 𝐶, 𝑇) ∈ {0, 1}* (not an error) and the adversary made no prior encryption query ℰ𝐾(𝐴, 𝑀)
that returned 𝐶 ‖ 𝑇 with 𝐶[|𝐶|] = 𝐶.

Comparing duplex-AE to OAE2 and nOAE is made difficult by the multitude of syntactic differences.
First, there is no nonce with duplex-AE: the role played by a nonce in nOAE is effective subsumed by
the nonce-requirement. While one might imagine that the first segment of AD, 𝐴[1], routinely encodes
a nonce, nothing like this is mandated. Second, ciphertexts are required to consist a ciphertext core and
a tag. While AE schemes with this structure are common, some AE schemes don’t work this way. The
duplex-AE syntax forbids the decryption of a ciphertext segment to depend on prior tags. Third, the
duplex-AE syntax does not explicitly model state. The absence is problematic if one wants to define
online computability. Relatedly, for an adversary to acquire the ciphertext of an 𝑚-segment 𝑀 , it will
have to query 𝛺(𝑚2) segments. As we argued with respect to our coarse-grained OAE2 definition, this
blowup doesn’t seem to capture a realistic adversary’s actual efficiency, which may be better. Fourth,
segmented messages are not explicitly terminated (some sort of “end-of-message”) in duplex-AE. Thus no
distinction is drawn between (𝑀1, 𝑀2) as a completed plaintext and (𝑀1, 𝑀2) as the first two segments
of a longer (additional component) segmented plaintext. Forging one is forging the other. While one
could use the final AD segment to mark the final plaintext segment, that would leave undefined just
what one is attempting to accomplish by such annotation.

Yet if one can overlook the differences above, the gap between duplex-AE and OAE2/nOAE is not so
large, at least for large 𝜏 . For all of these notions, a sequence of plaintext and AD values are transformed
into a corresponding sequence of ciphertext values, each ensuring authenticity not only of the latest

26

segment but, also, of the entire sequence that has come before. Intuitively, duplex-AE slots between
OAE2 and nOAE—and dOAE does slot between those two notions. The BDPV nonce-requirement is
less demanding than the OAE2 requirement insofar as an encryption query (𝑁, 𝐴, 𝑀) in the second
setting can be followed by anything, including a query that changes only the last segment of 𝑀 . One
must achieve random-oracle-like behavior even then. On the other hand, the nonce-requirement is more
demanding than the nOAE requirement insofar as the adversary, for duplex-AE, is permitted all sorts
of queries where one is not just growing at-most-one-chain for each nonce/𝐴[1] value.

We regard BDPV’s nonce-requirement as a natural restriction if one aims to have accretive processing
of segments and bits within segments. As an example, for duplex-AE security, the first bit of 𝐶[10]
needs to depend on all bits of 𝐴[1], . . . , 𝐴[10] and 𝑀 [1], . . . , 𝑀 [9], but it need not depend on later
bits of 𝑀 [10]. In contrast, for OAE2 security, the first bit of 𝐶[10] needs to depend on all bits of 𝑁 ,
𝐴[1], . . . , 𝐴[10], and 𝑀 [1], . . . , 𝑀 [10]. In the other direction, for nOAE security, 𝐶[10] might depend
on as little as 𝑁 , 𝐴[10], and 𝑀 [10], since a nonce-respecting adversary will be unable to “see” if, for
example, 𝐶[10] really does depend on 𝑀 [1]. While the reference object has that behavior, an adversary
can’t verify it if nonces don’t repeat.

The definition of duplex-AE, along with an email from the Keyak team calling our attention to this
work, motivated us to support vector-valued AD and to formalize OAE2c and dOAE, and to provide
the related results.

FJMV. Back in 2003, Fouque, Joux, Martinet, and Valette (FJMV) put forward two notions for OAE,
one for privacy and another for authenticity [30]. In their setting, encryption is online and proba-
bilistic, but decryption is viewed as an atomic operation. In both notions, the adversary can mount
blockwise-adaptive queries on the encryption oracle. But FJMV only give a sketchy explanation of what
this actually means. Here we give a rigorous description of FJMV’s privacy notion, according to our
interpretation. The authenticity notion can be defined analogously.

If M is a probabilistic algorithm, we write M (𝑥1, · · · ; 𝑟) to denote the running of M with arguments
𝑥1, · · · under coins 𝑟. Let 𝑛 be the blocksize. The encryption scheme is pair of probabilistic algorithms
(ℰ .enc, ℰ .tag), with ℰ .enc: 𝒦× ({0, 1}𝑛)* → {0, 1}𝑛 and ℰ .tag : 𝒦× ({0, 1}𝑛)* → {0, 1}𝜏 . To encrypt a
message 𝑀1 · · ·𝑀𝑚 under coins 𝑟, with |𝑀𝑖| = 𝑛, we’ll compute 𝐶𝑖 ← ℰ .enc(𝐾, 𝑀1 · · ·𝑀𝑖; 𝑟) for every
𝑖 ≤ 𝑚, and 𝑇 ← ℰ .tag(𝐾, 𝑀1 · · ·𝑀𝑚; 𝑟), and then output 𝐶1 · · ·𝐶𝑚 ‖ 𝑇 .

To define privacy, let the adversary play the following game. It begins by sampling the coins 𝑟 and
key 𝐾 at random, initializing 𝑀 ← 𝜀, and choosing a challenge bit 𝑏 ←← {0, 1}. The adversary will
make several oracle queries, each of the form (𝑀0, 𝑀1), where 𝑀0, 𝑀1 ∈ {0, 1}𝑛 ∪ {⊥}. If 𝑀0, 𝑀1 ∈
{0, 1}𝑛 then the oracle computes 𝑀 ← 𝑀 ‖𝑀𝑏, and returns ℰ .enc(𝐾, 𝑀 ; 𝑟). Otherwise, it computes
𝑇 ← ℰ .tag(𝐾, 𝑀 ; 𝑟), resets 𝑀 ← 𝜀, re-samples 𝑟 at random, and returns 𝑇 .

OAE1 resembles a recasting of FJMV’s notions with nonce-based AE syntax, where ℰ .enc: 𝒦×𝒩 ×
𝒜 × ({0, 1}𝑛)* → {0, 1}𝑛 and ℰ .tag : 𝒦 × 𝒩 × 𝒜 × ({0, 1}𝑛)* → {0, 1}𝜏 are deterministic algorithms.
Instead of providing a message 𝑀1 · · ·𝑀𝑚 incrementally, since the algorithms ℰ .enc and ℰ .tag are
deterministic, one can have the adversary query (𝑁, 𝐴, 𝑀1) to the encryption oracle to get 𝐶1 ‖𝑇1, and
then query (𝑁, 𝐴, 𝑀1𝑀2) to get 𝐶1𝐶2 ‖ 𝑇2, and so on.

BT. Also in 2003, Boldyreva and Taesombut (BT) [23] considered a setting in which the adversary
can mount blockwise-adaptive queries on both encryption and decryption oracles. Messages are again
regarded as sequences of blocks, but the adversary can provide these blocks incrementally. Their focus
is on probabilistic, chosen-ciphertext-attack (CCA) security, but the full version of their paper [23,
Section 6] also speaks of AE. Despite major difference (including probabilistic vs. nonce-encryption,
and whether messages are regarded as sequence of blocks), BT’s motivation seems closer in spirit to
OAE2 than OAE1 is, as they insist, from the beginning, that decryption be incremental. The scheme
BT suggest to encrypt a plaintext 𝑀 is to apply an online cipher to 𝑅 ‖𝑀 ‖ 𝑅 where 𝑅 is a random

27

block and 𝑀 is a sequence of blocks. The BT paper served as motivation for the authors of the TSS
paper described below.

TSS. The notions of FJMV and BT, like OAE1 and its many variants, are ill-defined for messages
whose lengths are not multiple of the blocksize. Moreover, authenticity is only verified at the very end,
making those notions unsuitable for streaming applications such as the Netflix example. The blocksize
is a fixed, small value, not a partitioning the user may select. The 2009 paper Tsang, Solomakhin, and
Smith (TSS) [62] is an exception to all this. Its syntax is similar to OAE2, permitting variable-length
segmentation. But it has no associated data, and two segmented-strings (𝑀1, · · · , 𝑀𝑚) and (𝑀 ′

1, . . . , 𝑀 ′
𝑘)

are considered the same if 𝑀1 · · ·𝑀𝑚 = 𝑀 ′
1 · · ·𝑀 ′

𝑘—that is, one doesn’t authenticate the segmentation,
but, instead, the underlying message. TSS demand that nonces be unique, which our work effectively
justifies as a sensible choice, as no OAE scheme achieves desirable security characteristics when nonces
are reused. The TSS model does not allow interleaving of queries with different nonces; it handles one
encryption, and one decryption, until they are completed. Authenticity for TSS is only verified at the
very beginning and at the very end; the intermediate segments are required to have zero ciphertext
expansion. TSS impose this restriction to avoid trivial attacks, but those attacks might be possible in
real applications. In the Netflix example, an adversary could have users watch the first few scenes from
the correct movie, and then switch to whatever it wants. Authenticity would only fail at the end of the
entire film. TSS give a construction that achieves their notion, by composing a stream cipher and a
MAC, in an Encrypt-then-MAC fashion.

We consider it unfortunate that the TSS manuscript was so little noticed, as it seems to us more
definitionally prescient than most alternative lines. Perhaps one reason the paper wasn’t more noticed
was that it never made it beyond being a Dartmouth technical report. Sadly, the lead author died an
early death, and the paper never appeared in any conference or journal.

ABLMMY. Andreeva, Bogdanov, Luykx, Mennink, Mouha, and Yasuda (ABLMMY) [7] study OAE
definitions and schemes that are meant to withstand the release of unverified plaintext (RUP). Their
motivations overlap with our own—a desire to support decrypting devices with insufficient memory to
store the entire plaintext, or prefixes of the decrypted plaintext being needed now, to processed real-
time needs. The authors define a variety of new security notions, INT-RUP, INT-RUP1, PA1, PA2, and
DI, as well as IND-CPA, IND-CCA, INT-CTXT notions. They investigate implications and separations
among different combinations and under different assumptions on the IV. The PA notions demand the
existence of a plaintext extractor as a way to evidence the valuelessness of the decryption oracle. Among
other results, ABLMMY show that APE [6] meets their PA1 definition. This scheme does not, and in
some sense cannot [7, Prop. 1], support online decryption.

It would take us far afield of our focus to undertake a careful analysis of the ABLMMY definitions.
Despite intersecting motivations, our definitional endpoint and theirs are radically different. Unlike
ABLMMY, our own work captures user-selectable segmentation, levies no requirements for knowledge
extractors, shuns definitional proliferation, and keeps the focus on encryption and decryption being
online. When OAE2 is used in its intended manner, with reasonable segment-expansion 𝜏 , the notion
is simultaneously stronger than RUP notions in the sense of ensuring that all decrypted segments are
authentic; weaker than RUP notions in the sense that plaintext-extractors are in no way mandated;
and incomparable in the sense that the extensive syntactic mismatch renders infeasible any direct
implications or separations.

BDPS. Boldyreva, Degabriele, Paterson, and Stam (BDPS) [22] consider a setting in which a sender
wants to (probabilistically) encrypt a vector of messages (𝑀1, . . . , 𝑀𝑚) and send the ciphertexts in a
stream 𝐶1 ‖ · · · ‖𝐶𝑚. An adversary fragments this stream in an arbitrary way, and the recipient receives
the fragments (𝐹1, . . . , 𝐹𝑠) that satisfies 𝐹1 ‖ · · · ‖ 𝐹𝑠 = 𝐶1 ‖ · · · ‖ 𝐶𝑚. The adversary may also send
fragments of its choice to a decryption oracle. The recipient, without knowing the length |𝐶1|, . . . , |𝐶𝑚|,

28

has to buffer and decide when a ciphertext segment is complete. In addition to the privacy of messages,
BDPS aim to hide the boundaries of the ciphertexts in the stream to frustrate traffic analysis. In their
syntax, both the encryption and decryption algorithms are stateful: each maintains a short state in
processing the segments.

The main overlap with our own works is in attending to security for sequences of messages (what
we call segments) rather than atomic messages. But we do not aim to hide the segment lengths or
boundaries; in fact, these things need to be recoverable by the decrypting party.

AFLLW. Soon after we made public an earlier version of the present paper, Abed, Forler, List, Lucks,
and Wenzel (AFLLW) responded by way of a manuscript [3] (2015.03.10). While responding to a response
to a response to a definition begins to get a bit too dialectical, we think we had better make public some
of the feedback we provided to AFLLW (2015.03.17).

The AFLLW manuscript describes new definitions, OAE1+ and OAE2+. But the message space
remains B*

𝑛 = ({0, 1}𝑛)*. One of our central complaints about OAE1 is that it is unreasonable to define
security only on B*

𝑛 when one actually wants to operate on a larger space.
The syntax AFLLW ascribe to OAE2 is not ours: they split ciphertexts into a ciphertext core and

tag, which we do not do. There are several reasons for our choice (e.g., there’s no tag if one uses AEZ
to build an OAE2 scheme). Regardless, having introduced the syntax they do, AFLLW fail to use it:
Section 5 aims to build an OAE2 scheme but doesn’t construct the needed tuple of algorithms and
doesn’t describe, even informally, what to do with arbitrary-length segments. One goal of OAE2 is to
be capable of dealing with arbitrary segmentation (whether a user employs this capability or not); if
one hasn’t done so, it’s not yet an OAE2 scheme.

Syntactic problems make much of the manuscript incoherent, at least to us. For example, AFLLW
write that “the combination of decryption robustness and OAE1 security (called OAE1+) implies OAE2
security.” But an OAE1 scheme and an OAE2 scheme are different kinds of objects. Or consider the
OAE1+ definition, where the ideal ℰ𝐾(𝐻, ·) and 𝒟𝐾(𝐻, ·) are supposed to be online permutations 𝜋
and its inverse 𝜋−1. But the former is not a permutation when 𝜏 > 0. This syntactic mismatch is not
easily fixed by, for example, using an injective function 𝜌 instead of a permutation 𝜋, since AFLLW
want the reference object 𝒟𝐾(𝐻, ·) to return non-⊥ results on all inputs, to model privacy under release
of unverified plaintext. Similar problems recur with OAE2+ definition: with 𝛱 an OAE2 scheme, as
formalized in this paper, it can’t be OPERM-CCA or INT-RUP.

Somehow trying to ignore the errant syntax, the sort of thing AFLLW attempt to turn an OAE1-
secure scheme into an OAE2-secure one can’t work. Consider the case where messages have a single
segment. In this setting OAE2 essentially coincides with a PRI (or an MRAE scheme, assuming the
segment-expansion is large). (The “essentially” belies the fact that a formal statement would have to
deal with the syntactic mismatch.) But the PRI/MRAE goal is unachievable by any online scheme.

It is our view that what AFLLW have in mind for OAE2+ doesn’t model anything very meaningful.
Having re-conceptualized OAE2 encryption to involve the transmission of a sequence of tagged internal
segments and then a final tagged segment, the authors want to provide the adversary an oracle that
produces the speculative plaintext for a segmented message regardless of its tags. This is to be done to
model the release of unverified plaintext. But why is it worthwhile to model the release of unverified
plaintexts in the first place? It is because a ciphertext might be so long, or have timeliness requirements
so stringent, that that the ciphertext needs to be acted on before the decryption apparatus gets it all.
But the OAE2 definition was designed to model this setting. When using an OAE2-secure scheme where
segments can be regarded as having authentication tags, if a tag is invalid, decryption should stop. So
the OAE2+ definition, once corrected, would capture something like: “Yes, there is an authentication
tag for each segment, but suppose that the decrypting party fails to perform the required checks and
releases all speculative plaintext segments anyway. Would such misbehavior then invalidate subsequent
authenticity?” This is not a well-motivated side-channel.

29

One thing we agree with in the AFLLW manuscript is that the term misuse-resistant is also ques-
tionable for MRAE [56]. It is true that having an oracle for (𝑁, 𝐴, Mask) ↦→ ℰ𝐾(𝑁, 𝐴, 𝑀&Mask) lets
one recover a secret 𝑀 , for any deterministic ℰ , and one could reasonably maintain that this pre-
cludes deservedly calling ℰ misuse-resistant. One could also say, more simply, that leaking repetitions
in (𝑁, 𝐴, 𝑀) precludes true misuse-resistance.

In emails subsequent to the AFLLW manuscript, Lucks suggests that the OAE2 definition goes
wrong by allowing users to choose different lengths for different segments: revelation of these differing
lengths can reveal crucial information, which users might not understand. While the second claim is
true, the first doesn’t follow from it. Conventional definitions of symmetric encryption always anticipate
that the length of a ciphertext reveals the length of its plaintext; in the OAE setting, the analogous
expectation is that the length of a ciphertext segment reveals the length of the corresponding plaintext
segment. While definitionally permitted disclosure of lengths can be dangerously revelatory, that is
always so: we don’t see anything new in this regard with respect to OAE.

Finally, we would make a discursive warning about AFLLW’s use of the term robust or robustness
has no obvious relation to the technical meaning for robust-AE defined in the RAE/AEZ paper [35].

C MRAE Resists CPSS

We evidence that MRAE-secure schemes, unlike OAE1-secure schemes, resist CPSS attack. The MRAE
notion is much stronger still, but a result like what we give is a starting point.

We first recall the MRAE notion. Let 𝛱 = (𝒦, ℰ ,𝒟) be a conventional AE scheme, meaning that
(i) The key space 𝒦 is a nonempty set with an associated distribution, and (ii) ℰ : 𝒦×𝒩 ×𝒜×{0, 1}* →
{0, 1}* is the encryption scheme, and (iii) 𝒟 : 𝒦 × 𝒩 × 𝒜 × {0, 1}* → {0, 1}* ∪ {⊥} is the decryption
scheme. Both ℰ and 𝒟 are deterministic, and decryption reverses encryption, meaning that for every
𝑁 ∈ 𝒩 , 𝐴 ∈ 𝒜, 𝑀 ∈ {0, 1}*, and 𝐾 ∈ 𝒦, we have 𝒟𝑁,𝐴

𝐾 (ℰ𝑁,𝐴
𝐾 (𝑀)) = 𝑀 . We insist that there be a

constant 𝜏 associated to 𝛱, its ciphertext expansion, where |ℰ𝑁,𝐴
𝐾 (𝑀)| = |𝑀 | + 𝜏 for every 𝑁 ∈ 𝒩 ,

𝐴 ∈ 𝒜, 𝑀 ∈ {0, 1}*, 𝐾 ∈ 𝒦. The advantage of an adversary A attacking the MRAE security of 𝛱 is
defined as

Advmrae
𝛱 (A) = Pr[𝐾 ←← 𝒦 : A ℰ𝐾(·,·,·),𝒟𝐾(·,·,·) ⇒ 1]− Pr[A $(·,·,·),⊥(·,·,·) ⇒ 1]

where $(·, ·, ·) is an oracle that returns 𝐶 ←← {0, 1}|𝑀 |+𝜏 for any input (𝑁, 𝐴, 𝑀) and ⊥(·, ·, ·) is an
oracle that returns ⊥ for any input. The adversary is prohibited from querying (𝑁, 𝐴, 𝑀) to the first
oracle to get 𝐶 and then querying (𝑁, 𝐴, 𝐶) to the second oracle, or repeating a prior query to the first
oracle.

We now explain why a scheme secure in the MRAE sense will always resist CPSS attack. Suppose
that the secret suffix 𝑆 is generated by an efficient sampler 𝒮. Let Advguess

𝒮 denote the min-entropy
of the distribution generated by 𝒮. Let A be a CPSS adversary attacking an AE scheme 𝛱. Consider
the following MRAE adversary B attacking 𝛱. It generates the suffix 𝑆 ←← 𝒮 and runs A . For each
prefix 𝑃 that A produces, if A repeats a prior prefix then B gives the consistent answer. Otherwise,
it queries 𝑃 ‖ 𝑆 to its encryption oracle, and returns the answer to A . If A can reproduce 𝑆 then B
outputs 1; otherwise it outputs 0. If B’s oracle implements $(·) then A can guess 𝑆 with probability at
most Advguess

𝒮 , since it only receives random answers independent of 𝑆. Hence the chance that A can
guess 𝑆 in the CPSS attack against 𝛱 is at most Advmrae

𝛱 (B) + Advguess
𝒮 .

D Separating OAE1[𝑛] and OAE2[0, 𝑛]

OAE1 is weaker than OAE2 in the sense that the former does not support arbitrary segmentation or
demand security over arbitrary strings. This brief section argues a more specific claim: that OAE1 with
blocksize and tagsize 𝑛 remains weaker than OAE2 with a (0, 𝑛)-expanding scheme and all segments

30

required to have exactly 𝑛 bits. (To address the syntactic mismatch, we’ll assume that every 𝐴 satisfies
𝐴[𝑖] = 𝜀 for every 1 < 𝑖 ≤ |𝐴|, so that OAE2 can be viewed as operating on a single AD string, instead
of an AD vector.) This is true even if we fix a reasonably large value of 𝑛, say 𝑛 = 128. We ignore
mundane matters of mismatched syntax that would have to be dealt with in a more formal treatment
(i.e., that OAE1 and OAE2 schemes are very different kinds of objects).

So consider an OAE1-secure scheme 𝛱 = (K, E, D) of blocksize 𝑛. Assume that all keys output
by K also have 𝑛 bits, which is the most common case for 𝑛 = 128. Suppose that for scheme 𝛱 one can
recover the 𝑚-th block of the (putative) plaintext from 𝐾, 𝑁, 𝐴, and the first 𝑚 blocks of ciphertext,
which again holds for typical schemes, like COPA [9] and McOE [28]. Now consider the following scheme
𝛱̃ = (K, Ẽ, D̃). For any 𝑋 ∈ ({0, 1}*)𝑛, let Ẽ𝑁,𝐴

𝐾 (𝐾 ‖𝑋) = E𝑁,𝐴
𝐾 (𝑀0 ‖𝑋), where 𝑀0 is the first block

of the putative plaintext obtained from decrypting 02𝑛 under key 𝐾 with nonce 𝑁 and AD 𝐴; and let
Ẽ𝑁,𝐴

𝐾 (𝑀0 ‖𝑋) = E𝑁,𝐴
𝐾 (𝐾 ‖𝑋). Let Ẽ𝑁,𝐴

𝐾 coincide with E𝑁,𝐴
𝐾 on all other points. Then the scheme 𝛱̃

ought still to be OAE1-secure. For given an adversary A attacking 𝛱̃, one can transform it to an
equally efficient adversary B attacking 𝛱 that outputs 1 if the first block of some ciphertext is 0𝑛,
and the probability that A can query some 𝑀0 ‖ 𝑋 to the encryption oracle is at most Advoae1

𝛱 (B).
But 𝛱̃ is not OAE2-secure, as an adversary can query 02𝑛 to the decryption oracle to learn 𝐾. In brief,
we can adjust an OAE1-secure scheme to fail miserably in the presence of a decryption capability, the
adjustment irrelevant for OAE1 security.

We emphasize that the above counterexample does not imply that common OAE1-secure schemes
with expansion 𝜏 fail to be OAE2-secure with expansion (0, 𝜏) once reconceptualized and restricted.
Such a determination would have to be made on a case-by-case basis, asking if supplementing the
adversary’s capabilities with an online decryption oracle would violate indistinguishability. We haven’t
carried out such investigations because even when an OAE1 scheme is OAE2-secure once restricted
and reconceptualized, we are not suggesting this would make it a desirable way to address online-AE:
in particular, expansion parameters of (0, 𝜏) are likely to be a poor choice in most settings, since they
provide no authenticity assurance until a ciphertext’s end. This is why our focus has been on 𝜏 -expanding
schemes, where all segments are afforded the same authenticity guarantees. It also seems undesirable
to insist on segmenting messages along 𝑛-bit boundaries for some small, fixed 𝑛, and to fail to define
security for messages that are not blocksize multiples.

E Deferred Proofs

E.1 Proof of Theorem 1

The reduction 𝑅 creates from A adversary B as follows. The latter runs the former and simulates game
Real2BCHAIN[𝛱,⟨·⟩,𝑛], but each call to E𝐾(·) or D𝐾(·) is replaced by the corresponding query to the
first or second oracle of B, respectively. Adversary B then outputs the same guess as A .
Consider games 𝐺1–𝐺4 in Fig. 12. Game 𝐺1 corresponds to game Real2BCHAIN[𝛱,⟨·⟩,𝑛], and game
𝐺4 corresponds to game Ideal2BCHAIN[𝛱,⟨·⟩,𝑛]. We now explain the game chain. Initially, we’ll sample
𝜋𝑉,⟨𝐴′,𝑑⟩ ←← Inj(𝜏) for every 𝑉 ∈ {0, 1}𝑛 and every 𝐴′ ∈ {0, 1}*, 𝑑 ∈ {0, 1, 2, 3, 4, 5}, and 𝜌𝑁,𝐴,𝑀 ,𝛿 ←←
Inj(𝜏) for every 𝑁 ∈ {0, 1}𝑛, 𝛿 ∈ {0, 1}, and 𝐴, 𝑀 ∈ {0, 1}** such that |𝐴| = |𝑀 | + 1. Game 𝐺2 is
identical to game 𝐺1, except that instead of using E𝑉,𝐴

𝐾 and D𝑉,𝐴
𝐾 , we’ll use an injective function 𝜋𝑉,𝐴

and its inverse 𝜋−1
𝑉,𝐴 respectively. Then

Pr[A 𝐺1 ⇒ 1]− Pr[A 𝐺2 ⇒ 1] = Advpri
𝛱 (B) .

Game 𝐺3 is identical to game 𝐺2 except that, we want the state 𝑉 ′ to be never repeated, but still
maintain the following consistency: (i) calling Map with the same (𝑉, 𝐴, 𝑀) always results in the same
(𝐶, 𝑉 ′), (ii) calling MapInv with the same (𝑉, 𝐴, 𝐶) always result in the same (𝑀, 𝑉 ′), and (iii) if

31

proc Enc.init(𝑁)
𝐼 ← 𝐼 + 1; 𝑀 𝐼 ← 𝛬
𝐴𝐼 ← 𝛬; 𝑆𝐼 ← (𝐾, 𝑁, 0); 𝑁𝑖 ← 𝑁
return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
(𝐾, 𝑉, 𝑑)← 𝑆𝑖; 𝐴𝑖 ← 𝐴𝑖 ‖𝐴
(𝑁, 𝐴, 𝑀 , 𝛿)← (𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 0)
(𝐶, 𝑉)← Map(𝑉, ⟨𝐴, 𝑑⟩, 𝑀)
𝑆𝑖 ← (𝐾, 𝑉, 1); 𝑀 𝑖 ←𝑀 𝑖 ‖𝑀
return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
(𝐾, 𝑉, 𝑑)← 𝑆𝑖; 𝐴𝑖 ← 𝐴𝑖 ‖𝐴
if 𝑑 = 0 then 𝑑← 3 else 𝑑← 2
(𝑁, 𝐴, 𝑀 , 𝛿)← (𝑁𝑖, 𝐴𝑖, 𝑀 𝑖, 1)
(𝐶, 𝑉)← Map(𝑉, ⟨𝐴, 𝑑⟩, 𝑀); 𝑆𝑖 ← ⊥; return 𝐶

proc Dec.init(𝑁)
𝐽 ← 𝐽 + 1; 𝑀 ′

𝐽 ← 𝛬
𝐴′

𝐽 ← 𝛬; 𝑆′
𝐽 ← (𝐾, 𝑁, 0); 𝑁 ′

𝑗 ← 𝑁
return 𝐽

proc Dec.next(𝑗, 𝐴, 𝐶)
if 𝑗 > 𝐽 or 𝑆′

𝑗 = ⊥ then return ⊥
(𝐾, 𝑉, 𝑑)← 𝑆′

𝑗 ; 𝐴′
𝑗 ← 𝐴′

𝑗 ‖𝐴
(𝑁, 𝐴, 𝑀 , 𝛿)← (𝑁 ′

𝑗 , 𝐴′
𝑗 , 𝑀 ′

𝑗 , 0)
(𝑀, 𝑉)← MapInv(𝑉, ⟨𝐴, 𝑑⟩, 𝐶)
if 𝑀 ̸= ⊥ then 𝑆′

𝑗 ← (𝐾, 𝑉, 1) else 𝑆′
𝑗 ← ⊥

𝑀 ′
𝑗 ←𝑀 ′

𝑗 ‖𝑀 ; return 𝑀

proc Dec.last(𝑗, 𝐴, 𝐶)
if 𝑗 > 𝐽 or 𝑆𝑗 = ⊥ then return ⊥
(𝐾, 𝑉, 𝑑)← 𝑆′

𝑗 ; 𝐴𝑗 ← 𝐴𝑗 ‖𝐴
(𝑁, 𝐴, 𝑀 , 𝛿)← (𝑁 ′

𝑗 , 𝐴′
𝑗 , 𝑀 ′

𝑗 , 1)
if 𝑑 = 0 then 𝑑← 3 else 𝑑← 2
(𝑀, 𝑉)← MapInv(𝑉, ⟨𝐴, 𝑑⟩, 𝐶); 𝑆′

𝑗 ← ⊥; return 𝑀

proc Map(𝑉, 𝐴, 𝑀) Game 𝐺1

𝐶 ← E𝑉,𝐴
𝐾 (𝑀); ⟨𝐴′, 𝑑⟩ ← 𝐴

if 𝑑 ̸∈ {0, 1} then 𝑉 ′ ← ⊥
elsif 𝐻[𝑉, 𝐴, 𝑀] ̸= ⊥ then 𝑉 ′ ← 𝐻[𝑉, 𝐴, 𝑀]
else 𝑉 ′ ← Ev(𝑉, 𝐴, 𝑀, 𝐶); 𝐻[𝑉, 𝐴, 𝑀]← 𝑉 ′

return (𝐶, 𝑉 ′)

proc MapInv(𝑉, 𝐴, 𝐶)
𝑀 ← D𝑉,𝐴

𝐾 (𝐶); ⟨𝐴′, 𝑑⟩ ← 𝐴
if 𝑀 = ⊥ then return (⊥,⊥)
if 𝑑 ̸∈ {0, 1} then 𝑉 ′ ← ⊥
elsif 𝐻[𝑉, 𝐴, 𝑀] ̸= ⊥ then 𝑉 ′ ← 𝐻[𝑉, 𝐴, 𝑀]
else 𝑉 ′ ← Ev(𝑉, 𝐴, 𝑀, 𝐶); 𝐻[𝑉, 𝐴, 𝑀]← 𝑉 ′

return (𝑀, 𝑉 ′)

proc Ev(𝑉, 𝐴, 𝑀, 𝐶)
if |𝑀 | ≥ 𝑛 then 𝑉 ′ ← 𝐶[1, 𝑛]⊕𝑀 [1, 𝑛]
elsif 𝐴 = ⟨𝐴′, 𝑑⟩ then

𝐿← E𝐾(𝑉, ⟨𝐴′, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛); 𝑉 ′ ← 𝐿[1, 𝑛]
Dom← Dom ∪ {𝑉 ′}; return 𝑉 ′

proc Map(𝑉, 𝐴, 𝑀) Games 𝐺2, 𝐺3

𝐶 ← 𝜋𝑉,𝐴(𝑀); ⟨𝐴′, 𝑑⟩ ← 𝐴
if 𝑑 ̸∈ {0, 1} then 𝑉 ′ ← ⊥
elsif 𝐻[𝑉, 𝐴, 𝑀] ̸= ⊥ then 𝑉 ′ ← 𝐻[𝑉, 𝐴, 𝑀]
else 𝑉 ′ ← Ev(𝑉, 𝐴, 𝑀, 𝐶); 𝐻[𝑉, 𝐴, 𝑀]← 𝑉 ′

return (𝐶, 𝑉 ′)

proc MapInv(𝑉, 𝐴, 𝐶)
𝑀 ← 𝜋−1

𝑉,𝐴(𝐶); ⟨𝐴′, 𝑑⟩ ← 𝐴

if 𝑀 = ⊥ then return (⊥,⊥)
if 𝑑 ̸∈ {0, 1} then 𝑉 ′ ← ⊥
elsif 𝐻[𝑉, 𝐴, 𝑀] ̸= ⊥ then 𝑉 ′ ← 𝐻[𝑉, 𝐴, 𝑀]
else 𝑉 ′ ← Ev(𝑉, 𝐴, 𝑀, 𝐶); 𝐻[𝑉, 𝐴, 𝑀]← 𝑉 ′

return (𝑀, 𝑉 ′)

proc Ev(𝑉, 𝐴, 𝑀, 𝐶)
if |𝑀 | ≥ 𝑛 then 𝑉 ′ ← 𝐶[1, 𝑛]⊕𝑀 [1, 𝑛]
elsif 𝐴 = ⟨𝐴′, 𝑑⟩ then

𝐿← 𝜋𝑉,⟨𝐴′,𝑑+4⟩(𝑀 ‖ 0𝑛); 𝑉 ′ ← 𝐿[1, 𝑛]
if (𝑉 ′ ∈ Dom) then bad← true; 𝑉 ′ ←← {0, 1}𝑛∖Dom
Dom← Dom ∪ {𝑉 ′}; return 𝑉 ′

proc Map(𝑉, 𝐴, 𝑀)
𝐶 ← 𝜌𝑁,𝐴,𝑀,𝛿(𝑀)
return (𝐶,⊥)

proc MapInv(𝑉, 𝐴, 𝐶) Game 𝐺4
𝑀 ← 𝜌−1

𝑁,𝐴,𝑀,𝛿(𝐶)
return (𝑀,⊥)

Fig. 12: Games 𝐺1–𝐺4 used in the proof of Theorem 1. Game 𝐺3 contains the corresponding boxed statement but game 𝐺2
doesn’t. The games share the common procedures Enc.init, Enc.next, Enc.last, Dec.init, Dec.next, and Dec.last, and each
game maintains local procedures Map, MapInv, and Ev that are inaccessible to the adversary. In each game, there is an
implicit procedure initialize() that initializes Dom← ∅ and 𝐼, 𝐽 ← 0, and samples 𝐾 ←← K, 𝜋𝑉,⟨𝐴′,𝑑⟩ ←← Inj(𝜏) for every
𝑉 ∈ {0, 1}𝑛 and every 𝐴′ ∈ {0, 1}*, 𝑑 ∈ {0, 1, 2, 3, 4, 5}, and 𝜌𝑁,𝐴,𝑀,𝛿 ←← Inj(𝜏) for every 𝑁 ∈ {0, 1}𝑛, 𝛿 ∈ {0, 1}, and
𝐴, 𝑀 ∈ {0, 1}** such that |𝐴| = |𝑀 |+ 1.

(𝐶, 𝑉 ′)← Map(𝑉, 𝐴, 𝑀) then MapInv(𝑉, 𝐴, 𝐶) returns (𝑀, 𝑉 ′), and (iv) if (𝑀, 𝑉 ′)← MapInv(𝑉, 𝐴, 𝐶)
and 𝑀 ̸= ⊥ then Map(𝑉, 𝐴, 𝑀) returns (𝐶, 𝑉 ′). The two games are identical-until-bad, and thus

Pr[A 𝐺2 ⇒ 1]− Pr[A 𝐺3 ⇒ 1] ≤ Pr[𝐺2 sets bad] .

We now bound the chance that game 𝐺2 sets bad. Terminate the game immediately when bad gets set;
it doesn’t change the probability that 𝐺2 sets bad. Observe that
(1) In Map(𝑉, 𝐴, 𝑀) and MapInv(𝑉, 𝐴, 𝐶), we’ll have 𝐴 of the form ⟨𝐴′, 𝑑⟩, with 𝑑 ∈ {0, 1, 2, 3}.

32

(2) In Map(𝑉, 𝐴, 𝑀), we call 𝐶 ← 𝜋𝑉,𝐴(𝑀) and invoke Ev to compute 𝐿 ← 𝜋𝑉,⟨𝐴′,𝑑+4⟩(𝑀 ‖ 0𝑛).
The second call is made only if |𝑀 | < 𝑛, 𝑑 ∈ {0, 1}, and there is no prior call Map(𝑉, 𝐴, 𝑀) or
MapInv(𝑉, 𝐴, 𝐶).

(3) In MapInv(𝑉, 𝐴, 𝐶), we call 𝑀 ← 𝜋−1
𝑉,𝐴(𝐶) and invoke Ev to compute 𝐿 ← 𝜋𝑉,⟨𝐴′,𝑑+4⟩(𝑀 ‖ 0𝑛).

The second call is made only if |𝑀 | < 𝑛, 𝑑 ∈ {0, 1}, and there is no prior call Map(𝑉, 𝐴, 𝑀) or
MapInv(𝑉, 𝐴, 𝐶).

Wlog, assume that 1 < 𝑞 ≤ 2𝑛−1; otherwise the bound is trivial. The flag bad is triggered only if the
state 𝑉 ′ repeats one of its prior values. Consider the following cases.

Case 1: 𝑉 ′ ← 𝐿[1, 𝑛], where 𝐿 ← 𝜋𝑉,⟨𝐴′,𝑑+4⟩(𝑀 ‖ 0𝑛). Due to the domain separation in the use
of associated data, there is no prior call to 𝜋−1

𝑉,⟨𝐴′,𝑑+4⟩(𝐿). Also, due to the one-to-one correspondence
between (𝑉, 𝐴, 𝑀) = (𝑉, ⟨𝐴′, 𝑑⟩, 𝑀) and (𝑉, ⟨𝐴′, 𝑑+4⟩, 𝑀‖0𝑛), there is no prior call to 𝜋𝑉,⟨𝐴′,𝑑+4⟩(𝑀‖0𝑛).
Then 𝐿 is chosen uniformly random from a subset of {0, 1}𝑛+𝜏 that has at least 2𝑛+𝜏 − 𝑞 elements. This
case triggers bad with probability at most

𝑞−1∑︁
𝑖=0

𝑖 · 2𝜏

2𝑛+𝜏 − 𝑞
≤ 0.5𝑞2

2𝑛 − 𝑞
≤ 𝑞2

2𝑛
;

the last inequality is due to the assumption that 𝑞 ≤ 2𝑛−1.

Case 2: 𝑉 ′ ← 𝐶[1, 𝑛] ⊕𝑀 [1, 𝑛]. There must be no prior Map call of the same (𝑉, 𝐴, 𝑀) or MapInv
call of the same (𝑉, 𝐴, 𝐶), otherwise we’ll return the consistent state, and bad won’t be triggered. First
suppose that Map triggers bad. Let 𝑠 = |𝐶|. From (1), (2), and (3), there is no prior call to 𝜋𝑉,𝐴(𝑀)
or 𝜋−1

𝑉,𝐴(𝐶). Suppose that there are 𝑖 prior queries to Map or MapInv. Since we sample 𝐶 uniformly
from a subset of {0, 1}𝑠 that has at least 2𝑠 − 𝑞 elements, this case happens with probability at most
𝑖2𝑠−𝑛/(2𝑠 − 𝑞) ≤ 𝑖/(2𝑛 − 𝑞) ≤ 2𝑖/2𝑛. Next, consider the case that MapInv triggers bad. Suppose that
there are 𝑖 prior queries to Map or MapInv. Let 𝑠 = |𝑀 |. By using the same analysis as above, the
bound is again at most 2𝑖/2𝑛. Summing up for 𝑖 = 0, 1, . . . , 𝑞 − 1 gives us the bound 𝑞2/2𝑛.

Hence, totally, the chance that 𝐺2 sets bad is at most 2𝑞2/2𝑛, and thus

Pr[A 𝐺2 ⇒ 1]− Pr[A 𝐺3 ⇒ 1] ≤ Pr[A 𝐺2 sets bad] ≤ 2𝑞2

2𝑛
.

Note that in each game, right before we call Map(𝑉, 𝐴, 𝑀) or MapInv(𝑉, 𝐴, 𝐶), we maintain a tuple
(𝑁, 𝐴, 𝑀 , 𝛿). We claim that in game 𝐺3, different tuples (𝑁, 𝐴, 𝑀 , 𝛿) will correspond to different
pairs (𝑉, 𝐴); we will justify this claim later. In game 𝐺4, instead of using 𝜋𝑉,𝐴 or its inverse, we use
𝜌𝑁,𝐴,𝑀 ,𝛿 and its inverse, respectively.7 Since in game 𝐺3, different tuples (𝑁, 𝐴, 𝑀 , 𝛿) will correspond
to different pairs (𝑉, 𝐴), this is simply an internal implementation choice for 𝜋𝑉,𝐴, and thus doesn’t
affect the input/output behavior of the game. Hence

Pr[A 𝐺4 ⇒ 1] = Pr[A 𝐺3 ⇒ 1] .

Summing up,

Advoae2b
CHAIN[𝛱,⟨·⟩,𝑛](A) = Pr[A 𝐺1 ⇒ 1]− Pr[A 𝐺4 ⇒ 1] ≤ Advpri

𝛱 (B) + 2𝑞2

2𝑛
.

7 The code in Fig. 12 actually shows the simplified code of 𝐺4: since the outputs that the adversary receives are independent
of the state 𝑉 ′, we can simplify Map and MapInv by (i) eliminating the useless code that computes 𝑉 ′ in Map and
MapInv, and (ii) having Map and MapInv instead return ⊥ for 𝑉 ′.

33

proc Enc.init(𝑁)
𝐼 ← 𝐼 + 1; 𝑁𝐼 ← 𝑁 ; 𝑆𝐼 ← 𝜀; 𝑀 𝐼 , 𝐴𝐼 , 𝐶𝐼 ← 𝛬
return Enc.init(𝑁)
proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
𝐶 ← Enc.next(𝑖, 𝐴, 𝑀)
𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝐶𝑖 ← 𝐶𝑖 ‖ 𝐶
𝐻[𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 0]←𝑀 𝑖; return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
𝐶 ← Enc.last(𝑖, 𝐴, 𝑀); 𝑆𝑖 ← ⊥
𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝐶𝑖 ← 𝐶𝑖 ‖ 𝐶
𝐻[𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 1]←𝑀 𝑖; return 𝐶

proc Dec.init(𝑁)
𝐽 ← 𝐽 + 1; 𝑁 ′

𝐽 ← 𝑁 ; 𝑆′
𝐽 ← 𝜀; 𝐴′

𝐽 , 𝐶′
𝐽 ← 𝛬

return 𝐽

proc Dec.next(𝑗, 𝐴, 𝐶)
if 𝑗 > 𝐽 or 𝑆′

𝑗 = ⊥ then return ⊥
𝐴′

𝑗 ← 𝐴′
𝑗 ‖𝐴; 𝐶′

𝑗 ← 𝐶
if 𝐻[𝑁 ′

𝑗 , 𝐴′
𝑗 , 𝐶′

𝑗 , 0] ̸= ⊥ then
𝑀 ← 𝐻[𝑁 ′

𝑗 , 𝐴′
𝑗 , 𝐶′

𝑗 , 0]; return 𝑀 [|𝑀 |]
𝒵 ← 𝒵 ∪ {(𝑁 ′

𝑗 , 𝐴′
𝑗 , 𝐶′

𝑗 , 0)}; 𝑆′
𝑗 ← ⊥; return ⊥

proc Dec.last(𝑗, 𝐴, 𝐶)
if 𝑗 > 𝐽 or 𝑆′

𝑗 = ⊥ then return ⊥
𝐴′

𝑗 ← 𝐴′
𝑗 ‖𝐴; 𝐶′

𝑗 ← 𝐶; 𝑆′
𝑗 ← ⊥

if 𝐻[𝑁 ′
𝑗 , 𝐴′

𝑗 , 𝐶′
𝑗 , 0] ̸= ⊥ then

𝑀 ← 𝐻[𝑁 ′
𝑗 , 𝐴′

𝑗 , 𝐶′
𝑗 , 1]; return 𝑀 [|𝑀 |]

𝒵 ← 𝒵 ∪ {(𝑁 ′
𝑗 , 𝐴′

𝑗 , 𝐶′
𝑗 , 1)}; return ⊥

Fig. 13: The simulated game that B𝑖 (with 𝑖 ∈ {1, 2}) in the proof of Proposition 1 use to run A . The procedures
Enc.init, Enc.next, Enc.last are the encryption oracles of B𝑖. There is an implicit procedure initialize() that initializes
𝐼, 𝐽 ← 0 and 𝑍 ← ∅.

What remains is to justify the claim above. Suppose that in game 𝐺3, there is at least one pair of two
different tuples (𝑁1, 𝐴1, 𝑀1, 𝛿1) and (𝑁2, 𝐴2, 𝑀2, 𝛿2) that correspond to the same pair (𝑉, 𝐴). Among
such pairs of tuples, consider the one that minimizes |𝑀1|. Consider the following cases.

Case 1: |𝑀1|, |𝑀2| > 0. Let 𝑀*
1 be the prefix of 𝑀1 that consists of |𝑀1| − 1 components. Define

𝑀*
2 for 𝑀2, 𝐴*

1 for 𝐴1, and 𝐴*
2 for 𝐴2 analogously. Due to the unique sampling of the state 𝑉 ′, the

tuples (𝑁1, 𝐴*
1, 𝑀*

1, 0) and (𝑁2, 𝐴*
2, 𝑀*

2, 0) must correspond to the same pair (𝑉 *, 𝐴*), contradicting
the minimum of |𝑀1|.

Case 2: |𝑀1| = 0 and |𝑀2| > 0. But then this is a contradiction: (1) since (𝑁1, 𝐴1, 𝑀1, 𝛿1) corresponds
to (𝑉, 𝐴), it means that 𝐴 is of the form ⟨𝐴′, 0⟩ or ⟨𝐴′, 3⟩, but (2) since (𝑁2, 𝐴2, 𝑀2, 𝛿2) corresponds
to (𝑉, 𝐴), it means that 𝐴 is of the form ⟨𝐴′′, 1⟩ or ⟨𝐴′′, 2⟩.

Case 3: |𝑀1| > 0 and |𝑀2| = 0. This is similar to Case 2.

Case 4: |𝑀1| = |𝑀2| = 0, meaning that 𝑀1 = 𝑀2 = 𝛬. Note that in this case, since (𝑁1, 𝐴1, 𝑀1, 𝛿1)
corresponds to (𝑉, 𝐴) and |𝑀1| = 0, we must have 𝑉 = 𝑁1. Likewise, since (𝑁2, 𝐴2, 𝑀2, 𝛿2) corresponds
to (𝑉, 𝐴) and |𝑀2| = 0, we must have 𝑉 = 𝑁2. In other words, 𝑁1 = 𝑁2. Let 𝑑1 = 0 if 𝛿1 = 0, and 𝑑1 = 3
otherwise. Define 𝑑2 for 𝛿2 analogously. Since (𝑁1, 𝐴1, 𝑀1, 𝛿1) corresponds to (𝑉, 𝐴) and |𝑀1| = 0, we
have 𝐴 = ⟨𝐴1[1], 𝑑1⟩. Likewise, since (𝑁2, 𝐴2, 𝑀2, 𝛿2) corresponds to (𝑉, 𝐴) and |𝑀2| = 0, we have
𝐴 = ⟨𝐴2[1], 𝑑2⟩. In other words, 𝐴1 = 𝐴2, and 𝛿1 = 𝛿2. Hence the two tuples (𝑁1, 𝐴1, 𝑀1, 𝛿1) and
(𝑁2, 𝐴2, 𝑀2, 𝛿2) are the same, which is a contradiction.

E.2 Proof of Proposition 1

The reduction 𝑅1 creates from A adversary B1 as follows. The latter runs the former as indicated in
Fig. 13, and outputs the same guess as A . Next, the reduction 𝑅2 creates from A adversary B2 as
follows. The latter runs the former as indicated in Fig. 13. When A terminates, B2 will process the
resulting set 𝒵. For (𝑁, 𝐴, 𝐶, 0) and (𝑁, 𝐴′, 𝐶 ′, 𝛿) in 𝒵, we’ll delete the former vector if 𝑚 = |𝐴| < |𝐴′|,
and 𝐴[𝑖] = 𝐴′[𝑖] and 𝐶[𝑖] = 𝐶 ′[𝑖] for every 𝑖 ≤ 𝑚. Now the set 𝒵 will have only 𝑝 elements that
corresponds to the 𝑝 decryption chains. Adversary B2 then outputs a random element of 𝒵.

Consider games 𝐺1–𝐺3 in Fig. 14. Game 𝐺1 corresponds to game Real2B𝛱 . Game 𝐺2 is identical
to game 𝐺1, except that Dec.next and Dec.last always return ⊥. The two games are identical-until-bad,

34

proc Enc.init(𝑁)
𝐼 ← 𝐼 + 1; 𝑁𝐼 ← 𝑁 ; 𝑆𝐼 ← ℰ .init(𝐾, 𝑁)
𝑀 𝐼 , 𝐴𝐼 , 𝐶𝐼 ← 𝛬; return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
𝐶 ← ℰ .next(𝑆𝑖, 𝐴, 𝑀)
𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝐶𝑖 ← 𝐶𝑖 ‖ 𝐶
𝐻[𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 0]←𝑀 𝑖; return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
𝐶 ← ℰ .last(𝑆𝑖, 𝐴, 𝑀); 𝑆𝑖 ← ⊥
𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝐶𝑖 ← 𝐶𝑖 ‖ 𝐶
𝐻[𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 1]←𝑀 𝑖; return 𝐶

proc Dec.init(𝑁) Games 𝐺1, 𝐺2

𝐽 ← 𝐽 + 1; 𝑁 ′
𝐽 ← 𝑁 ; 𝑆′

𝐽 ← 𝒟.init(𝐾, 𝑁)
𝑀 ′

𝐽 , 𝐴′
𝐽 , 𝐶′

𝐽 ← 𝛬; return 𝐽

proc Dec.next(𝑗, 𝐴, 𝐶)
if 𝑗 > 𝐽 or 𝑆′

𝑗 = ⊥ then return ⊥
𝐴′

𝑗 ← 𝐴′
𝑗 ‖𝐴; 𝐶′

𝑗 ← 𝐶′
𝑗 ‖ 𝐶

if 𝐻[𝑁 ′
𝑗 , 𝐴′

𝑗 , 𝐶′
𝑗 , 0] ̸= ⊥ then

𝑀 ← 𝐻[𝑁 ′
𝑗 , 𝐴′

𝑗 , 𝐶′
𝑗 , 0]; return 𝑀 [|𝑀 |]

(𝑀, 𝑆′
𝑗)← 𝒟.next(𝑆′

𝑗 , 𝐴, 𝐶)
if 𝑀 ̸= ⊥ then bad← true; 𝑆′

𝑗 , 𝑀 ← ⊥
return 𝑀

proc Dec.last(𝑗, 𝐴, 𝐶)
if 𝑗 > 𝐽 or 𝑆′

𝑗 = ⊥ then return ⊥
𝐴′

𝑗 ← 𝐴′
𝑗 ‖𝐴; 𝐶′

𝑗 ← 𝐶′
𝑗 ‖ 𝐶

if 𝐻[𝑁 ′
𝑗 , 𝐴′

𝑗 , 𝐶′
𝑗 , 0] ̸= ⊥ then

𝑀 ← 𝐻[𝑁 ′
𝑗 , 𝐴′

𝑗 , 𝐶′
𝑗 , 1]; 𝑆′

𝑗 ← ⊥; return 𝑀 [|𝑀 |]
if 𝑀 ̸= ⊥ then bad← true; 𝑀 ← ⊥
𝑆′

𝑗 ← ⊥; return 𝑀

proc Enc.init(𝑁)
𝐼 ← 𝐼 + 1; 𝑁𝐼 ← 𝑁 ; 𝑆𝐼 ← 𝜀
𝑀 𝐼 , 𝐴𝐼 , 𝐶𝐼 ← 𝛬; return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝐶 ← 𝜌𝑁𝑖,𝐴𝑖,𝑀𝑖,0(𝑀)
𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝐶𝑖 ← 𝐶𝑖 ‖ 𝐶
𝐻[𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 0]←𝑀 𝑖; return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝐶 ← 𝜌𝑁𝑖,𝐴𝑖,𝑀𝑖,1(𝑀); 𝑆𝑖 ← ⊥
𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝐶𝑖 ← 𝐶𝑖 ‖ 𝐶
𝐻[𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 1]←𝑀 𝑖; return 𝐶

proc Dec.init(𝑁) Game 𝐺3
𝐽 ← 𝐽 + 1; 𝑁 ′

𝐽 ← 𝑁 ; 𝑆′
𝐽 ← 𝜀

𝑀 ′
𝐽 , 𝐴′

𝐽 , 𝐶′
𝐽 ← 𝛬; return 𝐽

proc Dec.next(𝑗, 𝐴, 𝐶)
if 𝑗 > 𝐽 or 𝑆′

𝑗 = ⊥ then return ⊥
𝐴′

𝑗 ← 𝐴′
𝑗 ‖𝐴; 𝐶′

𝑗 ← 𝐶′
𝑗 ‖ 𝐶

if 𝐻[𝑁 ′
𝑗 , 𝐴′

𝑗 , 𝐶′
𝑗 , 0] ̸= ⊥ then

𝑀 ′
𝑗 ←𝑀 ← 𝐻[𝑁 ′

𝑗 , 𝐴′
𝑗 , 𝐶′

𝑗 , 0]; return 𝑀 [|𝑀 |]
𝑀 ← 𝜌−1

𝑁′
𝑗

,𝐴′
𝑗

,𝑀 ′
𝑗

,0(𝐶)
if 𝑀 = ⊥ then 𝑆′

𝑗 ← ⊥ else 𝑀 ′
𝑗 ←𝑀 ′

𝑗 ‖𝑀
return 𝑀

proc Dec.last(𝑗, 𝐴, 𝐶)
if 𝑗 > 𝐽 or 𝑆′

𝑗 = ⊥ then return ⊥
𝐴′

𝑗 ← 𝐴′
𝑗 ‖𝐴; 𝐶′

𝑗 ← 𝐶; 𝑆′
𝑗 ← ⊥

if 𝐻[𝑁 ′
𝑗 , 𝐴′

𝑗 , 𝐶′
𝑗 , 0] ̸= ⊥ then

𝑀 ← 𝐻[𝑁 ′
𝑗 , 𝐴′

𝑗 , 𝐶′
𝑗 , 1]; return 𝑀 [|𝑀 |]

𝑀 ← 𝜌−1
𝑁′

𝑗
,𝐴′

𝑗
,𝑀 ′

𝑗
,1(𝐶); return 𝑀

Fig. 14: Games 𝐺1–𝐺3 in the proof of Proposition 1. Game 𝐺2 contains the corresponding boxed statements, but game 𝐺1
doesn’t. There is an implicit procedure initialize() that initializes 𝐼, 𝐽 ← 0 and 𝑍 ← ∅, and samples 𝜌𝑁,𝐴,𝑀,𝛿 ←← Inj(𝜏)
for every 𝑁 ∈ 𝒩 , 𝛿 ∈ {0, 1}, and 𝐴, 𝑀 ∈ {0, 1}** such that |𝐴| = |𝑀 |+ 1.

and thus

Pr[𝐴𝐺1 ⇒ 1]− Pr[𝐴𝐺2 ⇒ 1] ≤ Pr[𝐴𝐺2 sets bad] ≤ 𝑝 · Pr[𝐵Forge2C𝛱
2] = 𝑝 ·Advoae2-auth

𝛱 (B2) .

Game 𝐺3 is identical to game 𝐺2, except that instead of calling Enc.next(𝑖, 𝐴, ·) and Enc.last(𝑖, 𝐴, ·),
we use 𝜌𝑁𝑖,𝐴𝑖,𝑀 𝑖,0 ←← Inj(𝜏) and 𝜌𝑁𝑖,𝐴𝑖,𝑀 𝑖,1 ←← Inj(𝜏) respectively. Moreover, Dec.next(𝑖, 𝐴, ·) and
Dec.last(𝑖, 𝐴, ·) are also replaced by 𝜌−1

𝑁𝑖,𝐴𝑖,𝑀 𝑖,0 and 𝜌−1
𝑁𝑖,𝐴𝑖,𝑀 𝑖,1 respectively. Then Pr[𝐴𝐺2 ⇒ 1] =

Pr[𝐵Real2C
1 ⇒ 1]. In addition, |Pr[𝐵Rand2C

1 ⇒ 1]− Pr[𝐴𝐺3 ⇒ 1]| is exactly the gap between PRI and
MRAE, which is at most 𝑞2/2𝜏+1 + 4𝑞/2𝜏 ≤ 𝑞2/2𝜏 , by [56, Theorem 7]. Finally, game 𝐺3 coincides with
game Ideal2B𝛱 . Summing up,

Advoae2b
𝛱 (A) = Pr[𝐴𝐺1 ⇒ 1]− Pr[𝐴𝐺3 ⇒ 1] ≤ Advoae2-priv

𝛱 (B1) + 𝑝 ·Advoae2-auth
𝛱 (B2) + 𝑞2/2𝜏 .

35

proc Enc.init(𝑁)
𝐼 ← 𝐼 + 1; 𝑆𝐼 ← (𝐾, 𝑁, 1); return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
(𝐾, 𝑁, 𝑣)← 𝑆𝑖; 𝑆𝑖 ← (𝐾, 𝑁, 𝑣 + 1)
𝐶 ← Map(⟨𝑁, 𝑣, 0⟩, 𝐴, 𝑀)
return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀) Games 𝐺1, 𝐺2

if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
(𝐾, 𝑁, 𝑣)← 𝑆𝑖; 𝑆𝑖 ← ⊥
𝐶 ← Map(⟨𝑁, 𝑣, 1⟩, 𝐴, 𝑀); return 𝐶

proc Map(𝑁, 𝐴, 𝑀)
𝐶 ← E𝑁,𝐴

𝐾 (𝑀); 𝐶 ←← {0, 1}|𝑀|+𝜏

return 𝐶

proc Enc.init(𝑁)
𝐼 ← 𝐼 + 1; 𝑀 𝐼 ← 𝛬; 𝐴𝐼 ← 𝛬
𝑆𝐼 ← (𝐾, 𝑁, 1); return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
(𝐾, 𝑁, 𝑣)← 𝑆𝑖; 𝑆𝑖 ← (𝐾, 𝑁, 𝑣 + 1)
𝐶 ← Map(⟨𝑁, 𝑣, 0⟩, 𝐴, 𝑀)
𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝐴𝑖 ← 𝐴𝑖 ‖𝐴
𝒵 ← 𝒵 ∪ {(𝑁, 𝐴, 𝑀 , 0)}; return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
(𝐾, 𝑁, 𝑣)← 𝑆𝑖; 𝑆𝑖 ← ⊥
𝐶 ← Map(⟨𝑁, 𝑣, 1⟩, 𝐴, 𝑀)
𝑀 𝑖 ←𝑀 𝑖 ‖𝑀 ; 𝐴𝑖 ← 𝐴𝑖 ‖𝐴
𝒵 ← 𝒵 ∪ {(𝑁, 𝐴, 𝑀 , 1)}; return 𝐶

proc Map(𝑁, 𝐴, 𝑀) Games 𝑃1, 𝑃2

𝐶 ← E𝑁,𝐴
𝐾 (𝑀); 𝐶 ←← {0, 1}|𝑀|+𝜏

𝐻[𝑁, 𝐴, 𝐶]←𝑀 ; return 𝐶

proc MapInv(𝑁, 𝐴, 𝐶)
if 𝐻[𝑁, 𝐴, 𝐶] ̸= ⊥ then return 𝐻[𝑁, 𝐴, 𝐶]
𝑀 ← D𝑁,𝐴

𝐾 (𝐶); 𝑀 ← ⊥
return 𝑀

proc finalize (𝑁, 𝐴, 𝐶, 𝑏)
if |𝐴| ̸= |𝐶| or (𝑁, 𝐴, 𝐶, 𝑏) ∈ 𝒵 then return false
𝑚← |𝐶|
if 𝑚 = 0 then return false
for 𝑖← 1 to 𝑚− 𝑏 do

𝑀 ← MapInv(⟨𝑁, 𝑖, 0⟩, 𝐴[𝑖], 𝐶[𝑖])
if 𝑀 = ⊥ then return false

if 𝑏 = 0 then return true
else return (MapInv(⟨𝑁, 𝑚, 1⟩, 𝐴[𝑚], 𝐶[𝑚]) ̸= ⊥)

Fig. 15: Games 𝐺1, 𝐺2, 𝑃1, 𝑃2 used in the proof of Theorem 2. Games 𝐺2 and 𝑃2 contain the corresponding boxed state-
ments, but games 𝐺1 and 𝑃1 do not. In each game there is an implicit procedure initialize() that samples 𝐾 ←← K, and
initializes 𝐼 ← 0 and 𝒵 ← ∅.

E.3 Proof of Proposition 2

Constructing B1 is trivial: it ignores its decryption oracles and runs A1 on its encryption oracles. Then
Pr[BReal2B𝛱

1 ⇒ 1] = Pr[A Real2C𝛱
1 ⇒ 1], and |Pr[BIdeal2B

1 ⇒ 1] − Pr[A Rand2C
1 ⇒ 1]| is exactly

the gap between PRI and MRAE, which is at most 𝑞2/2𝜏+1 + 4𝑞/2𝜏 ≤ 𝑞2/2𝜏 . Hence Advoae2b
𝛱 (B1) =

Advoae2-priv
𝛱 (A1)+𝑞2/2𝜏 . The reduction 𝑅2 creates from A2 adversary B2 as follows. The latter runs the

former on its encryption oracles and maintains the set 𝒵 of the partial decryption chains (𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 𝛿𝑖)
as in game Forge2C𝛱 . When A2 outputs (𝑁, 𝐴, 𝐶, 𝑏), adversary B2 runs the following code:

if |𝐴| ≠ |𝐶| or (𝑁, 𝐴, 𝐶, 𝑏) ∈ 𝒵 or |𝐶| = 0 then return 0
Dec.init(𝑁); 𝑚← |𝐶|
for 𝑖← 1 to 𝑚− 𝑏 do

(𝑀, 𝑆)← Dec.next(1, 𝐴[𝑖], 𝐶[𝑖])
if 𝑀 = ⊥ then return 0

if 𝑏 = 1 and Dec.last(1, 𝐴[𝑚], 𝐶[𝑚]) = ⊥ then return 0
return 1

Then Pr[BIdeal2B𝛱
2 ⇒ 1] ≤ ℓ/2𝜏 and Advoae2-auth

𝛱 (A2) = Pr[BReal2B𝛱
2 ⇒ 1]. Hence Advoae2-auth

𝛱 (A2) ≤
Advoae2b

𝛱 (B2) + ℓ/2𝜏 .

E.4 Proof of Theorem 2

The reduction 𝑅1 creates from A1 adversary B1 as follows. The latter runs the former and simu-
lates game nRealSTREAM[𝛱,⟨·⟩], but each call to E𝐾(·) is replaced by the corresponding query to the
first oracle of B1, respectively. Adversary B1 then outputs the same guess as A1. Consider games 𝐺1
and 𝐺2 in Fig. 15. Game 𝐺1 corresponds to game nRealSTREAM[𝛱,⟨·⟩], and game 𝐺2 corresponds to

36

proc Enc.init(𝑁)
𝐼 ← 𝐼 + 1; 𝑆𝐼 ← (𝐾, 𝑁, 0); return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
(𝐾, 𝑉, 𝑑)← 𝑆𝑖; (𝐶, 𝑉)← Map(𝑉, ⟨𝐴, 𝑑⟩, 𝑀)
𝑆𝑖 ← (𝐾, 𝑉, 1); return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
(𝐾, 𝑉, 𝑑)← 𝑆𝑖

if 𝑑 = 0 then 𝑑← 3 else 𝑑← 2
(𝐶, 𝑉)← Map(𝑉, ⟨𝐴, 𝑑⟩, 𝑀); 𝑆𝑖 ← ⊥; return 𝐶

proc Map(𝑉, 𝐴, 𝑀)
𝐶 ← 𝜋(𝑉, 𝐴, 𝑀)
if 𝐻[𝑉, 𝐴, 𝑀] = ⊥ then 𝐻[𝑉, 𝐴, 𝑀]← Ev(𝑉, 𝐴, 𝑀, 𝐶)
𝑉 ′ ← 𝐻[𝑉, 𝐴, 𝑀]; return (𝐶, 𝑉 ′)

proc Ev(𝑉, 𝐴, 𝑀, 𝐶) Games 𝐺1, 𝐺2

𝐴 = ⟨𝐴′, 𝑑⟩
if 𝑑 ̸∈ {0, 1} then return ⊥
elsif |𝑀 | ≥ 𝑛 then 𝑉 ′ ← 𝐶[1, 𝑛]⊕𝑀 [1, 𝑛]
else 𝐿← 𝜋(𝑉, ⟨𝐴′, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛); 𝑉 ′ ← 𝐿[1, 𝑛]
if (𝑉 ′ ∈ Dom) then bad← true; 𝑉 ′ ←← {0, 1}𝑛∖Dom
Dom← Dom ∪ {𝑉 ′}; return 𝑉 ′

proc 𝜋(𝑉, 𝐴, 𝑀)
if 𝑋[𝑉, 𝐴, 𝑀] ̸= ⊥ then return 𝑋[𝑉, 𝐴, 𝑀]
𝐶 ← E𝑉,𝐴

𝐾 (𝑀); 𝑋[𝑉, 𝐴, 𝑀]← 𝐶; return 𝐶

proc Ev(𝑉, 𝐴, 𝑀, 𝐶) Game 𝐺3
if |𝑀 | ≥ 𝑛 then 𝑉 ′ ← 𝐶[1, 𝑛]⊕𝑀 [1, 𝑛]
elsif 𝐴 = ⟨𝐴′, 𝑑⟩ then

𝐿← 𝜋(𝑉, ⟨𝐴′, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛); 𝑉 ′ ← 𝐿[1, 𝑛]
if (𝑉 ′ ∈ Dom) then bad← true; 𝑉 ′ ←← {0, 1}𝑛∖Dom
Dom← Dom ∪ {𝑉 ′}; return 𝑉 ′

proc 𝜋(𝑉, 𝐴, 𝑀)
if 𝑋[𝑉, 𝐴, 𝑀] ̸= ⊥ then return 𝑋[𝑉, 𝐴, 𝑀]
𝐶 ←← {0, 1}|𝑀|+𝜏 ; 𝑋[𝑉, 𝐴, 𝑀]← 𝐶; return 𝐶

Fig. 16: Games 𝐺1–𝐺3 used in the proof of Theorem 3. Game 𝐺2 contains the corresponding boxed statements but game
𝐺1 doesn’t. Each game maintains local procedures Map, Ev, 𝜋 that are inaccessible to the adversary. The games share
the common procedures Enc.init, Enc.next, Enc.last, Map. In each game, there is an implicit procedure initialize() that
initializes Dom← ∅ and 𝐼, 𝐽 ← 0, and samples 𝐾 ←← K.

nRandSTREAM[𝛱,⟨·⟩]. Game 𝐺2 is identical to game 𝐺1, except that instead of using E𝑁,𝐴
𝐾 , we’ll use

$(·, ·, ·). Then

Advnoae-priv
STREAM[𝛱,⟨·⟩](A1) = Pr[A 𝐺1

1 ⇒ 1]− Pr[A 𝐺2
1 ⇒ 1] = Advnae

𝛱 (B1) .

The reduction 𝑅2 creates from A2 adversary B2 as follows. The latter runs the former and simulates
game 𝑃1, but each call to E𝐾(·) or D𝐾(·) is replaced by the corresponding query to the first or second
oracle of B2, respectively. It outputs 1 if the simulated finalize returns true, and outputs 0 otherwise.
Consider games 𝑃1 and 𝑃2 in Fig. 15. Game 𝑃1 corresponds to game nForgeSTREAM[𝛱,⟨·⟩]. Game 𝐺2 is
identical to game 𝐺1, except that instead of using E𝑁,𝐴

𝐾 and D𝑁,𝐴
𝐾 , we’ll use $(·, ·, ·) and ⊥(·, ·, ·). Then

Pr[A 𝑃1
2]− Pr[A 𝑃2

2] = Advnae
𝛱 (B2) .

On the other hand, Pr[𝐴𝑃2
2] = 0, and thus Advnoae-auth

STREAM[𝛱,⟨·⟩](A2) ≤ Advnae
𝛱 (B2).

E.5 Proof of Theorem 3

Wlog, assume that adversaries do not make invalid queries that result in ⊥-answers. For privacy, consider
games 𝐺1–𝐺3 in Fig. 16. Game 𝐺1 coincides with game dRealCHAIN[𝛱,⟨·⟩,𝑛]. Game 𝐺2 is identical to
game 𝐺1, except that we want the state 𝑉 ′ to be never repeated, but still maintain the following
consistency: calling Map with the same (𝑉, 𝐴, 𝑀) always results in the same (𝐶, 𝑉 ′). The two games
are identical-until-bad, and thus

Pr[A 𝐺1
2 ⇒ 1]− Pr[A 𝐺2

2 ⇒ 1] ≤ Pr[𝐺2 sets bad] .

The reduction 𝑅1 creates from A1 adversary B1 as follows. The latter runs the former and simulates
game 𝐺2, but each call to E𝐾(·) is replaced by the corresponding query to the encryption oracle of B1.

37

The adversary B2 then samples 𝑏 ←← {0, 1}. If 𝑏 = 1, it returns 1 if its simulated game 𝐺2 sets bad
(and also terminates the simulated game immediately), and returns 0 otherwise. Otherwise, it returns
the same guess of A . Note that in game 𝐺2,

(a) Calling Enc.next(𝑖, 𝐴𝑖, 𝑀𝑖) and Enc.last(𝑗, 𝐴𝑗 , 𝑀𝑗) will never result in the same Map(𝑉, 𝐴, ·), due to
the domain separation.

(b) Calling Enc.next(𝑖, 𝐴𝑖, 𝑀𝑖) and Enc.next(𝑗, 𝐴𝑗 , 𝑀𝑗) result in the same Map(𝑉, 𝐴, ·) if and only
if (𝑁𝑖, 𝐴𝑖, 𝑀 𝑖) = (𝑁𝑗 , 𝐴𝑗 , 𝑀 𝑗) and 𝐴𝑖 = 𝐴𝑗 , where 𝐴𝑘 and 𝑀𝑘 are the segmented-AD and
segmented-message of the 𝑘-th chain prior to 𝐴𝑘 and 𝑀𝑘 respectively, for 𝑘 ∈ {𝑖, 𝑗}. We will justify
this claim later. The similar claim holds for Enc.last as well.

Then adversary B1 never repeats a prior (𝑁, 𝐴) to its encryption oracle. Moreover, Pr[A 𝐺2
1 ⇒ 1] =

Pr[BE𝐾 ,D𝐾
1 ⇒ 1 | 𝑏 = 0] and Pr[A 𝐺2

1 sets bad] = Pr[BE𝐾 ,D𝐾
1 ⇒ 1 | 𝑏 = 1]. Hence

Pr[A 𝐺1
1 ⇒ 1] ≤ Pr[A 𝐺2

1 ⇒ 1] + Pr[A 𝐺2
1 sets bad] = 2 Pr[BE𝐾 ,D𝐾

1 ⇒ 1] .

To justify the claim (b) above, terminate the game 𝐺2 as soon as we have two calls Enc.next(𝑖, 𝐴𝑖, 𝑀𝑖)
and Enc.next(𝑗, 𝐴𝑗 , 𝑀𝑗) that result in the same Map(𝑉, 𝐴, ·), but either (𝑁𝑖, 𝐴𝑖, 𝑀 𝑖) ̸= (𝑁𝑗 , 𝐴𝑗 , 𝑀 𝑗) or
𝐴𝑖 ̸= 𝐴𝑗 . Since calling Enc.next(𝑖, 𝐴𝑖, 𝑀𝑖) results in Map(𝑉, 𝐴, ·), it means that 𝐴 = ⟨𝐴𝑖, 𝑑⟩. Likewise,
since calling Enc.next(𝑗, 𝐴𝑗 , 𝑀𝑗) results in Map(𝑉, 𝐴, ·), it means that 𝐴 = ⟨𝐴𝑗 , 𝑑′⟩. In other words, we
must have 𝐴𝑖 = 𝐴𝑗 . Hence (𝑁𝑖, 𝐴𝑖, 𝑀 𝑖) ̸= (𝑁𝑗 , 𝐴𝑗 , 𝑀 𝑗). We consider the following cases.

Case 1: |𝑀 𝑖|, |𝑀 𝑗 | > 0. Let 𝑀 ′
𝑖 be the prefix of 𝑀 𝑖 that consists of |𝑀 𝑖| − 1 components. Define 𝐴′

𝑖

for 𝐴𝑖, 𝑀 ′
𝑗 for 𝑀 𝑗 , and 𝐴′

𝑗 for 𝐴𝑗 similarly. Let 𝐴′
𝑖 = 𝐴𝑖[|𝐴𝑖| − 1] and 𝑀 ′

𝑖 = 𝑀 𝑖[|𝑀 𝑖| − 1]. Define 𝐴′
𝑗

and 𝑀 ′
𝑗 similarly. Then due to the unique sampling of the state 𝑉 ′, earlier, the calls Enc.next(𝑖, 𝐴′

𝑖, 𝑀 ′
𝑖)

and Enc.next(𝑗, 𝐴′
𝑗 , 𝑀 ′

𝑗) would result in the same Map(𝑉 ′, 𝐴′, ·). Since the game didn’t terminate then,
it means that (𝑁𝑖, 𝑀 ′

𝑖, 𝐴𝑖) = (𝑁𝑗 , 𝑀 ′
𝑗 , 𝐴𝑗). Because (𝑁𝑖, 𝐴𝑖, 𝑀 𝑖) ̸= (𝑁𝑗 , 𝐴𝑗 , 𝑀 𝑗), we must have

𝑀𝑖 ̸= 𝑀𝑗 , meaning that either Enc.next(𝑖, 𝐴𝑖, 𝑀𝑖) or Enc.next(𝑗, 𝐴𝑗 , 𝑀𝑗) is invalid, contradicting our
assumption.

Case 2: |𝑀 𝑖| > 0 and |𝑀 𝑗 | = 0. Since calling Enc.next(𝑖, 𝐴𝑖, 𝑀𝑖) results in Map(𝑉, 𝐴, ·), it means that
𝐴 = ⟨𝐴𝑖, 1⟩. However, since calling Enc.next(𝑗, 𝐴𝑗 , 𝑀𝑗) results in Map(𝑉, 𝐴, ·), it means that 𝐴 = ⟨𝐴𝑗 , 0⟩,
which is a contradiction.

Case 3: |𝑀 𝑖| = 0 and |𝑀 𝑗 | > 0. This is similar to Case 2.

Case 4: |𝑀 𝑖| = |𝑀 𝑗 | = 0, meaning that 𝑀 𝑖 = 𝑀 𝑗 = 𝛬. Since calling Enc.next(𝑖, 𝐴𝑖, 𝑀𝑖) results in
Map(𝑉, 𝐴, ·), it means that 𝑉 = 𝑁𝑖. Likewise, since calling Enc.next(𝑗, 𝐴𝑗 , 𝑀𝑗) results in Map(𝑉, 𝐴, ·),
it means that 𝑉 = 𝑁𝑗 . Because (𝑁𝑖, 𝐴𝑖, 𝑀 𝑖) ̸= (𝑁𝑗 , 𝐴𝑗 , 𝑀 𝑗), we must have 𝑀𝑖 ̸= 𝑀𝑗 , meaning that
either Enc.next(𝑖, 𝐴𝑖, 𝑀𝑖) or Enc.next(𝑗, 𝐴𝑗 , 𝑀𝑗) is invalid, contradicting our assumption.

Next, game 𝐺3 is identical to game 𝐺2 except that, we use $(·) instead of E𝐾 . Note that claims (a) and
(b) above also hold for game 𝐺3, and thus game 𝐺3 coincides with game dRandCHAIN[𝛱,⟨·⟩,𝑛]. Then
Pr[A 𝐺3

1 ⇒ 1] = Pr[B$(·),⊥(·)
1 ⇒ 1 | 𝑏 = 0] and Pr[A 𝐺3

1 sets bad] = Pr[B$(·),⊥(·)
1 ⇒ 1 | 𝑏 = 1]. Hence

Pr[A 𝐺3
1 ⇒ 1] = 2 Pr[B$(·),⊥(·)

1 ⇒ 1]− Pr[A 𝐺3
1 sets bad],

Hence

Advdoae-priv
CHAIN[𝛱,⟨·⟩,𝑛](A1) = Pr[A 𝐺1

1 ⇒ 1]− Pr[A 𝐺3
1 ⇒ 1] ≤ 2 Advnae0

𝛱 (B1) + Pr[A 𝐺3
1 sets bad] .

What’s left is to show that Pr[A 𝐺3
1 sets bad] ≤ 𝑝2/2𝑛. Terminate the game immediately when bad gets

set; it doesn’t change the probability that 𝐺3 sets bad. The flag bad is triggered only if the state 𝑉 ′

repeats one of its prior values. Consider the following cases.

38

proc Enc.init(𝑁)
𝐼 ← 𝐼 + 1; 𝐴𝐼 ← 𝛬; 𝐶𝐼 ← 𝛬; 𝑁𝐼 ← 𝑁
𝑆𝐼 ← (𝐾, 𝑁, 𝑑); return 𝐼

proc Enc.next(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
(𝐾, 𝑉, 𝑑)← 𝑆𝑖; (𝐶, 𝑉)← Map(𝑉, ⟨𝐴, 𝑑⟩, 𝑀)
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝐶𝑖 ← 𝐶𝑖 ‖ 𝐶
𝒵 ← 𝒵 ∪ {(𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 0)}; 𝑆𝑖 ← (𝐾, 𝑉, 1)
return 𝐶

proc Enc.last(𝑖, 𝐴, 𝑀)
if 𝑖 > 𝐼 or 𝑆𝑖 = ⊥ then return ⊥
(𝐾, 𝑉, 𝑑)← 𝑆𝑖

if 𝑑 = 0 then 𝑑← 3 else 𝑑← 2
(𝐶, 𝑉)← Map(𝑉, ⟨𝐴, 𝑑⟩, 𝑀)
𝐴𝑖 ← 𝐴𝑖 ‖𝐴; 𝐶𝑖 ← 𝐶𝑖 ‖ 𝐶
𝒵 ← 𝒵 ∪ {(𝑁𝑖, 𝐴𝑖, 𝐶𝑖, 1)}
𝑆𝑖 ← ⊥; 𝐶 ← 𝜋(𝑉, 𝐴, 𝑀); return 𝐶

proc Map(𝑉, 𝐴, 𝑀)
𝐶 ← 𝜋(𝑉, 𝐴, 𝑀)
if 𝐻[𝑉, 𝐴, 𝑀] = ⊥ then 𝐻[𝑉, 𝐴, 𝑀]← Ev(𝑉, 𝐴, 𝑀, 𝐶)
𝑉 ′ ← 𝐻[𝑉, 𝐴, 𝑀]; return (𝐶, 𝑉 ′)

proc MapInv(𝑉, 𝐴, 𝐶)
𝑀 ← 𝜋−1(𝑉, 𝐴, 𝐶)
if 𝑀 ̸= ⊥ then 𝑉 ′ ← 𝐻[𝑉, 𝐴, 𝑀] else 𝑉 ′ ← ⊥
return (𝑀, 𝑉 ′)

proc finalize (𝑁, 𝐴, 𝐶, 𝛿)
if |𝐴| ≠ |𝐶| or (𝑁, 𝐴, 𝐶, 𝛿) ∈ 𝒵 then return false
if |𝐶| = 0 then return false
𝑚← |𝐶|; 𝑉 ← 𝑁
for 𝑖← 1 to 𝑚− 𝛿 do

if 𝑖 = 1 then 𝑑← 0 else 𝑑← 1
(𝑀, 𝑉)← MapInv(𝑉, ⟨𝐴[𝑖], 𝑑⟩, 𝐶[𝑖])
if 𝑀 = ⊥ then return false

if (𝛿 = 1) ∧ (|𝐶| = 1) then 𝑑← 3 else 𝑑← 2
if 𝛿 = 0 then return true
else return (MapInv(𝑉, ⟨𝐴[𝑚], 𝑑⟩, 𝐶[𝑚]) ̸= ⊥)

proc Ev(𝑉, 𝐴, 𝑀, 𝐶) Games 𝑃1, 𝑃2

if |𝑀 | ≥ 𝑛 then 𝑉 ′ ← 𝐶[1, 𝑛]⊕𝑀 [1, 𝑛]
elsif 𝐴 = ⟨𝐴′, 𝑑⟩ then

𝐿← 𝜋(𝑉, ⟨𝐴′, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛); 𝑉 ′ ← 𝐿[1, 𝑛]
if (𝑉 ′ ∈ Dom) then bad← true; 𝑉 ′ ←← {0, 1}𝑛∖Dom
Dom← Dom ∪ {𝑉 ′}; return 𝑉 ′

proc 𝜋(𝑉, 𝐴, 𝑀)
if 𝑋[𝑉, 𝐴, 𝑀] ̸= ⊥ then return 𝑋[𝑉, 𝐴, 𝑀]
𝐶 ← E𝑉,𝐴

𝐾 (𝑀); 𝑋[𝑉, 𝐴, 𝑀]← 𝐶; 𝑌 [𝑉, 𝐴, 𝐶]←𝑀
return 𝐶

proc 𝜋−1(𝑉, 𝐴, 𝐶)
if 𝑌 [𝑉, 𝐴, 𝐶] ̸= ⊥ then return 𝑌 [𝑉, 𝐴, 𝐶]
return D𝑉,𝐴

𝐾 (𝐶)

proc Ev(𝑉, 𝐴, 𝑀, 𝐶) Game 𝑃3
if |𝑀 | ≥ 𝑛 then 𝑉 ′ ← 𝐶[1, 𝑛]⊕𝑀 [1, 𝑛]
elsif 𝐴 = ⟨𝐴′, 𝑑⟩ then

𝐿← 𝜋(𝑉, ⟨𝐴′, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛); 𝑉 ′ ← 𝐿[1, 𝑛]
if (𝑉 ′ ∈ Dom) then 𝑉 ′ ←← {0, 1}𝑛∖Dom
Dom← Dom ∪ {𝑉 ′}; return 𝑉 ′

proc 𝜋(𝑉, 𝐴, 𝑀)
if 𝑋[𝑉, 𝐴, 𝑀] ̸= ⊥ then return 𝑋[𝑉, 𝐴, 𝑀]
𝐶 ←← {0, 1}|𝑀|+𝜏 ; 𝑋[𝑉, 𝐴, 𝑀]← 𝐶; 𝑌 [𝑉, 𝐴, 𝐶]←𝑀
return 𝐶

proc 𝜋−1(𝑉, 𝐴, 𝐶)
if 𝑌 [𝑉, 𝐴, 𝐶] ̸= ⊥ then return 𝑌 [𝑉, 𝐴, 𝐶]
return ⊥

Fig. 17: Games 𝑃1–𝑃3 used in the proof of Theorem 3. Game 𝑃2 contains the corresponding boxed statements but game 1
doesn’t. Each game maintains local procedures Map, MapInv, Ev, 𝜋, and 𝜋−1 that are inaccessible to the adversary. The
games share the common procedures Enc.init, Enc.next, Enc.last, Map, MapInv, and finalize. In each game, there is an
implicit procedure initialize() that initializes 𝒵, Dom← ∅ and 𝐼, 𝐽 ← 0, and samples 𝐾 ←← K.

Case 1: 𝑉 ′ ← 𝐿[1, 𝑛], where 𝐿 is created by calling 𝜋(𝑉, ⟨𝐴′, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛). There must be no
prior call to Map(𝑉, 𝐴, 𝑀), where 𝐴 = ⟨𝐴′, 𝑑⟩ otherwise we’ll return the consistent value 𝐻[𝑉, 𝐴, 𝑀],
and this line of code is not triggered. Due to the one-to-one correspondence between (𝑉, 𝐴, 𝑀) and
(𝑉, ⟨𝐴′, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛), there is no prior call to 𝜋(𝑉, ⟨𝐴′, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛). Hence 𝐿 is a fresh random
string, and thus the chance that 𝑉 ′ repeats a prior value is at most 𝑝/2𝑛.

Case 2: 𝑉 ′ ← 𝐶[1, 𝑛] ⊕𝑀 [1, 𝑛]. Again, there must be no prior call to Map(𝑉, 𝐴, 𝑀), otherwise we’ll
return the consistent value 𝐻[𝑉, 𝐴, 𝑀], and this line of code is not triggered. Then 𝐶 is a fresh random
string, and thus the chance that 𝑉 ′ repeats a prior value is at most 𝑝/2𝑛.

Summing up over 𝑝 queries, the chance that 𝐺3 sets bad is at most 𝑝2/2𝑛.

For authenticity, consider games 𝑃1–𝑃3 in Fig. 17. Game 𝑃1 coincides with game dForgeCHAIN[𝛱,⟨·⟩,𝑛].
Game 𝑃2 is identical to game 𝑃1, except that we want the state 𝑉 ′ to be never repeated, but still
maintain the following consistency: calling Map with the same (𝑉, 𝐴, 𝑀) always results in the same

39

(𝐶, 𝑉 ′). The two games are identical-until-bad, and thus

Pr[A 𝐺1
2 ⇒ 1]− Pr[A 𝐺2

2 ⇒ 1] ≤ Pr[𝐺2 sets bad] .

The reduction 𝑅2 creates from A2 adversary B2 as follows. The latter runs the former and simulates
game 𝑃2, but each call to E𝐾(·) or D𝐾(·) is replaced by the corresponding query to the first and second
oracles of B2 respectively. The adversary B2 then samples 𝑏 ←← {0, 1}. If 𝑏 = 1, it returns 1 if its
simulated game 𝑃2 sets bad (and terminates the simulated game immediately), and returns 0 otherwise.
Otherwise, it returns 1 if the simulated finalize returns true, and returns 0 otherwise. Again, note that
in game 𝑃2,

(i) Calling Enc.next(𝑖, 𝐴𝑖, 𝑀𝑖) and Enc.last(𝑗, 𝐴𝑗 , 𝑀𝑗) will never result in the same Map(𝑉, 𝐴, ·), due to
the domain separation.

(ii) Calling Enc.next(𝑖, 𝐴𝑖, 𝑀𝑖) and Enc.next(𝑗, 𝐴𝑗 , 𝑀𝑗) result in the same Map(𝑉, 𝐴, ·) if and only
if (𝑁𝑖, 𝐴𝑖, 𝑀 𝑖) = (𝑁𝑗 , 𝐴𝑗 , 𝑀 𝑗) and 𝐴𝑖 = 𝐴𝑗 , where 𝐴𝑘 and 𝑀𝑘 are the segmented-AD and
segmented-message of the 𝑘-th chain prior to 𝐴𝑘 and 𝑀𝑘 respectively, for 𝑘 ∈ {𝑖, 𝑗}. The simi-
lar claim holds for Enc.last as well.

Then adversary B2 never repeats a prior (𝑁, 𝐴) to its encryption oracle. Moreover, Pr[A 𝑃2
2 ⇒ 1] =

Pr[BE𝐾 ,D𝐾
2 ⇒ 1 | 𝑏 = 0] and Pr[A 𝑃2

2 sets bad] = Pr[BE𝐾 ,D𝐾
2 ⇒ 1 | 𝑏 = 1]. Hence

Pr[A 𝑃1
2] ≤ Pr[A 𝑃2

2] + Pr[A 𝑃2
2 sets bad] = 2 Pr[BE𝐾 ,D𝐾

2 ⇒ 1] .

Next, game 𝑃3 is identical to game 𝑃2 except that, we use $(·) and ⊥(·) instead of E𝐾 and D𝐾(·). Then
Pr[A 𝑃3

2] = Pr[B$(·),⊥(·)
2 ⇒ 1 | 𝑏 = 0] and Pr[A 𝑃3

2 sets bad] = Pr[B$(·),⊥(·)
2 ⇒ 1 | 𝑏 = 1]. Hence

Pr[A 𝑃3
2] = 2 Pr[B$(·),⊥(·)

2 ⇒ 1]− Pr[A 𝑃3
2 sets bad] .

We now show that Pr[A 𝑃3
2 sets bad] ≤ 𝑞2/2𝑛. Terminate the game immediately when bad gets set; it

doesn’t change the probability that 𝑃3 sets bad. The flag bad is triggered only if the state 𝑉 ′ repeats
one of its prior values. Consider the following cases.

Case 1: 𝑉 ′ ← 𝐿[1, 𝑛], where 𝐿 is created by calling 𝜋(𝑉, ⟨𝐴, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛). There must be no prior
call to Map(𝑉, 𝐴, 𝑀), otherwise we’ll return the consistent value 𝐻[𝑉, 𝐴, 𝑀], and this line of code is not
triggered. Due to the one-to-one correspondence between (𝑉, 𝐴, 𝑀) and (𝑉, ⟨𝐴′, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛), there is
no prior call to 𝜋(𝑉, ⟨𝐴′, 𝑑 + 4⟩, 𝑀 ‖ 0𝑛). Hence 𝐿 is a fresh random string, and thus the chance that 𝑉 ′

repeats a prior value is at most 𝑞/2𝑛.

Case 2: 𝑉 ′ ← 𝐶[1, 𝑛] ⊕𝑀 [1, 𝑛]. Again, there must be no prior call to Map(𝑉, 𝐴, 𝑀), otherwise we’ll
return the consistent value 𝐻[𝑉, 𝐴, 𝑀], and this line of code is not triggered. Then 𝐶 is a fresh random
string, and thus the chance that 𝑉 ′ repeats a prior value is at most 𝑞/2𝑛.
Summing up over 𝑞 queries, the chance that 𝑃3 sets bad is at most 𝑞2/2𝑛.

We now show that Pr[A 𝑃3
2] = 0, and thus

Advdoae-auth
CHAIN[𝛱,⟨·⟩,𝑛](A2) = Pr[A 𝑃1

2] ≤ 2 Advnae0
𝛱 (B2) + Pr[A 𝑃3

2 sets bad] ≤ 2 Advnae0
𝛱 (B2) + 𝑞2/2𝑛 .

To justify the claim above, suppose that the query finalize(𝑁, 𝐴, 𝐶, 𝛿) returns true. Let 𝐴* be the
segmented string such that |𝐴*| = |𝐴| and 𝐴*[𝑘] is of the form ⟨𝐴[𝑘], 𝑑𝑘⟩ for every 1 ≤ 𝑘 ≤ |𝐴|, where
(1) 𝑑𝑘 = 0 if 𝑘 = 1 and (𝛿 = 0 or |𝐴| > 1), (2) 𝑑𝑘 = 1 if 1 < 𝑘 < |𝐴| or (𝑘 = |𝐴| and 𝛿 = 0),
(3) 𝑑𝑘 = 2 if 𝛿 = 1, 𝑘 = |𝐴|, and |𝐴| > 1, and (4) 𝑑𝑘 = 3 otherwise. Recall that the finalize query
internally calls MapInv(𝑁, 𝐴*[1], 𝐶[1]). Because finalize(𝑁, 𝐴, 𝐶, 𝛿) returns true, the call to MapInv
above must not return ⊥. Due to the domain separation in the use of AD, this means that there is some

40

(𝑁, 𝐴𝑖, 𝐶𝑖, 𝛿𝑖) ∈ 𝒵 of the same nonce 𝑁 such that 𝐴*
𝑖 [1] = 𝐴*[1] and 𝐶𝑖[1] = 𝐶[1], where 𝐴*

𝑖 is defined
from 𝐴𝑖 as 𝐴* was defined from 𝐴 above. Let ℓ be the biggest number such that 𝐴*

𝑖 [𝑘] = 𝐴*[𝑘] and
𝐶𝑖[𝑘] = 𝐶[𝑘] for every 𝑘 ≤ ℓ. Above, if there are many possible choices for tuples (𝑁, 𝐴𝑖, 𝐶𝑖, 𝛿𝑖), we
would pick the one that maximizes ℓ. We consider the following cases.

Case 1: |𝐴*| = ℓ and |𝐴*
𝑖 | = ℓ, meaning that 𝐴* = 𝐴*

𝑖 and 𝐶𝑖 = 𝐶. In particular, since 𝐴* and 𝐴*
𝑖

agree in their last components, due to the domain separation in the use of AD, we must have 𝛿𝑖 = 𝛿.
But then (𝑁, 𝐴, 𝐶, 𝛿) ∈ 𝒵, and thus the answer for the finalize query would be false, which is a
contradiction.

Case 2: |𝐴*| = ℓ and |𝐴*
𝑖 | > ℓ. Let 𝐴′ be the prefix of 𝐴*

𝑖 of ℓ components, and define 𝐶 ′ for 𝐶𝑖

similarly. Then (𝑁, 𝐴, 𝐶, 𝛿) = (𝑁, 𝐴′, 𝐶 ′, 0) ∈ 𝒵, and thus the answer for the finalize query would be
false, which is a contradiction.

Case 3: |𝐴*| > ℓ. Recall that finalize(𝑁, 𝐴, 𝐶, 𝛿) invokes MapInv(𝑉, 𝐴*[ℓ+1], 𝐶[ℓ+1]). Since finalize
returns true, this call to MapInv must not return ⊥, meaning there must be some (𝑁𝑗 , 𝐴𝑗 , 𝐶𝑗 , 𝛿𝑗) ∈ 𝒵
that runs MapInv(𝑉, 𝐴*[ℓ + 1], ·) such that 𝐴*

𝑗 [ℓ + 1] = 𝐴*[ℓ + 1] and 𝐶𝑗 [ℓ + 1] = 𝐶[ℓ + 1], where 𝐴*
𝑗

is defined from 𝐴𝑗 as 𝐴* was defined from 𝐴 above. Let 𝑀 𝑖 and 𝑀 𝑗 be the corresponding segmented
messages of 𝐶𝑖 and 𝐶𝑗 respectively. Since both (𝑁, 𝐴𝑖, 𝐶𝑖, 𝛿𝑖) and (𝑁𝑗 , 𝐴𝑗 , 𝐶𝑗 , 𝛿𝑗) result in the same
state 𝑉 in their ℓth queries, from (1) the way we re-sample states to avoid collision and (2) the fact that
claims (i) and (ii) also hold for game 𝑃3, we must have 𝑁𝑗 = 𝑁 , 𝐴*

𝑗 [𝑘] = 𝐴*
𝑖 [𝑘] and 𝐶𝑗 [𝑘] = 𝐶𝑖[𝑘] for

every 𝑘 ≤ ℓ. However, now 𝐴*
𝑗 [𝑡] = 𝐴[𝑡] and 𝐶𝑗 [𝑡] = 𝐶[𝑡] for every 𝑡 ≤ ℓ + 1, violating the maximality

of (𝑁, 𝐴𝑖, 𝐶𝑖, 𝛿𝑖).

	Online Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance
	1 Introduction
	2 OAE1 Definition
	3 CPSS Attack
	4 Broader OAE1 Critique
	5 OAE2: Reformalizing Online-AE
	6 Achieving OAE2
	7 Weakening OAE2
	8 Escalating Claims, Diminishing Guarantees
	9 Concluding Remarks
	Acknowledgments
	References
	A Anticipated Objections
	B Related Work
	C MRAE Resists CPSS
	D Separating OAE1[n] and OAE2[0,n]
	E Deferred Proofs
	E.1 Proof of Theorem 1
	E.2 Proof of Proposition 1
	E.3 Proof of Proposition 2
	E.4 Proof of Theorem 2
	E.5 Proof of Theorem 3

