
Authenticated Network Time Synchronization

Benjamin Dowling
Queensland University of Technology

b1.dowling@qut.edu.au

Douglas Stebila
Queensland University of Technology

McMaster University
stebilad@mcmaster.ca

Greg Zaverucha
Microsoft Research

gregz@microsoft.com

Abstract
The Network Time Protocol (NTP) is used by many
network-connected devices to synchronize device time
with remote servers. Many security features depend on the
device knowing the current time, for example in deciding
whether a certificate is still valid. Currently, most services
implement NTP without authentication, and the authen-
tication mechanisms available in the standard have not
been formally analyzed, require a pre-shared key, or are
known to have cryptographic weaknesses. In this paper
we present an authenticated version of NTP, called ANTP,
to protect against desynchronization attacks. To make
ANTP suitable for large-scale deployments, it is designed
to minimize server-side public-key operations by infre-
quently performing a key exchange using public key cryp-
tography, then relying solely on symmetric cryptography
for subsequent time synchronization requests; moreover,
it does so without requiring server-side per-connection
state. Additionally, ANTP ensures that authentication
does not degrade accuracy of time synchronization. We
measured the performance of ANTP by implementing it
in OpenNTPD using OpenSSL. Compared to plain NTP,
ANTP’s symmetric crypto reduces the server throughput
(connections/second) for time synchronization requests
by a factor of only 1.6. We analyzed the security of ANTP
using a novel provable security framework that involves
adversary control of time, and show that ANTP achieves
secure time synchronization under standard cryptographic
assumptions; our framework may also be used to analyze
other candidates for securing NTP.

Keywords: time synchronization, Network Time Pro-
tocol (NTP), provable security, network security

1 Introduction

The Network Time Protocol (NTP) is one of the Internet’s
oldest protocols, dating back to RFC 958 [14] published
in 1985. In the simplest NTP deployment, a client device

sends a single UDP packet to a server (the request), who
responds with a single packet containing the time (the
response). The response contains the time the request was
received by the server, as well as the time the response
was sent, allowing the client to estimate the network delay
and set their clock. If the network delay is symmetric, i.e.,
the travel time of the request and response are equal, then
the protocol is perfectly accurate. Accuracy means that
the client correctly synchronizes its clock with the server
(regardless of whether the server clock is accurate in the
traditional sense, e.g., synchronized with UTC).

The importance of accurate time for security. There
are many examples of security mechanisms which (often
implicitly) rely on having an accurate clock:
• Certificate validation in TLS and other protocols.

Validating a public key certificate requires confirm-
ing that the current time is within the certificate’s
validity period. Performing validation with a slow
or inaccurate clock may cause expired certificates to
be accepted as valid. A revoked certificate may also
validate if the clock is slow, since the relying party
will not check for updated revocation information.
• Ticket verification in Kerberos. In Kerberos, authen-

tication tickets have a validity period, and proper
verification requires an accurate clock to prevent
authentication with an expired ticket.
• HTTP Strict Transport Security (HSTS) policy du-

ration. HSTS [7] allows website administrators to
protect against downgrade attacks from HTTPS to
HTTP by sending a header to browsers indicating
that HTTPS must be used instead of HTTP. HSTS
policies specify the duration of time that HTTPS
must be used. If the browser’s clock jumps ahead,
the policy may expire re-allowing downgrade attacks.
A related mechanism, HTTP Public Key Pinning [3]
also relies on accurate client time for security.

For clients who set their clocks using NTP, these se-
curity mechanisms (and others) can be attacked by a

1

mailto:b1.dowling@qut.edu.au
mailto:stebilad@mcmaster.ca
mailto:gregz@microsoft.com


network-level attacker who can intercept and modify NTP
traffic, such as a malicious wireless access point or an
insider at an ISP. In practice, most NTP servers do not
authenticate themselves to clients, so a network attacker
can intercept responses and set the timestamps arbitrarily.
Even if the client sends requests to multiple servers, these
may all be intercepted by an upstream network device
and modified to present a consistently incorrect time to
a victim. Such an attack on HSTS was demonstrated by
Selvi [30], who provided a tool to advance the clock of
victims in order to expire HSTS policies. Malhotra et al.
[10] presents a variety of attacks that rely on NTP being
unauthenticated, further emphasizing the need for authen-
ticated time synchronization. (Confidentiality, however,
is not a requirement for time synchronization, since all
time synchronization is public. Similarly, client-to-server
authentication is not a goal.)

NTP security today. Early versions of NTP (NTP,
NTPv1 and NTPv2) had no standardized authentication
method. NTPv3 added an authentication method using
pre-shared key symmetric cryptography. An extension
field in the NTP packet added a cryptographic checksum,
computed over the packet. NTPv3 negotiation of keys
and algorithms must be done out-of-band. For example,
NIST offers a secure time server, and (symmetric) keys
are transported from server to client by postal mail [21].
Establishing pre-shared symmetric keys with billions of
client PCs and other NTP-synchronizing devices seems
impractical. NTPv4 introduced a public-key authenti-
cation mechanism called Autokey which has not seen
widespread adoption; and unfortunately, Autokey uses
small 32-bit seeds that can be easily brute forced to then
forge packets. A more recent proposal is the Network
Time Security (NTS) protocol [32], which we discuss in
§??.

Most NTP servers do not support NTP authentica-
tion, and NTP clients in desktop and laptop operating
systems will set their clocks based on unauthenticated
NTP responses. On Linux and OS X, by default the
client either polls a server periodically, or creates an NTP
request when the network interface is established. In
both cases the system clock will be set to any time spec-
ified by the NTP response. On Windows, by default
clients will synchronize their clock every nine hours (us-
ing time.microsoft.com), and ignore responses that
would change the clock by more than 15 hours. These two
defaults reduce the opportunity for a man-in-the-middle
(MITM) attacker to change a victim clock and the amount
by which it may be changed, but cumulative small-scale
time changes can build in the long-term to large-scale time
inaccuracies. Such a technique is demonstrated by Teichel
et al. when attacking time-synchronization as secured by
TESLA-like protocols [34]. In Windows domains (a net-
work of computers, often in an enterprise), the domain

controller provides the time with an authenticated variant
of NTPv3 [13].

1.1 Contributions

We present the ANTP protocol for authenticated network
time synchronization, along with results on its perfor-
mance and security. ANTP protocol messages are trans-
ported in the extension fields of NTP messages. ANTP
allows a server to authenticate itself to a client using pub-
lic key certificates and public key exchange, and provides
cryptographic assurance using symmetric cryptography
that no modification of the packets has occurred in transit.
Like other authenticated time synchronization protocols
using public keys [32] we assume an out-of-band method
for certificate validation exists, as certificate validation
requires an accurate clock. We follow the direction set
by the IETF Informational document “Security Require-
ments of Time Protocols in Packet-Switched Networks”
(RFC 7384) [19] to determine what cryptographic, com-
putational, and storage properties ANTP should achieve.

ANTP has three phases. In the negotiation phase, the
client and server agree on which cryptographic algorithms
to use; this phase would be carried out quite infrequently,
on the order of monthly or less. In the key exchange phase,
the client and server use public key cryptography to es-
tablish a symmetric key that the server will use to authen-
ticate later time synchronization responses; this phases
would also be carried out infrequently, say monthly. In
the time synchronization phase, the client sends a time
synchronization request, and the server replies with an
NTP response that is symmetrically authenticated using
the key established in the key exchange phase; this may
be done frequently, perhaps daily or more often. No-
tably, the server need not keep per-client state: the server
offloads any such state to the client by encrypting and
authenticating it under a long-term symmetric key, and
the client sends that ciphertext back to the server with
each subsequent request.

The time synchronization phase of ANTP can be run in
a “no-cryptographic-latency” mode: here, the server sends
two response packets, the first being the unauthenticated
NTP packet, and the second being the same NTP packet
(with unchanged timestamps) along with the ANTP ex-
tensions providing authentication. The client measures
the roundtrip time based on the unauthenticated response,
but does not update its clock until authenticating the re-
sponse. In this way, no time synchronization inaccuracy is
added by the time required to compute the authentication
tag over the outgoing timestamp. Since the latency of
ANTP’s time synchronization phase is nearly as fast as
unauthenticated simple NTP time synchronization (only
21 microseconds slower at 50% load in our implemen-
tation as reported below), we make this mode optional

2

time.microsoft.com


Phase Throughput Latency at 50% load Latency at 90% load

ANTP – Negotiation – RSA 58 240 186 ± 26 202 ± 43
ANTP – Negotiation – ECDH 146 808 172 ± 35 233 ± 133
ANTP – Key Exchange – RSA 1 754 891 ± 121 997 ± 346
ANTP – Key Exchange – ECDH 13 210 197 ± 56 344 ± 142
ANTP – Time Synchronization 175 644 168 ± 35 230 ± 158

ANTP – All 3 phases – RSA – 2255 ± 587 2646 ± 345
ANTP – All 3 phases – ECDH – 1325 ± 499 2252 ± 1172

NTP 291 926 147 ± 34 181 ± 136

Table 1: Performance results for each phase of ANTP (top), a complete 3-phase execution of ANTP (middle), and NTP
(bottom). Throughput: mean completed phases per second. Latency: mean and standard deviation of the latency in
microseconds of server responses at either 50% or 90% server load. All are computed over 5 trials, top and bottom over
100 seconds each; see Section 4.2 for details.

since it may be sufficiently accurate for general use.

ANTP performance. Performance constraints on time
synchronization protocols are driven by the fact that time
servers are heavily loaded, and must provide responses
promptly. ANTP’s design allows it to achieve high per-
formance while maintaining high security. The frequently
performed time synchronization phase uses only symmet-
ric cryptography, making it only slightly more expensive
than simple NTP time synchronization. Since the ses-
sion key established in the key exchange phases is reused
across many time synchronization phases, expensive pub-
lic key operations are amortized, and can be separately
load-balanced. And, as noted above, ANTP offloads state
to clients, leaving the server stateless.

We implemented ANTP in OpenNTPD’s [36] imple-
mentation of NTP, using OpenSSL [37] for cryptographic
computations. Table 1 reports the performance of our
implementation, compared with unauthenticated simple
NTP. ANTP does decrease throughput and increase la-
tency, but the impact is quite reasonable. On a single core
of a server, ANTP can support 175k authenticated time
synchronization phase connections per second, a factor
of 1.6 fewer than the 291k unauthenticated simple NTP
connections per second. Latency for time synchroniza-
tion (over a 1 gigabit per second local area network) at
50% load increases from 147 microseconds for unauthen-
ticated simple NTP to 168 microseconds for ANTP’s time
synchronization phase. The other two phases, negotiation
and key exchange, will be performed far less frequently
on average by clients. Throughput of negotiation phases
is bandwidth-, not CPU-, limited. For exchange, we im-
plemented methods: 2048-bit RSA key transport and
static-ephemeral elliptic curve Diffie–Hellman key ex-
change using the NIST P-256 curve; as expected, both of
these are substantially more expensive than time synchro-
nization phases, but are also performed far less frequently.
Details of our implementation and testing methodology,

Protocol Auth. Security Asymptotic Round
type analysis trips

NTPv0–v2 — — — 1

NTPv3 sym. key no proof 1 hash 1
sym. key

NTPv4 pub. key flaws 2
n pub. key, 4

Autokey (App. ??) 1
n +1 sym. key

NTS [32] pub. key ProVerif 3
n pub. key, 4

proof [33] 2
n +2 sym. key

ANTP pub. key proof 1
n pub. key, 3

(Fig. 2) (Sec. 6) 6
n +2 sym. key

Table 2: Comparison of time synchronization protocols.
a
n +b denotes a operations that can be amortized over n
time synchronizations plus b operations per time sync.

as well as more results, appear in Section 4.
ANTP compares well with other authentication meth-

ods for NTP, as seen in Table 2. ANTP uses fewer amor-
tized public key operations compared to NTPv4 Autokey
and NTS and has fewer rounds. NTPv3 using symmet-
ric key operations is more lightweight, but is highly re-
stricted in that it only supports symmetric authentication
via pre-established symmetric keys, making it unsuitable
for deployment with billions of devices.

Because ANTP is designed-for-purpose, it is also more
efficient than applying general purpose security proto-
cols to NTP. For example, one might consider simply
applying TLS or DTLS to NTP packets to obtain authenti-
cation. Unfortunately, this results in substantial overhead
compared to ANTP. For an indicative comparison, we
measured the performance of Apache httpd [35] serving
single small pages using OpenSSL on the same server
as our ANTP results in Table 1. (Since OpenNTPD is
single-threaded, we divided the number of connections
per second supported by Apache/OpenSSL by the num-
ber of cores to provide a fair comparison.) For 2048-bit

3



RSA key transport, Apache/OpenSSL could serve 633
connections/second/core, just over one-third of the ANTP
RSA key exchange phases; and for ECDHE/ECDSA key
exchange, Apache/OpenSSL could serve only 1156 con-
nections/second/core, less than a tenth of ANTP ECDH
key exchange phases.
ANTP security. ANTP’s design is supported by a thor-
ough analysis of its cryptographic security using the prov-
able security paradigm. To do so, we extend existing
frameworks for key exchange and secure channels [2, 8] to
develop a novel framework that handles protocols where
time plays a central role. The adversary in our security
analysis is a network attacker capable of deleting, reorder-
ing, editing, and creating messages between parties. Since
our model is about time synchronization, parties in our
model have local clocks, and the adversary is given com-
plete control over the initialization of all clocks, as well
as the ability to increment the time of parties not involved
in a protocol run. This allows us to model the ability of
an adversary to delay packet transmission: this is particu-
larly important in the case of NTP, where delaying packets
asymmetrically can cause the client to synchronize to an
inaccurate time.

We then show that ANTP achieves secure time syn-
chronization as defined by our model, under standard as-
sumptions on the security of the cryptographic primitives
(key encapsulation mechanism, hash function, authenti-
cated encryption, message authentication code, and key
derivation function) used to construct the protocol.

2 Network Time Protocols

Here we review the two most commonly deployed time
synchronization protocols, NTP and SNTP, as well as a
recent proposal called Network Time Security [32].

2.1 The Network Time Protocol
The Network Time Protocol (NTP) was developed by
Mills in 1985 [14], and revised in 1988, 1989, 1992 and
2010 (NTPv1 [6], NTPv2 [15], NTPv3 [16] and NTPv4
[17] respectively). NTP is designed to synchronize the
clocks of machines directly connected to hardware clocks
(known as primary servers) to machines without hard-
ware clocks (known as secondary servers). NTP protects
against Byzantine traitors by querying multiple servers,
selecting a majority clique and updating the local clock
with the majority offset. This assumes the attacker can
only influence some minority of the queried servers.

2.2 The Simple Network Time Protocol
The Simple Network time Protocol (SNTP) is a vari-
ant of NTP that uses an identical message format but

Client Server

t1← Now()

req← t1
req−→ t2← Now()

...
t3← Now()

t4← Now()
resp←− resp← t2‖t3

RTT← (t4− t1)− (t3− t2)
θ̃3←RTT/2
offset← 1

2 (t2 + t3− t1− t4)
time← Now()+offset

Figure 1: Simple Network Time Protocol (SNTP). Now()
denotes the procedure that outputs the local machine’s
current time. RTT denotes the total round-trip delay the
client observes and θ̃3 denotes the approximation of the
propagation time from server to client. The time of the
server receiving req is denoted t2 and sending resp is t3.
Note that offset = t3 + θ̃3− t4, which we will use in our
correctness analysis of ANTP.

only queries a single server when requesting time syn-
chronization. Windows and OS X by default synchro-
nize using a single time source (time.windows.com and
time.apple.com respectively). Our construction lends
itself well to SNTP, as it authenticates time samples from
a single server. Security analysis is also easier as we can
avoid the more complex sorting and filtering algorithms of
NTP, and client and server behaviours are simpler. Note
that SNTP and NTP client request messages are the same.

SNTP has three distinct stages: (1) the creation and
transmission of req by the client; (2) the processing of
req by the server, and transmission of resp; and (3) the
processing of resp and clock update by the client. An
abstraction of the protocol behaviour can be found in
Figure 1, including the client’s clock update procedure.
Though the format for NTP packets are identical for both
client and server NTP messages, we use req to indicate a
NTP packet in client mode, and resp to indicate a NTP
packet in server mode, omitting packet content details.

1. The client creates an SNTP req packet, sets
transmit timestamp (t1) to Now() and sends the
message.

2. The server creates an SNTP resp packet
with all fields identical to the received req,
but signalling Server mode. The server
sets originate timestamp to the value
transmit timestamp from req. The server
also sets receive timestamp (t2) to Now()
immediately after receipt of req, and sets
transmit timestamp (t3) to Now() immediately
before sending the message to the client.

3. Upon receiving resp, the client notes

4



the current time (and saves it as t4). If
resp.originate timestamp is not equal to
req.transmit timestamp, the client aborts
the protocol run. The client calculates the total
round-trip time RTT and the local clock offset
offset as in Figure 1.

(The rest of the fields in the NTP packets are irrele-
vant for calculating the local clock offset and correcting
the local clock for a single-source time synchronization
protocol. These extra fields in the NTP packet are used
primarily for ranking multiple distinct time sources.)

From this, we can compute a bound of the amount of
error that is introduced to the clock update procedure via
asymmetric packet delay when the packets are unmod-
ified. Asymmetric packet delay is the scenario where
the propagation time from client to server is not equal to
the propagation time from server to client. Let θ1 be the
propagation time from client to server, θ2 the server pro-
cessing time and θ3 the propagation time from server to
client. θ3 is approximated in SNTP by θ̃3 =

RTT
2 , where

RTT = (t4− t1)− (t3− t2) = θ1 +θ3.
The actual offset is offsetactual = t3 +θ3− t4. The ap-

proximated offset is computed as offset = 1
2 (t2 + t3 −

t1− t4). When θ1 = θ3, then offset = t3 + θ̃3− t4 and
offset = offsetactual . In the worst possible case, packet
delivery is instantaneous, and the entire roundtrip time
is asymmetric delay. The client approximates the off-
set as above, and thus the error introduced this way is
1
2 |(θ1−θ3)| ≤ RTT.

The error that a passive adversary with the ability to
delay packets can introduce does not exceed the RTT:
clients can abort the protocol run when RTT grows too
large, giving them some control over the worst-case error.

2.3 NTP Security and Other Related Work

In terms of security, early versions of NTP (NTP to
NTPv2) had no standardized authentication method.

NTPv3 symmetric-key authentication. NTPv3 pre-
sented a method for authenticating time synchronization –
using pre-shared key symmetric cryptography. NTPv3’s
added additional extension fields to the NTP packet, con-
sisting of a 32-bit key identifier, and a 64-bit crypto-
graphic checksum. The specification of NTPv3 describes
the checksum as the encryption of the NTP packet with
DES, but notes that other algorithms could be negotiated.
The distribution of keys and negotiation of algorithms
was considered outside the scope of NTP.

NTPv4 Autokey public key authentication. NTPv4 in-
troduced a method for using public-key cryptography for
authentication, known as the Autokey protocol. Autokey
is designed to prevent inaccurate time synchronization by
authenticating the server to the client, and verifying no

modification of the packet has occurred in transit. Au-
tokey is designed to work over the top of authenticated
NTPv3. Autokey uses MD5 and a variety of Schnorr-
like [28] identification schemes to prevent malicious at-
tacks, but as an analysis of Autokey by Röttger shows
[25], there are multiple weaknesses inherent in the Au-
tokey protocol, including use of small seed values (32
bits) and allowing insecure identification schemes to be
negotiated. The size of the seed allows a MITM adver-
sary with sufficient computational power to generate all
possible seed values and use the cookie to authenticate
adversarial-chosen NTP packets. This weakness alone
allows an attacker in control of the network to break au-
thentication of time synchronization, thus NTP with the
Autokey protocol is not a secure time synchronization pro-
tocol. Mills describes his experiments on demonstrating
reliability and accuracy of network time synchronization
using NTPv2 implementations [18], but does not offer
a formal security analysis of NTP. Mills does show that
honest deployment of NTP in networks can offer time syn-
chronization accuracy to within a few tens of milliseconds
after only a few synchronizations. ANTP was originally
intended as a means to addressing the vulnerabilities in
the Autokey protocol, but with many changes to mini-
mize public-key and symmetric-key operations, message
bandwidth. While inspiration for ANTP is the Autokey
protocol, the design diverged significantly enough to con-
sider it a separate protocol design.

Network Time Security. The Network Time Security
protocol (NTS) [32] is an IETF Internet-Draft that uses
public-key infrastructure in order to secure time synchro-
nization protocols such as NTP and the Precision Time
Protocol (PTP) [1]. However, NTS is costly in terms of
server-side public-key operations, is a four round-trip pro-
tocol, requires clients to manage public/private key pairs
and digital certificates, and does not have an equivalent to
ANTP’s no-cryptographic-latency feature.

NTS has inherited many design choices from the Au-
tokey protocol, in particular protocol flow, and key deriva-
tion strategy using secret server seeds. Similarly to
the Autokey protocol, NTS servers reuse the random-
ness server seed used to generate a shared secret key
(referred to as a cookie) for each client by cookie =
HMAC(server seed,Hash(client public-key certificate)),
encrypting this value and a client-chosen nonce with the
client public-key, authenticating the server by digitally
signing the cookie with the server private key. Note that
the client public-key certificate in NTS serves to protect
the confidentiality and ensures uniqueness of the cookie
for each client using a different public-key certificate. It
does not serve to authenticate the client to the server. In
ANTP clients do not need a certificate, only the server.

In addition, in the association (or negotiation) phase
NTS requires the server digitally sign the server assoc

5



message, which includes the client’s selection of hash and
key encapsulation algorithms as well as a client nonce.
The server must compute costly public-key operations
over these values for each association phase. As a result,
a NTS server requires three public-key operations per
client to establish a shared secret cookie.

NTS is a work-in-progress and a future revision may
be updated to address some of these issues. We previ-
ously discovered a flaw in the association phase which
would allow MITM adversaries to perform negotiation
downgrade attacks (draft version -06) and communicated
our findings to the authors. This has since been fixed and
we reviewed draft version -12 for this paper.

3 Authenticated NTP

In this section we present the Authenticated Network Time
Protocol (ANTP): a new variant of NTP designed to allow
an SNTP client to authenticate a single NTP server and
output a time counter within some accuracy margin of
the server time counter. Our new protocol ANTP allows
an ANTP server to authenticate itself to an ANTP client,
as well as provide cryptographic assurances that no mod-
ification of the packets has occurred in transit. ANTP
messages, much like Autokey and NTS, are included in
the extension fields of NTP messages. We summarize the
novel features of ANTP below:
• The client is capable of authenticating the server,

and all messages from the server. Replay attacks are
explicitly prevented for the client.
• The server does not need to keep state for each client.
• The server does only one public-key operation per

client in order to generate a shared secret key.
• The shared secret key can be used for multiple time

synchronization attempts by the same client.
• The client has a “no-cryptographic-latency” option

to avoid additional error in the approximation of θ̃3
due to cryptographic operations.

3.1 Protocol Description
ANTP is divided into four separate phases. A detailed
protocol flow can be found in Figure 2.
• Setup: The server chooses a long term key s for

the authenticated encryption algorithm. This is used
to encrypt and authenticate offloaded server state
between phases.
• Negotiation Phase: The client and server communi-

cate supported algorithms; the server sends its certifi-
cate and state C1, an authenticated encryption (using
s) of the hash of the message flow. The value C1 will
be later used to authenticate negotiation.

• Key Exchange Phase: The client uses a key encap-
sulation mechanism (KEM) based on the server’s
public key from its certificate to establish a shared
key with the server. The client sends the KEM ci-
phertext and encrypted state C1 to the server. The
server derives the shared key k, then encrypts it (us-
ing s) to compute C2. The server replies with a MAC
(for key confirmation) and offloaded state C2 (for use
in the next phase).
• Time Synchronization Phase: The client sends a

time synchronization request and includes offloaded
server state C2. The server recovers k from C2 and
uses it to derive a fresh key to authenticate the re-
sponse, which the client verifies. The client can
also request “no-cryptographic-latency” time syn-
chronization, where the server will immediately re-
ply without authentication, and then send a second
message with authentication.

3.2 Design Rationale and Discussion

Of the security properties discussed in RFC 7384 [19],
ANTP achieves the following: protection against manipu-
lation, spoofing, replay and delay attacks; authentication
of the server (if ANTP is applied in a chain, implicit
authentication of primary server); key freshness; avoids
degradation time synchronization; minimizes computa-
tional load; minimizes per-client storage requirements
of the server. The following properties from [19] are
only partly addressed by ANTP, which we explain in fur-
ther detail below: resistance against the rogue master,
cryptographic DoS and time-protocol DoS attacks.

Stateless server. While storage costs are gener-
ally not an issue, synchronizing state between multiple
servers implementing a high-volume network endpoint
like time.windows.com is still expensive and compli-
cated to deploy. For reliability and performance these
servers are often in multiple data centers, spread across
multiple geographic regions. In ANTP the server regen-
erates per-client state as needed. Our construction uses
authenticated encryption (AE) in a similar manner to TLS
Session Tickets [26] for session resumption, where the
server authenticates and encrypts its per-client state using
a long-term symmetric key, then sends the ciphertext to
the client for storage. The client responds with the cipher-
text in order for the server to decrypt and recover state.
The server periodically refreshes the long-term secret key
for the AE scheme (the intervals are dependent on the
security requirements of the AE scheme).

No-cryptographic-latency mode. In SNTP, the accu-
racy is bounded by the total roundtrip time of the time
synchronization phase. If we build a secure authentication
protocol over SNTP, then the total accuracy of the new au-

6



Client Server
supported algorithms ~algC supported algorithms ~algS

long-term secret s
certificate certS for the KEM keypair (pkS,skS)

Negotiation phase

α ← in-progress
nc←${0,1}256

m1← ~algC‖nc
m1−→ (KDF,Hash,KEM,MAC)← negotiate( ~algC, ~algS)

h← Hash(m1‖ ~algS‖certS)
C1← AuthEncs(01‖h‖KDF‖Hash‖KEM‖MAC)

Verify certS
m2←− m2← ~algS‖certS‖C1

pkS← parse(cert)

Key exchange phase

(KDF,Hash,KEM,MAC)← negotiate( ~algC, ~algS)

h← Hash(m1‖ ~algS‖certS)
(e, pms)← KEM.Encap(pks)

m3←C1‖e
m3−→ b‖h‖KDF‖Hash‖KEM‖MAC← AuthDecs(C1)

If b 6= 01, then α ← reject and abort
pms← KEM.Decap(skS,e)

k← KDF(pms) k← KDF(pms)
C2← AuthEncs(02‖k‖KDF‖Hash‖KEM‖MAC)
τ1←MAC(k,h‖m3‖C2)

Verify τ1 =MAC(k,h‖m3‖C2)
m4←− m4←C2‖τ1

If verify fails, then α ← reject and abort

Time synchronization phase p = 1, . . . ,n

α ← in-progress
nc2←${0,1}256

t1← Now()

m5← t1‖nc2‖C2
m5−→ t2← Now()

b‖k‖KDF‖Hash‖KEM‖MAC← AuthDecs(s,C2)
If b 6= 02, then α ← reject or abort
t3← Now()[

m∗6←−
]

m∗6← t1‖t2‖t3
τ2←MAC(k,m5‖t1‖t2‖t3)

t4← Now()
m6←− m6← t1‖t2‖t3‖τ2

RTT← (t4− t1)− (t3− t2)
If RTT > E, then α ← reject and abort
Verify τ2 =MAC(k,m5‖t1‖t2‖t3)
If verify fails, then α ← reject and abort
offset = 1

2 (t3 + t2− t1− t4)
timep← Now()+offset
α ← acceptp
If p = n, then terminate

Figure 2: Authenticated NTP (ANTPE), where E is a fixed upper bound on the desired accuracy. The pre-determined
negotiation function negotiate takes as input two ordered lists of algorithms and returns a single algorithm. n denotes
the maximum number of synchronization phases, and p denotes the current synchronization phase. [m∗6] indicates an
optional message sent based on a “no-cryptographic-latency” flag present in m5, omitted in this figure. Note that if
KEM.Decap or AuthDec fails for any ANTP server, the server simply stops processing the message, aborts, and allows
the client to time-out. If certificate validation fails, the client aborts the protocol run.

7



thenticated protocol is also bound by the total round-trip
time of the time synchronization phase.

Since cryptographic computations over the synchro-
nization messages adds asymmetrically to propagation
time, it introduces error in the approximation of propa-
gation time θ̃3, so authentication operations degrade the
accuracy of the transmit timestamp in the resp. As
noted above, ANTP includes a “no-cryptographic-latency”
mode to reduce error due to authentication: during the
Time Synchronization Phase, at the client’s option, the
server will immediately process a resp as in Figure 1
and sends it to the client, without authentication. The
server subsequently creates an ANTP ServerResp mes-
sage, and sends the resp with ServerResp in the NTP
extension fields of the saved resp. A client can then use
the time when receiving the initial resp to set its clock,
but only after verifying authentication with the ANTP
ServerResp, aborting if authentication fails, if either
message wasn’t received, or if messages were received in
incorrect order. Here, cryptographic processing time does
not introduce asymmetric propagation time. (The TESLA
broadcast authentication protocol of Perrig et al. [23] de-
lays authentication as well, to improve efficiency rather
than accuracy as in ANTP.)

Efficient cryptography. Public-key operations are com-
putationally expensive, especially in the case of a server
servicing a large pool of NTP clients. ANTP only re-
quires a single public-key operation per-client to ensure
authentication and confidentiality of the premaster secret
key material. The client can reuse the shared secret key
on multiple subsequent time synchronization requests
with that server. ANTP uses a key encapsulation mech-
anism for establishing the shared secret key. We allow
either static-ephemeral elliptic curve Diffie-Hellman key
exchange or key transport using RSA public key encryp-
tion. While one might ordinarily avoid use of RSA or
static-ephemeral DH for key exchange since they do not
provide forward secrecy, this is not a concern for ANTP
since we do not need confidentiality as the contents of the
messages (time synchronization data) are public.

Key freshness and reuse. ANTP allows multiple time
synchronization phases for each session using the same
shared secret key k but with a new nonce in each Time
Synchronization Phase to prevent replay attacks and en-
sure uniqueness of the protocol flow. This reuse can
continue until either the client restarts the negotiation
phase or the server rotates public keys or authenticated
encryption keys.

Denial of service attacks. Against a man-in-the-middle,
some types of denial-of-service (DoS) attacks are unavoid-
able, as the adversary may always drop messages.

Amplification attacks can be of concern. Unauthenti-
cated SNTP has a roughly 1:1 ratio of attacker work to

server work, in that one attack packet causes one packet
in response, and a small computational effort is required
by the server. In ANTP, the cryptographic operations
do allow some amplification of work. Based on the ex-
perimental results in Table 1, the negotiation and time
synchronization phases have less than a 1:2 ration of at-
tacker work to server work. As for the key exchange
phase, the server performs a public key operation while a
malicious client may not. However, a server under attack
can temporarily stop responding to key exchange requests
while still responding to time synchronization requests,
and since most honest clients will perform key exchange
infrequently, their service will not be denied.

Another amplification can be caused by the no-
cryptographic-latency feature, since two response packets
are sent for each request. This mode can be turned off
during attack, the server indicating with a flag that it does
not (currently) support this feature.

Finally, in the negotiation phase the server’s response
is also considerably larger than the client request (be-
cause it includes a certificate), but, like the key exchange
phase, the negotiation phase may be temporarily disabled
without denying service to clients who already have estab-
lished a premaster secret. Another option is to replace the
server certificate chain with a URL where the client can
download it. Depending on the size of the certificate(s)
this could reduce the bandwidth amplification consider-
ably. This last mitigation requires detailed analysis, which
we leave to future work.
Certificate validation. When using digital certificates to
authenticate public keys, the synchronization of the issuer
and the relying party is an underlying assumption. This
serves to highlight a significant problem – how do you
securely authenticate time using public-key infrastructure
without previously having time synchronization with the
issuer? For our construction this must be done once, and
we assume that the client has some out-of-band method
for establishing the trustworthiness of public-keys, per-
haps using OCSP [27] with nonces to ensure freshness of
responses, by the user manually setting the time for first
certificate validation, or shipping a trusted certificate with
the operating system. Since certificate validity periods
typically range from months to years, if the user is assured
of time synchronization with the issuer to be within range
of hours or days and that range sits comfortably within
the certificate validation period, this is a viable solution.
ANTP to NTP downgrade. ANTP servers are also NTP
servers, since ANTP is implemented as an NTP extension.
This eases deployment; older clients can continue using
NTP, while newer clients can use ANTP. Note that a net-
work adversary can drop the ANTP extension from the
request, and the server will respond with NTP (having in-
terpreted the request as NTP). For this reason, clients that
send an ANTP request must only update their clock based

8



on a valid ANTP response, and ignore NTP responses.
For similar reasons, clients are not recommended to im-
plement a fall back from ANTP to NTP.

4 Implementation and Performance

Here we describe our instantiation of ANTP in terms of
cryptographic primitives used as well as its implementa-
tion and performance testing.

4.1 Instantiation and Implementation

We instantiate ANTP using the following cryptographic
algorithms. We use AES128-GCM as the symmetric
encryption algorithm for the server to encrypt and de-
crypt state, SHA-256 as the hash algorithm, and HMAC-
SHA256 and HKDF-SHA256 as the MAC and key deriva-
tion functions respectively. We support two key encapsula-
tion mechanisms, RSA key transport and static-ephemeral
elliptic curve Diffie-Hellman:
• RSA key transport: In KeyGen, the public key and

secret key are a 2048-bit RSA key pair. Encap is de-
fined by selecting a key k←${0,1}128 and encrypt-
ing k using the RSA public key with RSA-PKCS#1.5
encryption; Decap performs decryption with the cor-
responding RSA secret key.
• Static-ephemeral elliptic curve Diffie–Hellman: Let

P be the generator (base point) of the NIST-P256
elliptic curve group of prime order q. In KeyGen,
the secret key is sk←$Zq and the public key is
pk = sk ·P, where · denotes scalar-point multiplica-
tion. In Encap, select r←$Zq and compute c← r ·P
and k ← KDF(c‖X(r · pk)). In Decap, compute
KDF(c‖X(sk · c)). KDF is HMAC-SHA256 and
X(Q) gives the x-coordinate of elliptic curve point
Q. This is the ECIES-KEM [31] which is IND-CCA
secure under the elliptic curve discrete logarithm
assumption in the random oracle model [4].

We implemented ANTP by extending OpenNTPD ver-
sion 1.92 [36]. Our implementation relies on OpenSSL
version 1.0.2f [37] for its cryptographic components; no-
tably, this version included a recent high-speed assembly
implementation of the NIST P-256 curve.

4.2 Performance

Methodology. We collected performance measurements
for each of the negotiation, key exchange, and time syn-
chronization phases. We wanted to know the maximum
number of connections per second that could be supported
in each phase, as well as the latency a client would ex-
perience for a typical server. For comparison we also

collected performance measurements for unauthenticated
NTP time synchronization phases.

Our experiments were carried out between two ma-
chines acting as clients, and a single server machine run-
ning ANTP. The server had an Intel Core i7-4770 CPU
running at 3.40GHz with 15.6 GiB of RAM; we used two
similar client machines, which in our experiments were
always sufficient to saturate the server. The clients and
server were connected over an isolated 1 gigabit local
area network. The server was running Linux Mint 17.2
with no other software installed.

It is important to note that OpenNTPD is not multi-
threaded, so the OpenNTPD server process runs on a
single core, regardless of the number of cores on the
machine. As the key exchange phase is CPU bound, in a
threaded server implementation we expect key exchange
phase throughput to increase linearly with the number of
CPU cores until bandwidth is saturated.

For testing throughput (connections/second), we used
our own multi-threaded UDP flooding benchmarking tool
that sends static packets and collects the number of re-
sponses, the average latency of those responses, and the
number of dropped packets. We tuned the number of
queries per second to ensure that the server’s (single) core
had around 95% utilization, and that more client packets
were sent than being processed, but not so many more that
performance became degraded (i.e., the server dropped
less than 1% of packets being received per second).

For testing individual phase latency, we again used our
UDP benchmarking tool, this time measuring latency of
a subset of connections while maintaining a particular
background ANTP load at the server (either 50% or 90%
of supported throughput), to measure the latency a client
would experience at an unloaded or loaded server.

For testing total protocol runtime, we instrumented
the OpenNTPD client to report the runtime of a single
complete (all three phases) ANTP synchronization, again
with background ANTP load as above.

Results – individual phases.
Table 1 shows the results of each phase. Results re-

ported are the average of 5 trials. For throughput and
individual phase latency, each trial was run for 100 sec-
onds. For throughput, Table 1 reports the number of
response packets received at the client machine.

Negotiation phases. The lower throughput of RSA and
ECDH negotiation messages (compared to NTP) is due
to larger message size of ANTP messages, as network
bandwidth was saturated for this measurement. Latency
for ECDH negotiation at 90% load is higher compared to
RSA negotiation at 90% load; at that load level, a much
larger number of ECDH packets are being sent than RSA
packets, so CPU load in the ECDH is higher even though
they have the same bandwidth consumption, leading to
higher latency for ECDH negotiation.

9



Key exchange phases. As expected, server key ex-
change throughput is higher when ECC is used for pub-
lic key operations compared to RSA. This difference is
explained by the relative costs of the underlying crypto-
graphic operations: using OpenSSL’s speed command
for benchmarking individual crypto operations, the run-
time of ECC NIST P-256 point multiplication is 8.62×
faster than RSA 2048 private key operations, whereas we
observe a 7.54× improvement in throughput for ANTP’s
ECDH key exchange over ANTP’s RSA key exchange.
Latency for RSA key exchange is approximately 2.9 times
that of ECDH key exchange at 90% load.

Time synchronization phases. While ANTP time syn-
chronization phases are more computationally intensive
than unauthenticated NTP, throughput is reduced by only
a factor of approximately 1.6. Since this phase is CPU
bound, we expect a multi-threaded server implementa-
tion to increase ANTP throughput. Latency increase for
ANTP at 50% load is only about 14% and at 90% load is
about 27%.

Results and extrapolation – all 3 phases. Since each
client makes a full 3-phase time synchronization (negoti-
ation, followed by key exchange, followed by time syn-
chronization) relatively infrequently, it does not make
sense to measure server throughput for complete 3-phase
time synchronizations. We did measure latency of a 3-
phase time synchronization to note the performance that
a client would perceive on its initial synchronization. As
expected, the total runtime of a client exceeds the sum of
the latencies from each individual phase due to the client
performing its own cryptographic operations.

It is interesting to note that latency slows as the server
approaches load capacity. Future work on OpenNTPD
and other NTP servers could include optimizations to re-
duce latency and improve time synchronization accuracy
under increasing load.

We can extrapolate from the individual phase results
the client pool that ANTP could feasibly support running
on the same hardware. For example, Windows by de-
fault polls time servers every 9 hours [12]. Assuming
this is true for all clients (and that the clients synchronize
uniformly across the period) 175,644 time synchroniza-
tion requests per second would correspond to a pool of
5,755,502,592 clients.

ANTP clients would choose how often to restart the ne-
gotiation phase and we recommend doing so periodically
to ensure the attack window from exposure of the symmet-
ric key is limited. If keys are re-exchanged monthly, this is
a ratio of 1:1:1440 for expected negotiation, key exchange,
and time synchronization messages, which increases to
1:1:8640 if clients re-exchanged every 6 months. From
these or other expected ratios, one could extrapolate the
expected performance impact of using ANTP over NTP.

5 Security Framework

In this section we introduce our new time synchronization
provable security framework for analyzing time synchro-
nization protocols such as ANTP, NTP and the Precision
Time Protocol. It builds on both the Bellare–Rogaway
model [2] for authenticated key exchange and the Jager
et al. framework for authenticated and confidential chan-
nel establishment [8]. Neither of those models however
includes time. Schwenk [29] recently proposed a frame-
work for modelling time in provable security analysis of
protocols such as Kerberos: time is a global parameter
and each party may query a time oracle to receive the
time from the global time counter.

Our framework however models time as a counter that
each party separately maintains, as the goal of the protocol
is to synchronize these disparate counters. Additionally,
the adversary in our execution environment has the ability
to initialize each protocol run with a new time counter in-
dependent of the party’s own counter, and controls when
protocol runs can increment their counter, effectively giv-
ing the adversary complete control of both the latency of
the network and the computation time of the parties.

5.1 Execution Environment
There are np parties P1, . . . ,Pnp , each of whom is a proto-
col participant. Each party generates a long-term key-pair
(ski, pki), and can run up to ns instances of the protocol
which are referred to as sessions. We denote the sth ses-
sion of a party Pi as πs

i . Note that each session πs
i has

access to the long-term key pair of the party Pi. In ad-
dition, we denote with T and Tc the full transcript and
server-session maintained client transcript Tc .

Per-Session Variables. The following variables main-
tained by each session:
• ρ ∈ {client,server}: the role of the party.
• id ∈ {1, ...,np}: the identity of the party.
• pid ∈ {1, . . . ,np}: the believed identity of the part-

ner.
• α ∈ {accept,reject,in-progress}: the session

status.
• k ∈ {0,1}128: the session key.
• Tc ∈ {{0,1}∗, /0}: if ρ = server, the transcript of

client messages, otherwise Tc = /0.
• T ∈ {0,1}∗: the transcript of messages sent and re-

ceived.
• time ∈ N: a counter maintained by the session.

Adversary Interaction. The adversary schedules and
controls all interactions between protocol participants.
The adversary is in complete control of all communica-
tion, able to create, delete, reorder or modify messages

10



at will. The adversary can compromise long-term and
session keys. Additionally, the adversary is able to set
the clock of a party to an arbitrary time when beginning
a session and control the rate at which time progresses
during the execution of a session. The following queries
model normal execution with adversary control of time:
• Create(i,r, t): The adversary actives a new ses-

sion with party Pi, initializing it with πs
i .ρ = r and

πs
i .time = t. Note that if πs

i .ρ = client, then πs
i

responds with the first message of the protocol run.
• Send(i,s,m,~∆): The adversary sends a message m

to a session πs
i . Party Pi processes the message m

and responds according to the protocol specifica-
tion, updating per-session variables and outputting
some message m∗ if necessary. During message pro-
cessing, the party may execute multiple calls to a
distinguished Now() procedure, modelling the party
reading its current time from memory; immediately
before the `th such call to the Now() procedure, the
session’s πs

i .time variable is incremented by ∆`.
The next queries model compromise of secret data:
• Reveal(i,s): The adversary receives the session key

k of the session πs
i .

• Corrupt(i): The adversary receives the long-term
secret-key ski of the party Pi.

The following query allows additional adversary con-
trol of the clock:
• Tick(i,s,∆): The adversary increments the counter

πs
i .time by ∆.

The vector ~∆ in Send is necessary due to subtleties
in the security framework: An adversary cannot issue
Tick queries to a session during the processing of a Send
query, but a party may read its clock multiple times while
processing a message and thus expect to receive differ-
ent clock times. The vector ~∆ in the Send query allows
adversary control of this clock rate.

Note that our model assumes that during execution
of a session, the clocks between two parties advance at
the same rate, otherwise it does not make sense for two
parties to try to synchronize their clocks at all. This im-
plicitly assumes that the parties are in the same reference
frame. Additionally, while computer clocks may progress
at different rates, we are assuming that, over a relatively
short period of time, like the few seconds for an execu-
tion of the protocol, the difference in clock rate will be
negligible. This will be formalized in Definitions 3 and 4
with the condition that the adversary advances the time
of matching sessions symmetrically: a Tick( j, t,∑`

i=1 ∆l)
must be issued if session π t

j matching πs
i exists when

Send(i,s,m,~∆) is issued.

Security Experiment. The time synchronization se-
curity game is played between a challenger C who im-
plements all np parties according to the execution envi-

ronment and protocol specification, and an adversary A.
After the challenger generates the long-term key pairs,
the adversary receives the list of public keys and interacts
with the challenger using the queries described above.
Eventually the adversary terminates.

5.2 Security Definitions
The goal of the adversary, formalized in this section, is to
break time synchronization security by causing any client
session to complete a session with a time counter such that
|πs

i .time−π t
j.time|> δ , (where π t

j is the partner of the
session πs

i such that π t
j.id = πs

i .pid, and δ is an accuracy
margin) or cause a session πs

i to accept a protocol run
without having a matching session π t

j. The adversary
controls the initialization of the party’s clock in each
session, and the rate at which the clock advances during
each session, with the restriction that during execution
of a session the adversary must advance the party and its
peer at the same rate.

5.2.1 Matching Conversations and Authentication

Authentication is defined similarly to the approach of Bel-
lare and Rogaway [2], by use of matching conversations.
We use the variant of matching conversations employed
by Jager et al. [8], and modify the definition to reflect
client authentication of stateless servers.

Definition 1 (Matching Conversations). We say a session
πs

i matches a session π t
j if πs

i .ρ 6= π t
j.ρ and πs

i .T prefix-
matches π t

j.T . For two transcripts T and T ′, we say that
T is a prefix of T ′ if |T | 6= 0 and T ′ is identical to T for
the first |T | messages in T ′. Two transcripts T and T ′

prefix-match if T is a prefix of T ′, or T ′ is a prefix of T .

Prefix-matching prevents an adversary from trivially
winning the game by dropping the last protocol message
after a session has accepted. Note that since our focus is
clients authenticating stateless servers,

Definition 2 (Stateless Server Authentication). We say
that a session πs

i accepts maliciously if:
• πs

i .α = accept;
• πs

i .ρ = client;
• no Reveal(i,s) or Reveal( j, t) queries were issued

before πs
i .α ← accept and π t

j.T prefix-matches
πs

i .T ;
• no Reveal(i,s′) queries were issued before πs

i .α ←
accept and πs′

i .Tc = πs
i .Tc

• no Corrupt( j) query was ever issued before πs
i .α←

accept, where j = πs
i .pid;

but there exists no session π t
j such that πs

i matches π t
j.

We define Advauth
T (A) as the probability of A forcing

any session πs
i to accept maliciously.

11



The first Reveal condition prevents A from trivially
winning the game by accessing the session key of the
Test session. Similarly the Corrupt condition prevents A
from trivially winning by decrypting the premaster secret
with the session peer’s public-key. the possibility exists
for an adversary to trivially win the game by replaying
client messages to a second session and querying the
second session with Reveal. Disallowing Reveal queries
in general is clearly too restrictive, so we prevent this
in the second Reveal condition by disallowing Reveal
queries to server sessions sharing client contributions.

5.2.2 Correct and Secure Time Synchronization

The goal of a time synchronization protocol is to ensure
that the difference between the two parties’ clocks is
within a specified bound. A protocol is δ -correct if that
difference can be bounded in honest executions of the
protocol, and δ -accurate secure if that difference can be
bounded even in the presence of an adversary.

Definition 3 (δ -Correctness). A protocol T satisfies δ -
correctness if, in the presence of a passive adversary that
faithfully delivers all messages and increments in each
partner session symmetrically, then the client and server’s
clocks are within δ of each other. More precisely, in the
presence of a passive adversary, for all sessions πs

i where
• πs

i .α = accept;
• πs

i .ρ = client;

• whenever A queries Send(i,s,m,~∆) or
Send( j, t,m′,~∆′), A also queries Tick( j, t,∑`

i=1 ∆`)
or Tick(i,s,∑`

i=1 ∆′`), respectively; and
• whenever A queries Tick(i,s,∆), or Tick( j, t,∆′),
A also queries Tick( j, t,∆) or Tick( j, t,∆′), respec-
tively;

we must also have that |πs
i .time−π t

j.time| ≤ δ .

Definition 4 (δ -Accurate Secure Time Synchronization).
We say that an adversary A breaks the δ -accuracy of a
time synchronization protocol if whenA terminates, there
exists a session πs

i with partner id πs
i .pid = j such that:

• πs
i .α = accept;

• πs
i .ρ = client

• A made no Corrupt( j) query before πs
i .α ←

accept;
• A made no Reveal(i,s) or Reveal( j, t) query before

πs
i .α ← accept and π t

j matches πs
i ;

• while πs
i .α = in-progress and A queried

Send(i,s,m,~∆) or Send( j, t,m′,~∆′), then A also
queried Tick( j, t,∑`

i=1 ∆`) or Tick(i,s,∑∆
i=1 ∆′`), re-

spectively;
• while πs

i .α = in-progress and A queried
Tick(i,s,∆), or Tick( j, t,∆′), then A also queried

Tick( j, t,∆) or Tick( j, t,∆′), respectively; and
• |πs

i .time−π t
j.time|> δ .

The probability an adversary A has in breaking δ -
accuracy of a time synchronization protocol T is denoted
Advtime

T ,δ (A).

5.3 Multi-Phase Protocols
Our construction in Section 3 has a single run of the ne-
gotiation and key exchange phases, followed by multiple
time synchronization executions reusing the negotiated
cryptographic algorithms and shared secret key. To model
the security of such multi-phase time synchronization pro-
tocols, we further extend our framework so that a single
session can include multiple time synchronization phases.
The differences from the model described in the previous
section are detailed below.
Per-Session Variables. The following variables are
added or changed:
• n ∈ N: the number of time synchronization phases

allowed in this session.
• time p, for p ∈ {1, . . . ,n}: the time recorded at the

conclusion of phase p.
• α ∈ {acceptp,reject,in-progress}, for p ∈
{1, . . . ,n}: the status of the session. Note that, when
phase p concludes and α← acceptp is set, the party
also sets time p← time.

Adversary Interaction. The adversary can direct the
client to run an additional time synchronization phase
with a new Resync query, and the client will respond
according the protocol specification. The Create query in
this setting is also changed:
• Create(i,r, t,n): Proceeds as for Create(i,r, t), and

also sets πs
i .n← n.

• Resync(i,s,~∆) - The adversary indicates to a ses-
sion πs

i to begin the next time synchronization phase.
Party Pi responds according to protocol specification,
updating per-session variables and outputting some
message m∗ if necessary. During message process-
ing, immediately before the `th call to the Now()
procedure, the session’s πs

i .time variable is incre-
mented by ∆`.

The goal of the adversary is also slightly different to ac-
count for the possibility of breaking time synchronization
of any given time synchronization phase: the adversary’s
goal is to cause a client session to have any phase where
its time is desynchronized from the server’s. In particular,
for there to be some client instance πs

i and some phase
p such that |πs

i .time p− π t
j.time p| > δ where π t

j is the
partner of session πs

i . Again the adversary in general
controls clock ticks and can tick parties at different rates,
however must tick clocks at the same rate when phases
have switched back to being in-progress.

12



Definition 5 (δ -Accurate Secure Multi-Phase Time Syn-
chronization). We say that an adversary A breaks the
δ -accuracy of a multi-phase time synchronization proto-
col if when A terminates, there exists a phase p session
πs

i with partner id πs
i .pid = j such that:

• πs
i .ρ = client

• πs
i .α = acceptq for some q≥ p;

• A did not make a Corrupt( j) query before πs
i .α ←

acceptp was set;
• A did not make a Reveal(i,s) or Reveal( j, t) query

before πs
i .α ← acceptp was set and π t

j matches πs
i ;

• while πs
i .α = in-progress and A queried

Send(i,s,m,~∆) or Send( j, t,m′,~∆′), then A also
queried Tick( j, t,∑`

i=1 ∆`) or Tick(i,s,∑`
i=1 ∆′`), re-

spectively;
• while πs

i .α = in-progress and A queried
Tick(i,s,∆), or Tick( j, t,∆′), then A also queried
Tick( j, t,∆) or Tick( j, t,∆′), respectively; and
• |πs

i .time p−π t
j.time p|> δ .

The probability an adversary A has in breaking δ -
accuracy of multi-phase time synchronization protocol
T is denoted Advmulti-time

T ,δ (A).

6 Security of ANTP

In this section we present our correctness and security
theorems on ANTP.

6.1 Correctness
Theorem 1 (Correctness of ANTP). Fix E ∈ N. ANTPE

is an E-correct time synchronization protocol as defined
in Definition 3.

Proof. When analyzing ANTP in terms of correctness,
we can restrict analysis to data that enters the clock-update
procedure as input, as the rest of the protocol is designed
to ensure authentication and does not influence the ses-
sion’s time counter. This allows us to narrow our focus to
SNTP, which is the time synchronization core of ANTP.

We first focus on a single time synchronization phase.
At the beginning of the time synchronization phase of
ANTP, the client will send an NTP request (req) which
contains t1, the time the client sent req. Note that the
adversary is restricted to delivering the messages faith-
fully as a passive adversary, and also must increment the
time of each protocol participant symmetrically. The ad-
versary otherwise has complete control over the passage
of time. Thus θ1, θ2, θ3 are non-negative but otherwise
arbitrary values selected by the adversary (where θ1 is
the propagation time from client to server, θ2 is server
processing time and θ3 is propagation time from server
to client). Thus the client computes the round-trip time

of the protocol as: RTT = (t4− t1)− (t3− t2) = θ1 +θ3
and approximates the server-to-client propagation time as
θ̃3 =

1
2 (θ1 +θ3).

When the client-to-server and server-to-client propaga-
tion times are equal (θ1 = θ3) then θ̃3 = θ3, and the values
t3 and t2 allow the client to exactly account for θ2. The
time counter is updated by time+ offset = t3 + θ̃3− t4,
and upon completion the client’s clock is exactly synchro-
nized with the server’s clock.

When θ1 6= θ3, we have that θ3 − θ̃3 = 1
2 (θ3 − θ1),

so the statistics t1, ..., t4 do not allow the client to ex-
actly account for client-to-server propagation time θ3;
the client’s updated time may be off by up to 1

2 (θ3−θ1).
Fortunately, we can bound this value by E: we know
that 1

2 (θ3−θ1)≤ 1
2 (θ1 +θ3), and furthermore we know

that ANTPE will only accept time synchronization when
1
2 (θ1 + θ3) ≤ E, so in sessions that accept (assuming a
passive adversary) we have that the client’s clock is at
most 1

2 (θ3−θ1)≤ E different from the server’s clock.
Now moving to the multi-phase setting, we note that

this analysis of the correctness of ANTP applies to each
separate time synchronization phase: since the client’s
(t1, t4) values are only used to calculate the total round-
trip time of the time synchronization phase, thus if the
rate-of-time for both client and server during the phase is
the same, each phase is also E-accurate in the presence
of a passive adversary, even if the adversary dramatically
changes the rate-of-time for partners between time syn-
chronization phases.

6.2 Security
Security of a single 3-phase execution of ANTP in the
sense of Definition 4 is given by Theorem 2 below. Se-
curity of multiple phases in the sense of Definition 5
follows with a straightforward adaptation; details appear
in Appendix B.

Intuitively, the bound on the possible error that an A
can introduce without altering packets is as in Section 3.
It follows then that if all messages are securely authenti-
cated, and the only inputs to the clock-update procedure
are either:
• authenticated via messages, or
• the round trip delay RTT,

then any attacker can only introduce at most E error into
the clock-update procedure (where E ≥ RTT).

Theorem 2 (Security of ANTP). Fix E ∈ N and let λ

be the length of the nonces in m1 and m5 (λ = 256).
Assuming the key encapsulation mechanism KEM (with
keyspace KEM.K) is IND-CCA-secure, the message au-
thentication code MAC is eUF-CMA-secure, the hash
function Hash is collision-resistant, and the key deriva-
tion function KDF and authenticated encryption scheme

13



AE are secure, then ANTPE is a E-accurate secure time
synchronization protocol as in Definition 4. In particular,
there exist algorithms B3, . . . ,B8, described in the proof
of the theorem, such that, for all adversaries A, we have

Advtime
ANTPE ,E

(A)≤
n2

pn2
s

2λ−2 +n2
pn2

s

(
Advcoll

Hash(BA3 )

+AdvAE
AuthEnc(BA4 )+Advind-cca

KEM (BA5 )

+Advkdf
KDF(BA6 )+AdvAE

AuthEnc(BA7 )

+Adveuf-cma
MAC (BA8 )

)
where np and ns are the number of parties and sessions
created by A during the experiment.

The standard definitions for security of the un-
derlying primitives and the corresponding advantages
AdvAuthEnc

AE (A), Advind-cca
KEM (A), Advcoll

Hash(A), Adveuf-cma
MAC

(A), and Advkdf
KDF(A) are given in Appendix A.

Proof. From Theorem 1, ANTPE is an E-correct time
synchronization protocol in the sense of Definition 3.
Thus all passive adversaries have probability 0 of break-
ing E-accuracy of ANTPE . If we show that the advantage
Advauth

ANTPE
(A) of any adversaryA of breaking authentica-

tion security (i.e., to accept without session matching) of
ANTPE is small, then it follows that the advantage of any
active adversary A in breaking E-accuracy of ANTPE is
similarly small. In other words, it immediately is the case
that Advtime

ANTPE ,E
(A)≤ Advauth

ANTPE
(A).

We now focus on bounding Advauth
ANTPE

(A). In order to
show that an active adversary has negligible probability
in breaking ANTPE authentication, we use a proof struc-
tured as a sequence of games. We let Pr(breaki) denote
the probability that the adversary causes some session to
accept maliciously in game i. We iteratively change the
security experiment, and demonstrate that the changes
are either failure events with negligible probability of
occurring or that if the changes are distinguishable we
can construct an adversary capable of breaking an un-
derlying cryptographic assumption. Since the client will
only accept synchronization if all three phases are prop-
erly authenticated, the advantage of an active adversary is
negligible given our cryptographic assumptions.
Game 0. This is the original time synchronization game
described in § 4: Advauth

ANTPE
(A) = Pr(break0).

Game 1. In this game, we abort the simulation if
any nonce is used in two different sessions by client
instances. There are at most 2nsnp nonces used by
client instances, each λ bits. The probability that a
collision occurs among these values is (2nsnp)

2/2λ , so:

Pr(break0)≤ Pr(break1)+
n2

s n2
p

2λ−2 .
Game 2. Here, we guess the first client session to accept
maliciously, aborting if incorrect. We select randomly

from two indices (i,s)←${1, . . . ,np}× {1, . . . ,ns} and
abort if πs

i is not the first session to accept maliciously.
Now the challenger responds to Reveal(i,s) queries (if
πs

i .α = accept) by aborting the game, as it follows that
the guessed session cannot accept maliciously. There are
at most npns client sessions, and we guess the first session
to accept maliciously with probability at least 1/npns, so
Pr(break1)≤ npns Pr(break2).

Game 3. Here we guess the partner session to
πs

i , by selecting from two indices ( j, t)←${1, . . . ,np}×
{1, . . . ,ns} and abort if π t

j is not the partner session
to πs

i .Now, the challenger answers Corrupt( j) and
Reveal( j, t) queries before πs

i .α ← accept by aborting
the game, as it follows that the guessed session cannot
accept maliciously. There are at most npns server ses-
sions, and we guess the partner of the first session to
accept maliciously with probability at least 1/npns, so
Pr(break2)≤ npns Pr(break3).

Game 4. Here we abort if a hash collision occurs,
by computing all hash values honestly and aborting if
there exists two evaluations (in,Hash(in)),(în,Hash(în))
such that in 6= în but Hash(in) = Hash(în). The simula-
tor interacts with a Hash-collision challenger, outputting
the collision if found. Thus: Pr(break3) ≤ Pr(break4)+
Advcoll

Hash(BA3 ).

Game 5. In this game, we abort if in server session π t
j

the ciphertext received in m3 is not equal to the ciphertext
sent in m1 but the output of AuthDecs is not ⊥.

We construct an algorithm BA4 that simulates Game
4 identically, except to interact with an AE challenger
in the following way: When Pj needs to run AuthEnc
or AuthDec, BA4 uses its oracles to compute the required
value. In server session π t

j, when BA4 receives a ciphertext
in m3 that was not equal to the ciphertext sent in m1 but the
output of the AuthDec oracle is not⊥, this corresponds to
a ciphertext forgery, and thus: Pr(break4)≤ Pr(break5)+
AdvAE

AuthEnc(BA4 ).

Game 6. In this game, sessions πs
i and π t

j compute
the session key k by applying KDF to a random secret
pms′←$KEM.K, rather than the pms that was encapsu-
lated using KEM.Encap and transmitted in ciphertext e.
Any algorithm used to distinguish Game 5 from Game 6
can be used to construct an algorithm capable of distin-
guishing KEM encrypted values via plaintext, thus break-
ing IND-CCA security of the key encapsulation mecha-
nism.

We construct a simulator BA5 that interacts with a KEM
challenger. BA5 activates party Pj with the public key pk
received from the challenger. BA5 responds identically to
queries from A as in Game 5, except as follows:
• BA5 computes the KEM ciphertext e for the session

πs
i by obtaining a challenge (e, pms) from its KEM

challenger.

14



• BA5 computes πs
i .k← KDF(pms)

• In any Pj session where m3 contains the challenge
ciphertext above, BA5 computes the session key as
k← KDF(pms).
• In any other Pj session where m3 does not contain

the challenge ciphertext above, BA5 queries the ci-
phertext to its Decap oracle to obtain the premaster
secret and uses that as its input to KDF to compute
the session key k.
• BA5 never needs to answer a Corrupt( j) query be-

cause of Game 3.
When the random bit b sampled by the KEM ind-cca chal-
lenger is 0, pms is truly the decapsulation of the ciphertext
e, in which case BA5 perfectly simulates of Game 5. When
b = 1, pms is random and independent of e, in which case
BA5 perfectly simulates Game 6. Observe that BA5 never
asks the challenge ciphertext e to its decapsulation oracle.

An adversary capable of distinguishing Game 5 from
Game 6 can therefore be used to break IND-CCA security
of KEM, so Pr(break5)≤ Pr(break6)+Advind-cca

KEM (BA5 ).

Game 7. In this game, we replace the secret key k in
sessions πs

i and π t
j with a uniformly random value k′ from

{0,1}lKDF where lKDF is the length of the KDF output,
instead of being computed honestly via k← KDF(pms).

In Game 6, we replaced the premaster secret value
pms with a uniformly random value from KEM.K. Thus,
any algorithm that can distinguish Game 6 from Game
7 can distinguish the output of KDF from random. We
explicitly construct such a simulator BA6 that interacts
with a KDF challenger, and proceeds identically to Game
6, except: when computing k for πs

i , BA6 queries the
KDF challenger with pms; and when computing k for π t

j,
BA6 sets π t

j.k = πs
i .k. When the random bit b sampled

by the KDF challenger is 0, k = KDF(pms), and BA6
provides a perfect simulation of Game 6. When b = 1,
k←${0,1}lKDF and BA6 provides a perfect simulation of
Game 7.

An adversary capable of distinguishing Game 6 from
Game 7 can therefore distinguish the output of KDF from
random, so Pr(break6)≤ Pr(break7)+Advkdf

KDF(BA6 ).

Game 8. In this game, in session π t
j we replace the con-

tents of the ciphertext C2 sent in m3 with a random string
of the same length, and abort if the ciphertext received in
m5 is not equal to the ciphertext sent in m3 but the output
of the AuthDecs algorithm is not ⊥.

We construct an algorithm BA7 that interacts with
an AE challenger in the following way: BA7 acts ex-
actly as in game 7 except for sessions run by party Pj.
In session π t

j, for the computation of C2, BA7 picks a
uniformly random binary string z′ of length equal to
z = k‖KDF‖Hash‖KEM‖MAC and submits (z,z′) to its
AuthEnc oracle. For all other computations that Pj in-

volving AuthEncs or AuthDecs, BA7 submits the query its
respective AuthEnc or AuthDec oracle.

When the random bit b sampled by the AE challenger
is 0, C2 contains the encryption of z, so BA7 provides a
perfect simulation of Game 7. When b = 1, C2 contains
the encryption of z′, so BA7 provides a perfect simula-
tion of Game 8. An adversary capable of distinguish-
ing Game 7 from Game 8 can therefore break the con-
fidentiality of AE and guess b. Additionally, if BA7 re-
ceives a ciphertext in m5 that was not equal to the ci-
phertext sent in m3 but the output of the AuthDec or-
acle is not ⊥, this corresponds to a ciphertext forgery,
and thus BA7 has broken the integrity of AE. Thus,
Pr(break7)≤ Pr(break8)+AdvAEAuthEnc(BA7 ).

The effect of Game 8 is that, in the target session and
its partner, the key used in the MAC computations is
independent of the values transmitted.
Game 9. In this game, we abort when the session πs

i
accepts maliciously. We do this by constructing a sim-
ulator BA8 that interacts with the MAC challenger, but
computes τ1 and τ2 for π t

j by querying h‖m3‖C2 and
m5‖t1‖t2‖t3 to the MAC challenger. BA8 verifies MAC
tags for πs∗

i∗ by again querying h‖m3‖C2 and m5‖t1‖t2‖t3
to the MAC challenger and ensuring the MAC chal-
lenger’s output is equal to the tag to be verified. Note
that now that the key k is substituted for the key main-
tained by the MAC challenger: k was already uniformly
random and independent of the protocol run, and by Game
2 and Game 3, the simulator already responds to Reveal
queries to πs

i and π t
j by aborting the security experiment.

Thus these changes to the game are indistinguishable.
When πs

i .α ← accept, BA8 checks Pj to see if there
is a matching session. Since by Game 1 all protocol
flows are unique (by unique nonces), if Pj has no match-
ing session the adversary must have produced a valid
MAC tag τ̂1 or τ̂2 such that MAC.Tag(k,h‖m3‖C2) = τ̂1
or MAC.Tag(k,m5‖t1‖t2‖t3) = τ̂2 and (by Game 8) the
key k is uniformly random. BA8 submits the appro-
priate pair (h‖m3‖C2, τ̂1), (m5‖t1‖t2‖t3, τ̂2) to the MAC
challenger and aborts. Thus, Pr(break8)≤ Pr(break9)+
Adveuf-cma

MAC (BA8 ).
Analysis of Game 9. We now show that an active adver-
sary has a probability negligibly close to 0 of forcing a
client session πs∗

i∗ to accept maliciously in Game 9. We
briefly summarize the changes in games.

1. Nonces no longer collide for honest parties. Each
transcript πs

i .T will have unique honest matching
session π t

j.
2. Guess target session; C aborts if Reveal(i,s) query

asked.
3. Guess partner session; C aborts if Corrupt( j) or

Reveal( j, t) query asked.
4. Hash values no longer collide for honest parties.

15



Note h is now unique for each negotiation phase,
via Game 1.

5. C1 is not forged in session π t
j.

6. Replace premaster secret pms in target session πs
i

with a random value, rather than key encapsulated in
KEM ciphertext e. Note k is unique and computed
via shared secret data. Thus

7. Replace k with uniformly random data of same
length when computing τ . Thus verification of τ

in Time Synchronization and Key Exchange phases
is done via a uniformly random key, independent of
the protocol run.

8. C2 is not forged in session π t
j and contains random

data.
9. MAC tags in session πs

i are not forged.
πs

i is a target session where: no Reveal(i,s) or
Reveal( j, t) queries were issued before πs

i .α ← accept;
no Corrupt( j) query was ever issued before πs

i .α ←
accept, where πs

i .pid = j; and πs
i only accepts if τ1 =

MAC(k,h‖m3‖C2) and τ2 = MAC(k,m5‖t1‖t2‖t3). By
unforgeability these tags cannot be generated by A and
by Game 1 the protocol flow of each session is unique.
τ1 and τ2 verification will thus only occur if πs

i .T = π t
j.T ,

as τ1 is over all messages in the negotiation and key ex-
change phase, and τ2 is over all messages in the time
synchronization phase and thus πs

i will only accept if
π t

j.T prefix-matches πs
i .T . Thus, no client session ac-

cepts maliciously in Game 9: Pr(break9)≤ 0.
Summing all of the probabilities yields the desired

bound, showing that ANTPE is a E-accurate secure time
synchronization protocol.

7 Discussion

In this work we introduced a new authenticated time syn-
chronization protocol called ANTP, designed to securely
synchronize the time of a client and server, using public-
key infrastructure. Our design is efficient, allowing a
server to perform a single public key operation per client,
and then use only faster symmetric key operations for
each subsequent request from that client. Furthermore,
the server need not even store per-client state, instead
securely offloading storage of that state to the client.

Our ANTP protocol is accompanied by a thorough
provable security analysis showing that it provides se-
cure time synchronization within user-specified accuracy
bounds. The analysis is carried out in a new provable se-
curity framework. A novel aspect of our new framework,
when compared with the long line of work on authentica-
tion definitions, is that our framework models an adver-
sary with the ability to control the flow of time, meaning
the adversary can initialize different parties’ clocks to

different times, and even control the rate at which their
clocks are advanced. Our new security framework can be
used for the analysis of other time synchronization proto-
cols such as the Network Time Security (NTS) protocol
and the Precision Time Protocol (PTP).

Several interesting open problems in the area of secure
time synchronization remain. All existing time synchro-
nization protocols that rely on public keys, including ours,
need to initially validate the certificate of the time server,
specifically that it is within its validity period. While
nonces can be combined with OCSP responses to check
freshness, this cannot completely solve the “first-boot”
problem. A detailed study of denial of service attacks
against secure time synchronization protocols including
ANTP would also be worthwhile, giving detailed con-
sideration to both the cost of cryptographic operations
in practice and the bandwidth amplification afforded by
directing protocol responses to a victim.

Acknowledgements
We thank Gleb Sechenov at QUT for assistance in setting
up the network for the experiments. B.D. and D.S. sup-
ported by Australian Research Council (ARC) Discovery
Project grant DP130104304. Part of this work performed
while B.D. was an intern at Microsoft Research.

References

[1] IEEE Std 1588 for a Precision Clock Synchroniza-
tion Protocol for Networked Measurement and Con-
trol Systems Networked Measurement and Control
Systems. Technical report, IEEE Instrumentation
and Measurement Society, 2008.

[2] M. Bellare and P. Rogaway. Random oracles are
practical: A paradigm for designing efficient pro-
tocols. In V. Ashby, editor, ACM CCS 93, pages
62–73. ACM Press, Nov. 1993.

[3] C. Evans, C. Palmer, and R. Sleevi. Public Key
Pinning Extension for HTTP. RFC 7469 (Proposed
Standard), Apr. 2015.

[4] D. Galindo, S. Martin, and J. L. Villar. Evaluating
elliptic curve based KEMs in the light of pairings.
Cryptology ePrint Archive, Report 2004/084, 2004.
http://eprint.iacr.org/2004/084.

[5] B. Haberman and D. Mills. Network Time Proto-
col Version 4: Autokey Specification. RFC 5906
(Informational), June 2010.

[6] C. Hedrick. Routing Information Protocol. RFC
1058 (Historic), June 1988. Updated by RFCs 1388,
1723.

16

http://eprint.iacr.org/2004/084


[7] J. Hodges, C. Jackson, and A. Barth. HTTP Strict
Transport Security (HSTS). RFC 6797 (Proposed
Standard), Nov. 2012.

[8] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk.
On the security of TLS-DHE in the standard
model. In R. Safavi-Naini and R. Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 273–
293. Springer, Heidelberg, Aug. 2012.

[9] H. Krawczyk. Cryptographic extraction and key
derivation: The HKDF scheme. In T. Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 631–
648. Springer, Heidelberg, Aug. 2010.

[10] A. Malhotra, I. E. Cohen, E. Brakke, , and S. Gold-
berg. Attacking the Network Time Protocol. In
NDSS 201616. Internet Society, February 2016.

[11] J. McCann, S. Deering, and J. Mogul. Path MTU
Discovery for IP version 6. RFC 1981 (Draft Stan-
dard), Aug. 1996.

[12] Microsoft Corporation. Windows Time Service
Tools and Settings. Microsoft Developer Network,
May 2012. https://msdn.microsoft.com/de-
de/library/cc773263%28v=ws.10%29.aspx#

w2k3tr_times_tools_uhlp.

[13] Microsoft Corporation. [MS-W32T]: W32Time
Remote Protocol. Microsoft Developer Network,
May 2014. https://msdn.microsoft.com/en-
us/library/cc249627.aspx.

[14] D. Mills. Network Time Protocol (NTP). RFC 958,
Sept. 1985. Obsoleted by RFCs 1059, 1119, 1305.

[15] D. Mills. Network Time Protocol (version 2) specifi-
cation and implementation. RFC 1119 (INTERNET
STANDARD), Sept. 1989. Obsoleted by RFC 1305.

[16] D. Mills. Network Time Protocol (Version 3) Speci-
fication, Implementation and Analysis. RFC 1305
(Draft Standard), Mar. 1992. Obsoleted by RFC
5905.

[17] D. Mills, J. Martin, J. Burbank, and W. Kasch. Net-
work Time Protocol Version 4: Protocol and Algo-
rithms Specification. RFC 5905 (Proposed Stan-
dard), June 2010.

[18] D. L. Mills. On the accuracy and stablility of clocks
synchronized by the network time protocol in the
internet system. ACM SIGCOMM Computer Com-
munication Review, 20(1):65–75, 1989.

[19] T. Mizrahi. Security Requirements of Time Pro-
tocols in Packet Switched Networks. RFC 7384
(Informational), Oct. 2014.

[20] J. Mogul and S. Deering. Path MTU discovery. RFC
1191 (Draft Standard), Nov. 1990.

[21] National Institute for Standards and Technol-
ogy (NIST). The NIST Authenticated NTP
Service. http://www.nist.gov/pml/div688/

grp40/auth-ntp.cfm.

[22] K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag
size does matter: Attacks and proofs for the TLS
record protocol. In D. H. Lee and X. Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages
372–389. Springer, Heidelberg, Dec. 2011.

[23] A. Perrig, R. Canetti, J. Tygar, and D. Song. The
TESLA broadcast authentication protocol. RSA
CryptoBytes, 5(Summer), 2002.

[24] E. Rescorla and N. Modadugu. Datagram Transport
Layer Security. RFC 4347 (Proposed Standard),
Apr. 2006. Obsoleted by RFC 6347, updated by
RFCs 5746, 7507.

[25] S. Röttger. Analysis of the NTP Autokey Proto-
col. Masters Thesis, Technische Universität Braun-
schweig, Feb. 2012. http://zero-entropy.de/
autokey_analysis.pdf.

[26] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig.
Transport Layer Security (TLS) Session Resumption
without Server-Side State. RFC 5077 (Proposed
Standard), Jan. 2008.

[27] S. Santesson, M. Myers, R. Ankney, A. Malpani,
S. Galperin, and C. Adams. X.509 Internet Public
Key Infrastructure Online Certificate Status Protocol
- OCSP. RFC 6960 (Proposed Standard), June 2013.

[28] C.-P. Schnorr. Efficient identification and signatures
for smart cards. In G. Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 239–252. Springer, Hei-
delberg, Aug. 1990.

[29] J. Schwenk. Modelling time for authenticated key
exchange protocols. In M. Kutylowski and J. Vaidya,
editors, ESORICS 2014, Part II, volume 8713 of
LNCS, pages 277–294. Springer, Heidelberg, Sept.
2014.

[30] J. Selvi. Bypassing HTTP Strict Trans-
port Security. In Black Hat Europe, 2014.
https://www.blackhat.com/docs/eu-

14/materials/eu-14-Selvi-Bypassing-

HTTP-Strict-Transport-Security-wp.pdf.

[31] V. Shoup. ISO/IEC 18033-2:2006: Information
technology – security techniques – encryption al-
gorithms – part 2: Asymmetric ciphers. Technical

17

https://msdn.microsoft.com/de-de/library/cc773263%28v=ws.10%29.aspx#w2k3tr_times_tools_uhlp
https://msdn.microsoft.com/de-de/library/cc773263%28v=ws.10%29.aspx#w2k3tr_times_tools_uhlp
https://msdn.microsoft.com/de-de/library/cc773263%28v=ws.10%29.aspx#w2k3tr_times_tools_uhlp
https://msdn.microsoft.com/en-us/library/cc249627.aspx
https://msdn.microsoft.com/en-us/library/cc249627.aspx
http://www.nist.gov/pml/div688/grp40/auth-ntp.cfm
http://www.nist.gov/pml/div688/grp40/auth-ntp.cfm
http://zero-entropy.de/autokey_analysis.pdf
http://zero-entropy.de/autokey_analysis.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Selvi-Bypassing-HTTP-Strict-Transport-Security-wp.pdf


report, 2006. See also http://shoup.net/iso/

std6.pdf.

[32] D. Sibold, S. Röettger, and K. Teichel. Net-
work Time Security. IETF Internet-Draft, January
2016. https://tools.ietf.org/html/draft-

ietf-ntp-network-time-security-12.

[33] K. Teichel, D. Sibold, and S. Milius. First Results
of a Formal Analysis of the Network Time Security
Specification. In Security Standardisation Research,
pages 218–245. Springer, 2015.

[34] K. Teichel, D. Sibold, and S. Milius. An Attack
Possibility on Time Synchronization Protocols
Secured with TESLA-Like Mechanisms, 2016.
https://www8.cs.fau.de/staff/milius/

AttackPossibilityTimeSyncTESLA.pdf.

[35] The Apache Software Foundation. Apache httpd
version 2.4.18, December 2015. https://httpd.
apache.org/.

[36] The OpenBSD Project. OpenNTPD version 5.7p4,
March 2015. http://www.openntpd.org/.

[37] The OpenSSL Project. OpenSSL version 1.0.2f,
January 2016. https://www.openssl.org/.

A Cryptographic Building Blocks

A.1 Key Encapsulation Mechanism
Definition 6 (Key encapsulation mechanism). A key en-
capsulation mechanism (KEM) for a keyspaceK is a tuple
of algorithms KEM= (KeyGen,Encap,Decap):
• KeyGen() $→ (pk,sk): A probabilistic key genera-

tion algorithm that outputs a public key pk and a
secret key sk.
• Encap(pk) $→ (c,k): A probabilistic key encapsula-

tion algorithm that takes as input a public key pk
and outputs a ciphertext c and a (session) key k ∈ K.
• Decap(sk,c)→ k: A deterministic key decapsula-

tion algorithm that takes as input a secret key sk and
ciphertext c and outputs a (session) key k ∈ K (or a
distinguished error symbol ⊥).

A key encapsulation mechanism is correct if

Pr

k = k′ :
(pk,sk)←$KeyGen();
(c,k)←$Encap(pk);
k′← Decap(sk,c)

= 1

The ind-cca security experiment for adversary A against
scheme KEM is given in Figure 3, and A’s advantage in
breaking the ind-cca property for KEM is defined as

Advind-cca
KEM (A) =

∣∣∣2Pr
[
Expind-cca

KEM (A) = 1
]
−1
∣∣∣ .

Expind-cca
KEM (A):

1: (pk,sk)←$KeyGen()
2: st←$ADecap(sk,·)(pk)
3: (c∗,k0)←$Encap(pk)
4: k1←$K
5: b←${0,1}
6: b′←$ADecap(sk,·6=c)(st,c∗,kb)
7: return b = b′

Figure 3: ind-cca security experiment for key encapsula-
tion mechanism KEM.

Encrypt(m0,m1): Decrypt(C):
C(0)←$AuthEnc(k,m0) m← AuthDec(k,C)

C(1)←$AuthEnc(k,m1) If m =⊥p, then return ⊥
If C(0) =⊥ or C(1) =⊥, If b = 0, then return ⊥

return ⊥ If b = 1, then return m
Return C(b)

Figure 4: Encrypt and Decrypt oracles in the authenti-
cated encryption security experiment.

A.2 Authenticated Encryption Scheme
Definition 7 (Authenticated encryption scheme). An au-
thenticated encryption (AE) scheme is a pair of algo-
rithms AE= (AuthEnc,AuthDec) described in Figure
4. Security of a AE scheme is defined via the follow-
ing security game played between a challenger C and a
polynomial-time adversary A.

1. The challenger picks b←${0,1} and k←${0,1}κ .
2. The adversary may adaptively query the encryp-

tion oracle Encrypt and decryption oracle Decrypt
which respond as shown in Figure 4.

3. The adversary outputs a guess b′ ∈ {0,1}.
The advantage of A in breaking the AE scheme AE is

AdvAE
AuthEnc(A) =

∣∣Pr(b = b′)− 1
2

∣∣. Note that in our use
of an AE scheme, the purpose is to allow the server to
regenerate per-client-state in an authenticated way. The
length of all inputs to the AE scheme in each phase is
public information and thus the length-hiding security
property (introduced by Paterson, Ristenpart and Shrimp-
ton [22]) is not necessary .

A.3 Collision-Resistant Hash Functions
Definition 8 (Collision-resistant hash function). A
collision-resistant hash function is a deterministic al-
gorithm Hash which given a key k ∈ KHash (with
log(|KHash|) polynomial in κ) and a bit string m outputs
a hash value w = Hash(k,x) in the hash space {0,1}χ

(with χ polynomial in κ). We say that the advantage of
a polynomial-time adversary A breaking the collision-

18

http://shoup.net/iso/std6.pdf
http://shoup.net/iso/std6.pdf
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-12
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-12
https://www8.cs.fau.de/staff/milius/AttackPossibilityTimeSyncTESLA.pdf
https://www8.cs.fau.de/staff/milius/AttackPossibilityTimeSyncTESLA.pdf
https://httpd.apache.org/
https://httpd.apache.org/
http://www.openntpd.org/
https://www.openssl.org/


resistance of the hash function Hash is AdvHashcoll (A) =
|Pr(Hash(in) = Hash(in′))| with in 6= in′.

A.4 Message Authentication Codes

Definition 9 (Message authentication code). A mes-
sage authentication code (MAC) scheme is a pair of
algorithms MAC = (MAC.KeyGen, MAC.Tag) where:
MAC.KeyGen is a probabilistic key generation algorithm
taking input security parameter 1λ and returning a ran-
dom key k in the keyspace K of MAC and MAC.Tag is a
deterministic algorithm that takes as input a secret key k
and a arbitrary message m and returns a MAC tag τ . Se-
curity is formulated via the following game that is played
between a challenger C and a probabilistic polynomial-
time adversary A.

1. The challenger samples k←$K.
2. The adversary may adaptively query the challenger;

for each query value mi, the challenger replies with
τi = Tag(k,mi).

3. The adversary outputs a pair of values (m∗,τ∗) such
that m∗ /∈ {m0, ...,mi}.

The adversary A wins the game if Tag(k,m∗) = τ∗, pro-
ducing a MAC forgery. We define the advantage of
A in breaking the unforgeability security property of
a MAC scheme MAC under chosen-message attack is
AdvMAC

eu f -cma(A) = Pr(Tag(k,m∗) = τ∗).

A.5 Key Derivation Function

Definition 10 (Key derivation function). A key derivation
function (KDF) is a deterministic algorithm KDF, which
takes input: a source of randomness σ ; optional salt s;
optional context c; and output length L, will output a bit
string k of length L. Security of a KDF is formulated via
the following security game (we follow the KDF assump-
tion as defined by Krawczyk [9] with simplified notation),
played between a challenger C and a polynomial-time
adversary A.

1. C queries a source of key material algorithm Σ to
produce (σ ,α), where σ is random sample and α is
auxiliary information about the distribution of σ

2. C chooses a random salt value s from salt distribu-
tion defined by KDF, if necessary.

3. A is given (α,s).
4. A can now arbitrarily query a KDF oracle

KDF with input (ci,Li), and receives output k =
KDF(σ ,s,ci,Li)

5. A at some point queries a Test oracle with input
(c,L) such that c /∈ {c1, ...,ci}.

6. C samples a random bit b ∈ {0,1}, and computes
k0 = KDF(σ ,s,c,L) and k1←${0,1}L.

7. C returns kb to A.
8. A can again arbitrarily query a KDF oracle KDF

with input (ci,Li)such that c /∈ {c1, ...,ci}, and re-
ceives output k = KDF(σ ,s,ci,Li)

9. A outputs a bit b′.
The A wins the game if b′ = b. The advantage of A in
breaking a key derivation function KDF is AdvKDF

kd f (A) =∣∣Pr(b = b′)− 1
2

∣∣.
B ANTP Multi-Phase Security

Multi-phase security of ANTPE can be established in a
similar way to single-phase security as in Appendix ??,
with minor changes to the games in the proof to enable
guessing of the first phase session to accept maliciously.

Theorem 3 (Multi-Phase Security of ANTP). Fix E,n ∈
N. Under the same assumptions as in Theorem 2, ANTPE

is a E-accurate secure multi-phase time synchronization
protocol as defined in Definition 5. In particular, there
exist algorithms B3, . . . ,B8 described in the proof of The-
orem 2, such that, for all adversaries A, we have that

Advmulti-time
ANTPE ,E

(A)≤
n2

pn2
s

2λ−2 +n2
pn2

s n
(

Advcoll
Hash(BA3 )

+AdvAE
AuthEnc(BA4 )+Advind-cca

KEM (BA5 )

+Advkdf
KDF(BA6 )+AdvAE

AuthEnc(BA7 )

+Adveuf-cma
MAC (BA8 )

)
where np, ns, n are the maximum number of parties, ses-
sions and phases created by A during the experiment.

Proof. The proof for Theorem 3 is identical to the proof
to Theorem 2 except as follows.

A new game is inserted between Game 3 and Game
4 that guesses the first time synchronization phase p ∈
{1, . . . ,n} that the target session πs

i will accept mali-
ciously: by Theorem 2, we know that a session πs

i will
not accept maliciously for time synchronization phase
p = 1, so by this step we know that πs

i matches π t
j up to

and including phase p−1.
We also edit the final game (MAC challenger) so that

B aborts if πs
i accepts maliciously in phase p. We do this

by editing the final game in the following way: When pro-
cessing m5 for π t

j in the guessed phase p (we indicate this
with m5p) B will also compute τ2p by querying the MAC
challenger with m5p‖t1p‖t2p‖t3p, and verifies the τ2p for
πs

i by querying the MAC challenger with m5p‖t1p‖t2p‖t3p
and accepting only if the output from the MAC challenger
matches the τp in m6p. Following the same structure as
the proof to Theorem 2, we have that k is a uniformly
random key generated independently from the protocol
run and this change is indistinguishable. Verification of τ

19



will only occur if πs
i .T = π t

j.T up to phase p, as τ1 is over
all messages in the negotiation and key exchange phase,
and τp is over all messages in phase p.

C Network Time Protocol Message

This section details the NTP message format as specified
in [16].

struct {

uint8 leap_indicator : 2;

uint8 version : 3;

uint8 mode : 3;

uint8 stratum;

int8 pollinterval;

int8 precision;

int32 root_delay;

int32 root_dispersion;

int32 reference_identifier;

int64 reference_timestamp;

int64 originate_timestamp;

int64 recieve_timestamp;

int64 transmit_timestamp;

} NtpMessage

where:
• leap indicator: An unsigned two-bit code used

to indicate leap seconds or warnings.
• version: A unsigned three-bit integer used to indi-

cate supported version of S/NTP.
• mode: A unsigned three-bit integer used to indicate

mode of operation (client, server, etc.).
• stratum: An eight-bit integer used to indicate the

stratum level of the local machine.
• pollinterval: A signed eight-bit integer used to

indicate the maximum interval of time between NTP
queries sent by the client, to the nearest power of
two.
• precision: A signed eight-bit integer n used to

indicate the resolution of the client local clock to the
nearest power of two.
• root delay: A signed 32-bit fixed-point number,

used to indicate the total round-trip time from the
client local clock to the hardware clock at the pri-
mary server.
• root dispersion: A signed 32-bit fixed-point

number, used to indicate the nominal error of the
local clock relative to the hardware clock at the pri-
mary server.
• reference identifier: A 32-bit string used to

identify the primary server used as reference.
• reference timestamp: A unsigned 64-bit NTP

timestamp in big-endian format, used to indicate the
last update of the client local clock.
• originate timestamp: A unsigned 64-bit NTP

timestamp in big-endian format, used to indicate the
time that req was sent according to the client local
clock.
• receive timestamp: A unsigned 64-bit NTP

timestamp in big-endian format, used to indicate
the time the req arrived at the server, according to
the server local clock.
• transmit timestamp: An unsigned 64-bit NTP

timestamp in big-endian format, used to indicate
the time the message departed the local machine,
according to the local clock.

D Authenticated Network Time Protocol
Messages

Recall that all messages are designed to be sent in the
NTP extension fields similarly to the Autokey Protocol
[5]. When the msg type of the extension field equals
0x01, 0x02, 0x03, 0x04, or 0x05 the client MUST NOT
use the information in the NTP message fields for syn-
chronization. If the msg type of the extension fields
equal 0x01 or 0x03 the server MAY process the NTP
message normally. When the namefield reads 0x06 or
0x05, the client and server MUST process the respective
NTP messages as specified in the NTP specification.

This protocol follows DTLS [24] regarding message
fragmentation. If the message requires fragmentation, the
client divides the message into a series of N contiguous
data ranges, each at least 56 bytes shorter than the max-
imum message size (to account for the NTP Packet and
the msg type, Length, Offset and FragmentLength

field lengths). Each of these N data ranges becomes a new
message, each attached to an identical NTP packet, and
with identical msg type and Length. The Offset of a
message fragment is the number of bytes in previous frag-
ments, and FragmentLength is the length of the current
message fragment. When any party receives an NTP mes-
sage with an extension field containing a msg type with
value 0x01 (ClientAssoc), 0x02 (ServerAssoc), 0x03
(ClientKey), 0x04 (ServerKey), 0x05 (ClientReq),
0x06 (ServerResp), the party checks if Length =
FragmentLength. If not, the party MUST buffer until it
has the entire message, and process as if the message were
a single NTP packet attached to a extension field with ze-
roed fragment offset field and fragment length set
to length. This fragmentation strategy is applied to each
ANTP protocol message, as required. Setting the maxi-
mum message length depends on the path MTU between
the client and server. Clients can use path MTU discovery
[20] [11]. See also Section 4.1.1.1 ”PMTU Discovery”

20



from [24] for information on how path MTU is set in
DTLS.

We specify the following structure to describe the
FragmentInfo structure of all ANTP packets:

struct {

uint24 length;

uint16 offset;

uint16 FragmentLength;

} FragmentInfo

where:
• length: An unsigned 24-bit integer describing the

length of the unfragmented message
• fragment offset: An unsigned 16-bit integer de-

scribing the number of bytes contained in previous
fragments of the message. When the message re-
quires no fragmentation this value is 0.
• fragment length: An unsigned 16-bit integer de-

scribing the length of this fragment on the message.
When the message requires no fragmentation, this
value is length.

Note that since ANTP allows buffering of messages, it is
possible that multiple ANTP messages that require frag-
mentation may be received by another party interleaved.
Since each ANTP message that is fragmented is attached
to an identical NTP message, it is trivial to distinguish
fragmented ANTP messages via the NTP packet. In order
to reduce complexity however, the parties MUST NOT
send multiple ANTP messages with identical NTP pack-
ets, but instead generate a new NTP message for each
message flow.

In a similar way to TLS all values are stored in big-
endian format, and the smallest block size is a single byte.
We define variable- length vectors by specifying a range
of legal lengths and sizes of the elements in the vector as
follows:

type Name <floor,...,ceiling>

where type is the type of each element, floor is the
smallest number of elements in the vector, and ceiling

the largest. Note that for each vector the number of el-
ements in the vector is prepended to the vector as an
unsigned integer, using as many bytes as necessary to
express ceiling (the length of the largest possible vector).

We define the following structure to represent a
variable-length string of bytes:

struct {

uint32 length;

uint8 data<0, ..., 2^32 -1>

} ByteString

where:

• length: An unsigned 32-bit integer indicating the
number of bytes that follow.
• data: A sequence of bytes (octets).
Note that for the ByteString structure, the data field

is not serialized as a vector (with the length prepended),
as the length is explicitly given by the first field.

D.1 Negotiation Phase
The negotiation phase begins with the exchange of mes-
sages to negotiate the key exchange, hash algorithms and
versions to be used throughout the protocol. In addition,
the server sends the digital certificate necessary to val-
idate the public-key of the server. The server includes
an opaque value opaque1, which is the authenticated-
encrypted value of the hash value (for authenticating the
negotiation phase), the negotiated algorithms and a flag
value to distinguish opaque1 from later opaque2 values.

D.1.1 Client Association Message

The negotiation phase begins with the client sending the
first negotiation message, with the following structure.
The description of each field can be found below:

struct {

uint8 msg_type = 0x01;

FragmentInfo f;

uint8 client_version;

uint8 client_kdf_algs<0,...,255>;

uint8 client_hash_algs<0,...,255>;

uint8 client_kex_algs<0,...,255>;

uint8 client_mac_algs<0,...,255>;

uint256 nonce;

} ClientNegotiation

• msg type: A unsigned byte of value 0x01 indicating
the ClientAssoc message.
• client version: An unsigned 8-bit integer indi-

cating the highest supported version of ANTP that
the client supports.
• client kdf algs: An ordered list of unsigned 8-

bit integers representing the preferred key derivation
functions supported by the client.
• client hash algs: An ordered list of unsigned

8-bit integers representing the preferred hash algo-
rithms supported by the client.
• client kex algs: An ordered list of unsigned 8-

bit integers representing the preferred key exchange
algorithms supported by the client.
• client mac algs: An ordered list of unsigned 8-

bit integers representing the preferred MAC schemes
supported by the client.
• nonce: An unsigned 256-bit integer.

21



D.1.2 Server Association Message

The negotiation phase continues with the server pro-
cessing the ClientAssoc message and sending the
ServerAssoc message, with the following structure:

struct {

uint8 msg_type = 0x02;

FragmentInfo f;

uint8 server_version;

uint8 server_kdf_algs<0,...,255>;

uint8 server_hash_algs<0,...,255>;

uint8 server_kex_algs<0,...,255>;

uint8 server_mac_algs<0,...,255>;

ByteString server_cert;

ByteString opaque1

} ServerNegotiation

• server neg: A unsigned byte of value 0x02 indi-
cating the ServerAssoc message.
• server version: An unsigned 8-bit integer indi-

cating the highest supported version of the authenti-
cation protocol that the server supports.
• server kdf algs: An ordered list of unsigned 8-

bit integers representing the preferred key derivation
functions supported by the server.
• server hash algs: An ordered list of unsigned

8-bit integers representing the preferred hash algo-
rithms supported by the server.
• server kex algs: An ordered list of unsigned 8-

bit integers representing the preferred key exchange
algorithms supported by the server.
• server mac algs: An ordered list of unsigned 8-

bit integers representing the preferred MAC schemes
supported by the server.
• server cert: The certificate containing the server

public-key. Note that the public-key corre-
sponds to the key exchange algorithm negotiated
with the two ordered lists client kex algs and
server kex algs.
• opaque1 An encrypted value created by the server,

opaque to the client.

D.2 The Key Exchange Phase
The key exchange phase establishes secret-key material,
and implicitly authenticates both the key exchange and
negotiation phases to the client.

D.2.1 Client Key Exchange Message

The key exchange phase begins with the client sending
the ClientKey message, with the following structure and
description:

struct {

uint8 msg_type = 0x03;

FragmentInfo f;

uint8 neg_version;

uint8 neg_kdf;

uint8 neg_hash;

uint8 neg_kex;

uint8 neg_mac;

ByteString opaque1

ByteString kex_mat

} ClientKEX

• msg type: A unsigned byte of value 0x03 indicating
the ClientKey message.
• neg version: unsigned 8-bit integer describing the

negotiated version of the protocol that the parties
will be using.
• neg kdf: An unsigned 8-bit integer describing the

negotiated KDF that the protocol will be using.
• neg hash: An unsigned 8-bit integer describing the

negotiated hash algorithm that the protocol will be
using.
• neg kex: An unsigned 8-bit integer describing the

negotiated key- exchange algorithm that the protocol
will be using.
• neg hash: An unsigned 8-bit integer describing the

negotiated MAC algorithm that the protocol will be
using.
• opaque1: The opaque value sent in the
ServerAssoc message.
• kex mat: The public key exchange material.

D.2.2 Server Key Exchange Message

The server now processes the ClientKey message to
compute the shared secret key. The server then produces
a second opaque encryption, this time of the key k, and
generates a MAC tag authenticating the ClientKey and
ServerKey messages. The structure and description of
the ServerKey message is as follows:

struct {

uint8 msg_type = 0x04;

FragmentInfo f;

ByteString opaque2

ByteString mac_tag

} ServerKEX

• msg type: A unsigned byte of value 0x04 indicating
the ServerKey message.
• opaque2: A second encrypted value created by the

server, opaque to the client.
• mac tag: The MAC of the concatenated hash value,
ClientKey, and ServerKey messages using the

22



agreed key. The length of the tag is known to both
parties based on the negotiated hash function, and
clients MUST check that the received mac tag has
the correct length.

D.3 Time Synchronization Phase
The Time Synchronization Phase is for the client to re-
quest synchronization from a server that has previously
been authenticated and established a shared secret key.

D.3.1 Client Request Message

The Time Synchronization phase begins with the client
computing the NTP packet as specified in the SNTP stan-
dards, and additionally completing the ClientReq exten-
sion as structured and described below:

struct {

uint8 msg_type = 0x05;

FragmentInfo f;

uint8 neg_kdf;

uint8 neg_hash;

uint8 neg_kex;

uint8 neg_mac;

uint256 nonce;

ByteString opaque2

uint8 AccuracyFlag flag

} ClientRequest

• msg type: A unsigned byte of value 0x05 indicating
the ClientReq message.
• neg kdf: An unsigned 8-bit integer describing the

negotiated KDF that the protocol will be using.
• neg hash: An unsigned 8-bit integer describing the

negotiated hash algorithm that the protocol will be
using.
• neg kex: An unsigned 8-bit integer describing the

negotiated key- exchange algorithm that the protocol
will be using.
• neg mac: An unsigned 8-bit integer describing the

negotiated MAC algorithm that the protocol will be
using.
• nonce: An unsigned 256-bit integer.
• opaque2: The opaque value sent in the ServerKEX

message.
• flag: An unsigned 8-bit integer describing whether

the client requires high accuracy. Legal values are
0x01 (the flag is set) or 0x00 (the flag is not set).

D.3.2 Server Response Message

The server processes the client NTP request as standard-
ized, and computes the SNTP response. If the flag in

the ClientReq is 0x01, the server immediately sends the
message without a ServerResp extension. Afterwards,
the server computes the ServerResp fields as described
below, and attaches it as an extension to the previously
computed NTP packet, sending the message to the client.

struct {

uint8 msg_type = 0x06;

FragmentInfo f;

ByteString mac_tag

} ServerResponse

• msg type: A unsigned byte of value 0x06 indicating
the ServerResp message.
• mac tag: The MAC of the concatenated ClientReq

and ServerResp messages using the derived secret-
key. The length of the tag is known to both parties
based on the negotiated hash function, and clients
MUST check that the received mac tag has the cor-
rect length.

23


	Introduction
	Contributions

	Network Time Protocols
	The Network Time Protocol
	The Simple Network Time Protocol
	NTP Security and Other Related Work

	Authenticated NTP
	Protocol Description
	Design Rationale and Discussion

	Implementation and Performance
	Instantiation and Implementation
	Performance

	Security Framework
	Execution Environment
	Security Definitions
	Matching Conversations and Authentication
	Correct and Secure Time Synchronization

	Multi-Phase Protocols

	Security of ANTP
	Correctness
	Security

	Discussion
	Cryptographic Building Blocks
	Key Encapsulation Mechanism
	Authenticated Encryption Scheme
	Collision-Resistant Hash Functions
	Message Authentication Codes
	Key Derivation Function

	ANTP Multi-Phase Security
	Network Time Protocol Message
	Authenticated Network Time Protocol Messages
	Negotiation Phase
	Client Association Message
	Server Association Message

	The Key Exchange Phase
	Client Key Exchange Message
	Server Key Exchange Message

	Time Synchronization Phase
	Client Request Message
	Server Response Message



