Multi-Client Verifiable Computation with Stronger
Security Guarantees

S. Dov Gordon Jonathan Katz Feng-Hao Liu
Applied Communication Sciences University of Maryland University of Maryland
sgordon@appcomsci.com jkatz@cs.umd.edu fenghao®@cs.umd.edu
Elaine Shi Hong-Sheng Zhou
University of Maryland Virginia Commonwealth University
elaine@cs.umd.edu hszhou®@vcu.edu
Abstract

Choi et al. (TCC 2013) introduced the notion of multi-client verifiable computation (MVC)
in which a set of clients outsource to an untrusted server the computation of a function f over
their collective inputs in a sequence of time periods. In that work, the authors defined and
realized multi-client verifiable computation satisfying soundness against a malicious server and
privacy against the semi-honest corruption of a single client. Very recently, Goldwasser et al.
(Eurocrypt 2014) provided an alternative solution relying on multi-input functional encryption.

Here we conduct a systematic study of MVC, with the goal of satisfying stronger security
requirements. We begin by introducing a simulation-based notion of security that provides a
unified way of defining soundness and privacy, and automatically captures several attacks not
addressed in previous work. We then explore the feasibility of achieving this notion of security.
Assuming no collusion between the server and the clients, we demonstrate a protocol for multi-
client verifiable computation that achieves strong security in several respects. When server-client
collusion is possible, we show (somewhat surprisingly) that simulation-based security cannot be
achieved in general, even assuming semi-honest behavior.

Contents

1 Introduction 1
1.1 Our Contributions o 1
1.2 Techniques and New Primitives 2
1.3 Other Related Work s 3

2 Multi-Client Verifiable Computation 3
2.1 Definitions 3
2.2 Security Definition Lo 4

3 Malicious Server and Semi-honest Client Corruptions 6
3.1 Multi-Sender ABEo 7
3.2 Achieving Attribute Hiding 9

4 From Semi-Honest to Malicious Clients 11

5 Client-Server Collusion 13

6 Instantiations and Efficiency 14

A Definitions 18
A1 Two-outcome ABE 18
A2 Garbling Schemes L 19
A.3 Extractable Witness Encryption oo 19
A4 Obfuscations o e 20
A5 Proxy Oblivious Transfer 20

B Multi-Sender ABE and Extractable Witness Encryption 21
B.1 mABE Implies Extractable Witness Encryption 21
B.2 More Efficient mABE Using Non-falsifiable Assumptions 23

C Multi-Client Verifiable Computation without Input Privacy 24

D Deferred Proofs 27
D.1 Proof of Theorem 3.2 (mABE) 27
D.2 Proof of Theorem 3.3 (ah-mABE) 29
D.3 Proof of Theorem 3.4 (Private MVC) 30

D.4 Proof of Theorem 4.2 e 32

1 Introduction

Protocols for verifiable computation (or secure outsourcing) allow computationally weak clients to
delegate to a more powerful server the computation of a function f on a series of dynamically
chosen inputs (1), 2(2), ... The main desideratum is that, following a pre-processing stage whose
complexity may depend on f, the work of the client per function evaluation should be significantly
lower than the cost of computing the function itself. The initial proposal and construction of non-
interactive verifiable computation [20] led to a long line of follow-up work [16, 1, 17, 9, 35, 27, 36,
18, 21, 34, 3, 26, 10, 7, 8, 33].

We are interested here in the multi-client setting introduced by Choi et al. [15]. Imagine that n
clients wish to compute some function f over their joint inputs {(xgss'd), e 2 S'd))}ssid for a series
of subsessions identified by ssid. (One can view the ssid as encoding the current time period, though
there are other possibilities as well.) As in earlier work, we assume no client-client communication,
and focus on non-interactive solutions in which each evaluation of the function requires only a
single round of communication between each client and the server.

In earlier works on multi-client verifiable computation [15, 24], the primary goal is to achieve
security (soundness and privacy) against a malicious server, assuming that clients behave honestly.
Soundness means that a malicious server should not be able to fool a client into accepting a wrong
result; privacy means that clients’ inputs should remain hidden from the server. (Choi et al. also
considered privacy against clients, but while still assuming semi-honest client behavior.)

1.1 Owur Contributions

In this paper, we conduct a systematic study of multi-client verifiable computation with stronger
security guarantees. The primary question we address is security when clients may be malicious.
These malicious clients may potentially be colluding with each other, or with the server.

Formal security modeling. We begin by introducing a simulation-based notion of security in
the universal composability framework, which provides a unified way of defining soundness and
privacy. As a technical advantage, it means that protocols satisfying the definition achieve a
strong, simulation-based notion of security not considered in previous work. Our definition also
automatically captures adaptive soundness' as well as selective-failure® attacks.

Impossibility when the server and clients collude. Ideally, one would like to achieve a
strong notion of security where a subset of the clients may be corrupted, and may additionally
be colluding with the server. Unfortunately, we show that simulation-secure MVC is impossible to
realize (in general) when the server colludes with clients. This impossibility result holds even in the
standalone setting, even when the server colludes with only a single, semi-honest client, and even
in the presence of trusted setup assumptions such as PKI or a common reference string (CRS).
Intuitively, this is due to a connection we establish between MVC and virtual black-box (VBB)
obfuscation, which is already known to be impossible [4] (for general functions). More details can
be found in Section 5.

! Adaptive soundness means that soundness should hold even if the inputs to the function are chosen adaptively
following the pre-processing phase. See [5, 15] for further discussion.

2 A selective-failure attack is one in which the server attempts to violate soundness by observing whether client(s)
fail” following a particular set of responses sent by the server. This attack is only applicable if client(s) continue
interacting with the server even following such a failure.

Feasibility when the server and clients do not collude. In contrast to the above, we show
positive results for the case when client-server collusion is assumed not to occur. We show a
construction that achieves security (i.e., soundness and privacy) against either a malicious server, or
an arbitrary set of malicious, colluding clients. Our construction achieves both adaptive soundness
and security against selective-failure attacks.

Our construction relies only on falsifiable assumptions. While it is also possible to construct
MVC schemes using the notion of multi-input functional encryption [24], that notion requires non-
falsifiable assumptions or sub-exponential hardness assumptions [22]. Moreover, current construc-
tions of multi-input functional encryption have prohibitively large overhead.

1.2 Techniques and New Primitives

When server-client collusion is not allowed, we take a two-step approach to achieving simulation-
based security. As a stepping stone, we identify a new building block named multi-sender, attribute-
based encryption (mABE) that may be of independent interest.

Our two-step approach for MVC. We start with a protocol that achieves simulation-based
security against either (i) a malicious server or (ii) any coalition of semi-honest clients. Although
this is also achieved by the protocol of Choi et al. [15]—even though not claimed explicitly there—
our construction has the advantages of offering adaptive soundness based on standard assumptions
as well as resilience to selective-failure attacks.

We then present a generic compiler that upgrades our intermediate solution (as well as the one by
Choi et al. [15]) to handle an arbitrary subset of malicious clients. While we could rely on standard
techniques here (such as having clients commit to random tapes during setup, and then asking each
client to prove in zero knowledge that they behave honestly), we instead offer a compiler that does
not require committed randomness, allowing us to reduce our setup assumptions to just a common
reference string. We demonstrate that as long as the semi-honest protocol offers a sufficiently
strong notion of privacy, our compiler ensures security against malicious corruption. This gives us
a non-interactive, multi-client, verifiable-computation protocol secure against malicious adversaries,
in the standard model and based on falsifiable assumptions.

A new building block: mABE. In the single-client setting, Parno et al. [36] showed a connection
between attribute-based encryption (ABE) and verifiable computation (without input privacy).
Later, Goldwasser et al. [26] showed (i) how to compile an ABE scheme to a private-index func-
tional encryption scheme using fully homomorphic encryption (FHE), and (ii) that private-index
functional encryption implies input-private publicly verifiable computation.

We conduct a parallel study in the multi-sender setting. The multi-sender counterpart (namely,
mABE) is defined as follows. Each sender P; € {Py,...,P,} has an attribute value x; and two input
messages (mgi),mgi)). A receiver can use a decryption key for function f; to learn {ml(f) r, if and
only if b = fi(x1,...,2z,). We show how to construct an mABE scheme secure against a malicious
receiver or semi-honest senders. To do so, we first observe that the LWE-based ABE scheme by
Gorbunov, Vaikuntanathan, and Wee [30] satisfies a special “local encoding” property. We use this
observation to combine their scheme with the proxy-OT protocol proposed by Choi et al. [15].

Given an mABE scheme, we can apply the compiler of Goldwasser et al. [26] to transform it into
an attribute-hiding mABE scheme (which can also be thought of as a multi-sender, private-index
functional encryption scheme). Finally, just as single-sender private-index functional encryption

implies input-private verifiable computation, we show that attribute-hiding mABE implies multi-
client verifiable computation with input privacy, secure against a malicious server or an arbitrary
subset of semi-honest clients. We can then use the compiler described previously to obtain security
against malicious clients, as long as there is no client-server collusion.

Sacrificing input privacy to handle client-server collusion. Since attribute-hiding mABE
implies multi-client verifiable computation, it follows that attribute-hiding mABE is also impossible
for general functions if sender-receiver collusion is allowed. However, it is still interesting to consider
settings without input privacy (resp., attribute hiding). We show that any (non-attribute-hiding)
mABE scheme that is secure with respect to some corruption pattern implies public-input MVC
under the same corruption pattern. We also show that an mABE scheme secure with respect to
client-server collusion, even in the standalone setting, implies extractable witness encryption [25].
So, building MVC protocols without input privacy via this approach would inherently require non-
falsifiable assumptions.

1.3 Other Related Work

Various works have considered server-aided secure computation with the goal of eliminating client-
to-client interaction [31, 32]. The protocols constructed in these works require multiple rounds of
client-server interaction.

Earlier work by Shi et al. [37] studied multi-party outsourcing for specific functionalities such
as summation and variance. They also describe various applications such as secure sensor network
aggregation. In their model, the server learns the final outcome of the computation, and verifiability
(i.e., soundness) is not an inherent part of the problem formulation.

2 Multi-Client Verifiable Computation

2.1 Definitions

We start by introducing the notion of non-interactive multi-client verifiable computation (MVC) that
has the following structure: let x be the security parameter, n be the number of clients Py,..., P,
who are delegating some computation on some n-ary function f : X" — Y" to a distinguished
server Serv and would like to verify the correctness of their answers. Here we assume each client’s
input message space is X, and output message space), for some polynomial-length (in the security
parameter) |X| and ||

Intuitively, MVC protocols have the following properties: (1) All participants are allowed to
access to a certain initial setup G (e.g., PKI, CRS). (2) Then an offline stage follows; in the offline
stage, each client sends a single message to the server Serv. (3) In the online stage, in a single
time period (subsession), each client is only allowed to send an outgoing message to the server and
then receive an incoming message from the server. In the whole paper, we assume that the clients
cannot communicate with each other directly, and can only send a single round of message to the
server per time period (subsession). Next, we give more details.

Definition 2.1 (Non-interactive multi-client verifiable computation) Let x be the security
parameter, n be the number of clients and f be an n-ary function being computed. A non-interactive
multi-client verifiable computation consists of n clients Py ... P, and a server Serv with the following
structure:

Setup stage: All parties P;’s, i € [n] and Serv have access to a setup G, where party P; obtains
(pub, sk;) upon queries for some secret and public information.

Offline stage: Fach client P; sends a single message to the server. The server stores these as f',
an encoded version of f.

Online stage: This step is a query-response move: at each sub-session (or time period) ssid, upon
recetving an input (ssid,x;) for i € [n], the client P;(pub,sk;, x;) computes some message
(Zi,71). Then he sends &; to the server and stores T; as a secret.

The server Serv carries out the computation on the messages received, and sends each client
Pi for i € [n] an encoded output (ssid, ;).

Each client computes and some output y; U{ L} based on (pub,sk;,¥;, 7;), where L means that
he is not convinced with the outcome.

Remark 2.2 For the setup G, we do not specify whether it is trusted in our definition. For our
positive results, we want to minimize the requirements, and we showed that a self-registered PKI
is enough for semi-honest client or malicious server corruptions. For the case of malicious clients
corruptions, we further need an additional CRS. On the other hand, for our lower bound results,
we rule out a large class of instantiations of G, including the trusted PKI, CRS, shared secret
randomness, and their combinations.

Note that the trusted PKI is a setup where a trusted party generates public- and secret-key pairs
for each user, and publishes the public keys to all users. The self-registered PKI is a weaker setup
where each user generates their own key pairs, and registers the public keys with the setup so that
the setup can publish the public keys to all users.

2.2 Security Definition

The security definition for non-interactive multi-client verifiable computation, MVC, turns out to
be subtle. An MVC protocol cannot achieve the standard multi-party computation security, which
requires that malicious clients have only one chance to provide their inputs, and cannot switch
inputs later. In the non-interactive setting, if the server and some clients are simultaneously
corrupted, then after gathering the transcripts of the honest clients, by definition the malicious
clients can now select different inputs for themselves and learn the corresponding outputs. For
example, consider n = 2. If client P; and the server are corrupted, then they effectively have
access to oracle fi(x,x2) where f; is the output of the first party, and xs is the honest input of Pa.
The notation * means that client P; can choose arbitrary inputs for itself and query this oracle a
polynomial number of times. So our security definition would allow the adversary to learn fi(x,x2)
in the ideal world, and guarantees that this is the most that he can learn. On the other hand if
interaction is allowed, it is well-understood that this issue can be avoided by standard techniques.
Based on this observation, we formally define the ideal functionality for private MVC in Figure 1
that captures the above issues, and soundness and privacy. The security of the protocol above
follows the standard real/ideal paradigm [28, 29]. Here we only include the universal composability
(UC) definition by Canetti [14, 13]. The standalone security definition can be found in [12, 23].

Definition 2.3 (Universal composability [14]) A protocol 11 securely realizes F if for any PPT
adversary A in the real world, there exists a PPT simulator Sim in the ideal world, so that no

Multi-Client Private Verifiable Computation

The functionality is parameterized with an n-ary function f : X" — Y™. The functionality interacts
with n clients P; for i € [n], a distinguished server Serv, and the simulator Sim.

Initialization:

Upon receiving (Init) from client P;, send (Init, P;) to notify the simulator Sim. Later, when Sim
returns (Init, P;), send a notification (Init, P;) to the server Serv.

Upon receiving (Init) from the server Serv, send (Init, Serv) to notify the simulator Sim.

Computation:

Upon receiving (Input, ssid, ;) from client P;, send (ssid, P;) to notify Sim. Later, when Sim returns
(ssid, P;), store (ssid, x;), and send a notification (Input,ssid, P;) to server Serv.

Upon receiving (Input, ssid, 1) from server Serv, retrieve (ssid, x;) for all 4 € [n]. If some (ssid, z;) has
not been stored yet, send (Output, ssid, fail) to the server and all clients.

e Server is not corrupted: Compute (y1,...,yn) < f(z1,...,2,). Later when Sim returns
(ssid, P;, @), if ¢ = ok, send (Output, ssid, y;) to client P;; if ¢ = fail, send (Output, ssid, fail) to
client P;.

e Server is corrupted: Let Z C [n] denote the set of indices corresponding to corrupted clients.
Let 7 := [n] \ Z. Let x} denote the corrupted clients’ inputs, x7 denote the remaining clients’
inputs. Without loss of generality, we can renumber the clients such that Z := {1,2,...,|Z|}.

The functionality provides to Sim blackbox oracle access to the following oracle Of 7 where Sim
can choose inputs x4 for corrupted clients to query:

Oracle Oy 7(x%):

Compute (y1,...,yn) < f(X],X7). _
Output {y; }iez to Sim, and internally remember the last seen {y;} for i € Z.

At any time (not necessarily simultaneously for all i), on receiving (ssid, P;, ¢) from Sim for
some i € Z, the functionality® sends to P; (Output, ssid, y;) corresponding to the last seen y; if
¢ = ok, otherwise it sends (Output, ssid, fail) to P;.

“Restricting to sending the last seen outputs does not lose generality, since the simulator can always
repeat a previous query to the oracle Oy 7.

Figure 1: Functionality Fpvc

PPT environment Z is able to tell the real world execution from the ideal world execution, i.e.,
EXECA,H,Z ~ EXECSz‘m,}',Z'

We can also define a notion of verifiable computation without input privacy. This is essentially
the same definition, except that the server learns all the inputs of the clients. We present a formal
description and provide a construction of this relaxed notion in Section C. In the following remarks
we highlight and clarify a few properties of the stronger definition above:

Soundness against selective failure attacks: Our ideal functionality models a reactive func-
tionality that has multiple sub-sessions after a pre-processing phase. Our definition implies sound-
ness even if the server learns the decision bit of the clients since our security definition requires
clients to report the outputs (and thus acceptance decisions) to the environment.

Communication model. We assume that the adversary controls the communication medium

between all parties. Our protocol later relies on PKI setup, and we can implement a secure channel
with PKI. Therefore, while not explicitly stated, all our protocols are described assuming the secure
channel ideal world.

Semi-honest vs. malicious corruption. Semi-honestly corrupted participants follow the proto-
col faithfully, but the adversary sees the internal states of all semi-honestly corrupted parties.

As mentioned above, due to the non-interactive nature, if the server and at least one client are
simultaneously corrupted either in the malicious or semi-honest model, then our ideal functionality
Fovc implements a blackbox-access oracle which the simulator can query multiple times by spec-
ifying inputs for the malicious clients. For malicious corruption, the simulator can ask the ideal
functionality to send outputs to different clients corresponding to different corrupted clients’ in-
puts. For example, suppose P; and the server are maliciously corrupted, the simulator can ask the
functionality to send fa(z1,x2,x3) to P2, and send f3(z], x2,23) to P3. For semi-honest corruption,
the outputs sent back to the clients always correspond to inputs chosen by the environment.

Static corruption. We assume a static corruption model in this paper, where some protocol
participants are corrupted at the beginning of protocol execution.

UC and stand-alone security. In the paper we use both the UC definition and standalone
security definition. In the standalone security, the environment machine Z (i.e., the distinguisher)
provides inputs to all protocol participants and the adversary at the beginning of protocol execution,
and it receives outputs from these entities when the execution is complete. The environment and the
adversary are not allowed to communicate during the protocol execution. Protocols secure in the
standalone security model can be composed sequentially. On the other hand, in the UC framework,
the environment and the adversary are always allowed to communicate. Protocols secure in the
UC framework can be composted with arbitrary protocols. It is obvious that UC security implies
stand-alone security.

Efficiency. An important feature of MVC is the online efficiency of the clients. Usually, we require
the clients’ computation time be much less than the complexity of the function f, so that over
many online computations, the total cost of the clients will have low amortized cost. However, for
private MVC, in some cases it is also interesting if the clients’ computation time is similar to f, e.g.
when the function f is simple. For example, it client P; and P2 want to do a secure comparison over
their inputs. The privacy requirement makes it interesting regardless of whether the clients’ online
computation time is smaller than the function being delegated. We do not specify a definition of
efficiency but discuss it for each scheme individually.

3 Malicious Server and Semi-honest Client Corruptions

In this section and the following section, we will demonstrate constructions that achieve security
against malicious adversaries, as long as there is no simultaneous server-client corruption.

Roadmap. As described in Section 1.2, our plan of action is: 1) define and obtain an mABE
scheme; 2) use Goldwasser et al’s compiler techniques [26] to achieve attribute-hiding mABE; and
3) show that attribute-hiding mABE implies private MVC.

All of the above primitives are proven secure under a malicious server or semi-honestly corrupted
clients in this section. Then, in the following Section 4, we show a generic compiler based on non-
interactive zero-knowledge proofs, such that any protocol secure against semi-honest corruption of

an arbitrary subset of clients, and additionally offering clients perfect privacy from one another,
can be transformed into a protocol that is secure against either a malicious server or an arbitrary
subset of malicious clients.

For convenience, in the remainder of the section, we focus on the case when only the first client
P1 learns output, and the remaining clients learn nothing. Based on this, we can obtain a protocol
where every party learns outputs through simple parallel repetition.

3.1 Multi-Sender ABE

We define a multi-sender, two-outcome ABE scheme. Intuitively, the mABE functionality imple-
ments the following: consider n senders and a server. The first sender P; chooses two messages
mo and my, and each P; for ¢ € [n] has an attribute z;. The goal is for the server to m; where
b= f(x1,x9,...,x,) while keeping mq_; secret. We require the mABE scheme to be non-interactive,
i.e., after an initial preprocessing phase in which the server learns an encoding of the function f, in
each online phase, each sender sends a single message to the server, and the server can learn my,.

We note that our mABE formulation can also be regarded as a generalization of the proxy
oblivious transfer (POT) primitive proposed by Choi et al. [15]. We present the definition of POT
in Appendix A. In other words, sender P; obliviously transfers one of mg and m; to the server,
where which message is transferred is determined by a policy function f over all senders’ attributes.

Figure 2 formally describes the mABE ideal functionality. We define mABE for the single-key
setting, since our verifiable computation application is inherently single-key.

mABE Functionality

Functionality .7:,{1 age interacts with multiple senders Py, ..., P,, a server Serv, as well as a simulator
Sim. The functionality is parameterized by a function f : ({0,1}%)™ — {0,1}.

e Upon receiving (ssid, mg, m1,x1) from the sender Pq, notify Sim with (ssid, P1). Later, if Sim
replies with (ssid, P1), store (ssid, mg,m1,x1), and notify Serv with (ssid, Py, x1).

e Similarly, upon receiving (ssid, z;) from other senders P; for i € {2,..,n}, notify Sim with
(ssid, P;). Later when Sim replies with (ssid, P;), if no (ssid, z;) recorded yet, store it, and
notify Serv with (ssid, P;, x;).

e Upon receiving (ssid, 1) from Serv, if all (ssid, mg, m1,21), and (ssid, z;) for i € {2,..,n} are
recorded, return (ssid,m (g, ... 2,)) to Serv. Otherwise, if some tuple for ssid has not been
recorded, return fail to Serv.

Figure 2: Functionality .7:,{: ABE

We now present our (non-interactive) protocol that realizes frj; age for any efficiently computable
f. We use as building blocks a non-interactive POT protocol, and any two-outcome attribute-
based encryption (ABE) scheme with a special structure where the attributes of ciphertexts can be
encoded bit-by-bit. We formalize this local encoding property in the following. and observe that the
ABE construction by Gorbunov, Vaikuntanathan, and Wee [30] satisfies this special property. Also,
we remark that one can build a two-outcome ABE from a standard one, as shown by Goldwasser
et al. [26]. Here we use ABE to denote the two-outcome ABE for simplicity.

Definition 3.1 (Two-outcome ABE with local encoding) A two-outcome attribute-based en-
cryption scheme ABE for a class of boolean functions F = {Fs}sen from {0,1}% — {0,1}, is a tuple
of polynomial time algorithms: ABE.{Setup, KeyGen, Enc, Dec} as follows:

. ABE.Setup(lk) outputs a master public key mpkage and a master secret key mskage.
o ABE.KeyGen(mskagg, f) On inputs mskage and a function f € F, output a function key sky.

e ABE.Enc(mpkage, ,mq, m1) takes as input the master public key mpkagg, an attribute x € {0, 1}
for some £, and two messages mqg, m1, outputs a ciphertext c.

o ABE.Dec(sky,c) takes as input a key sky and a ciphertext and outputs a message m*.

Local encoding. We say that a two-outcome ABE scheme satisfies local encoding if the encryption
algorithm ABE.Enc can be equivalently expressed as the following, where enc is a sub-algorithm:

1. select common randomness R;
2. for all ¢ € [k], compute Z[i] = enc(mpkagg, x[i]; R);
3. m= enc(mpkABE, mo, M1, R)

Finally, the ciphertext ¢ can be written as ¢ := (Z[1], 2[2], ..., Z[k], ™).
The correctness property guarantees that the decryptor can learn one of the messages my for
b = f(x), and the security guarantees that this is the only thing he can learn. We present the
formal definitions in the appendix and also refer the readers to the work by Goldwasser et al. [26].
We present our construction of mABE in the GABE setup model, where GABE serves as a self-
registered PKI which allows the sender to generate (mpkagg, mskagg) < ABE.KeyGen(lk), and
register mpkage. When queried by players other than the sender, it returns mpkage.

Construction of mABE. Let f : ({0,1}Y)" — {0,1} be a policy function, and without loss of
generality, we let Serv denote the server, and let Py, ..., P, denote the senders. We make use of
(n — 1) - £ instances of the functionality FpoT indexed by (i,7) such that for i € {2,...,n}, all
J € [€], in the (7, j)-th instance, P plays the sender, P; plays the chooser, and Serv plays the server.
In the protocol below, we assume the existence of private channels; i.e. we assume that all parties
encrypt their messages before sending them. This step is left implicit.? The parties act as follows:

e Offline Stage: Every party receives a function f as input. P; calls the setup GABE to receive
(mpkage, mskage), and computes some sk; = ABE.KeyGen(mskagg, f). He sends sky to the
server. All the other clients runs an empty step.

e Online Stage:

— On input (sid, mg, m1,x1), the sender Py does the following in parallel:
1. Sample a random string R. Compute C' = enc(mpkagg, mo, m1; R), &1 = enc(mpkagg, =1, R)
(bit-by-bit) and sends them to the receiver Serv.
2. Fori e {2,...,n},j € [{], Py computes ¢; j o = enc(mpkagg, 0; R), and ¢; j1 = enc(mpkagg, 1; R),
and then sends (& 0, ¢ ;1) to the (¢, 7)-th instance of Fpor.

3Recall that our protocol for realizing Fpot relies on a setup phase for establishing a PKI, so we could rely on
this PKI for encrypting messages. If we instead were to use a protocol for Fpot that did not rely on a PKI, we could
simply add the establishment of a PKI to the setup phase of this protocol. Finally, we note that the assumption
of private channels is not necessary: we could instead choose to leak P,t1’s output to an eavesdropper. This would
suffice for our purposes, but makes the resulting ideal functionality and the security proof a bit more involved.

— For i € {2,...,n}, upon receiving (sid, x;), the party P; sends, in parallel, z;[j] to the (¢, j)-th
instance of Fpot for all j € [¢]. Here z;[j] denotes the j-th bit of z;.

— Party Serv receives enc(mpkagg, mo, m1), enc(mpkagg, z1) (bit-by-bit) from the sender P, and
enc(mpkagg, 22), - .., enc(mpkagg,) (bit-by-bit) via the instances of the functionality FpoT.
He outputs m’ by running the ABE decryption algorithm on the received ciphertexts using
decryption key sk;.

In Appendix D, we prove the following:

Theorem 3.2 Assuming the existence of two-outcome ABE for a function f : ({0,1})" — {0,1}
with the additional encoding property as above, then the protocol above securely realizes the ideal
functionality]-"r]T:ABE in the (FpoT, GABE)- hybrid model, against either (1) malicious server corrup-
tion, or (2) any semi-honest (static) corruption among any fixed set of clients.

Using mABE as a building block, we can easily achieve verifiable computation without privacy.
In Section C, we present the formal definition of MVC without privacy, the protocol that achieves
this notion using mABE, and its security proof. We note that the construction is very similar to
the one in the next section (see Theorem 3.4).

3.2 Achieving Attribute Hiding

In Figure 3, we define an attribute-hiding version of mABE, where the sender attributes are not
leaked to the receiver. The attribute-hiding mABE functionality, denoted F,h-maBEe, is defined in
almost the same way as Fmnage, except that when the functionality notifies the server, it only
notifies (ssid, P;), without leaking the attributes x;’s.

ah-mABE Functionality

Functionality]-'jh_m agg interacts with multiple senders Py, ..., P, a server Serv, as well as a simulator
Sim. The functionality is parameterized by a function f : ({0,1}*)" — {0,1}.

e Upon receiving (ssid, mg, m1,x1) from the sender P1, notify Sim with (ssid, P1). Later, if Sim
replies with (ssid, Py), store (ssid, mq,m1, 1), and notify Serv with (ssid, P1).

e Similarly, upon receiving (ssid, z;) from other senders P; for i € {2,..,n}, notify Sim with
(ssid, P;). Later when Sim replies with (ssid, P;), if no (ssid, ;) recorded yet, store it, and
notify Serv with (ssid, P;).

e Upon receiving (ssid, 1) from Serv, if all (ssid, mg, m1,21), and (ssid, z;) for i € {2,..,n} are
recorded, return (ssid, m (g, ... 2,)) to Serv. Otherwise, if some tuple for ssid has not been
recorded, return fail to Serv.

Figure 3: Functionality }'fh_m ABE

We present our protocol that realizes Fan-mage in the GFHE setup plus Fmage hybrid model,

where GFHE serves as a self-registered PKI which allows the sender to generate (pkpyg, SKFHE)
FHE.KeyGen(1¥), and register pkgye. When queried by parties other than the sender, it returns
pkpye. Our construction can be viewed as a distributed version of that of Goldwasser et al. [26],
who constructed attribute-hiding ABE (or functional encryption) from a non-hiding one. Briefly
speaking, the first party Py generates a garbled circuit of the FHE decryption circuit, and then all

parties input ciphertexts of their attributes to Fnage, to allow the server to learn only a set of
labels to the garbled circuit. Then the server can learn only the outcome by evaluating the garbled
circuit. Intuitively, since the attributes are encrypted, and the server can learn only a set of labels
of the garbled circuit, the server can only learn the outcome but not the attributes of the parties.

Construction of ah-mABE. Let f: ({0,1})" — {0,1} be a policy function, let Py,..., P, be the
senders, and let Serv be the receiver. Denote ¢ := Evalgpye(pkpng, f/s (¢, c1), ..., ¢n) where pkpye
is an FHE public key, ¢,c,c; ..., c, are ciphertexts and f’ is an n-nary function that on input
((mo,m1,71),...,2n) OUtputs me(y, . .. Assume the function g has an A-bit output, and denote
gi as the function that outputs the i-bit of g. Then the parties do as follows:

e Upon receiving input (ssid, mg, m,x1), P1 does the following:

— Obtain (pkgyg, skene), and compute
(F,{L?,L}}iem) < Gb.Garble(1*, Decpne (skrne, -)) where Decrye(skppe,) is a circuit that
takes a A-bit ciphertext as input and outputs a single bit message.

— Send (ssid, I") to the receiver Serv, and in parallel,

- Compute 7‘?10 — EncFHE(kaHE,mO), ml — EncFHE(kaHE,ml), .@1 — EncFHE(kaHE,xl), and
send (ssid,L?, le-, (mg,m1,21)) to the functionality .FngBE for all j € [\].

e For i € [n]\ {1}, upon receiving input (ssid, z;), P; first calls G'HE to obtain pkgyg. Then he
computes #; < Encepe(pkpye, 2:) and sends (ssid, #;) to the functionality F2/, e for all j € [A].

e Upon receiving input (ssid, Z1, ..., Ty, {Ldi}iew,l“) from the ideal functionalities and Py, the
receiver Serv computes Gb.Eval(T’, {Ldi}ie[/\]), and outputs the result of the evaluation.

We prove the following in Appendix D:

Theorem 3.3 Assuming the existence of a fully homomorphic encryption scheme and a garbling
scheme, the protocol above securely realizes the ideal functionality]-'afh_mABE for any efficiently
computable f in the (Fmag, G F)-hybrid model, against either (1) malicious server corruption, or
(2) semi-honest (static) corruption among any fized set of senders.

Using the functionality Fan-mage, we are able to build an MVC scheme that also achieves input
and output privacy, in a similar fashion that (single-sender) private-index functional encryption
implies private verifiable computation [26]. As before, we assume f outputs only one bit and

only the first party receives the output. The construction is in the .7-“afh_m age hybrid model. More

formally, let f : ({0,1}Y)" — {0,1} be a function to be delegated, let Py, ..., P, be the clients and
Serv be the server. The the parties do as the following:

e Upon receiving input (ssid, z1), P; samples two random inputs mg,m; < {0,1} and sends
(ssid, mg, m1, 1) to the functionality ‘F!h—mABE‘ Locally, he stores mg, m.

e Fori € [n]\{1}, upon receiving message (ssid, z;), P; sends (ssid, ;) to the functionality fz{h-mABE'
e Upon receiving (ssid, m) from fafh_mABE, the server sends P; the message (ssid, m).

e Upon receiving (ssid, m) from the server, P; checks whether m = m; for some b € {0,1}. If so,
he outputs b, and otherwise he outputs L.

10

In Appendix D, we prove:

Theorem 3.4 The protocol above securely realizes Fpyc in the]:fh_mABE—hybrid world, against

either (1) malicious server corruption, or (2) semi-honest corruption of set of clients.

Remark 3.5 In fact, we can show that the protocol is secure against any set of corruptions in the

.th_mABE-hybrid world. Howewver, in the previous Theorems 3.2 and 3.3, we only know how to realize

Fin-maBe @gainst either (1) malicious server corruption, or (2) semi-honest (static) corruption
of any fixed set of clients. Therefore, by putting things together we can obtain an input-private
verifiable computation (pVC) protocol against such patterns of corruption. In Section 5, we will
show that the corruption pattern cannot be extended; i.e., it is impossible to construct general pVC
protocols against arbitrary server-client collusions. This in particular implies that it is impossible

to construct a protocol for th_mABE against arbitrary server-client collusions.

Efficiency of our construction. We outline the efficiency of a scheme where every client receives
1 bit of output — this can be achieved by a parallel repetition of our basic construction where only
P1 receives output. For such a private MVC scheme, the server runs in poly(k) - O(|f] - n). If we
instantiate using the ABE construction of Gorbunov et al. [30], the run-time and the communication
cost for each client is O(d - nfk), where d is the depth of the function f being delegated, ¢ is the
input length, and & is the security parameter. In Appendix 6 we also offer more detailed discussion.
We note that if some non-falsifiable assumption is used, it is possible to remove the dependence on
the circuit depth. As mentioned, the focus of this paper is on using falsifiable assumptions.

Also we note that efficiency of Choi et al.’s construction [15] does not depend on circuit depth —
however they security is weaker in many respects. An interesting direction for future research is to
construct a scheme (or prove impossibility) where the client online computation and communication
does not depend on the number of parties n and the circuit depth d, by only using standard
assumptions.

4 From Semi-Honest to Malicious Clients

In the previous section, we considered the case where the clients can be corrupted in the semi-
honest way. In this section, we present a simple compiler that upgrades the previous protocol to
one that is secure against any maliciously corrupted clients, and remains non-interactive. That is,
the resulting protocol is secure against either malicious server, or against a set of malicious clients.
Our construction only needs an additional setup Fcgs.

We note that if we allow more rounds of communication, it is already known how to achieve
security against arbitrary malicious corruptions (i.e. of clients and/or the server) [2]. However in
the non-interactive multi-client verifiable computation MVC, there are no known constructions.
We have already demonstrated security against a malicious server, and we will consider arbitrary
corruptions of both the server and the clients in Section 5. Here we address the case where multiple
clients are corrupted, and demonstrate that if an MVC protocol offers security against the semi-
honest corruption of an arbitrary subset of the clients, and, additionally it offers the clients perfect
privacy from one another (as defined in Definition 4.1), then there exists a simple compiler for
guaranteeing security against the malicious corruption of clients. Of course, if we are allowed for a
trusted PKI during the setup phase, we could include honestly generated, committed randomness
for each party, and then use a NIZK to prove that all messages were honestly generated. However,

11

we are interested in avoiding the use of trusted PKI, instead allowing each party to register the key
of their choice; see Remark 2.2 for a discussion about trusted PKI and self-registered PKI.

Definition 4.1 An MVC protocol 11 has perfect client privacy if for all inputs x1,...,x,, for an
adversary A that semi-honestly corrupts some subset of the parties {P;}icr where T C [n], and
for every random tape r4 belonging to A, there exists a simulator Sim such that the following
distributions are identical

{VieWH(xl7.”7xn)7A} = {Slm({l'z, yi}i€Z7 TA)}

where (y1,-..,yn) < f(w1,...,2n), and Viewra, . 2.).4 15 the view of the adversary when the
inputs to the clients are (x1,...,x,). In particular, the view contains random string r., inputs
{zi}iez, and the message received from the server, and the messages generated by honest clients.

Note that what distinguishes this from a standard requirement for semi-honest corruption is
that we require indistinguishability to hold for every random tape of the adversary, rather than
only on average. Intuitively, if a protocol meets this requirement, we can simplify the standard
compilation techniques, since the adversary is free to use the random tape of his choice. To achieve
security in the presence of malicious adversaries, it suffices to have the clients prove (using a NIZK)
that their messages are consistent with some random string. Formally, we are able to achieve the
following theorem. We present the proof in Section D.

Theorem 4.2 Suppose there exists an MVC protocol 11 in self-registered PKI setup hybrid model
that is secure against semi-honest client corruptions, and that I1 has perfect client privacy. Then
there exists an MVC protocol I in the ZK and the self-registered PKI setup hybrid model, which is
secure against malicious client corruptions.

In order to apply the compiler results to our protocol, we need to show that our constructions
have the desired property. We show this by the following claim:

Claim 4.3 If the underlying ABE and FHE and the garbling schemes is perfectly correct, then the
private MVC protocol from Section 8 has perfect client privacy.

Proof: Since Po,...,P, do not receive messages or output, their views can be simulated easily.
Now, we give a simulation of Py’s view. In the honest protocol, P; samples random strings mg, m1
and some r for generating ciphertexts of the ABE, FHE and garbling schemes. Suppose these
schemes have perfect correctness. Then for every r the honest P; will receive either mg or mq from

the server, depending on b := f(x1,...,x,). Therefore, given the result of the computation, b, and
the random tape of Py, R = (mqg, m1,7), the simulator can simply output m; as the message from
the server, producing an identical view. This completes the simulation of his view. [|

As a consequence of this theorem and Theorems 3.2, 3.3, 3.4, and the fact that non-interactive
ZK can be implemented in the CRS model, we are able to construct a private MVC protocol using
CRS and self-registered PKI. We summarize this by the following theorem:

Theorem 4.4 Assume the existence of a fully homomorphic encryption scheme, a garbling scheme,
and an ABE that has local encoding property. Assume the primitives have perfect correctness.
Then for any efficiently computable f, there exists an MVC protocol that securely realizes the ideal
functionality]:,fvc in the CRS and self-registered PKI hybrid model, against (1) any malicious
server corruption, or (2) any malicious (static) corruption among any fized set of clients.

12

5 Client-Server Collusion

In this section, we consider the remaining, more complicated case where the server and clients can
be corrupted at the same time. We show that even for a seemingly simple case where only one
client and the server are corrupted together, it is impossible to construct private MVC for general
functions, under a large class of instantiations of G setup including trusted PKI (which is stronger
than self-registered PKI, see Remark 2.2), CRS, shared secret randomness, etc. The lower bound
holds even in the standalone setting, and for semi-honest corruptions.

In particular, we consider the case with two clients and one server, where the function being
delegated is a universal circuit U(-,-), the first client’s input is a circuit C, the second client’s is a
string x. The server returns U(C, z) = C(z) to both parties. If there exists a private MVC protocol
with respect to such U, i.e. if there exists a protocol that realizes Foyc, then, even if it is only secure
against semi-honest corruption and only in the standalone setting, we can construct an obfuscator
for any circuit. (We refer the reader to the remark following Definition 2.3 for a definition of the
standalone setting.) By previous lower bounds for obfuscation [4], this leads to an impossibility
result. We present the formal statement below.

We note that there is a similar lower bound argument in the server-aided MPC setting in the
work [2]. Our lower bound further shows that even a natural relaxation of security (where the ideal
functionality can be called multiple times if there is server-client corruption) is not achievable for
all functionalities.

Theorem 5.1 Suppose there exist an instantiation of G setup and a private MVC protocol 11 (i.e.,
one that realizes Fpyc) for all efficiently computable functions in the G setup hybrid world, against
semi-honest corruptions for arbitrary parties in the standalone model, then there exists an obfuscator
for any circuit C' secure under the virtual black-box simulation.

Proof: Consider the case where two clients want to delegate the computation of the universal
circuit U(-,-) to the server; the first client provides a circuit C, and the second provides an input
x. Then the honest server returns C(z) to both parties. Suppose there exists an instantiation of
setup G and a secure protocol II that achieve this goal, then we construct an obfuscator O that on
input C' does the following:

~

e O simulates the setup G and the role of each client in the offline stage to obtain pub, sk, sko, f.

e O simulates the first client’s procedure on input C' in the online stage. Let C be the message
that P; sends to the server.

e O outputs (C’, pub,skg,f) as an obfuscation of C, i.e. O(C).

To evaluate O(C) on input x, the evaluator simulates Py’s online phase to create an encoding
of x using pub, sky, and then simulates the (corrupted) server to evaluate C’,a% with the encoded
version of the function f .

The correctness follows immediately from the correctness of the protocol II, and the efficiency
of the obfuscator follows directly from the efficiency of the parties in the protocol II. In the rest of
the proof, we are going to show the virtual black-box (VBB) simulation property. In particular we
will turn the protocol simulator into a VBB obfuscation simulator.

Now we analyze the construction. In particular, we want to show given an adversary A attacking
the security of the obfuscation, we are going to construct a simulator Sim such that the probability
A(O(C)) = 1 is close to that of Sim®(1%) = 1 up to a negligible factor for all polynomial-sized

13

circuits C. We do this by defining a particular adversary A* that attacks I19, and using the protocol
simulator that is guaranteed to exist for this adversary by the security of the MVC protocol.

Given A and any poly-sized circuit C, we define the following experiment in the G-hybrid world.
Let Z* be an environment and A* be an adversary attacking protocol II9. A* corrupts the server
and the second party at the beginning. He queries the ideal functionality G and stores the reply
(pub, ska). Upon receiving a message from P; during the offline stage (on behalf of the server),
he uses this message, along with the offline message that an honest P would send, to construct
f as the server would do. When P; sends a message C to the server during the online phase, A*
interprets (C, pub, ska, f) as an obfuscation of O(C). Then A* runs A on the interpreted O(C)
and passes A’s output to Z*. Z* outputs this as the output of the experiment EXEC g« 11 z=.

Now we are ready to construct the simulator Sim. By the premise that I19 realizes Fovc, for this
A*, there exists Sim™ such that for this particular Z*, we have EXECZ*,H’Z* ~ EXECSim*,fpVC,Z*‘
Given such Sim™*, we define a simulator Sim for the VBB obfuscation as follows:

e Sim basically simulates the execution of EXECgjp* 7,c 2+

e Whenever the protocol simulator Sim* queries the oracle Oy 193(-) in the ideal functionality
with some modified Py’s input z,, Sim simulates it using a black-box query to C' with input
x4 and returns C(zf) to Stm”.

e Then Sim outputs whatever the output of the experiment EXECg;y,*, Fove, 2%

Lemma 5.2 For the simulator Sim described above, there exists a negligible function v(-) such

that | Pr[A(O(C)) = 1] — Pr[Sim© (1¥) = 1]| < v(k).

Proof: Assume there is a non-negligible function & with Pr[A(O(C)) = 1]—Pr[Sim®(1¥) = 1] > e.
We show that the real and simulation worlds in the protocol are distinguishable.

According to the description of EXEC%}E =+, the output of such experiment is identical to that
of A(O(C)). On the other hand, the output of EXECg;,* 7, 2+ is exactly the same as that of
Simc(lk). So this means the executions of the protocol are distinguishable by e, which reaches a
contradiction. Thus we complete the proof. [|

The above shows that Sim is a good VBB simulator. [|

6 Instantiations and Efficiency

In this section, we discuss the instantiations of our building blocks. We need a two-outcome
attribute encryption scheme with the local encoding property, a fully homomorphic encryption
scheme, and a garbling scheme. In particular we can use any instantiation of FHE schemes, e.g.
one by Brakerski [11], and any instantiation of Yao’s garbling scheme.

The attribute based encryption (ABE) constructed by Gorbunov, Vaikuntanathan, Wee [30]
actually achieves the requirements of regular ABE with the local encoding property. Goldwasser et
al. [26] showed a generic way to achieve two-outcome ABE from a regular one. So by plugging the
GSW ABE scheme and using the generic technique, we achieve the two-outcome ABE as required
by Definition 3.1.

For our private MVC scheme, the server clearly runs in poly(k, f). For the clients, Py,..., P,
runs in time O(¢k), where ¢ is the input length; P; generates O(nfx) ABE ciphertexts plus a

14

garble circuit of size O(k), where n is the number of parties, ¢ is the input length, and « is the
security parameter. However, the ciphertexts’ length for the currently best known ABE construction
of Gorbunov, Vaikuntanathan, Wee [30] depends on the circuit depth (independent of the size).
Therefore, P1’s running time (the communication complexity as well) depends on O(d-nlk), where
d is the depth of the function being delegated. The construction of Choi et al. [15] has better
online efficiency for clients that is independent of the function complexity, but has the issues of
adaptive soundness and is vulnerable to selective failure attacks. The construction using multi-input
functional encryption [24] can achieve better efficiency but their solution inherently requires the
existence of indistinguishable obfuscation, which is a stronger assumption and has large overhead.

Acknowledgments

This research was sponsored in part by the U.S. Army Research Laboratory and the U.K. Ministry
of Defence and was accomplished under Agreement Number W911NF-06-3-0001. The views and
conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S. Army Research Laboratory,
the U.S. Government, the U.K. Ministry of Defence, or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

References

[1] B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient verification
via secure computation. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and
P. G. Spirakis, editors, ICALP 2010, Part I, volume 6198 of LNCS, pages 152—-163. Springer,
July 2010.

[2] G. Asharov, A. Jain, A. Lépez-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty
computation with low communication, computation and interaction via threshold FHE. In
D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages
483-501. Springer, Apr. 2012.

[3] M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on outsourced
data. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 13, pages 863-874.
ACM Press, Nov. 2013.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On
the (im)possibility of obfuscating programs. In J. Kilian, editor, CRYPTO 2001, volume 2139
of LNCS, pages 1-18. Springer, Aug. 2001.

[5] M. Bellare, V. T. Hoang, and P. Rogaway. Adaptively secure garbling with applications to one-
time programs and secure outsourcing. In X. Wang and K. Sako, editors, ASTACRYPT 2012,
volume 7658 of LNCS, pages 134-153. Springer, Dec. 2012.

[6] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In T. Yu,
G. Danezis, and V. D. Gligor, editors, ACM CCS 12, pages 784-796. ACM Press, Oct. 2012.

15

[7]

E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKSs for C: Verifying
program executions succinctly and in zero knowledge. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90-108. Springer, Aug. 2013.

E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct non-interactive zero knowledge
for a von neumann architecture. In Usenix Security Symposium, 2014.

S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over large
datasets. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 111-131.
Springer, Aug. 2011.

N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition and bootstrapping
for SNARKS and proof-carrying data. In D. Boneh, T. Roughgarden, and J. Feigenbaum,
editors, 45th ACM STOC, pages 111-120. ACM Press, June 2013.

7. Brakerski. Fully homomorphic encryption without modulus switching from classical
GapSVP. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS,
pages 868-886. Springer, Aug. 2012.

R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13(1):143-202, 2000.

R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067.

R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd FOCS, pages 136-145. IEEE Computer Society Press, Oct. 2001.

S. G. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive verifiable compu-
tation. In A. Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 499-518. Springer, Mar.
2013.

K.-M. Chung, Y. Kalai, and S. P. Vadhan. Improved delegation of computation using fully
homomorphic encryption. In T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
483-501. Springer, Aug. 2010.

K.-M. Chung, Y. T. Kalai, F.-H. Liu, and R. Raz. Memory delegation. In P. Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 151-168. Springer, Aug. 2011.

D. Fiore and R. Gennaro. Publicly verifiable delegation of large polynomials and matrix
computations, with applications. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS
12, pages 501-512. ACM Press, Oct. 2012.

S. Garg, C. Gentry, A. Sahai, and B. Waters. Witness encryption and its applications. In
D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC, pages 467-476.
ACM Press, June 2013.

R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In T. Rabin, editor, CRYPTO 2010, volume 6223 of
LNCS, pages 465—482. Springer, Aug. 2010.

16

[21]

[22]

[23]

[24]

R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct
NIZKs without PCPs. In T. Johansson and P. Q. Nguyen, editors, FUROCRYPT 2013, volume
7881 of LNCS, pages 626—645. Springer, May 2013.

C. Gentry, A. B. Lewko, A. Sahai, and B. Waters. Indistinguishability obfuscation from the
multilinear subgroup elimination assumption. TACR Cryptology ePrint Archive, 2014:309,
2014.

O. Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge Uni-
versity Press, Cambridge, UK, 2004.

S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and H.-S.
Zhou. Multi-input functional encryption. In P. Q. Nguyen and E. Oswald, editors, Advances
in Cryptology— Eurocrypt 2014, volume 8441 of LNCS, pages 578-602. Springer, 2014.

S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. How to run
turing machines on encrypted data. In R. Canetti and J. A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 536—553. Springer, Aug. 2013.

S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable gar-
bled circuits and succinct functional encryption. In D. Boneh, T. Roughgarden, and J. Feigen-
baum, editors, 45th ACM STOC, pages 555-564. ACM Press, June 2013.

S. Goldwasser, H. Lin, and A. Rubinstein. Delegation of computation without rejection prob-
lem from designated verifier CS-proofs. TACR Cryptology ePrint Archive, 2011:456, 2011.

S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270-299,
1984.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186—208, 1989.

S. Gorbunov, V. Vaikuntanathan, and H. Wee. Attribute-based encryption for circuits. In
D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, 45th ACM STOC, pages 545-554.
ACM Press, June 2013.

S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computation. Cryptology
ePrint Archive, Report 2011/272, 2011. http://eprint.iacr.org/.

S. Kamara, P. Mohassel, and B. Riva. Salus: a system for server-aided secure function evalu-
ation. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS 12, pages 797-808. ACM
Press, Oct. 2012.

A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed, E. Shi, and N. Triandopoulos.
Trueset: Nearly practical veriable set computations. In Useniz Security Symposium, 2014.

C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In A. Sahai,
editor, TC'C 2013, volume 7785 of LNCS, pages 222-242. Springer, Mar. 2013.

17

[35] C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of operations on
dynamic sets. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 91-110.
Springer, Aug. 2011.

[36] B. Parno, M. Raykova, and V. Vaikuntanathan. How to delegate and verify in public: Verifiable
computation from attribute-based encryption. In R. Cramer, editor, TCC 2012, volume 7194
of LNCS, pages 422-439. Springer, Mar. 2012.

[37] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-preserving aggregation
of time-series data. In NDSS 2011. The Internet Society, Feb. 2011.

A Definitions

Here we provide the various definitions we use in this paper.

A.1 Two-outcome ABE

Definition A.1 (Correctness of two-outcome ABE [26]) For any polynomial n(-), for every
sufficiently large security parameter k, if n = n(k), for all boolean functions f € F,, attributes
x € {0,1}", messages My, My € M, there exists some negligible v(-) such that

(mpkABE, mskABE) — ABE.Setup(l”);
sk <— ABE.KeyGen(mskage, f);

Pr | ¢ <+ ABE.Enc(mpkagg, z,mo, m1); =1—-v(k).
m = ABE.Dec(sky¢, c) :
m = Mf(z)

If v =0, then the scheme has perfect correctness.
Then we define the security for single-key two-outcome ABE.

Definition A.2 (Security of two-outcome ABE [26]) Let ABE be a two-outcome ABE scheme
for the class of boolean functions F = {F,}nen and associated message space M and let A =
(A1, Az, As3) be a triple of PPT adversaries. Consider the following experiment.

° (mpkABE, mskABE) — ABE.Setup(l”“)

(f,st1) < Ai(mpkagg)
sky < ABE.KeyGen(mskage, f)

° (m, mo, M1, T, Stg) — AQ(Stl, Skf)
choose a bit b at random. Then let

. ABE.Enc(mpkagg, z,m,myp), if f(x) =0,
~ | ABE.Enc(mpkagg, x, mp,m), otherwise.

b+ As(stg,c). If b=1, and there exists n such that, for all f € F,, messages m.mg, my €
M, Imo| = |mi1|, x € {0,1}", output 1. Else output 0.

18

We say the scheme is a full-secure single-key two-outcome ABE if for all PPT adversaries A,
and for all sufficiently large k, the probability that the experiment outputs 1 is bounded by 1/2+v(k)
for some negligible function v.

A.2 Garbling Schemes

Definition A.3 (Garbling schemes [6]) A garbling scheme for a family of circuits C = {Cy, }nen
with C, a set of boolean circuits taking as input n bits, is a tuple of PPT algorithms Gb =
Gb.{Garble, Enc, Eval} such that

e Gb.Garble(1%,C) takes as input the security parameter k and a circuit C € C,, for some n
and outputs the garbled circuit I' and a secret key sk.

e Gb.Enc(sk, z) takes as input = and outputs an encoding c,

e Gb.Eval(T', ¢) takes as input a garbled circuit I' and an encoding ¢, and outputs a value y which
should be C(x).

The correctness and efficiency properties are straight-forward. Next we consider a special prop-
erty of the encoding of the Yao’s garbled scheme, which we will use in this paper. The secret
key has the form sk = {Lg,L%}ie[n], and the encoding of an input x of n bits is of the form
c=(L*, L* ... L"), where x; is the i-th bit of z.

Then we are going to define the security of garbling schemes.

Definition A.4 (Input and circuit privacy) A garbling scheme Gb for a family of circuits {Cy, } nen
is input and circuit private if there exists a PPT simulator Sim such that for every adversaries A
and D, for all sufficiently large K,

(z,C,) < A(1F);

(T, sk) < Gb.Garble(1%, C);
¢ < Gb.Enc(sk, z) :
D(a,z,C,Tc) =1

(z,C,a) « A(1F);
—Pr| (T,8) < Sim(1%,C(x), 1€ 11#l) . || = v(k)
D(a,z,C,T,¢) =1

Pr

for some negligible v(-), where we consider only A such that for some n,xz € {0,1}" and C € C,.

A.3 Extractable Witness Encryption

Definition A.5 (Witness encryption [19]) A witness encryption scheme for language L € N P
with witness relation Ry, consists of polynomial-time algorithms WE.{Enc, Dec} such that:

e Encryption WE.Enc(1%,x,b): takes as input a security parameter k, a statement x € {0,1}*,
a bit b and outputs a ciphertext c.

e Decryption WE.Dec(w, ¢): takes as input a witness w € {0,1}* and a ciphertext ¢ and outputs
a bitb or L.

Correctness: For all (z,w) € Ry, for all bits b for every sufficiently large security parameter k,
we have
Pr[c + WE.Enc(1%,z,b) : WE.Dec(w, c) = b] =1 — v(k),

for some negligible v.

19

Definition A.6 (Extractable security [25]) A witness encryption scheme for a language L €
NP is secure if for all PPT adversaries A, and all poly q, there exists a PPT extractor E and a
poly p such that for all auziliary input z and all x € {0,1}*, the following holds:

Pr[b < {0,1};c < WE.Enc(1%,2,b) : A(xz,c,b) =b] > 1/2+ 1/q(|x|)
= Pr[E(z,z) =w: (z,w) € Ry] > 1/p(|z|).

A.4 Obfuscations

Definition A.7 (Circuit obfuscation [4]) A probabilistic algorithm O is a (circuit) obfuscator
for the collection F of circuits if the following holds:

e (functionality) For every circuit C € F, the string O(C') describes a circuit that computes the
same function as C'.

e (polynomial slowdown) There is a polynomial p such that for every circuit C € F, we have

10(O)] < p(ICY).

o (“virtual black box” (VBB) property) For any PPT A, there is a PPT Sim and a negligible
function v such that for all circuits C' € F, it holds that

Pr[A(O(C)) = 1] — Pr [Simc(ﬂC') - 1” < v(|C)).

We say that O is efficient if it runs in polynomial time. If we omit specifying the collection F,
then it is assumed to be the collection of all circuits.

A.5 Proxy Oblivious Transfer

Choi et al. [15] recently defined and constructed proxy oblivious transfer. Instead of taking the game
based security definitions from the paper by Choi et al., here we define the security of POT in the
real/ideal paradigm, which provides a stronger security guarantee. In the ideal functionality below,
we omit the session id for notational simplicity. We remark that in each session, the functionality
could accept multiple new inputs; we assign a sub-session id, i.e., ssid, for each new input.

Theorem A.8 ([15]) There is a non-interactive protocol which realizes Fpot in the self-registered
PKI setup GPiffie=Hellman_p, b0 model, against (1) any malicious server corruption, or (2) any semi-
honest (static) corruption among any fized set of clients.

Choi et al. [15] constructed a non-interactive protocol in the offline/online model that realizes
the ideal functionality FpoT. In this model, two clients run some protocol in an offline stage, prior
to learning their inputs, and then complete the protocol in the online stage, after receiving their
inputs. In their construction, the clients do not need to interact in the offline stage, and in the
online stage both the sender and chooser send a single message to the server. The construction
relies on the existence of non-interactive key agreement.

20

Proxy Oblivious Transfer

Functionality Fpot interacts with a sender Pg, a chooser P, a receiver Pr, and the simulator Sim.

e Upon receiving (ssid, mg, m1) from the sender Pg, notify Sim with (ssid,Pg). Later, when
Sim replies with (ssid, Pg), if no value (ssid, my, m}) has been recorded yet, store it and notify
Pr with (ssid,Pg).

e Similarly, upon receiving (ssid,b) from the chooser P¢, notify Sim with (ssid, P¢). Later,
when Sim replies with (ssid, P¢), if no value (ssid,d’) has been recorded yet, store it and
notify Pr with (ssid, P¢).

o Upon receiving (ssid, 1) from P, if both (ssid, mg, m1) and (ssid, b) are recorded, send (ssid, my)
to the receiver Pg; else send fail.

Figure 4: Functionality FpoT
B Multi-Sender ABE and Extractable Witness Encryption

Our impossibility result for private MVC against client-server corruptions also rules out the pos-
sibility of attribute hiding multi-sender attribute based encryption schemes for general functions
under the same corruption (server-sender corruptions) model. In this section, we consider whether
we can achieve the weaker functionality mABE (without attribute hiding) for such model. In par-
ticular, we show a similar lower bound result — any secure mABE protocol against server-sender
(or server-client) corruptions, (even in the standalone model, against semi-honest corruptions) im-
plies extractable witness encryptions. So via the route of mABE, it is not possible to construct a
non-private MVC protocol against arbitrary corruption only based on standard assumptions.

On the other hand, we show a construction of mABE from extractable witness encryption (plus
SNARK if we want the message to be succinct) with better asymptotic efficiency, i.e. the complexity
in the online phase does not depend on the circuit depth. The construction is UC secure against
either a malicious server or malicious senders corruptions. Here we leave as an open question
how to construct a UC secure mABE against arbitrary corruptions (which requires non-falsifiable
assumptions).

B.1 mABE Implies Extractable Witness Encryption

In this section we show that mABE for general functions implies an extractable witness encryption
for all NP relations in the following theorem.

Theorem B.1 Suppose there exist an instantiation of G setup and a non-interactive protocol 11
in the offline/online model that realizes the .Fn]:ABE for all efficiently computable functions, in the
G-setup hybrid world, against semi-honest corruptions for arbitrary parties in the standalone model,
then there exists a extractable witness encryption (WE) scheme for all NP relations.

Proof: To prove the theorem, we need to construct a extractable WE for all NP relations.
Consider any NP relation R(z,w) that on inputs a string x and witness w outputs whether x is in
the language. Then we define a WE (for bits) scheme as follows:

e To encrypt a message b € {0, 1} with respect to a statement z, first we define a functionality

.Fn]fABE that interacts with three parties: Py, Ps,Serv, where Py, Py are the senders holding

21

messages (mg, m1, x), (w) respectively, and Serv is the server. Serv will learn the input message
mq of Py if R(x,w) = 1, or otherwise the other mg. By the premise of the theorem, there
exists a non-interactive protocol II in the offline/online model that realizes F,5c with some
setup G.

Now the encryptor first simulates the parties of the protocol II in the offline stage. Then he
simulates Py with input (mg := L,m; = b,z). Then he outputs all the messages Pa, Serv
receives in the offline stage, and the message of Py sent to the server.

e To decrypt a ciphertext ¢ with some statement x and its witness w, i.e. R(z,w) = 1, the
decryptor first interprets the ciphertext as the encoded message of Py plus the information of
P, and Serv. Now he simulates P2 with input a witness w and then applies Serv’s strategy.
At the end, he outputs whatever Serv outputs.

The correctness property follows directly from the correctness of the protocol. Now we want to
prove extractability: for any statement x, if there exists an adversary A who can predict messages
from the corresponding ciphertexts, there exists an extractor who can output a witness w such that
R(z,w) = 1. We show this in the following lemma:

Lemma B.2 For any statement x, suppose there exists an adversary A such that Pr[A(z,C) =
bl > 1/2 + ¢, where C is an encryption of a random bit b € {0,1}, and € is some non-negligible
quantity. Then there exists an extractor E such that Pr[E(x) = w] > &' such that R(z,w) =1 for
some non-negligible €’ .

Proof: Given any adversary A who can decrypt the WE ciphertexts as the premise, we are going
to construct an extractor from the simulator in the protocol II.

First consider the experiment (in the G setup hybrid world) with the following protocol adversary
A* and environment Z*. A* corrupts the parties Py and Serv. In the offline stage, P receives some
(pub, ski) and sends some f to A*. At the end of the offline stage, A* receives (pub, ska, f)

Then in the online stage, Z* sends = and a random bit b to P;. Then P; sends some message to
A*. Upon receiving the message from P, A* interprets it and the information (pub, ska, f) he got
in the offline stage as a WE ciphertext C. Then A* runs A(C) and outputs whatever A4’s output

to the environment. Then Z* outputs this bit as the view of the execution EXECi* 2%
By the assumption that the protocol II realizes }"rfABE, there exists a simulator Sim™* such
that EXEC% n.z+ ~ EXECg;,,« 7r _ z.. Given such Sim™, we define an extractor E as follows: E
sty) BE®
simulates the experiment of EXEC Sim* FR, . Zx- Also F records all queries the protocol simulator

Sim* had made to the functionality fn}quBE- Let W be the list, and E checks every element w € W.
If there exists any w such that R(x,w) = 1, E outputs w as a witness of x. We know the extractor
succeeds if W contains a witness of x.

Now we will argue the probability that W contains a witness of x is non-negligible. Denote this
event as P and the associate probability as /. We want to show that &’ is also non-negligible.

By the definition of A* and Z*, we know that Pr[EXECY, nz =b =Pr[A(z,C) =b] > 1/2+¢,
where ¢ is non-negligible. Since the simulator Sim™ is a g<’307d protocol simulator, we must have

22

Pr[EXECsim= 7, =0b] > 1/2+ /2. We observe that:

h-mABE»Z *

1/2+¢/2
< Pr[EXECsim* 7, re.2* = Y]
< Pr[EXECsim* 7, oe,z* = b|7P] - Pr[~P] + Pr[P]
= Pr[EXECsim 7, a2+ = b|2P] - (1 =€)+ ¢
= 1/2-(1-&)+¢
= 1/2+¢/2.

The first two inequalities are explained as above. The first equality comes from the definition of
Pr[P] = ¢’. The second one comes from the fact that conditioning on the event —P, the ideal
functionality will always return L whenever Sim™* queries. Thus the message bit b is independent
of other randomness in the experiment. In such case, the probability that the experiment outputs
the bit is clearly 1/2. The last two equalities are trivial.

The above calculations show that ¢’ > ¢ and therefore, & must be non-negligible. [|

This completes the proof of the theorem. [|

B.2 More Efficient mABE Using Non-falsifiable Assumptions

We show a construction of mABE from extractable witness encryption and SNARKs. Here the
complexity does not depend on the circuit depth. In particular we achieve the following:

Theorem B.3 Suppose there exists an extractable witness encryption scheme for general NP re-
lations, and a digital signature scheme existentially unforgeable against adaptive chosen-message
attacks, and a secure SNARK scheme. Then, in the PKI-setup hybrid world, there exists a succinct
non-interactive mABE protocol UC secure against (1) maliciously corrupted server or (2) semi-
honest senders.

Our construction uses extractable witness encryption schemes with a PKI setup. The construc-
tion is similar in the spirit of the ABE scheme by Goldwasser et al. [25].

Let ¥ := (Keygen, Sign, Verify) be a secure signature scheme, and WE := (Enc, Dec) denote a
secure witness encryption scheme. Let SNARK := (Gen, Prove, Verify) be a secure SNARK scheme.

Setup. In the PKI setup, everyone obtains a key-pair (vk;,sk;) of a secure signature scheme.
Offline. In the offline stage, P1 sends a signature o; := ¥.Sign(sky, f) to the server.
Online. The protocol for the online phase is as follows.

e Each party P; for i € {2,...,n}, upon receiving input (ssid,x;), sends to the server
(ssid, z;, 0;), where o; := 3.Sign(skg, ssid, x;).
e Upon receiving input (ssid, mg, m1,x1), the sender Py does the following;:

first he computes a signature o1 := X.Sign(sky, ssid, z1) SNARK language and setup. P
runs CRS := SNARK.Gen (1), where SNARK is for the following language LsNARK:

23

SNARK language LsnaRrk:

A statement z is of the form x := (ssid, f, b).

A witness w is of the form w := (z1,22,...,2n,0f,01,...,0n).

Further, let Rsnark denote the relation for the language Lsnark- Rsnark(z,w) = 1
if and only if: X.Verify(vky, f,07) = 1, and for all ¢ € [n], X.Verify(vk;, ssid, z;,0;), and
f(l‘l,l‘Q, ey xn) =b.

It then sends to the server witness encryption ciphertexts (WE.Encs,(mg), WE.Encg, (m1)),
where mg,m are the inputs he received, and for b € {0,1}, x := (ssid, f,b, CRS) is a
statement of the following WE language:

WE language Lwrg:

A statement s is of the form s := (ssid, f, b, CRS).
A witness is of the form w := 7.
x € Lwg iff there is a proof m such that SNARK.Verify(CRS, (ssid, f,b),7) = 1.

e Server action. Based on CRS, f,ssid, z1,...,2, 0f, 01,...,0p, compute b := f(z1,...,2y).
Computer 7 := SNARK.Prove(CRS, (ssid, f,b), (x1,...,%n,0f,01,...,00)).
Let cg,c1 be the two WE ciphertexts the server received from P;. Compute and output
myp := WE.Decg, (cp, 7).

Remarks. If succinctness is not required, the SNARK is not needed. The protocol can be used
to build an ah-mABE, which implies private MVC (in the malicious server or semi-honest client
corruptions. Again by our compiler, we can reach security against malicious client corruptions).
The protocol here has the advantage that the client’s online efficiency is better in that their com-
putational times depend on the f in a poly-logarithmic way. For standard assumptions, the best
known construction of ABE’s ciphertexts depend on the depth of the circuits being computed. Here
if we are using stronger assumptions, we can achieve better efficiency.
We now sketch a proof of security. The simulator’s strategy isas follows:

Case 1: A subset of senders are corrupted. The simulator construction is simple in this case.

Case 2: The server is corrupted. The simulator first learn from the ideal functionality the
tuple (z1,...,%n, Mf(z,,.. 2,)). For simplicity, assume f(z1,...,2,) = 0. Then he simulate the
view of by computing (WE.Encs,(mg), WE.Encg, (1)), where r is a random message. Now, suppose
there exists an environment who can distinguish, then we can use the extraction property of WE
and SNARK to extract a valid witness, (2,..., 2, a}, ol,...,00)). This must be different from
(x1,...,Tn,0¢,01,...,0p)), and thus gives a forgery of the signature scheme.

C Multi-Client Verifiable Computation without Input Privacy

In this section, we show how to construct a protocol for MVC without input privacy. We define
the ideal functionality in Figure 5. For simplicity, we assume the function f being delegated
outputs only one bit, and that only the first party receives the output. We remark that for general
functions, we can do this bit-by-bit at the cost of a blowup up to the length of output. We present
a construction in the fr{]ABE hybrid model. More formally, let f : ({0,1}*)" — {0,1} be a function

24

Multi-Client Verifiable Computation (non-private)

The functionality is parameterized with an n-ary function f : X™ — Y". The functionality interacts
with n clients P; for ¢ € [n], a distinguished server Serv, and the simulator Sim.

Initialization: Same as Fpyc.

Computation:

Upon receiving (Input, ssid, x;) from client P;, send (ssid, P;) to notify Sim. Later, when Sim returns
(ssid, P;), store (ssid, z;), and send a notification (Input, ssid, P;, ;) to the server Serv.

Upon receiving (Input,ssid, 1) from the server Serv, retrieve (ssid, x;) for i € [n]. If some (ssid,z;)
has not been stored, send (Output, ssid, fail) to the server and all clients.

e Server is not corrupted. Compute (y1,...,yn) < f(x1,...,2,), and send (ssid, (y1,...,Yn))
to the server Serv and a notification to Sim. Later when the simulator Sim returns (ssid, P;, ¢),
if ¢ = ok, send (Output, ssid, y;) to client P;; if ¢ = fail, send (Output, ssid, fail) to client P;.

e Server is corrupted. Let Z C [n] denote the set of indices corresponding to corrupted
clients. Let Z := [n] \ Z. Without loss of generality, we can renumber the clients such that
T:={1,2,...,|Z]}.

For each i € T : the simulator sends (ssid, P;,¢) to the ideal functionality where ¢ = x% or
¢ = fail. If ¢ = x%, the functionality sends (Output, ssid, f;(x%,x=)) to P;. Else, the functionality
sends (Output, ssid, fail) to P;.

Figure 5: Functionality Fvc

to be delegated, let Py,...,P, be the clients and Serv be the server. We consider an instance of
the functionality]-:{1 age Where Py plays the sender, the server plays Serv, and all the clients are the
senders. The parties act as follows:

e Upon receiving input (ssid,z;), P; samples two random inputs mg,m; < {0,1}¢ and sends
(ssid, mg, m1,x1) to the functionality]:rJ;ABE' Locally, he stores mg, m;.

e For i € [n]\ {1}, upon receiving message (ssid, z;), P; sends (ssid, z;) to the functionality .Fr};ABE.
e Upon receiving (ssid, z1, ..., zy, m) from frJ;ABE, the server sends (ssid, m) to Pj.

e Upon receiving (ssid, m) from the server, Py checks whether m = m;, for some b € {0,1}. If so,
he outputs b, and otherwise he outputs L.

Theorem C.1 The above protocol securely realizes Fyc in the fr{]ABE hybrid model against (1)
malicious server corruption, or (2) semi-honest (static) corruption of any fized subset of clients.

Remark C.2 Similar to Remark 3.5 the above theorem can be more general: we can show that the
protocol is secure against any malicious corruption pattern in the fr{qABE—hybrid world. We leave
it as an interesting open question to construct VC protocols based on falsifiable assumptions. As
we point out in Section B, any protocol that realizes fr{:ABE against server-client collusions requires
extractable witness encryption, so any construction of VC based on standard assumptions must
avoid this route.

Proof: We prove the stronger statement that the protocol securely realizes Fyc in the]-'ri ABE"
hybrid model against any corruption pattern.

25

Let II denote the Fnage-hybrid protocol described above. To show the security of the pro-
tocol, we need to construct a simulator Sim for any non-uniform PPT environment Z such that
EXECﬁ?‘JZ‘f‘g ~ EXECx sim,z, where A is the dummy adversary. We first construct a simulator and
then argue the indistinguishability between the two ensembles.

Simulating the communication with Z: Upon receiving an input value from Z, the simulator
Sim writes it on A’s input tape (as if coming from Z); upon obtaining an output value from
A, the simulator Sim writes it on Z’s output tape (as if coming from A). The simulator Sim
interacts with the (external) ideal functionality Fyc. In addition, Sim internally emulates a
copy of Fnase as well as honest players to interact with corrupted players (who are under
control by Z thru the dummy .A).

Case 1: Simulating honest senders P;, i € {1,..,n} with honest server Serv: Sim must
simulate the view of adversary A in the real world. Since we assume private and authenticated
channels, Sim can simply emulate all honest players by using dummy inputs (e.g., 0’s for all
honest parties). We omit the analysis.

Case 2: Simulating a corrupted subset of Z C {Py,...,P,}, honest senders {Py,...,P,}\Z
and honest server Serv: Sim through the internally emulated copy of Fi,agg, learns inputs
of the parties in Z from Z, and stores them; then Sim submit {x; };c7 to the ideal functionality,
Fvc on the behalf of the parties in Z.

If Py is not corrupt, this concludes the simulation because none of the members of Z\ P; ever
receives any messages or output, so simulating their view is unnecessary.

If Py is corrupt, if Sim receives (ssid, Py, fail) from the external ideal functionality Fyc, he
simulates the internal copy of honest server to send fail to the corrupted P; (who is under
control byZ). Otherwise, Sim receives a bit y from the ideal functionality Fyc on the behalf
of corrupted P;. Now the simulator Sim retrieves previously stored (ssid, mg, m1,x1) which
was submitted by Z to Fmagg; then Sim simulates the internal copy of honest server to send
(ssid,my) to the corrupted P (who is under control byZ).

It is straightforward to verify that EXECﬁ:"Jﬁ% = EXECx sim,2-

The simulation here is for malicious corrupted clients. We can easily obtain a simulator
for semi-honestly corrupted clients: instead of extracting the inputs from corrupted clients
through Fhage, the semi-honest simulator is provided with such inputs.

Case 3: Simulating honest senders P; for i € {1,..,n} with corrupted (malicious) server
Serv: The simulator Sim begins by querying the external ideal functionality Fyc and receives
(ssid, z1,...,x,). He generates a random m < {0,1}¢ and simulates the internal copy of
FmaBE to send (ssid,z1,...,x,, m) to the corrupted server (who is under the control of Z).
Later, Sim receives (ssid,m) from the corrupted server in response. If m # m, the simulator
sends (ssid, P, fail) to the external ideal functionality Fyc (indicating that P; should receive
output fail). Otherwise, the simulator sends (ssid, 1) to Fyc. It is straightforward to verify
that this is a perfect simulation, and we omit the analysis.

Case 4: Simulating a corrupted subset of Z C {Py,...,P,}, honest senders {Py,...,P,}\Z
with corrupted server Serv: The simulation here is a combination of Cases 2 and 3. Thru
the internally emulated Fmnage, the simulator learns inputs of the parties in Z from Z, and

26

stores them; then Sim submit {z;};c7 to the ideal functionality, Fyc on the behalf of the
parties in Z. The simulator Sim then by querying the external ideal functionality Fyc receives
(ssid,z1,...,xy,). (Note that if the environment Z sends different values for inputs of the
parties in Z to FnaBg, then the simulator will repeat the above again.)

If Py is not corrupted, the simulator generates a random m <« {0, 1}€ and simulates the
internal copy of Fnagse to send (ssid, z1, ..., x,, m) to the corrupted server (who is under the
control of Z); Later, Sim receives (ssid, m) from the corrupted server in response; If m # m,
the simulator sends (ssid, Py, fail) to the external ideal functionality Fyc (indicating that P;
should receive output fail). Otherwise, the simulator sends (ssid, 1) to Fyc.

If Py is corrupted, the simulator Sim retrieves previously stored (ssid, mg,m,x1) which was
submitted by Z to Fnage; then Sim simulates the internal copy of honest server to send
(ssid, M f (2 a,....0)) tO the corrupted Py (who is under control by Z).

It is straightforward to verify that this is a perfect simulation. [|

D Deferred Proofs

D.1 Proof of Theorem 3.2 (mABE)

Proof: Let II denote the mABE protocol described above. To show the security of the pro-
tocol, we need to construct a simulator Sim for any non-uniform PPT environment Z such that

ABE
EXECﬁfﬂTég ~ EXECx, \ge,Sim,z, where A is the dummy adversary who is allowed either to cor-
rupt Serv maliciously, or to corrupt some subset of the clients semi-honestly. We first construct a
simulator and then argue the indistinguishability between the two ensembles.

Simulating the communication with Z: Upon receiving an input value from Z, the simulator
Sim writes it on A’s input tape (as if coming from Z); upon obtaining an output value from
A, the simulator Sim writes it on Z’s output tape (as if coming from A).

Case 1: Simulating honest senders P;, ¢ € {1,..,n} with honest server Serv: Sim must
simulate the view of an eavesdropping adversary A in the hybrid world. Since we assume
private channels, Sim can simply encrypt strings of 0’s to simulate the messages over-heard
by the adversary. (See the discussion above.) We omit the analysis.

Case 2: Simulating a corrupted (semi-honest) subset of Z C {Py,...,P,}, honest senders
{P1,...,Pn} \ Z and honest server Serv: Each party in the corrupted set receives exactly
one message during setup: P; receives (mpkagg, mskagg), and for i € {2,...,n}, P; receives
mpkage. Note that none of these parties receive any messages during the online phase of the
protocol. The description of Sim is as follows:

e Sim runs (mpkagg, mskagg) < Setupage. If Py is corrupt, Sim simulates his view using
this pair. For i € {2,...,n}, if P; is corrupt Sim simulates his view using mpkage. He
outputs the simulated views to Z.

e During the online phase, Sim receives input for each corrupted party and forwards these
inputs to the ideal functionality.

27

The view of each corrupted party in the offline phase is drawn from a distribution that is
identical to the corresponding distribution in the hybrid world. Since the parties are semi-
honest, they will always use the inputs they were given from Z. It is easy to verify that
security holds.

Case 3: Simulating honest senders P; for i € {1,..,n} and corrupted (malicious) server
Serv: Note that Serv has no input and never sends any messages in this protocol, so there is
no difference between a semi-honest adversary and a fully malicious adversary. The simulator
acts as follows:

e Sim runs (mpkagg, mskage) < Setupage. He adds mpkagg to the view of Serv.

e To simulate the message received from P; during the offline phase, Sim computes sk <
ABE.KeyGen(mskagg, f) and adds this to the view of Serv.

e Sim then requests output from Fiyage and receives (z1, ..., z,, m). He samples a random
string R, and, for i € [n], j € [{], he computes ¢; ; = enc(z;[j]; R). Finally, he computes

c= enc(mpkABEa m, Oe, R) if f(.’L‘l, c ’,’L'n) = 0.
~ | enc(mpkage, 04, m; R) if f(z1,...,2) = 1.

To complete the simulation,

— He uses c¢11,...,¢c1¢ and ¢ to simulate the message received from P; during the
online phase.

— For i € {2,...,n} and j € [{], he uses ¢;1,...,¢i¢ to simulate the output from the
(4, 7)th instance of FpoT.

Note that all simulated messages are drawn from distributions that are identical to the correspond-
ing real world distributions, with the exception of c. We claim that if there exists some environment
Z* such that EXECQJ%}%ABE #% EXECFE, ,pe.Sim,2+, then there exists an adversary B = (By, B, B3)
that can break the security of the ABE scheme. Specifically, B simulates Z* internally, by simulat-
ing all messages sent to Z* by any of Sim, Pq,...,P,. B receives the inputs (mg, m1,x1),x2,...,Tn
that Z* puts on the input tapes of each of these players. Then,

o After receiving mpkage from his challenger, B forwards the value to Z* on behalf of Serv,
simulating the message sent during setup. He sends f to his own challenger.

o After receiving sk from his challenger, he sends this to Z* on behalf of Serv, simulating the
offline message received by Serv from P;.

o If f(z1,...,2,) =0, By sends (mg, m1,0% 21| - - - ||2,) to his challenger. Otherwise, he sends
(m1,mg, 0% z1||- - - ||zn). Going forward, we will assume the former case: the proof proceeds
in a parallel way when f(x1,...,2,) = 1. He receives back a challenge (cg,c1,...,c,), where

o — enc(mpkagg, mo, m1; R) if challenge bit 6 = 0.
07\ enc(mpkage, mo; 0% R) if challenge bit § = 1.

for some randomly chosen R, and ¢; = enc(mpkagg, x;; R) (bit by bit) using the same random
R. B sends these values to Z* as a simulation of Serv’s view in the online phase of the
protocol. When Z* outputs some bit b, B3 outputs the same value.

28

It is easy to verify that when § = 0 in Exp.ABE, Z*’s view in B’s simulation and his view in

ABE
EXECﬁPjTé% are identically distributed, while when § = 1, Z*’s view in B’s simulation and his

view in EXECx_,.c sim,z+ are identically distributed. We conclude that B’s advantage in Exp.ABE

ABE
is the same as the advantage of Z* in distinguishing EXECﬁPjT’Z% from EXECg, ,oc Sim, 2+ [|

ABE >

D.2 Proof of Theorem 3.3 (ah-mABE)

Proof: Let II denote the ah-mABE protocol described above. To show the security of the
protocol, we need to construct a simulator Sim for any non-uniform PPT environment Z such
that EXECﬁ:"Q‘?zE,’gFHE ~ EXECE, _ ,ue.5im 2, Where A is the dummy adversary who is allowed either
to maliciously corrupt the server, or to semi-honestly corrupt any subset of the senders. We first
construct a simulator and then argue the indistinguishability between the two ensembles.

Simulating the communication with Z: Upon receiving an input value from Z, the simulator
Sim writes it on A’s input tape (as if coming from Z); upon obtaining an output value from
A, the simulator Sim writes it on Z’s output tape (as if coming from .A).

Case 1: Simulating honest senders Pq,...,P, with honest server Serv: Sim must simulate
the view of an eavesdropping adversary A in the hybrid world. Since we assume private
channels, Sim can simply encrypt strings of 0’s to simulate the messages over-heard by the
adversary. (See the discussion above.) We omit the analysis.

Case 2: Simulating a corrupted (semi-honest) subset of Z C {P;,...,P,}, honest senders
{P1,...,Pn} \ Z and honest server Serv: Each party in the corrupted set receives exactly
one message during setup: Py receives (pkpyg, skene), and for i € {2,...,n}, P; receives pkpyg.

Note that none of these parties receive any messages during the online phase of the protocol.
The description of Sim is as follows:

o If Py is corrupt, Sim simulates his view using this key pair he generated (pkeyg, Skrne)-
For i € {2,...,n}, if P; is corrupt Sim simulates his view using pkpyg. He outputs the
simulated views to Z.

e During the online phase, Sim receives input for each corrupted party and forwards these
inputs to the ideal functionality.

The view of each corrupted party in the offline phase is drawn from a distribution that is
identical to the corresponding distribution in the hybrid world. Since the parties are semi-
honest, they will always use the inputs they were given from Z. It is easy to verify that
security holds.

Case 3: Simulating honest senders P;,...,P, with corrupted (malicious) server Serv:
Note that Serv has no input and never sends any messages in this protocol, so there is no
difference between a semi-honest adversary and a fully malicious adversary. The simulator
acts as follows:

e He adds pkgyg to the view of Serv.

e He learns the output m from the ideal functionality Fih-mage. We remind the reader
that the honest senders give input ((mg,my,x1),x2,...,2,) to the functionality, who
will output m gy, z,)-

29

e He then samples 2/, ..., 2}, < Encrye(pkpyg, 0).
e Then he generates a simulated garble circuit T’ with simulated labels {Ei}ie[/\] such that
Gb.Eval(T, {ii}ie[A}) =m. Sim adds T to Serv’s view.

e Sim computes (dy,...,dy) = Evalpne(pkeye, f> &), - - ., 2},), where d; is the i-th bit of the
evaluation outcome.

e For j € [\], Sim sets L?j = L, and L;_
fi]ABE with Py’s input (Lé, L{, #}), and & for the other P;, for ¢ € [n]\ {1}. At the end,
the server learns {L;} ey, and 27 ..., 2. This completes the simulation.

4 _ 0. The he simulates the ideal functionalities

Next we are going to show that the simulation is correct. We denote the view in the real
(hybrid) world as Z by H := (pkgyg, L, {Ldj}je[)\],:%l,...,in), and the view in the ideal
world as H' := (pking, I\ {L;j}jepy 210 ---,45). Note that pkepye and pkiyg are identi-
cally distributed and will not influence the joint distribution. To see that for all PPT Z,
EXECﬁ:”j?ggFHE ~ EXECgZ, _, ,se.Sim, 2, it suffices to consider just a single hybrid game, where
Z is given a simulated garbled circuit, with encryptions of real input values, and thus his view
becomes Hy := (pkpyg, I, {L% }iens #15 - -+ 2n). Specifically, suppose there exists an envi-
ronment Z* that is capable of distinguishing H from Hj. Then there exists a reduction that
can break the security of the garbled circuit scheme. The reduction simulates the environ-
ment Z* internally. When Z* specifies inputs z1,...,x, and the parties compute Z1, ..., T,
using pkpye. The reduction submits these, along with the circuit for Decpyg(skgng,), to his
challenger, and receives a challenge (T, {L;}jepy)- He uses these to construct the message for
Z*, and outputs whatever Z* outputs. The advantage is clear in this case.

To complete the proof, we argue that if there exists an environment Z* that can distinguish H;
from the ideal world H’, then there exists a reduction that can break the FHE. We observe that the
only difference between H; and H' is the ciphertexts. Thus, the reduction can embed the challenge
ciphertexts to the experiment and simulate the rest. Then by calling the Enc*, the reduction can
tell whether the ciphertexts were encryptions of 0’s or (z1,...,x,). [|

D.3 Proof of Theorem 3.4 (Private MVC)

The proof of Theorem 3.4 is very similar to that of Theorem C.1. For completeness, we present the
details below.

Proof: We here prove the stronger statement that the described protocol securely realizes Fpyc
in the f;h_m age-hybrid model against any corruption pattern.

Let IT denote the Fih-mage-hybrid protocol described above. To show the security of the pro-
tocol, we need to construct a simulator Sim for any non-uniform PPT environment Z such that
EXEC%&“{%‘BE ~ EXECE, . sim,z, where A is the dummy adversary. We first construct a simulator
and then argue the indistinguishability between the two ensembles.

Simulating the communication with Z: Upon receiving an input value from Z, the simulator
Sim writes it on A’s input tape (as if coming from Z); upon obtaining an output value from
A, the simulator Sim writes it on Z’s output tape (as if coming from A). The simulator Sim
interacts with the (external) ideal functionality Fpyc. In addition, Sim internally emulates a

30

copy of Fan-maBe as well as honest players to interact with corrupted players (who are under
control by Z thru the dummy .A).

Case 1: Simulating honest senders P;, i € {1,..,n} with honest server Serv: Sim must
simulate the view of adversary A in the real world. Since we assume private and authenticated
channels, Sim can simply emulate all honest players by using dummy inputs (e.g., 0’s for all
honest parties). We omit the analysis.

Case 2: Simulating a corrupted subset of Z C {Py,...,P,}, honest senders {P;,...,P,}\Z
and honest server Serv: Sim through the internally emulated copy of Fih-mage, learns
inputs of the parties in Z from Z, and stores them; then Sim submit {x;};c7 to the ideal
functionality, Fpyc on the behalf of the parties in Z.

If Py is not corrupt, this concludes the simulation because none of the members of Z\ P; ever
receives any messages or output, so simulating their view is unnecessary.

If Py is corrupt, if Sim receives (ssid, Pq,fail) from the external ideal functionality Fyvc, he
simulates the internal copy of honest server to send fail to the corrupted P; (who is under
control by Z). Otherwise, Sim receives a bit y from the ideal functionality Fyyc on the behalf
of corrupted P;. Now the simulator Sim retrieves previously stored (ssid, mg, m1,x1) which
was submitted by Z to Fan-mage; then Sim simulates the internal copy of honest server to
send (ssid, m,) to the corrupted Py (who is under control byZ).

It is straightforward to verify that the joint distributions are the same: EXEC#';";BE =

EXECE,\c.Sim,z-
The simulation here is for maliciously corrupted clients. We can easily obtain a simulator

for semi-honestly corrupted clients: instead of extracting the inputs from corrupted clients
through Fih-maBeg, the semi-honest simulator is provided with such inputs.

Case 3: Simulating honest senders P; for i € {1,..,n} with corrupted (malicious) server
Serv: The simulator Sim begins by querying the external ideal functionality F,vc and receives
(ssid, z1,...,x,). He generates a random m < {0,1}¢ and simulates the internal copy of
Fah-maBE to send (ssid, z1, ..., x,, m) to the corrupted server (who is under the control of Z).
Later, Sim receives (ssid,m) from the corrupted server in response. If m # m, the simulator
sends (ssid, Py, fail) to the external ideal functionality Fyvc (indicating that Py should receive
output fail). Otherwise, the simulator sends (ssid, 1) to Fpyc. It is straightforward to verify
that this is a perfect simulation, and we omit the analysis.

Case 4: Simulating a corrupted subset of Z C {Py,...,P,}, honest senders {Py,...,P,}\Z
with corrupted server Serv: The simulation here is a combination of Cases 2 and 3. Thru
the internally emulated F,h-mage, the simulator learns inputs of the parties in Z from Z,
and stores them; then Sim submit {z;},cz to the ideal functionality, Fovc on the behalf of
the parties in Z. The simulator Sim then by querying the external ideal functionality Fovc
receives (ssid, z1,...,xy). (Note that if the environment Z sends different values for inputs
of the parties in Z to Fap-maBE, then the simulator will repeat the above again.)

If Py is not corrupted, the simulator generates a random m <« {0, 1}4 and simulates the
internal copy of Fap-mase to send (ssid,zy,...,x,, m) to the corrupted server (who is under
the control of Z); Later, Sim receives (ssid,m) from the corrupted server in response; If

31

m # m, the simulator sends (ssid, Py, fail) to the external ideal functionality Fyyc (indicating
that Py should receive output fail). Otherwise, the simulator sends (ssid, 1) to Fpvc.

If Py is corrupted, the simulator Sim retrieves previously stored (ssid, mg,m1,z1) which was
submitted by Z to Fan-mage; then Sim simulates the internal copy of honest server to send
(ssid, M f (2, ao,....0n)) tO the corrupted Py (who is under control by Z).

It is straightforward to verify that this is a perfect simulation. [|

D.4 Proof of Theorem 4.2

Proof: The construction of I’ is simple. Assume that in the offline stage, client P; obtains the
secret and public information (pub, sk;) and sends some message o; = TIM"¢(pub, sk;, f; R;) to the
serve, where II; is the prescribed strategy. At any time in the online stage, P; sends some message
M; = T1°"ne (pub, sk;, z;; R:) to the server where M;() is the prescribed strategy.

In the protocol I, the clients now instead of sending their messages to the server directly, they
send the message via the ideal functionality Fzk to show consistency. That is, in the offline stage,
P; provides both «; as the statement, and (sk;, f, R;) as the witness to Fzk; then Fzk returns («;, 1)
to the server if the witness is valid, and («;, 0) otherwise. Similarly in the online stage, P; provides
both M; as the statement, and (sk;, z;, R}) as the witness to Fzk; then Fzk returns (M;, 1) to the
server if the witness is valid, and (M;,0) otherwise.

Security follows in a straightforward way. The simulator, by simulating Fzk, first extracts the
inputs and randomness of the corrupted clients. Then he just runs the simulator as defined in
Definition 4.1, which by definition generates an identical view of the corrupted parties. [|

32

