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Abstract. With the rapid progress in fully homomorpic encryption (FHE)
and somewhat homomorphic encryption (SHE) schemes, we are wit-
nessing renewed efforts to revisit privacy preserving protocols. Several
works have already appeared in the literature that provide solutions to
these problems by employing FHE or SHE techniques. These applications
range from cloud computing to computation over confidential patient
data to several machine learning problems such as classifying privatized
data. One application where privacy is a major concern is web search
– a task carried out on a daily basis by billions of users around the
world. In this work, we focus on a more surmountable yet essential ver-
sion of the search problem, i.e. autocomplete. By utilizing a SHE scheme
we propose concrete solutions to a homomorphic autocomplete problem.
To investigate the real-life viability, we tackle a number of problems in
the way towards a practical implementation such as communication and
computational efficiency.

Keywords: Homomorphic encryption, privacy preserving applications, oblivi-
ous keyword search.

1 Introduction

Fully homomorphic encryption (FHE) has gained increasing attention from cryp-
tographers ever since its first plausible secure construction was introduced by
Gentry [17] in 2009. FHE allows one to perform arbitrary computation on en-
crypted data without the need of a secret key, hence without knowledge of orig-
inal data. That feature would have invaluable implications for the way we uti-
lize computing services. For instance, FHE is capable of protecting the privacy
of sensitive data on cloud computing platforms. We have witnessed an amaz-
ing number of improvements in fully and somewhat homomorphic encryption
schemes (SHE) over the past few years [18, 12, 5, 7, 19, 3]. In [20] Gentry, Halevi
and Smart (GHS) proposed the first homomorphic evaluation of a complex cir-
cuit, i.e. a full AES block. The implementation makes use of batching [34, 35], key
switching [4] and modulus switching techniques to efficiently evaluate a leveled
circuit. In 2012 Halevi (and later Shoup) published the HElib [24], a C++ library
for HE that is based on Brakerski-Gentry-Vaikuntanathan (BGV) cryptosystem
[3]. In [29] a leveled NTRU [25, 37] based FHE scheme was introduced by López-
Alt, Tromer and Vaikuntanathan (LTV), featuring much slower growth of noise



during homomorphic computation. Doröz, Hu and Sunar (DHS) [13, 14] used an
LTV SHE variant to evaluate AES using windowing in 12 seconds. In early 2015,
Gentry, Smart, Halevi (GHS) [21] published significantly improved AES runtime
results with a 2 seconds amortized per block runtime. More recently, Ducas and
Micciancio [16] presented the FHEW scheme that achieves bootstrapping in half
a second for HElib on a common PC.

Applications. These impressive advances motivated researchers to investigate
how to best put these new homomorphic evaluation tools to use in privatizing
applications. For instance, in [26] Lauter et al. consider the problems of evaluat-
ing averages, standard deviations, and logistical regressions which provide basic
tools for a number of real-world applications in the medical, financial, and the
advertising domains. The same work also presents a proof-of-concept Magma
implementation of a SHE for the basic operations. The SHE scheme is based
on the ring learning with errors (RLWE) problem proposed earlier by Brakerski
and Vaikuntanathan in [6]. Later in [27], Lauter et al. show that it is possible to
implement genomic data computation algorithms where the patients’ data are
encrypted to preserve their privacy. They encrypt all the genomic data in the
database and are able to implement and provide performance numbers for Pear-
son Goodness-of-Fit test, the D′ and r2-measures of linkage disequilibrium, the
Estimation Maximization (EM) algorithm for haplotyping, and the Cochran-
Armitage Test for Trend. The authors used a leveled SHE scheme which is a
modified version of [30] where they get rid of the costly relinearization oper-
ation. In [2] Bos et al. show how to privately perform predictive analysis on
encrypted medical data. They present an implementation of a prediction service
running in the cloud. The cloud server takes private encrypted health data as
input and returns the probability of cardiovascular disease in encrypted form.
The authors use the SHE implementation of [1] to provide timing results. Grae-
pel et al. in [22] demonstrate that it is possible to execute machine learning
algorithms in a service while protecting the confidentiality of the training and
test data. The authors design confidential machine learning algorithms using
leveled homomorphic encryption. More specifically they implement low-degree
polynomial versions of Linear Means Classifier and Fisher’s Linear Discriminant
Classifier on the Wisconsin Breast Cancer Data set. In [15], Doröz et al. use
an NTRU based SHE scheme to construct a bandwidth efficient private infor-
mation retrieval (PIR) scheme. Due to the multiplicative evaluation capabilities
of the SHE, the query and response sizes are significantly reduced compared
to earlier PIR constructions. The PIR is generic and therefore any SHE which
supports a few multiplicative levels (and many additions) could be used to im-
plement a PIR. The authors also give a leveled and batched reference imple-
mentation of their PIR construction including performance figures. Cheon et al.
[9] present a method along with implementation results to compute encrypted
dynamic programming algorithms such as Hamming distance, edit distance, and
the Smith-Waterman algorithm on genomic data encrypted using a SHE scheme.
The authors design low depth circuits to compute the distances between two ge-
nomic strings using BGV-type leveled SHE schemes. Çetin et al. [8] analyzed the



complexity and provided implementation results for privately sorting an array
of integers. The scalability of various sorting algorithms is studied using an LTV
[29] variant also proposing new depth optimized sorting algorithms.

All of the aforementioned works develop versatile tools that take us closer
to developing practical privacy preserving applications. Although proposed as
the prime example of blind computation by Gentry in his very first FHE con-
struction [17], the privatized web search problem, where encrypted keywords are
submitted to a server that blindly computes and returns the search result, has
not been investigated yet with the new homomorphic tools developed in the last
few years. While there are still quite a number of practical challenges that need
to be tackled before the search problem can be solved in a practical manner.
Here we take the first step by studying a similar yet more tractable problem,
i.e. the autocomplete feature. From a privatization point of view, autocomplete
provides the perfect micro example of a search. In both applications, we wish
the server to privately match keywords in a dictionary and accordingly return
the matching results. A search engine compiles the results page from a vast list
of precomputed and presorted results optimized for extremely efficient retrieval.
Instead, in autocomplete the list is significantly smaller and therefore does not
need to be structured and optimized as much. This provides us an opportunity
to study the search problem in a simpler setting. Finally we note that, autocom-
plete is a more generic tool and is also used in other applications such as such
as form fills in web browsers, and in e-mail clients etc.

Our Contribution. In this work, we

– first model the autocomplete problem in the client/server setting. When-
ever the client starts typing a keyword, the server performs a lookup in the
database, predicts the rest of the word and provides a number of popular
keywords to the user;

– we convert this model into a homomorphic circuit, so that it can be evaluated
using encrypted input/outputs. In this scenario, when a user starts typing
a keyword, it is first encrypted under an SHE scheme with the user’s own
public key on the client side, then the ciphertexts are sent to the server. The
server evaluates the autocomplete circuit and returns the predicted words
still in encrypted form to the user;

– we consider a realistic scenario where the size of the lookup table, i.e. the
database can be fairly large, hence we provide a batched scheme suitable for
a real-world application;

– we give a detailed analysis on the noise growth during the evaluation of our
circuit depending on different application variables. Furthermore, we explain
the parameter selection process with respect to both noise management and
the cryptographic security.

– Finally, we provide implementation results of the proposed homomorphic
circuit using a C++ library with an SHE instantiation based on LTV. Ad-
ditionally, given the computation and bandwidth complexity of the SHE
scheme, we also implemented a highly parallel, multi-threaded version with



GPU support to accelerate the SHE evaluations. We provide run-time results
for the proposed methods for both CPU and GPU implementations.

2 Background

In this work, we use a single-key SHE construction which is a modified version
of DHS in [14]. The DHS scheme was derived from the multi-key FHE scheme
LTV in [29] and LTV construction uses a variant of NTRU Encryption proposed
by Stehlé and Steinfeld in [36] as a base point. (see Appendix)

2.1 The DHS Library

DHS is a customized single-key version of the LTV scheme that was proposed
in [14] by Doröz, Hu and Sunar. The source code is available in C++ and the
library is implemented using NTL [32] with GMP [23] support. The library
contains some special customizations that improve the efficiency in both run-
time and the memory requirements. The library can perform 5 main operations
as well as a packing method; KeyGen, Encryption, Decryption, Modulus
Switch and Relinearization and Batch. Due to the fact that our finalized
circuit, that will be defined later in Section3, is shallow enough to execute with a
SHE scheme, we will not use Relinearization. By disregarding relinearization,
we need to update our decryption key according to the circuit to be evaluated.
The details of the DHS customizations, that will be used in our implementation,
are as follows:

– Encryption. In the previous section 7.1, we defined encryption and de-
cryption primitives as bit operations. But in the library, we can encrypt
a message m from a larger message domain Zp for the ith level, using
c(i) = h(i)s+pe+m as the encryption function. Similarly decryption works as
Decrypt

(
c(i)
)

= c(i)f (i) mod p = m. With word size-p message domains, all
homomorphic properties are preserved and we gain the ability to homomor-
phically multiply and add integers via simple ciphertext multiplication and
additions. As stated earlier, we will use a function of the secret key on the

decryption step for our SHE implementation. Decrypt
(
c(i)
)

= c(i)
(
f (i)
)`

and
the exponent of the secret key ` depends on the number of multiplications
in the circuit.

– Batching. The new domain is defined as Rq = Zq[x]/Ψm(x) where Ψm(x) is
the mth cyclotomic polynomial. The specially selected cyclotomic polynomial
is used to batch multiple messages into the same polynomial for parallel
evaluations as proposed by Smart and Vercauteren [33, 34] (also see [14]).
When Zp is the plaintext space, the polynomial Ψm(x) can be factorized
over Fp (if we have a prime p), into equal degree polynomials Fi(x). The
degree of these factors will be the smallest integer t that satisfies m|(pt− 1).
The degree n of Ψm(x) is equal to the Euler Totient function of m, i.e.
n = ϕ(m). This means that, we have S = n/t factors and each one of them



defines a separate message slot. As a result, S messages can be embedded
into a single polynomial using the Chinese Remainder Theorem (CRT).

– Modulus Switching. Previously, we defined qis as a decreasing sequence of
primes for each level i. In this construction, qi is created as the product of a
number of primes for each level. It starts with setting the last level q, qd to a
selected prime ρ, i.e. qd = ρ, then for the rest of the sequence i = d−1, · · · , 0,
it generates the new qi as, qi = qi+1ρi. The value ρi is a prime number that
cuts (κ = logρi)-bits of noise in each level.

2.2 CUDA GPU Support

We adopt the cuHE library [11] to implement our design on CUDA GPUs. The
library features fast polynomial ring operations and is designed for a homomor-
phic evaluation of a leveled circuit. A ciphertext on GPU can be represented
in three ways: straightforward representation of a polynomial with very large
coefficients, a set of polynomials with small coefficients converted with the CRT
or a set of vectors achieved with number-theoretic transform. The latter two are
essential for efficient computation. They adopt a different method than DHS to
generate coefficient moduli, featuring efficient modulus switching. We trimmed
the cuHE library to better fit our need, such as removing relinearization.

3 Our Autocomplete Scheme

In autocomplete schemes, expensive computations and massive user-server band-
width requirements stays a challenge towards a real time SHE based applications.
In this section, we present a homomorphic autocomplete algorithm that can han-
dle practical scenarios. Here, we provide optimizations and propose a lightweight
algorithm, to push our design closer to a real-life application. In the following
we first explain an autocomplete scheme briefly and later give details of the
homomorphic autocomplete.

A server holds a database of which each entry contains a sequence of words
(i.e. sorted by their searching frequencies) starting with a specific combination
of letters or characters. We call those leading characters the header of an entry,
as shown in Table 1. A client would type a few characters (e.g. “a”) and would
expect suggestions of words starting with those characters, i.e. the entry with
a matching header (e.g. “amazon”, “abc”, etc.) from the server. In a regular
autocomplete scheme the client has the reply from the server while the server
learning the typed information in the mean time. However, if the client does not
want to reveal his intention, i.e. “a”, to the server he has to use homomorphic
autocomplete scheme to protect his information. The algorithm we build with
homomorphic encryption works as follows: the client encrypts “a” and sends
ciphertexts to the server; the server process the ciphertexts and return the cor-
responding entry contents in encrypted form to the client; the client decrypts and
gets entry contents in plaintexts. In that way, the client is content to have the



server facing a computationally difficult problem (decrypting without decryp-
tion key) to extract any significant knowledge of his intention, which is identical
to a computational private information retrieval (cPIR) problem [10]. Based on
those definitions we are now able to provide a general model to the problem and
explain our solutions.

Headers Words

a amazon, abc, abc news . . .
b bank of america, best buy . . .
...

...
z zillow, zappos, zipcar . . .
0 0 to 100, 0 divided by 0 . . .
1 1800flowers, 1800contacts . . .
2 2048, 21 day fix . . .
...

...

1100001 97 109 97 122 111 . . .
1100010 98 97 110 107 32 . . .

...
1111010 122 106 108 108 111 . . .
0110000 48 32 116 32 49 . . .
0110001 49 56 48 48 102 . . .
0110010 50 48 52 56 0 . . .

...
...

Table 1. An example database where headers have a single character and the corre-
sponding words are ordered according to their search ranks. Their ASCII representation
on the right.

3.1 Setup

We first setup an LTV instance for our application as the base homomorphic
encryption module with the following preliminaries:

Plaintext space : P = Z
p
1

Depth of the circuit to be evaluated : d
Ciphertext space : C = Zqi [x]/〈Ψm(x)〉, i ∈ Zd+1

Number of message slots : S
Batching domain : B : ZSp → Zp[x]/〈Ψm(x)〉

This generic setup will be used throughout this section for building our ho-
momorphic circuits. Later in Section 4, we will give detailed information about
selecting the parameters (p, q,m, S) with respect to the depth (d) of the cir-
cuit. Before constructing our homomorphic circuit, we also need to define some

1 p does not necessarily have to be a prime number for encryption/decryption, but it
must be a prime for batching.



terminology and set the following preliminaries for the design:

Bit size of the user input/headers : L
Number of rows in the database : E
Number of log p-bit chunks to be returned : R
from the word list
User input as an array of bits : UL

Database headers as a matrix of bits : HE×L
Database words as a matrix of log p-bit chunks : WE×R

The parameters, L,E,R, determines the number of input/output data that is
transfered between the server and the client. Therefore they have an effect on
both the circuit size and the bandwidth, thus they are significantly important
for the runtime of the application. We will design our circuits for generic cases
and later in Section 5, we will choose different values and observe their effect on
the LTV setup and consequently on execution time.

Database elements are accessed using an array notation, hence we have
H [i] [j] ∈ Z2, ∀i ∈ ZE, ∀j ∈ ZL for database headers and W [i] [j] ∈ Zp, ∀i ∈
ZE, ∀j ∈ ZR for the word list. For example, for the database in Table 1,
H [0] [0] = 1 which is the first bit of the first row, H [0] [1] = 0 which is the second
bit of the first row, and so on. Similarly, W [0] [0] = 97 which is the first character
of the word list on the first row. User input is hold in the same structure, i.e. we
have U [i] ∈ Z2,∀i ∈ ZL and for example for a user input ’b’ = 1010110 in ASCII
representation, we will have U [0] = 1, U [1] = 0. Similarly, whenever we have a
vector v = 〈v0, v1, · · · vk−1〉 we access its elements using the notation, v [i] = vi
for any i. If we have an array of such vectors, A = [v0,v1, · · · ,vl], we will use
A[i] = vi and A[i][j] = vi[j] for some i and j.

3.2 The Autocomplete Circuit

The autocomplete problem is identical to PIR problem, thus we can contract
the same circuit to evaluate the autocomplete. The algorithm will be consisting
of a number of comparisons for the lookup and a multiplexer to generate the
end result is given in Algorithm 1.

Algorithm 1 Auto-Complete

1: function Autocomplete (U)
2: for i← 0 to E-1 do
3: if U equals to H[i] then
4: return W[i]
5: end if
6: end for
7: end function

The user input U is encrypted in the algorithm, thus to perform the if state-
ment on line 3 of Algorithm 1, we need a sub-routine that can compare encrypted



inputs, i.e. a homomorphic circuit. We build a boolean comparison circuit using
a binary tree of XNOR gates, as can be seen in the first line of Algorithm 2.
Since we need to access each bit of the inputs we encrypt each of the user input
bits separately. After performing the comparison step, the intermediate results
will still be in an encrypted form, the server will still be blind. Hence, it cannot
perform any branch operation. Thus, we need to implement a multiplexer circuit
for the branching step. The overall circuit is summarized in Algorithm 2.

Algorithm 2 Auto-Complete Circuit

1: function Compare(U, H[i])
2: output ← 1
3: for j ← 0 to L-1 do
4: output ← output ∗ (U[j] + H[i][j]− 1 mod 2)
5: end for
6: return output
7: end function
8: function Autocomplete (U)
9: output ← 0

10: for i← 0 to E-1 do
11: output ← output + (Compare (U,H[i]) ∗W[i])
12: end for
13: return output
14: end function

Even though the circuit we defined in Algorithm 2 is shallow enough to op-
erate on a homomorphic domain, considering a real world scenario where we
have a really large database in which we perform the lookup, we cannot ex-
pect a practical application unless we have parallel evaluations. Batching, as
described in Section 2.1, is one the most useful techniques in order to reduce
the cost of homomorphic applications. Placing multiple data into message slots
and packing them into a single polynomial using CRT allows us to do paral-
lel addition/multiplications on each message slot. In our scheme, since we have
2-dimensional arrays to represent the database, we have two options, packing
row-wise or column-wise. Packing database matrix row-wise means that we are
batching bits of an header, therefore we also need to batch the user input by
placing each bit into a message slot. But, notice that our comparison circuit in
Algorithm 2 takes the product of bitwise comparisons, i.e. XNOR operations.
Hence, even if we perform the bitwise XNORs in parallel, we will need to apply
multiplication across different message slots in order to compute the product.
Permuting the message slots by rotating and manipulating the packed polyno-
mial is possible, yet inconveniently expensive for a real-time application. There-
fore, the latter batching method, i.e. packing the database elements column-wise
is a better approach for our scheme. Since we only have S message slots, we need
λ = dES e packed vectors per column in order to cover every row of the database.
At the end, we will have a matrix of vectors [h]λ×L for headers and [w]λ×R



for word lists. How we construct the batched database elements can be seen in
Equation 1 and Equation 2.

h[i][j] = 〈H[iS + 0][j],H[iS + 1][j], · · · ,H[iS + S − 1][j]〉
h[i][j] = Batch(h[i][j]),

h[i][j] ∈ Domain(B), h[i][j] ∈ Image(B), ∀i ∈ Zλ, ∀j ∈ ZL (1)

w[i][j] = 〈W[iS + 0][j],W[iS + 1][j], · · · ,W[iS + S − 1][j]〉
w[i][j] = Batch(w[i][j]),

w[i][j] ∈ Domain(B), w[i][j] ∈ Image(B), ∀i ∈ Zλ, ∀j ∈ ZR (2)

In case of client side message batching, we want to compare an arbitrary
user input bit U[i] with ith bit of every header. Therefore, we place the same
bit U[i] in each message slot of a single vector, so that comparison can be per-
formed in parallel. When we batch a vector consisting of the same elements, the
mapping will be to a constant polynomial with the corresponding element being
the constant term. This means that, we will not spend any time for batching in
the runtime and this is the perquisite of the column-wise packing method. The
operations in the user side are

u[i] = 〈U[i],U[i], · · · ,U[i]〉
u[i] = Batch(u[i]) = U [i] c[i] = Encrypt(u[i]),

u[i] ∈ Domain(B), u[i] ∈ Image(B), c[i] ∈ C, ∀i ∈ ZL (3)

After retrieving the encrypted user bits c[i], the server can follow the steps
of the homomorphic circuit in Algorithm 2. First step will be the comparison
as in Equation 4. After this step, the server will have an array of ciphertext
polynomials r which holds the comparison results in distinct message slots for
all header entries. And we know that there is only one entry in the database
that is equal to user input, hence when decrypted only one message slot will
have 1 or p − 1 and the rest will be 0. The reason we may have p − 1 is due to
the fact that in the plaintext domain we may use a prime p larger than 2. There
are three possible outcomes for bitwise comparison as shown in Table 5. (See
Appendix) Focusing on the particular case where the H[i] equals to U, for some
i ∈ ZE, note that whenever there is a bit 0 in the user input U, there will be a
(−1) in the product. Let the number of zero bits in the user input be ω, then we

will have
∏L−1
j=0 (H[i][j] + U[j]− 1) = (−1)

ω
(1)

L−ω
. If there are odd number of

zeros in the user input, then after the decryption this result must be multiplied
by −1, otherwise it will have the value −1 = p− 1 ∈ Zp. For other cases where
H[i] 6= U, there will be at least one zero in the product vanishing the “−1”s as
well as “1”s, thus the output will be zero nonetheless.

r[i] =

L−1∏
j=0

(h[i][j] + u[j]− 1) , r[i] ∈ C, ∀i ∈ Zλ (4)

Now that we know r consists a single ∓1 in a particular message slot, i.e. the
one that corresponds to a single row i ∈ ZE of the database, where H[i] = U,



we need to AND it with the word lists. Then we can take the cumulative sum
of the rows. Since only one of them will hold a value different than 0 the sum
will evaluate a row lookup.

The server sends R encrypted word chunks i.e. for each column j of the word
list, it sends a d[j] to the user:

d[j] =

λ−1∑
i=0

(r[i] ∗ w[i][j]) , d[j] ∈ C, ∀j ∈ ZR (5)

Let k ∈ ZS, be the offset of the row i in the packed vector, again for the case
H[i] = U. This means that each d[j] will have (−1)ωW[i][j] in the kth message
slot and it will be the only non-zero element of the output vector unless the word
list is not empty, for the corresponding header. Otherwise all outputs/message
slots will be zero and this can be checked by seeking a non-zero value in the first
vector. The operations for the decryption process in the client side can be seen
in Equation 6 and the final output, i.e. the autocompleted word list can be seen
in Equation 7.

v[j] = Decrypt(d[j]),

v[j] = Batch−1(v[j]),

v[j] = 〈0, 0, · · · ,∓W[i][j], · · · , 0, 0〉
v[j] ∈ Image(B), v[j] ∈ Domain(B), ∀j ∈ ZR

∃i ∈ ZE, s.t. U = H[i]. (6)

V =

{
[(−1)

ω
v[0][k], · · · , (−1)

ω
v[R− 1][k]] if ∃k ∈ ZS s.t. v[0][k] 6= 0

[∅] otherwise.
(7)

Notice that the multiplicative depth of the scheme comes from the comparison
operation (Equation 4), where we compare bits of the user input to database
entries, because it is the only operation that involves ciphertext-ciphertext mul-
tiplication. Even though Equation 6 also has multiplications, it is only between
a ciphertext and a plaintext which is a constant multiplication. For further opti-
mization, we will try to drop this equality check in the next section by switching
from using ASCII representation to a special encoding.

3.3 A Simpler Circuit

The circuit presented in the previous section is consisting a comparison tree
and a multiplexer. This comparison tree significantly decreases the performance.
Although the multiplication between the ciphertexts are expensive, it is not
the main reason that decreases the performance. The algorithm consist a lot
of multiplications between ciphertext and plaintexts in the multiplexer. The
overhead of a few expensive operations in the comparison tree is only a small
portion of the whole computational burden. The comparison gives the circuit
a depth along with which the noise growth needs to be handled (otherwise,



decryption will fail). Also we abandoned relinearization, because it would be
impractical to require clients sending huge evaluation keys to the server. We
choose to let the client perform decryption with a power of the secret key, e.g.
f24, consequently this significantly increase the coefficient moduli qi’s.

Autocomplete without Comparison With a small assumption on client’s
side, provided that there is a unique index in the database for each possible
input combinations, an abbreviated circuit solves the problem. For example, the
database has 26 entries with headers: “a”, “b”,..., “z”; the entry with header
“p” has index “15”. The client, acknowledge of indexing rules, is then able to
send an encrypted index to the server. With one-hot encoding, the encrypted
index can be used as input to the multiplexer. Assume that the client intents to
retrieve the entry with index α ∈ ZE . Create a matrix of bits RE such that

∀i ∈ ZE , R[i] =

{
1 if i = α

0 otherwise.
(8)

Apply batching and encrypt batched vectors to ciphertexts:

r[i] =

L−1∏
j=0

(Encrypt(Batch(〈R[i · S], R[i · S + 1], . . . , R[i · S + S − 1]〉))) ,

where r[i] ∈ C, ∀i ∈ Zλ. The client sends those ciphertexts to the server. The
process follows the previous circuit from Equation 5 to enter the multiplexer.
The abbreviated circuit consists of multiplications only between ciphertext and
plaintext. More importantly, we work with much smaller qi’s, of which an detailed
analysis is provided in the next section.

4 Coping with Noise

In this section, we explain our method to manage the growing noise along the
homomorphic evaluation of levels of the circuit. Our goal is to minimize com-
putational burden by minimizing ciphertext size, i.e. degree n and coefficient
moduli qi’s, so that correct decryption is ensured with very high probability. In
our homomorphic encryption scheme, the decryption key is f = pf ′ + 1 and the
encryption key is h = pgf−1, where g, f ′ ∈ χB and p denotes the message space.

Autocomplete with Comparison The comparison step has multiple levels.
Therefore noise in ciphertexts grows rapidly. Recall the construction. Let L de-
note the number of input bits, and let d = dlog2 Le denote the depth of circuit
given L batched plaintexts Mj ∈ Rp where j ∈ ZL. The plaintexts are encrypted

as C
(0)
j = Enc(Mj) = hsj + pej +Mj , where sj and ej are sampled from χB .

To estimate the noise growth, we track operations in each level and denote
the norm of decrypted ciphertexts entering the i-th level as Bi. Before entering
the multiplicative circuit, there is bit-wise comparisons of inputs Cj and batched



dictionary headers Hj : C
′
j = Cj +Hj − 1 = hs+ pe+M +H − 1 , where j ∈ ZL

and Hj ∈ χp. Those are the ciphertexts entering the 0-th level of circuit (for
simplicity assuming c = C ′0 = C ′1 = · · · = C ′L−1), then

B0 ≤ ‖cf‖∞ ≤ n[(B2 + 2B)p2 + (B2 + 2B + 2)p+ 1].

Then in each level, we perform multiplication on ciphertexts. And remember,
since we don’t have relinearization in our scheme, to decrypt a ciphertext in the
i-th level (ci), we perform Dec(ci) = ci · f2

i

mod p. Moreover, after each level
of circuit, a modular switching is performed on ciphertexts to reduce the noise
growth. As proposed by Doröz et al. in [14], assume qi+1/qi ≈ κ, ∀i ∈ Zd. A
decrypted ciphertext entering the i-th level is presented as:

c2
i

f2
i

= (. . . ((c2κ+ ε1)2κ+ ε2)2 . . . κ+ εi)f
2i ,

where ε1, ε2, . . . , εi are parity fixing values in χp. This yields

Bi ≤ ‖c2
i

f2
i

‖∞ = ‖(c2
i−1

f2
i−1

)2κ+ εif
2i‖∞ ≤ κnB2

i−1 + pn2
i

(pB + 1)2
i

.

If we set 1/κ = ε(nB2)+pn(pB+1) where ε > 1 is a small constant, the growth
of the norm is nearly constant over the levels of evaluation.

At last, the multiplication tree yields a ciphertext as output of comparison.
However, so far we only focus on a single batched output ciphertext out of a
total number of λ. Taking the number of batched results λ into consideration,
we have y = y0 = y1 = · · · = yλ−1 and Bd−1 ≥ ‖y‖∞. Given the suggested words
(batched in polynomials) w = w0 = w1 = · · · = wλ−1 ∈ Rp, the final step before

decryption computes r as: r =
∑λ−1
i=0 yiwi = λyw.

For a general multiplication tree with d levels, if qd/2 > ‖rf2
d‖∞ is satisfied,

there will be no wraparound on the ciphertext coefficients during decryption.
Hence the scheme will be correct. To be precise, y = cL and 2d−1 ≤ L < 2d.
qd/2 would only need to be larger than the upper bound of norm ‖rfL‖∞. Let

[L0, L1, . . . , Ld−1] be the bitwise expression of L, such that L =
∑d−1
i=0 Li2

i and
Li ∈ Z2 ∀i ∈ Zd and Ld−1 = 1. Then we have

‖rfL‖∞ = ‖λwcLfL‖∞

≤ λpn
d−1∏
i=0

‖c2
i

f2
i

‖Li
∞ ·

d−2∏
i=0

nLi ≤ λpn
d−1∏
i=0

BLi
i ·

d−2∏
i=0

nLi .

In conclusion, to ensure the correctness of our scheme, the following condition
must be satisfied:

qd/2 > λpn2
d−L+1(pB + 1)2

d−L
d−1∏
i=0

BLi
i ·

d−2∏
i=0

nLi .

Note that this is the analysis of the worst case. The scheme will work with high
probability even with a smaller qd.



Autocomplete without Comparison This construction is derived from the
previous one after we computed comparison results (y). The circuit is as simple

as r =
∑λ−1
i=0 yiwi = λyw. And to decrypt r we compute rf . Note that y is the

index encoded and encrypted by user, hence, y = hs + pe + m where m ∈ Rp.
We can estimate norm of rf in the worst case as:

‖rf‖∞ = ‖λw(hs+ pe+m)‖∞ ≤ λn2p2(pB2 + pB +B2 +B + 1).

In conclusion, to ensure correct decryption, the following condition must stand
in the worst case qd/2 > λn2p2(pB2 + pB +B2 +B + 1).

Average Case Behavior However, a smaller qd results in less computational
burden, of which we would like to take advantage. When viewed as a distribution,
the norm of polynomial multiplication ‖uv‖∞ grows much more slowly. And the
probability of the norm reaching the worst case is exponentially small. Doröz
et al. explained in [14] that ‖uv‖∞ ≤

√
n · ‖u‖∞ · ‖v‖∞ is a sufficiently good

approximation of the expected norm. We obtain new formulas by substituting
n with

√
n. The construction with comparison decrypts correctly if (set 1/κ =√

nB2 + p
√
n(pB + 1) to stabilize the norm growth):

qd/2 > λp
√
n

d−1∏
i=0

BLi
i ·

d−2∏
i=0

√
n
Li

Bi ≤ κ
√
nB2

i−1 + p
√
n
2i

(pB + 1)2
i

B0 ≤
√
n[(B2 + 2B)p2 + (B2 + 2B + 2)p+ 1].

The construction decrypts correctly if qd/2 > λnp2(pB2 + pB +B2 +B + 1).

5 Parameter Selection

We provide the selected parameters for polynomial dimension and coefficient
size in Table 2. In the parameter selection process, we use the noise analysis
in Section 4 to determine the coefficient size log(q) and the cutting size 1/κ
for different levels of circuit evaluations. In evaluation of the polynomial sizes
we based our selection of parameter on the work by Lepoint and Naehrig [28].
Their work is a revisit of a previous work by van de Pol and Smart [31] which
demonstrates that larger lattice dimensions can achieve the same security level
with different Hermite factors. Basically, their claim is that the assumption of
choosing a secure Hermite factor δB for all dimensional lattices with basis B
is not true. In the parameter selection process, the Hermite factor should be
chosen according to the hardness of lattice basis reduction in higher dimensions.
Specifically, the Hermite factor value gets higher for higher lattice basis in order
to achieve same security level. In our work, we used the Hermite factor value
evaluated by Lepoint and Naehrig which is a larger value then the one used in
the earlier works, i.e. δ = 1.0064.



As explained in Doröz et al. [14], the LTV scheme has a lattice dimension
of 2n for a polynomial degree n. For polynomial degree n being equal to 8190,
16384 and 21504, the lattice dimensions are roughly 15000, 30000 and 40000 and
the Hermite factors δB are equal to 1.00826, 1.00846 and 1.00851 respectively
for 80-bit security. In our case we have the Hermite factors as 1.0037, 1.0061 and
1.0083 for degrees 8190, 16384 and 21504 respectively. The evaluated Hermite
factors gives us more than 80-bit of security in all the cases.

(p, n)
With Comparison Without Comparison

(L, E, λ)
(log qd, log 1/κ)

(E, λ)
log qd

Worst Average Worst Average

(2, 8190) (8, 52, 1) (137, 16) (76, 10) (26, 1) 32 19
(2, 8190) (16, 784, 2) (256, 16) (142, 10) (676, 2) 33 20
(2, 16384) (24, 5473, 6) (948, 17) (531, 10) (17576, 28) 37 24

(257, 21504) (8, 52, 1) (211, 31) (146, 24) (26, 1) 55 41
(257, 21504) (16, 784, 1) (390, 31) (268, 24) (676, 1) 55 41
(257, 21504) (24, 5473, 1) (1341, 31) (912, 24) (17576, 2) 56 42

Table 2. Coefficient modulus size log qd to ensure correct decryption (based on cutting
size log 1/κ), in worst and average cases, for both constructions with different message
spaces.

6 Implementation

CPU Implementation. We implemented both of the proposed algorithms in
C++ using DHS-SHE Library [14]. All simulations were performed on an Intel
Xeon @ 2.9 GHz server running Ubuntu Linux 13.10. We compiled our code
using Shoup’s NTL library version 9.4.0 and with GMP version 5.1.3.
GPU Implementation. We introduced some optimization to achieve an effi-
cient implementation on CUDA GPUs. We basically adopt the cuHE library [11]
to build the SHE scheme and both autocomplete algorithms, yet make modifi-
cations to accommodate our parameter settings.

– Pre-computation. The cuHE library [11] handles polynomial multiplica-
tions in NTT domain. The overhead of NTT conversions on those plaintexts
can be spared if they are performed during pre-computation. We then store
those data in either CPU or GPU memory. There is no difference in terms of
performance, since the memory transfer between CPU and GPU can be fully
hidden behind computation tasks, as we monitored. Hence, the requirement
on GPU memory size is minimized.

– Modulus Switching. In [11] the authors generated a series of prime num-
bers to make use of the double-CRT method proposed in [21]. We modified
the double-CRT method and CRT prime number generation in the library
to work with a homormophic encryption scheme with message space larger
than 2.



We use an NVIDIA GeForce GTX 690 Graphic Card for development and test.
The card comes with two GTX 680 GPUs. Therefore, we have the implementa-
tion designed to test either on a single GPU or on both GPUs. The specification
of the graphic card is listed in 3.

Table 3. Testing Environment

Item Specification Item Specification

CPU Intel Core i7-3770K GPU NVIDIA GeForce GTX690
# of Cores 4 # of CUDA Cores 1536 × 2
# of Threads 8 GPU Core Frequency 1020 MHz
CPU Frequency 3.50 GHz GPU Memory 2 GB × 2
Cache 8 MB NTL Library v 9.2.0
System Memory 32 GB DDR3 GMP Library v 6.0.0a

6.1 Timing Results

We offer two encryption modes for 1-bit (p = 2) or 8-bit (p = 257) message sizes.
Theoretically, encryption mode with p = 257 would save 7/8 memory required
for the database, reduce the number operations by 8 times and consume only 1/8
bandwidth, compared to those of encryption mode with p = 2. The increase of p
leads to a larger coefficient size and a higher polynomial degree, the consequence
of which is a significant drop of performance. Fortunately the polynomial degree
21504 we selected creates more message slots S for batching. Remember the
number of batched polynomials λ matters in terms of computational complexity.
When the number of entries E is fairly small, λ = dE/Se is 1 in both encryption
modes. However, when E is large, a larger S yields a smaller λ, which reduce
the number of computations greatly. Therefore, setting p = 257 only improves
performance when the number of entries is sufficiently large.

The timing results in Table 4 are measured with respect to parameters se-
lected for each case in Table 2. For autocomplete without comparison, we mon-
itored that 85% of overhead is caused by launching CUDA kernels. Hence, due
to the inefficiency of cuHE for this case, we recorded exactly the same timing
results for (p = 257, n = 21504) cases.
7 Conclusion

In this work, to the best of our knowledge for the first time we designed and
implemented a privatized autocomplete scheme. We develop two variants of the
autocomplete scheme and develop techniques to efficiently evaluate the homo-
morphic autocomplete schemes, i.e. autocomplete with comparison, and auto-
complete without comparison. To this end, we analyzed noise growth in the both
approaches and developed simple formula for each approach to evaluate the au-
tocomplete circuit to support any database size with the required parameter
sizes to provide an adequate level of security. Furthermore, in order to study



Table 4. Performance of Auto Completion with At Most 20 Suggested Characters

(p, n) #letters
With Comparison Without Comparison

CPU 1 GPU 2 GPUs CPU 1 GPU 2 GPUs

(2, 8190) 1 45 sec 267 ms 176 ms 20 sec 299 ms 168 ms
(2, 8190) 2 1.1 min 843 ms 466 ms 35 sec 304 ms 175 ms
(2, 8190) 3 1.8 min 5.42 sec 2.95 sec 58 sec 484 ms 299 ms

(257, 21504) 1 1.45 min 1.71 sec 1.00 sec 40 sec 130 ms 80 ms
(257, 21504) 2 2.2 min 2.73 sec 1.98 sec 58 sec 130 ms 80 ms
(257, 21504) 3 3.4min 8.39 sec 5.26 sec 1.3 min 130 ms 80 ms

the performance (hence the practical relevance) of our schemes, we implemented
both approaches on both CPU and GPU platforms. With the GPU implementa-
tion, for certain database sizes, we achieve a performance of less than a second
which is close to what is desired in real-time interactive applications.
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Appendix

7.1 The LTV Scheme

In 2012 López-Alt, Tromer and Vaikuntanathan proposed a multi-key FHE
scheme, LTV [29]. It is based on a variant of NTRU encryption proposed by
Stehlé and Steinfeld [36]. The introduced scheme uses relinearization and modu-
lus switching techniques on top of NTRU for noise control and in order to make
the scheme somewhat homomorphic and leveled fully homomorphic, respectively.
The operations are performed in Rq = Zq[x]/〈xn + 1〉 where n is the polyno-
mial degree and q is the prime modulus depending on a security parameter κ.
The scheme also defines an error distribution χ, which is a truncated discrete
Gaussian distribution, for sampling random polynomials that are B-bounded.
These parameters n, q and χ are public. The term B-bounded means that the
coefficients of the polynomial are selected in range [−B,B] with χ distribution.

– KeyGen. A sequence of primes q0 > q1 > · · · > qd is to use a different
qi in each level. A public and secret key pair is computed for each level:
h(i) = 2g(i)(f (i))−1 and f (i) = 2u(i) + 1, where {g(i), u(i)} ∈ χ.

– Encrypt/Decrypt. To encrypt a bit b for the ith level we compute: c(i) =
h(i)s + 2e + b, where {s, e} ∈ χ. In order to compute the decryption of a
ciphertext c(i) for a particular level i we compute: m = c(i)f (i) mod 2.

– Eval. The gate level logic operations XOR and AND are done by comput-

ing the addition and multiplication of the ciphertexts. In case of c
(i)
1 =

Encrypt(b1) and c
(i)
2 = Encrypt(b2); XOR is equal to Decrypt

(
c
(i)
1 + c

(i)
2

)
=

b1 + b2 and, AND is equal to Decrypt
(
c
(i)
1 · c

(i)
2

)
= (b1 · b2).

– Modulus Switch. The multiplication creates a significant noise in the ci-
phertext and to cope with that a technique called modulus switching was
introduced. From the ith level ciphertext c(i), we compute the new level ci-
phertext c(i+1) with the reduced noise performing c(i+1)(x) = b qi

qi−1
c(i)(x)e2.



This operation decreases the noise by log (qi/qi−1) bits by dividing and multi-
plying the new ciphertext with the previous and current moduli, respectively.
The operation b·e2 refers to rounding and matching the parity bits.

H[i][j] U[j] (H[i][j] + U[j]− 1)

0 0 −1
0 1 0
1 0 0
1 1 1

Table 5. Truth table for bitwise comparison for arbitrary i, j,


