
Obliv-C: A Language for Extensible Data-Oblivious Computation

Samee Zahur
samee@virginia.edu

University of Virginia

David Evans
evans@virginia.edu

University of Virginia

Abstract

Many techniques for secure or private execution de-
pend on executing programs in a data-oblivious way,
where the same instructions execute independent of
the private inputs which are kept in encrypted form
throughout the computation. Designers of such com-
putations today must either put substantial effort into
constructing a circuit representation of their algorithm,
or use a high-level language and lose the opportunity
to make important optimizations or experiment with
protocol variations. We show how extensibility can be
improved by judiciously exposing the nature of data-
oblivious computation. We introduce a new language
that allows application developers to program secure
computations without being experts in cryptography,
while enabling programmers to create abstractions
such as oblivious RAM and width-limited integers,
or even new protocols without needing to modify the
compiler. This paper explains the key language features
that safely enable such extensibility and describes the
simple implementation approach we use to ensure
security properties are preserved.

1. Introduction

A protocol for secure computation allows two or
more parties to collaboratively perform some computa-
tion without revealing their own inputs. There are many
generic protocols for secure computation, which can
perform arbitrary computation on encrypted data [8,
18, 24, 34]. The way these generic protocols work
is that the entire computation is first converted into
a data-oblivious representation, where the control flow
of the program does not depend on the secret program
inputs in any way. Such a program can be executed on
encrypted data without leaking any information about
intermediate results, since the control flow is the same
for all executions and does not depend on the data.

A common data-oblivious program representation is
a Boolean logic circuit: every logic gate (e.g., AND,
OR) is specified before the secret inputs are even
known. Another popular representation uses addition
or multiplication gates that operate directly on finite
field elements (instead of just Boolean values). Given
a circuit that describes the desired computation, the
protocol specifies how to execute the circuit without
revealing any inputs or intermediate results.

While many previous languages and frameworks
for secure computation have been developed (see
Section 7), none are sufficiently expressive to allow
programmers to implement even simple library ab-
stractions. The reason is that these languages have
been designed to provide traditional programming ab-
stractions that hide the data-oblivious nature of se-
cure computation from the programmer. Our approach
provides high-level programming abstractions while
exposing the essential data-oblivious nature of such
computations.

Motivating Example. Consider this simple C example
of a dynamically resized array:

DynVec ∗vec = dynVecNew();
for (i = 0; i < n; i++) {

if (cond) {
dynVecAppend(vec,x);

}
...

Implementing a library like this for standard compu-
tation is trivial. The DynVec object just needs to keep
track of the current size of the vector, and resize an
internal buffer when more space is needed to complete
an operation.

Writing something similar for a data-oblivious com-
putation, requires the compiler to implement an append
under an unknown condition: the internal memory
buffer must be resized regardless of the now unknown
semantic value of cond, whereas the value of x should
be appended into that buffer (which is now encrypted)



using a conditional write that depends on the value of
cond specified outside of the function.

This problem is exacerbated for more complex li-
brary abstractions. For example, an ORAM structure
that allows random access to a memory bank without
revealing anything about the access pattern. On every
read or write operation it needs to do things like
network transfers, pseudo-random shuffling, and cryp-
tographic operations. Defining a simple oramWrite()
function is problematic if we want to allow it to be
called from inside a conditional block: the function
needs to specify a whole series of operations, some
of which need to be done conditionally while others
are done unconditionally. Indeed, it is not clear how
a traditional programming language could even be
adapted to express the situations that commonly arise
in data-oblivious computation.

Contributions. We show how a language can be
designed to support extensible secure programming
introducing control structures that expose the data-
oblivious nature of secure computation. To make it
easier for programmers to develop and reason about
data-oblivious programs, we provide a type system that
incorporates oblivious data.

Our Obliv-C language is a strict extension of C
that supports all C features (including struct, typedef,
pointers, recursive calls, and indirect function calls),
along with new data types and control structures to
support data-oblivious programs. Section 2 introduces
our language and describes how its language constructs
and type system support data-oblivious computation.

We describe the architecture of our Obliv-C com-
piler in Section 6, showing that our language can
be implemented on top of a traditional language and
in a way that provides high confidence that security
properties of the underlying protocol are preserved.

Obliv-C is designed to enable practitioners to more
easily develop scalable secure protocols, and to allow
researchers to easily implement and test new features
or techniques by simply writing a new libraries rather
than having to modify or build a new compiler. To
demonstrate how our approach supports exploration
at many levels, Section 4 shows how Obliv-C could
be used to easily implement various library-based
features including range-tracked integers, ORAM, and
multi-threading that could not be done with existing
languages, and Section 5 shows how Obliv-C supports
experimentation with protocols.

2. Obliv-C

Obliv-C is a strict extension of C that provides data-
oblivious programming constructs. Next, we provide

an overview of the design and philosophy behind the
language. Section 2.2 presents a concrete example of
an Obliv-C program. We provide details on the type
system in Section 3. Our implementation compiles
an Oliv-C program into standard C, as described in
Section 6.

2.1. Overview

Obliv-C is designed to guarantee that all security
properties provided by the underlying protocol are
maintained, while exposing aspects of data-oblivious
computation to the programmer. Our design emphases
safety, guaranteeing that no information can be leaked
by program executions (assuming the underlying pro-
tocol is secure) while giving programmers enough
control (including the ability to circumvent type rules)
to do things that would not be possible with other high-
level languages.

The main construct we introduce is an oblivious con-
ditional. For example, consider the following statement
where x and y are secret data:

obliv if (x > y) x = y;

Since the truth value of the x > y condition will not be
known even at runtime, this code cannot be executed
normally. Instead, every assignment inside the if state-
ment will have to use “multiplexer” circuits in much
the same way Boolean logic circuits use multiplexers
to choose between two different values. We could
translate this code into something like:

cond = (x > y); // 0 or 1
x = x + cond ∗ (y − x);

This removes any explicit control flow dependency on
unknown values by using conditional assignments.

Obliv-C extends C in the following ways:
• Every basic data type (e.g., int, char, etc.)

has an obliv-qualified counterpart (e.g., obliv int,
obliv char, etc.) which is represented using an
encrypted value.

• Every if statement with a condition that depends
on obliv-qualified data is explicitly indicated as
obliv if. An obliv if statement executes in a way
that prevents control dependencies from leaking
the condition value.

• Type rules related to obliv if are enforced across
function boundaries at compile time by using
two different function families: ones that can be
invoked from inside obliv if, and ones that cannot.

• Special unconditional segments allow library writ-
ers to perform actions unconditionally, which
allow them to write various library abstractions.

2



These segments escape the type system, but do not
risk any information leak, just the possibility that
a program does not mean what the programmer
intended.

Next, we walk through a simple example illustrating
the general structure of Obliv-C programs and how the
programmer uses it.

2.2. Millionaires’ Problem

Figure 1 shows an Obliv-C implementation of Yao’s
classic millionaires’ problem [34]. It simply outputs
which of two integers is greater (purportedly, to enable
two millionaires to decide who should pay for dinner
without disclosing their actual wealth).

When the program executes, both parties (in this
protocol, although our design can support any number
of parties) execute the same program. By convention,
we will call them Alice (Party 1) and Bob (Party 2).
The a, b, and res variables are declared using the obliv
keyword to indicate that their values may depend on
secret inputs.

The program obtains secret inputs using:

obliv int feedOblivInt (int value, int p)

This function is executed synchronously by both par-
ties to introduce the input into obliv int variables of
the shared computation. It converts a value from one of
the parties (party p) into a new cryptographic obliv int
value that can no longer be deciphered by either party
on its own. The value provided by the other party is
simply ignored. Since both parties have their own copy
of each variable each party can use the myinput field
to hold their own inputs. Thus, in Figure 1, the first
invocation of feedOblivInt() only reads Party 1’s copy
of myinput into the shared variable a, while the second
one reads only from Party 2. These variables can still
be manipulated using ordinary C operators, and even
mixed with ordinary ints in expressions, but the results
are all obliv-qualified and only accessible as encrypted
values.

The only way any values derived from secret data
can be converted back to a semantic value is by using
a reveal function, such as:

void revealOblivInt(int ∗dest, obliv int src, int p)

When this function is invoked by both parties on the
same variable src, the value is decrypted and stored
into the integer pointed to by dest. If p == 0, all parties
receive the result; otherwise p specifies a single party
who receives it. This ensures that only the values that
both parties agree to reveal are actually revealed by
the execution. The underlying protocol ensures that a

reveal function only succeeds if both parties provide
consistent parameters to the function (e.g., it will fail
if they provide different values for src or p).

To run the program, both the files in Figure 1 are
compiled with the oblivcc command provided by our
tool. It is a simple wrapper that provides a familiar
command-line interface. It preprocesses any input file
with an “.oc” extension to a plain C file before passing
it on to gcc and links with additional runtime libraries
required for Obliv-C code. Once compiled, the two
parties simply execute the program with appropriate
inputs like any other program: the end user does not
need to know about Obliv-C or even need to install it
separately.

typedef struct {
int myinput;
bool result;

} ProtocolIO;

void millionaire (void ∗args);
(a) File “million.h”

#include <million.h>
#include <obliv.oh>

void millionaire (void ∗args) {
ProtocolIO ∗io = args;
obliv int a, b;
obliv bool res = false;
a = feedOblivInt (io−>myinput, 1);
b = feedOblivInt (io−>myinput, 2);
obliv if (a < b) res = true;
revealOblivBool (&io−>result, res, 0);

}
(b) File “million.oc”

#include <million.h>

int main (int argc, char ∗argv[]) {
ProtocolDesc pd;
ProtocolIO io;
int p = (argv[1] == ’1’ ? 1 : 2);
sscanf(argv[2], "%d", &io.myinput);
// ... set up TCP connections

setCurrentParty (&pd, p);
execYaoProtocol (&pd, millionaire, &io);
printf ("Result: %d\n", result);
// ... cleanup

}
(c) File “million.c”

Figure 1: Code for the Millionaires’ Problem.
Figure (a) shows the header file that defines the datatype, (b)
describes the secure computation in a protocol-neutral manner in
Obliv-C and (c) shows code in plain C that invokes the former with
a specific protocol with appropriate inputs, outputs and options.

3



3. Type System

The Obliv-C type system builds from a traditional
information-flow based type system [31] with two
levels of security. Variables declared using obliv are
considered sensitive, and the type system ensures that
information from these variables never flows into the
non-sensitive ones through either explicit data depen-
dencies or implicit control dependencies.

We add several rules beyond standard information-
flow to support data-oblivious computation. First, we
want programmers to be able to easily estimate the
relative computation cost of their code, and to help
programmers avoid writing unscalable code. This is
why, for instance, we do not allow pointers with obliv
addresses, or loops directly using obliv conditions.
Obliv-C provides other means for accomplishing the
same goals which make the costs more explicit and
controllable.

Second, we account for the fact that control flow
is not actually sensitive in our system. Any apparent
control dependency indicated by our obliv if struc-
tures is not really a control dependency since it is
implemented by converting it into a data dependency.
Statements inside an obliv if become conditionally-
executed statements that will be executed regardless of
whether the controlling condition is true or false, which
which have no semantic effect when the condition is
false. Control flow is always public information in our
system. This is what ultimately allows us to define
features such as unconditional segments, which are
very useful in writing libraries.

The purpose of our type rules is different from the
normal purpose of information-flow type systems. The
security of the obliv values is enforced at runtime by
cryptographic means: even inspecting memory dumps
or network logs should not provide any useful in-
formation. Hence, our type system is not used for
preventing information leaks, it only exists to help
the programmers avoid mistakes by providing compile
time errors for code that would cause runtime errors or
meaningless results. For example, this is legal Obliv-C
code:

obliv int x; ...; int y = ∗((int ∗) &x);

Although our compiler will allow casts like this, the
resulting code will not leak any information. At run-
time, y will just contain gibberish bits of ciphertext.
Obviously we do not recommend writing code like this,
but it will not leak any information about x. The only
way to reveal values is through the proper use of reveal
family of functions on mutually agreed upon values.

In true C fashion, we allow programmers to shoot

themselves in the foot, but provide a type system to
help programmers avoid doing this accidentally.

3.1. Oblivious Data

The first four type rules explain how oblivious data
is declared and used in programs.

Rule 1: Only basic C types (such as obliv int,
obliv char, etc.) can be obliv-qualified. An obliv-
qualified type represents a variable whose value may
be unknown at runtime.
This excludes types such as structures, and pointers,
although we do support structures with obliv fields or
pointers to obliv variables. (Functions may be quali-
fied with obliv, although it has a somewhat different
purpose that we will discuss in Section 3.3.)

The following two rules provide a flow-sensitive
type system that prevents sensitive data flowing into
non-obliv variables:

Rule 2: Any expression that combines obliv values
and non-obliv values results in an obliv value.

Rule 3: Non-obliv variables cannot be assigned to
obliv values. Non-obliv values can be implicitly con-
verted to obliv values and assigned to obliv variables.
The next rule limits where obliv values can be used,
primarily to encourage programmers to avoid surpris-
ingly expensive operations:

Rule 4: An obliv value may not be used as an array
index, offset in pointer arithmetic, or as a shift amount
in a bitwise shift expression. All other operators can
freely mix both types of operands.
Note that we do allow ints to index into arrays of
obliv ints, but not vice versa. Although we could have
avoided Rule 4 and added support for oblivious array
indexes using circuits such as full multiplexers, but
they are notoriously slow in practice. Instead, we want
to encourage developers to explicitly weigh the trade-
offs between various other mechanisms of indirect
access, such as those using circuit structures [35] or
oblivious RAM (Section 4.2), all of which can be
implemented as library modules in Obliv-C. Similarly,
it is a deliberate decision to not support pointers whose
addresses can be unknown at runtime. Such pointers
would make it very easy to write inefficient programs
that would need to multiplex over the entire heap at
every pointer dereference.

3.2. Conditional Constructs

Rule 5 ensures that control flow never depends
on obliv values, except as used in the new obliv if
construct:

4



Rule 5: A condition expression of a traditional
control structure (e.g. while, for, switch, etc.) may not
be obliv. An if statement using obliv values must be
explicitly marked as obliv if.
The obliv if statement has the following syntax:

obliv if (cond) { ... } [else { ... }]

Marking obliv if explicitly helps the programmer (and
code readers), since it has implications both in the
type system and in the runtime. Since the condition
may not be known at runtime, both the consequent and
alternative branches will be executed (possibly using
conditional instructions) no matter what the condition
actually was. As a result, execution always incurs the
runtime overhead of both branches.

An obliv if statement introduces an obliv context,
where certain operations are restricted. Non-obliv vari-
ables declared outside an obliv context cannot be mod-
ified inside it. Locally declared non-obliv variables,
however, can be modified since they are not visible
outside the obliv context. This allows us to run loops
inside obliv if constructs:

obliv if (cond) {
for (int i = 0; i < n; ++i) {

// ...
}

}

Without this exception for locally declared variables,
we would not be able to modify i for the loop counter.
But here, this is not a problem since i will go out
of scope once we exit the conditional branch. Thus,
this exception for locally declared variables does not
violate the requirements for data obliviousness.

As we explain in Section 3.3, this also allows us to
safely invoke functions from inside an obliv if even
if they modify some non-obliv variables. Our rules
for preventing such control dependencies are slightly
complex since we want them to work across function
boundaries, without actually inlining functions.

The restriction on oblivious values in conditional
expressions for other control structures appears dra-
conian, but is consistent with our goals to provide
programmers with a clear view of the costs of different
programming constructs. The amount of computational
resources used by a program, such as CPU time or
memory usage, would leak information about the loop
condition if the number of executions varies. Hence,
loop conditions in secure programs must not depend on
secret values. Instead, a data-oblivious program needs
to impose a predetermined conservative upper limit to
the number of iterations, and iterate that many times
regardless of the condition. Within the loop body, we
can use an obliv if statement to limit the effective

number of iterations. For example, if n is an obliv
variable, the loop:

for (i = 0; i < n; i++) { ... }

could be rewritten as:

for (i = 0; i < MAX_BOUND; i++) {
obliv if (i < n) { ... }

}

In practice, the restriction on oblivious values in loop
conditions is necessary, because whatever a loop con-
dition is, the parties executing it will have to somehow
know when to terminate the loop. Which means, it can
always be written in a way such that the condition is
a non-obliv value.

3.3. Functions

Not all functions can be allowed inside obliv if,
since they may modify non-obliv global variables. To
handle this, we introduce a second family of functions
called obliv functions. These functions can be invoked
from anywhere, but may not modify global non-obliv
variables or invoke other non-obliv functions.

Here is an example of an obliv function:

void writeArray (obliv int∗ arr, int size,
obliv int index, obliv int value) obliv {

for (int i = 0; i < size; ++i) {
obliv if (i == index) {

arr[i] = value;
}

}
}

The obliv suffix after the parameters denotes that
writeArray is an can be called from inside a condi-
tional context. The compiler checks the body of an
obliv function indeed adheres to the restrictions on
modifying global state.

As for writing to arrays at an obliv index, note that
we cannot do much better than this in general. The
standard practice is to create a linear-sized multiplexer
circuit to perform the write, which is essentially what
writeArray does. Each assignment inside the obliv if is
a conditional assignment (i.e., a multiplexer between
old and new values), which is controlled by a different
condition for each value of i.

The type rules for obliv functions are:
Rule 6: Non-obliv functions may not be invoked

from inside obliv if or other obliv functions.
Rule 7: Inside obliv functions, all non-obliv global

variables are frozen. Moreover, they may not invoke
other non-obliv functions.

5



3.4. Frozen State

The frozen qualifier allows us to safely pass vari-
ables by reference and store them in structures, as well
as to reason about obliv if contexts more precisely.

A frozen variable is similar to a const-qualified
variable. The frozen qualifier follows the same rules
for type propagation and conversion as const in C.
This includes the fact that a frozen-qualified L-value
cannot be modified, as expected. In addition to the
standard C rules for const, the meaning of frozen is
defined by the following four rules:

Rule 8: All non-obliv variables defined outside an
obliv if become frozen-qualified inside it (as well as
in the body of the associated else clause). Freezing an
already frozen variable has no effect.

Rule 9: Similarly, all non-obliv global variables
defined outside an obliv function become frozen in
the body of the function.

Rule 10: Dereferencing any pointer of type
T ∗ frozen, for any type T , produces an L-value of
type T frozen.

Rule 11: On obliv data, frozen qualifiers are
ignored.
The reason we had to introduce a new qualifier (along
with Rule 10) instead of just reusing const is that we
frequently need to handle situations like this:

struct Value { int ∗p; } v;

obliv if (cond) { // v is frozen inside conditional context
v−>p = 5; // error

}

Here, if we used const instead, f−>p would have been
of type int ∗ const, which freezes only the pointer,
not the referenced value. This is not what we want,
since we need all variables reachable through pointers
declared outside the conditional context to be frozen.

3.5. Unconditional Blocks

Obliv-C provides a way to escape the normal type
rules by using an unconditional block:

∼obliv(varname) { ... }

This is only meaningful inside an obliv if or an
obliv function, where code is running in a conditional
context controlled by some oblivious condition. That
condition is assigned to a new obliv bool variable
named varname.

Code within an unconditional block may modify
frozen variables:

Rule 12: All frozen qualifiers are ignored directly
in the scope of an unconditional segment.

typedef struct {
obliv int∗ arr;
obliv int sz;
int maxsz;

} Resizeable;

void writeArray (Resizeable ∗r, obliv int index,
obliv int val) obliv;

// obliv function, may be called from inside obliv if
void append (Resizable ∗r, obliv int val) obliv {
∼obliv(_c) { // condition unused here

r→arr = reallocateMem (r→arr, r→maxsz + 1);
r→maxsz++;

}
writeArray (r, r→sz, val);
r→sz++;

}

Figure 2: Example use of an unconditional block.

Code inside an unconditional block is executed uncon-
ditionally. Note that this does not risk any information
leak, however, since the code in the unconditional
block always executes, regardless of the value of the
oblivious condition that would normally control its
execution.

An example of its use is shown in Figure 2, which
shows part of the implementation of a simple resizable
array. It is implemented as a struct as shown at the top
of the figure. While the current length of the array is
unknown (since we might append() while inside an
obliv if), we can still use an unconditional block to
track a conservative upper bound of the length. We
use this variable to allocate memory space for an extra
element when it might be needed.

4. Extensible Data-Oblivious Program-
ming

This section presents several examples of how the
Obliv-C system supports extensible programming for
data-oblivious computation. They highlight how hav-
ing access to the full C language and libraries allows
an Obliv-C programmer to add features to Obliv-C that
would not possible in any other framework.

The first two show ways data structures can be
implemented in Obliv-C that enable performance im-
provements that could not be done without explosing
data-oblivious computation to the programmer: range-
tracked integers and oblivious RAM. The next shows
how programmers can incorporate special techniques
into Obliv-C programs, in this case taking advantage of
secret random numbers. Finally, we show how POSIX

6



for (i = 1; i <= n1; ++i) {
for (j = 1; j <= n2; ++j) {

obliv int temp = omin(dp[i][j−1], dp[i−1][j]);
obliv int d = 1;

obliv if (temp >= dp[i−1][j−1]) {
temp = dp[i−1][j−1];
d = (s1[i−1] != s2[j−1]);

}
dp[i][j] = temp + d;

}
}

for (i = 1; i <= n1; ++i) {
for(j = 1; j <= n2; ++j) {

Accum temp = acMin (dp[i][j−1], dp[i−1][j]);
obliv bool d = true;

obliv if (acLessEq(dp[i−1][j−1], temp)) {
acCopy(&temp, &dp[i−1][j−1]);

d = (s1[i−1] != s2[j−1]);
}
dp[i][j] = acAdd(temp, acFromBoundedOInt (0, 1, d));

}
}

Figure 3: Computing edit distance with ordinary integers, vs. range-tracked integers

threads can be integrated into Obliv-C to produce
protocols with multithreading support, demonstrating
some of the advantages of seamless integration with
standard C.

4.1. Range-Tracked Integers

Programs often do not need full 32-bit wide integers
for all their variables, so it is possible to make arith-
metic operations cheaper by using integers of limited
bit-width. This can achieve significant speedups for
applications that use lots of small integers, for example
when counting or accumulating values. Here, we show
how to write a library to support range-tracked integers
that automatically maintain a conservative upper bound
for a value, and resize their bit-widths accordingly.

Figure 3 shows an example of how it may be used.
The example we use is that of computing edit distance
between two strings. If the strings are of length n, we
know that the results can never exceed n, and can then
use appropriate widths for each integer. As shown in
Table 1, range-tracking integers can lead to significant
performance improvements.

To implement this abstraction, we define the type
accum as a struct with fields for maintaining the actual
value (which is oblivious, so not semantically known)
and the conservatively-estimated maximum value:

typedef struct {
obliv unsigned value;
unsigned maxValue;

} accum;

Note that maxValue is not obliv-qualified — it is
a publicly known upper bound that depends on the
program the two parties are executing, not on their
private values. It must be public so both parties may
calculate the width of the circuits needed for each

operation.1

Here is an example how a function operating on a
range-tracked accumulator could be used:

accum x = ...;
obliv if (y > 0) { accumAddInt(&x, 1); ... }

Since we expect accumAddInt to be used inside obliv
scopes, we need to make this function an obliv
function. Moreover, we will not know, even at run-
time, if the condition y > 0 was actually satisfied. To
hide the condition, the protocol will require executing
accumAddInt() regardless of the condition.

While the implementation can conditionally modify
the oblivious value, x.value, the value of x.maxValue
must be conservatively adjusted regardless of the (un-
known) condition. In other words, it is publicly known
that the value might have increased, and so the upper
bound has to increase accordingly.

Here is the implementation of accumAddInt:

void accumAddInt (accum ∗dest, int x) obliv
{
∼obliv(en) { dest→maxValue += x; }
int mask = (1<<width(dest→maxValue)) − 1;
dest→value = (dest→value + x) & mask;

}

We use an unconditional segment to unconditionally
modify the upper bound. When the actual addition is
performed, we mask out the higher-order bits beyond
the current maximum size to zero. This clears out any
ciphertext produced for the higher order bits by the
carry-out bits of addition, and allows simple bit-level
constant propagation to emit fewer gates during the
later arithmetic operations. Functions for min, max,
addition, and copying are implemented similarly.

At this point the reader might wonder why we are
implementing something so simple in a library rather

1. In our implementation we also have a similar field for tracking
the lower bound, but we omit that here to simplify our discussion
and assume that the lower bound is always zero.

7



than having it as built-in optimizations. Indeed, while
we might add such optimizations to the compiler in the
future, this example demonstrates that the programmer
can go ahead and implement such optimizations as
a high-level library without needing to modify the
compiler. Further, even if range-tracking integers were
provided by the compiler, there will always be special
cases where the compiler will not be able to detect
opportunities for optimization that are apparent to a
programmer with understanding of deeper properties
of the application. Compiler optimizations are not
powerful enough to substitute for enhanced language
expressiveness and control.

4.2. Oblivious RAM

While the previous section demonstrated an abstrac-
tion that works with any bit-level protocol for secure
computation, this section presents a more complex,
but protocol-specific abstraction. A programmer who
is willing to write an application in a way that is not
protocol-agnostic can use Obliv-C to take advantage
of specific functionalities available in the protocol of
his choice without needing to modify the compiler.

Specifically, we show how a library can add ORAM
functionalities to Yao’s garbled circuits designed for
semi-honest adversaries. Implementations of such hy-
brid ORAM-based protocols were first described by
Gordon et al. [9].

The purpose of ORAM is to avoid the linear-time
cost associated with naïve array lookups when the
index depends on unknown data, and is therefore obliv-
qualified. There are many constructions of ORAM [29,
30], and Gordon et al. [9] describe how it can be
integrated into secure computation, so we will not go
into details here. The way it works is that a single
access to one location gets converted into multiple
accesses at pseudo-random locations. These pseudo-
random locations are then revealed to one (or both)
parties, so that the corresponding data blocks can be
read from some encrypted store and fed into the secure
protocol. Once inside the garbled circuit, the data gets

decrypted, used, possibly shuffled, re-encrypted, and
then written back. The encryption is randomized, so the
same plaintext may have many different ciphertexts.
The decrypted information never leaves the garbled
circuit protocol, and the logical locations are always
hidden. As a result, neither party is aware of which
location is being accessed and when.

Library interface. We implemented the Path ORAM
[30] protocol and a “naïve ORAM” that uses the linear-
sized circuit. Very recently, SCORAM [32] was devel-
oped specifically to be efficient in secure computation.
While we have not yet implemented that, they do
not have any fundamental difference and should be
implementable in Obliv-C just as easily. We need to be
able to support read/write operations while in an obliv
context, or else it will not be a drop-in replacement
for the naïve array operations. So our API defines the
read/write functions with the following types:

void oramRead (obliv bool∗ dest,
Oram∗ oram, obliv int ind) obliv;

void oramWrite (Oram∗ oram, obliv int ind,
const obliv bool∗ src) obliv;

Reads and writes always happen through blocks of
pre-specified sizes, which also determines the size of
obliv bool arrays dest and src. The obliv keyword
at the end of the prototype indicates that they may
be invoked inside obliv if blocks (either directly or
through other functions). The way we have architected
this library is that both kinds of ORAM implement
the exact same interface, so we can perform reads and
writes using the same functions. As far as user code is
concerned, the only difference is in their initialization:

Oram∗ naiveOramNew(int eltsize, int eltcount) obliv;
Oram∗ pathOramNew(int eltsize, int eltcount) obliv;

Both return the same type, so there is no need
to change any other code to switch between ORAM
implementations. The way we implemented this takes
advantage of indirect function calls:

struct Oram {
int eltSize, eltCount;

100 x 100 characters 200 x 200 characters
Normal int Range-tracked Improvement Normal int Range-tracked Improvement

Total time 7.28 s 4.28 s 41.2% 23.19 s 12.04 s 48.08%
OT time 1.95 s 1.88 s — 1.98 s 1.94 s —
Gate execution time 5.33 s 2.40 s 55.0% 21.21 s 10.10 s 52.4%
Number of gates 1,669,010 668,429 60.0% 6,678,412 2,835,763 57.5%

Table 1: Improvements obtained from integer range-tracking in edit distance calculation

8



void (∗read)(obliv bool ∗,Oram ∗, obliv int) obliv;
void (∗write)(Oram ∗, obliv int, const obliv bool ∗) obliv;
void (∗cleanup)(Oram ∗) obliv;
void ∗extra;

};

Each type of ORAM sets these runtime hooks during
initialization, keeping any construction-specific data
in a structure pointed to by extra. Notice how the
pointer types reflect the fact that they point to obliv-
functions. This way, the compiler knows that calling
them requires passing a hidden condition variable, and
that it can be safely invoked from a conditional scope.

Naïve ORAM. While the implementation of a naïve
ORAM is straightforward and inefficient, we use this
opportunity to demonstrate how Obliv-C makes it
easy to write a first prototype, while at the same
time provides enough flexibility for the programmer
to optimize heavily used functions.

Recall that Obliv-C does not allow obliv types to
be directly used for indexing into an array, since the
best way to do so depends on the application. So,
to perform a write, we do the same thing circuit-
based logic does: linearly scan every single element
and update just the specified element. Here is the code
for naiveOramWrite:

void naiveOramWrite(Oram ∗oram, obliv int ind,
const obliv bool ∗src) obliv

{
obliv bool ∗extra = oram−>extra−>storage;

for (int i = 0; i < oram−>eltCount; ++i) {
obliv if (i == ind) {

copyBools(storage + i ∗ oram, src,
oram−>eltSize);

}
}

}

We can improve this a little by using a decoder logic
instead of doing full comparison at every index:

∼obliv(en) {
obliv bool ∗flags = calloc (oram−>eltCount,

sizeof (obliv bool));
decoder (flags, en, ind, oram−>eltCount);
for (int i = 0; i < oram−>eltCount; ++i) {

obliv if (flags[i]) {
copyBools (storage + i ∗ oram, src,

oram−>eltSize);
}

}
free(flags);

}

What the function decoder() does is that it fills flags
with all false values, except possibly a single true value
at position ind. Even that value is set to false if it is
not enabled with the input en set to true. This reduces

the number of gates used in comparison from n∗width
to just n−1.

Finally, even though the index ind may be unknown,
it does not need to be. Often, through simple constant
propagation, the program ends up invoking a write on
a publicly known index at runtime, even though its
compile-time type is obliv int. In such cases, the full
loop is unnecessary, and we can just branch into a
faster path:

if (isKnownInt(&i, index)) {
copyBools(storage + i ∗ oram, src, oram−>eltSize);

} else {
∼obliv(en) {

obliv bool ∗flags = ...

The function isKnownInt() is provided by Obliv-C.
The way it works is that, if the value of the second
parameter is known publicly, isKnownInt() returns true
and copies the known value into the first parameter
as an ordinary integer. But if index is unknown (i.e.,
depends on any secret values), isKnownInt() returns
false, and i is left unchanged.

This provides users with a robust, simple, and high-
level interface for performing writes, while the library
writer can use Obliv-C to still perform low-level circuit
optimizations.

Path ORAM. Path ORAM is an efficient oblivious
RAM design introduced by Stefanov et al. [30]. We
also use the techniques from Dov Gordon et al. [9]
to integrate it with Yao’s protocol. At this point,
it should be clear how the design Obliv-C supports
implementing an ORAM library by allowing functions
to execute in conditional contexts. For example, we
can write programs such as:

obliv if (cond) {
oramWrite(oram,index,value);

}

This executes correctly even though the value of cond
will be unknown at runtime. Internally, the function
performs network transfers, pseudo-random shuffling,
and extra cryptographic operations unconditionally,
while the actual write is performed conditionally.

In implementing Path ORAM, it was particularly
useful to be able to use any existing C library functions
for networking and cryptography, something not pos-
sible in other languages for secure computation. The
best part is, the user of the function is still completely
oblivious to all of this: all the user needs to know is
that it allows random access in polylogarithmic time.
A programmer can use such functions without any
cryptographic background.

Since there is no need to modify the compiler to
change the ORAM design, this system will be useful

9



obliv unsigned ocRandomOblivInt(void)
{

obliv unsigned res = 0;
int p, pc = ocCurrentProto()−>partyCount;
unsigned x;

gcry_randomize(&x, sizeof(x),
GCRY_STRONG_RANDOM);

for (p = 1; p <= pc; ++p) {
res ^= feedOblivInt(x,p);

}
return res;

}

Figure 4: Generating secret random integers.

for researchers experimenting with their own custom
ORAM constructions or other special-purpose sub-
protocols.

4.3. Generating Secret Randomness

Generating randomness is very common operation
in cryptographic protocols. There are well known
examples [3] of how being able to generate secret
random numbers (unknown to any party) can lead
to significantly faster computation. In this section we
describe how we can generate such randomness in
Obliv-C and can be used as an optimization strategy.

Figure 4 shows a possible implementation for gen-
erating random integers. It just XORs random inputs
from all parties, but does not reveal the result.

One example of its usefulness is the computation
of modular inverses modulo a publicly known prime
number, common in cryptography. Ordinarily, com-
puting modular inverses require the extended Euclid’s
algorithm, which involves Θ(n) divisions and multi-
plications do be done securely in a circuit for n-bit
numbers.

A faster approach would use secret randomness
(similar to the techniques by Damgård et al. [3]). To
compute a−1 mod p, we first generate a secret random
number r. We then securely compute ar mod p and
reveal it to everyone. Masking by a secret randomness
prevents any semantic information leak.

The parties can then locally compute x =
(ar)−1 mod p, and use another secure multiplication
obtain rx = r(ar)−1 = a−1. Thus, we obtain the mod-
ular inverse by using just two secure multiplications
and inexpensive local computation. Similar techniques
can also be used to find inverses of matrices and group
elements.

We ran some experiments with 32-bit integers, and
found that this technique reduces runtime for inverse

computation in semi-honest Yao protocols for 100
integers from 24.7 s to just 9.1 s.

This provides another demonstration of how simple
Obliv-C library functions can allow users to easily
write their own primitives that work seamlessly work
with the rest of the language. No existing framework
that provides a high-level language allows program-
mers to invent such primitives and perform optimiza-
tions.

Compatibility. This function would work in any pro-
tocol any protocol that supports input/output in the
middle of a running protocol (e.g., semi-honest Yao as
done here). However, other protocols such as the dual-
execution version of Yao will not support this because
it requires all outputs to be revealed at the very end
(or else it risks leaking one bit of private inputs for
each round of output).

4.4. Multithreading

Despite the prevalence of multicore processors to-
day, no existing secure computation frameworks pro-
vide full multithreading support.2 The reason is simply
that full support requires a fairly extensive library
for managing threads and providing synchronization
primitives. Instead, our Obliv-C design enables users
to take advantage of existing C libraries. Compared
to ordinary computation, however, for threading to
provide useful parallelism, two-party protocols need
coordination between threads of both parties.

We implemented some threading support library to
help us write the dual-execution protocol (Section 5.2),
but we did not implement a full thread-enabled Yao
yet (i.e., we have not yet implemented a user-exposed
thread_create() function that can be launched during a
protocol).

Implementing a protocol using multiple threads re-
quires paying attention to three important properties,
discussed below.

Network Channels. We need to set up separate TCP
connections to avoid interference between data trans-
fers for gates executing in different threads. We imple-
mented a simple newsock=sockSplit(oldsock) function
that creates a new TCP socket between parties that
are already connected by an old socket. In particular,
the server starts listening to a new unused port, sends
the port number to the client using the old socket,
after which the client connects. At this point, we can

2. There are many implementations of multiparty computation
protocols that do use multithreading for executing various protocol
stages [7, 12], but none of these allow application programmers to
take advantage of multiple threads at the application level.

10



void obliv_mutex_lock(pthread_mutex_t∗ m) {
if (ocCurrentParty() != 1) {

recvDummy(1);
} else {

pthread_mutex_lock(m);
for (int i = 2; i <= partyCount; ++i) sendDummy(i);

}
}

Figure 5: Mutex implementation

use POSIX functions to create new threads and have
each thread use a different socket so that they do not
interfere.

Nonces. Any gate-specific nonce value must be care-
fully chosen to avoid duplicates across threads. In
case of Yao’s protocol, this is just the gate-specific
“tweak” value, or serial number used in garbling.
So, for instance, if we have two threads, we should
make sure that one thread is only using even numbers
while the other is using odd numbers, so that they do
not accidentally use the same tweak and compromise
security.

Synchronization. The final point is just a general
concern for all multi-threaded programs, although we
should take care to use synchronization that works in
a distributed fashion. While there are many synchro-
nization primitives that are useful in programs, we just
discuss mutexes as an example of how they can be
wrapped for our protocols. The challenge here is to
make sure that the same thread wins the lock on all
relevant parties (there could be more than two in some
protocols).

Figure 5 shows one way to implement the mutex
locking function. The idea here is that only one party
keeps an actual mutex, while others wait on a network
signal to know that it is safe to proceed. This way,
only the thread that wins the lock for party 1 will
actually proceed. The unlock function simply calls
pthread_mutex_unlock() for party 1, and does nothing
for other parties. Note that this is probably not the
most efficient way to implementat a mutex. If thread
i is running ahead in party 1, it will win even though
other parties are still catching up. It is possible that
in the meantime, some other thread became ready for
all parties, and could have executed. Our proposed im-
plementation does not take this into account, although
it is possible to fix that by using another round of
communication.

void execDebugProtocol (ProtocolDesc ∗pd,
protocol_run start, void ∗arg)

{
pd−>currentParty = ocCurrentPartyDefault;
pd−>feedOblivInputs = dbgProtoFeedOblivInputs;
pd−>revealOblivBits = dbgProtoRevealOblivBits;
pd−>setBitAnd = dbgProtoSetBitAnd;
pd−>setBitOr = dbgProtoSetBitOr;
pd−>setBitXor = dbgProtoSetBitXor;
pd−>setBitNot = dbgProtoSetBitNot;
pd−>flipBit = dbgProtoFlipBit;
pd−>partyCount= 2;
currentProto = pd;
start(arg);

}

Figure 6: Implementation of the debug protocol

5. Implementing Protocols

So far we have focused on using Obliv-C with
Yao’s garbled circuits protocol for semi-honest adver-
saries. However, Obliv-C is designed to enable easy
experimentation with any protocol that operates on
individual bits for most of the computation (although
other types may also be used for specific parts). This
section presents two simple examples to illustrate how
Obliv-C can be used to execute different protocols.
Beyond these examples, there are many other protocols
that could be implemented as functions for use with
Obliv-C. This includes the cut-and-choose based proto-
cols [19, 28], those in the LEGO family [6, 25], as well
as those not using garbled circuits such as NNOB [24],
Sharemind [2], and those based on the SPDZ family [4]
(either as a full protocol restricted to Boolean gates,
or as a sub-protocol for parts with many arithmetic
operations). We have not yet implemented these other
protocols for Obliv-C, but all of them execute in ways
that fit well with our design.

5.1. Debugging Applications

The easiest way to discuss adding new protocols
is to discuss one that performs no cryptography at
all. All it does is that it provides a new func-
tion execDebugProtocol() which replaces the usual
execYaoProtocol(). It simply executes the Obliv-C com-
putation in plaintext. This speeds up the execution
and makes it easier to debug Obliv-C programs. No
further changes in code are necessary. After testing
the program using execDebugProtocol(), we can just
change that one line to execYaoProtocol() (or any other
protocol launcher) to make it a secure computation.

11



void dbgProtoSetBitAnd(ProtocolDesc∗ pd,
OblivBit∗ dest,const OblivBit∗ a,const OblivBit∗ b)

{
dest−>value = (a−>value && b−>value);

}

Figure 7: Debugging protocol callback for an AND
gate.

It is easy to write new execProtocol() functions like
this for launching custom protocols for use with Obliv-
C. Implementing a new protocol is just a matter or
defining functions for various protocol-level runtime
hooks that we provide. These hooks are called do input,
output, and compute a single Boolean logic gate. They
simply call the user-provided Obliv-C callback func-
tion. We have already defined the various operations in
terms of Boolean logic gates, so to implement a new
protocol we just need to provide new implementation
of these operations.

For example, Figure 6 shows the implementation for
execDebugProtocol(). All of the first eight lines are
simply setting callback functions that define various
aspects of the protocol. Figure 7 shows how one of
these callbacks could be implemented (our own imple-
mentation also keeps track of stats such as gate count
etc.). OblivBit is just a C struct that represents a single
obliv bool value. For secure computation protocols,
this function would also perform other initializations
like setting up pseudo-random seeds and executing
base OTs. After all the initializations, the last line
simply invokes the Obliv-C function provided by the
user as a parameter.

We also allow developers switch out TCP/IP with
their own custom transport mechanism. For example,
in our experience, we often did not want to have to
worry about networking issues when writing code,
especially when writing a new protocol. So, when
running both parties locally on the same machine, we
would just pipe the data through standard input and
output. In fact, even when running over a network, we
can just pipe over SSH. To support this, we also pro-
vide hooks for the primitive send() and recv() functions
used by various protocols, which can be replaced with
arbitrary functions. This could also be used to easily
inspect the network traffic for debugging purposes or
to package transmissions to improve efficiency.

Note that implementing the new protocols did not
require any changes to the Obliv-C compiler. In fact,
the compiler does not even need to know which proto-
col we are planning to execute: that can be determined
later at runtime in the main() function written in C. This

design makes is very easy to conduct experiments that
run the same benchmark with different protocols.

5.2. Dual Execution Protocol

Another protocol we have implemented for Obliv-C
is the dual execution variant of Yao’s protocol [21, 33].
It provides stronger security in that it allows at most
one bit of private data to be leaked to a malicious ad-
versary, but requires twice the total computation since
the base Yao’s protocol is executed twice. Although
there are even stronger protocols that provide complete
privacy against malicious adversaries [8, 14, 17, 19, 24,
25, 28], they all require substantially more expensive
techniques.

The basic idea for dual execution is to execute a
secure computation by running Yao’s garbled circuits
protocol twice, but having the parties swap roles for
the two executions which are run simultaneously. This
way, each party gets to be the circuit generator for
one execution and the evaluator for the other one.
The results of the executions are tested for equality
to ensure that both circuits computed the same result.

Changes to the application code needed to use dual
execution are minimal. It is only necessary to swap out
execYaoProtocol() with execDualexProtocol(), and have
two TCP connections instead of just one, for which
we provide convenient wrappers (this enables dual
execution to use separate threads for circuit generation
and execution that proceed in parallel).

This new function execDualexProtocol() works the
same way as before, but this time it starts two threads
before registering protocol-level hooks. It can now
perform additional tasks like swapping roles for one
thread and configuring each threat to use different TCP
connections. The Obliv-C code to be executed is now
launched once from each thread until it is time to
perform output. During output, it needs to make sure
that the output is only revealed to the evaluator side of
each thread. At the same time, it accumulates a hash of
the garbled wire labels, joins the two threads, performs
an equality check, and returns an error to the user if
the check failed.

Ideally, we want all application code to be portable
across protocols. In reality, however, protocols often
involve some quirks and users will have to write
code carefully to achieve portability. Every protocol is
expected to document its rules of usage. For example,
some features like ORAMs are protocol-specific, and
will not be supported in dual execution protocols. On
the other hand, purely circuit-based optimizations such
as integer range-tracking (Section 4.1) can be used with
any protocol.

12



Other rules involve input/output timing and thread-
safety. Since dual execution uses two threads, care
needs to be taken when using shared memory. Dual
execution has a simple restriction: the computation
needs to strictly follow the “input, then compute, then
output” execution model. For a semi-honest protocol,
it is perfectly acceptable to reveal outputs or feed
additional inputs in the middle of the protocol, in-
teracting with the protocol as it runs. This is not
supported in the stronger protocol: in general, if we
want a party to obtain an output, process it locally,
and then feed it back, it is quite hard to ascertain if
the data was tampered with. In theory, one could do
zero knowledge proofs, but it usually is easier (and
faster) to just execute the whole computation inside the
secure computation protocol. Moreover, the possibility
of early outputs opens the door for leaking additional
information through selective failure attacks. This is
a general theme for all protocols against stronger
adversaries, not specific to Obliv-C, but an example of
the kind of protocol-specific issue that must be adhered
to when implementing applications with Obliv-C.

6. Implementation

The Obliv-C compiler is implemented as a modified
version of CIL [23], which transforms Obliv-C code
to plain C. Our source code is available under an open
source license at <http://oblivc.org/>.

We make some changes to the CIL front-end parser
to support the new language keywords and control
structures. Some additional changes also were made
to keep track of additional information such as the
lexical depth at which a variable was declared (the
default version of CIL discards this information order
to simplify internal representation and processing).

Once the type-checker has completed successfully,
code generation is straightforward. Figure 8 shows a
simple example. An internal header file, “obliv_bits.h”
is automatically included in the generated output files
which provides the function prototypes and type dec-
larations for the auto-generated function calls will be
available during the later stages of compilation. The
generated files can then be compiled normally by a
standard C compiler (our oblivcc wrapper uses gcc for
this).

Because of the way we implemented Obliv-C as a
preprocessor on top of C, all of the normal C constructs
are still available including structures, pointers, and
indirect function calls. We also can trivially support
separate compilation—two separate files can be inde-
pendently transformed and then compiled and linked
as usual. This allows us to have a feature-rich language

without having to design the whole development tool
chain from scratch.

Implementing obliv types. The code generator re-
places obliv types with corresponding types that are
defined as C structs that represent the ciphertext for
data bits, the operators get replaced with correspond-
ing function calls. For example, the obliv int type is
replaced with obliv_c_int which is defined as:
typedef struct { OblivBit bits[32]; } obliv_c_int;

Operations involving obliv types are replaced with
corresponding function calls implemented by the pro-
vided library. For example, c = a + b is transformed
into obliv_c_setAdd(&c, &a, &b).

Functions like obliv_c_setAdd()
obliv_c_setLessThan() are defined in a runtime
library that is linked with the generated C files. These
functions are all defined in terms of bit operations
(e.g., AND, OR, NOT). The bit operations, in turn, are
implemented in some protocol-specific way, which
means these back-end functions are usually written in
plain C. To change the protocol, all we need to do
is provide new implementations of these operations
(Section 5 presents an example).

Transforming conditional code. Code generation is
done differently inside an obliv if or obliv function,
since all assignments now must be done conditionally.
To ensure that uninitialized garbage values to not
interfere with conditional assignments, all local obliv
variables are initialized to zero.

Nested if conditions are handled by AND-ing the new
condition with the current, enclosing one. Whenever an
obliv function is called, the current condition simply
gets passed in as a hidden parameter, so that the
function can continue to perform proper conditional
assignments. When an obliv function is called outside
of any obliv scope (that is, not under the control of
any condition), the hidden parameter is just set to
true, effectively making it unconditional. This is why
obliv functions and non-obliv functions have different
signatures in our language: internally, they accept
different parameters. Similarly, Obliv-C supports two
flavors of function pointers corresponding to these
two flavors of functions. Thus, this transformation
eventually removes all control dependencies related to
obliv if structures.

None of these transformations interfere with the
usual control structures of C (if, for, while, etc.). All
behave as expected without any transformation. For
example,

obliv if (cond) writeArray (arr, size, index);

is compiled to:

13



void millionaire (void ∗args) {
ProtocolIO ∗io = args;
obliv int a, b;
obliv bool res = false;

a = feedOblivInt(io−>myinput, 1);
b = feedOblivInt(io−>myinput, 2);

obliv if (a < b) res = true;

revealOblivBool(&io−>result, res, 0);
}

(a)

void millionaire (void ∗args) {
ProtocolIO ∗io = args;
obliv_c_int a, b;
obliv_c_bool res;
memset (&a, 0, sizeof(obliv_c_int));
memset (&b, 0, sizeof(obliv_c_int));
memset (&res, 0, sizeof(obliv_c_bool));

a = feedOblivInt(io−>myinput, 1);
b = feedOblivInt(io−>myinput, 2);

obliv_c_bool cond;
obliv_c_setLessThan(&cond, &a, &b);
obliv_c_condAssign(&cond, &res, &obliv_c_true);

revealOblivBool(&io−>result, res, 0);
}

(b)

Figure 8: Obliv-C code for the millionaires’ problem, before and after it is transformed to plain C by our compiler
(reformatted for readability).

writeArray (cond, arr, size, index);

Something more complicated like:

obliv if (x < y) {
for (int i = 0; i < n; ++i) {

if (i % 2 == 0) {
a[i] = b[i];

}
}

}

compiles to:

obliv_c_setLessThan (&cond, &x, &y);

for (int i = 0; i < n; ++i) {
if (i % 2 == 0) {

obliv_c_condAssign (&cond, &a[i], &b[i]);
}

}

Note that the conditional assignment is needed only
for obliv variables and ++i did not need any change.
This works because any code that attempts to make
problematic modifications to non-obliv variables inside
an obliv scope will be rejected in our type-checking
phase. Moreover, the conditional assignment only uses
the conditions of enclosing obliv ifs. We do not need to
separately account for non-obliv conditions like i < n
or i % 2 == 0 since those control structures are not
oblivious and will execute normally.

Since loops and function calls remain in code as
is, we never need to unroll or inline them into full
circuits for execution, unlike other systems [10, 20].
Hence, we can run programs involving billions of
gates without worrying about running out of memory.

Memory management is not different in our system,
since we still have full access to the usual C runtime li-
brary functions (although sometimes protocol-specific
restrictions can apply, as seen in Section 5).

The last new feature we need to support is uncon-
ditional segments. Code written inside such a segment
is simply rewritten as if it appeared outside any con-
ditional context. Inside an unconditional segment, all
code is executed unconditionally. Before this block is
executed, however, the new variable of type obliv bool
is simply initialized with a copy of the current condi-
tion so that it is available to the code in the body of
this segment.

Security argument. Our design makes it easy to pro-
vide a strong argument that an Obliv-C program never
leaks any secret information (so long as the underlying
secure computation protocol is secure). Since obliv
variables are encrypted data, there is no risk that they
will be leaked or used in a way that leads to an implicit
leak since the semantic value is not even visible to the
executing program. The only way a semantic value is
produced is through a call to a reveal() function that
can convert from obliv variables to the non-obliv ones.

The code generator never generates a reveal() func-
tion, except where the corresponding function was used
in the input program. So, we can never accidentally
leak information from obliv variable if the type system
is flawed. An error in the type system can result
in incorrect code and surprising behavior, but never
an information leak. For example, if the type sys-
tem mistakenly allows an externally visible non-obliv
variables to be modified in an obliv if, the resulting

14



program would modify the variable regardless of the
obliv condition (without branching). This emphasizes
that our system relies on cryptography at runtime to
provide security; the type rules are designed only to
prevent programming mistakes.

7. Related Work

Many frameworks for secure computation have been
published in recent years. Broadly speaking, they can
be classified into two categories. First is the family
of low-level frameworks that provide a library of
cryptographic primitives that can be used to develop
arbitrary protocols. Examples include FastGC [11],
SCAPI [5], and L1 [27]. The advantage of using these
frameworks is that they provide a high degree of
customizability over the actual protocol execution. On
the downside, however, users are generally expected
to be experts either in cryptography, or in circuit
structures, or both. The frameworks provide little or no
type safety to prevent semantic errors, and it is difficult
(or in some cases, impossible) to write applications
in a way that it is portable across different protocols.
In comparison, applications programmed in Obliv-C
are fully portable across all protocols that work on
Boolean circuits (unless they are written to deliberately
use protocol-specific extensions). Moreover, the Obliv-
C type system prevents accidental mistakes on the part
of the programmer, without being so restrictive that it
prevents programmers from writing useful functions.

The second family of frameworks entail high-level
languages that try to completely abstract away the
cryptographic parts, and allow the user to code in a spe-
cial language as if it was ordinary programming. Ex-
amples include include Fairplay [20], CMBC-GC [10],
KSS [16], PCF [15], Wysteria [26] and PICCO [36].
Unlike Obliv-C, these languages provide little oppor-
tunity for users to extend or alter protocols short of
modifying the compiler directly. For example, none
of these would allow a user to write custom ORAM
protocols (since they manage all network traffic) or
implement custom data structure libraries (since they
manage all memory allocation) as we demonstrated
was straightforward with Obliv-C. Some like Wysteria,
though, provides very strong static type system that we
do not — our type system is only intended to prevent
mistakes, and relies on the underlying cryptography for
security.

Thus, we consider Obliv-C to be somewhere in
between the two previous families of secure computa-
tion frameworks, obtaining the best of both worlds. It
provides sufficient control to enable rich extensibility,

without requiring a programmer to design low-level
circuits or understand the underlying cryptography.

Although our current implementation provides fairly
good performance, it still does not incorporate all the
optimizations that have been proposed recently. This
includes using AES-NI instructions [1, 16] to garbled
each gate, or OT-extension for malicious adversaries
[13] (our current dual execution implementation does
not use OT-extension). The design of Obliv-C makes it
easy to incorporate those optimizations, and any newly
discovered ones, without making any changes to the
compiler.

Holzer et al. [10] attempted to leverage C in se-
cure computation, but did not support most of the C
language, while Obliv-C is a strict extension of C.
Finally, since their approach generates a full circuit
representation before actually executing it, it cannot
scale to large circuits.

Finally, there are many other implementations that
use a custom designed intermediate language to ad-
dress memory issues such as PAL [22] and PCF [15].
These frameworks do not support custom sub-protocols
the way we do. In this respect, they are closer to
the other high-level languages that we have mentioned
previously, since they abstract away the data-oblivious
nature of computation and provide something closer
to ordinary computation. Without a full static type
system, they had to take draconian measures such as
not allowing function calls within an if statement that
depends on secret input, for example. This greatly
limits the general applicability of these systems, and
requires programmers to build applications in unnatu-
ral and tool-specific ways.

8. Conclusion

Multi-party secure computation is a vibrant and
rapidly advancing research area, but progress is im-
peded by the difficulty in experimenting with pro-
tocols, applications, and implementation techniques
with current systems. Researchers with new ideas for
implementing secure computation protocols, or for
optimizing applications, tend to find it necessary to
implement a new protocol from basic primitives since
previous frameworks lack the necessary expressiveness
to experiment with new ideas at multiple levels of ab-
straction. Obliv-C provides an extensible programming
tool for secure computation that provides a new option
by exposing the important aspects of data-oblivious
computation, while providing a high-level language
and the ability to seamlessly integrate with standard
C code.

15



References

[1] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi,
and Phillip Rogaway. Efficient Garbling from a
Fixed-Key Block Cipher. In IEEE Symposium on
Security and Privacy, 2013.

[2] Dan Bogdanov, Sven Laur, and Jan Willemson.
Sharemind: A Framework for Fast Privacy-Preserving
Computations. In European Symposium on Research
in Computer Security, 2008.

[3] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus
Nielsen, and Tomas Toft. Unconditionally Secure
Constant-Rounds Multi-Party Computation for
Equality, Comparison, Bits and Exponentiation. In
Theory of Cryptography. 2006.

[4] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah
Zakarias. Multiparty Computation from Somewhat
Homomorphic Encryption. In Advances in
Cryptology—CRYPTO. 2012.

[5] Yael Ejgenberg, Moriya Farbstein, Meital Levy, and
Yehuda Lindell. SCAPI: The Secure Computation
Application Programming Interface. IACR Cryptology
ePrint Archive, 2012.

[6] Tore Kasper Frederiksen, Thomas Pelle Jakobsen,
Jesper Buus Nielsen, Peter Sebastian Nordholt, and
Claudio Orlandi. Minilego: Efficient Secure
Two-Party Computation from General Assumptions.
In Advances in Cryptology—EUROCRYPT. 2013.

[7] Tore Kasper Frederiksen and Jesper Buus Nielsen.
Fast and Maliciously Secure Two-party Computation
using the GPU. In Applied Cryptography and
Network Security, 2013.

[8] Shafi Goldwasser, Silvio M. Micali, and Avi
Wigderson. How to Play Any Mental Game, or a
Completeness Theorem for Protocols with an Honest
Majority. In 19th ACM Symposium on Theory of
Computing, 1987.

[9] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov,
Fernando Krell, Tal Malkin, Mariana Raykova, and
Yevgeniy Vahlis. Secure Two-Party Computation in
Sublinear (Amortized) Time. In ACM Conference on
Computer and Communications Security, 2012.

[10] Andreas Holzer, Martin Franz, Stefan Katzenbeisser,
and Helmut Veith. Secure Two-Party Computations in
ANSI C. In ACM Conference on Computer and
Communications Security. ACM, 2012.

[11] Yan Huang, David Evans, Jonathan Katz, and Lior
Malka. Faster Secure Two-Party Computation Using
Garbled Circuits. In 20th USENIX Security
Symposium, 2011.

[12] Nathaniel Husted, Steven Myers, Abhi Shelat, and
Paul Grubbs. GPU and CPU Parallelization of
Honest-but-Curious Secure Two-Party Computation.

In ACM Annual Computer Security Applications
Conference, 2013.

[13] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez
Petrank. Extending Oblivious Transfers Efficiently. In
Advances in Cryptology—CRYPTO, 2003.

[14] Stanislaw Jarecki and Vitaly Shmatikov. Efficient
Two-Party Secure Computation on Committed Inputs.
In Advances in Cryptology—EUROCRYPT, 2007.

[15] Ben Kreuter, Benjamin Mood, abhi shelat, and Kevin
Butler. PCF: A Portable Circuit Format for Scalable
Two-Party Secure Computation. In 22nd USENIX
Security Symposium, August 2013.

[16] Benjamin Kreuter, abhi shelat, and Chih-Hao Shen.
Billion-Gate Secure Computation with Malicious
Adversaries. In 21st USENIX Security Symposium,
2012.

[17] Yehuda Lindell and Benny Pinkas. An Efficient
Protocol for Secure Two-Party Computation in the
Presence of Malicious Adversaries. In Advances in
Cryptology—EUROCRYPT. 2007.

[18] Yehuda Lindell and Benny Pinkas. A Proof of
Security of YaoâĂŹs Protocol for Two-Party
Computation. Journal of Cryptology, 22(2), 2009.

[19] Yehuda Lindell and Benny Pinkas. Secure Two-Party
Computation via Cut-and-Choose Oblivious Transfer.
Journal of Cryptology, 25(4), 2012.

[20] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and
Yaron Sella. Fairplay-Secure Two-Party Computation
System. In 12th USENIX Security Symposium, 2004.

[21] Payman Mohassel and Matthew Franklin. Efficiency
Tradeoffs for Malicious Two-Party Computation. In
Public Key Cryptography. 2006.

[22] Benjamin Mood, Lara Letaw, and Kevin Butler.
Memory-efficient Garbled Circuit Generation for
Mobile Devices. In Financial Cryptography and Data
Security. 2012.

[23] George C Necula, Scott McPeak, Shree P Rahul, and
Westley Weimer. CIL: Intermediate Language and
Tools for Analysis and Transformation of C Programs.
In Conference on Compiler Construction, 2002.

[24] Jesper Buus Nielsen, Peter Sebastian Nordholt,
Claudio Orlandi, and Sai Sheshank Burra. A New
Approach to Practical Active-Secure Two-Party
Computation. Crypto ePrint Archive, 2011.
http://eprint.iacr.org/2011/091.

[25] Jesper Buus Nielsen and Claudio Orlandi. LEGO for
Two-Party Secure Computation. In Theory of
Cryptography Conference, 2009.

[26] Aseem Rastogi, Matthew A Hammer, and Michael
Hicks. Wysteria: A Programming Language for
Generic, Mixed-Mode Multiparty Computations.
2014.

16



[27] Axel Schropfer, Florian Kerschbaum, and Gunter
Muller. L1 — an Intermediate Language for
Mixed-Protocol Secure Computation. In 35th IEEE
Annual Computer Software and Applications
Conference, 2011.

[28] abhi shelat and Chih-hao Shen. Two-Output Secure
Computation with Malicious Adversaries. In
Advances in Cryptology—EUROCRYPT, 2011.

[29] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and
Mingfei Li. Oblivious RAM with O((logN) 3)
Worst-Case Cost. In Advances in
Cryptology—ASIACRYPT. 2011.

[30] Emil Stefanov, Marten Van Dijk, Elaine Shi,
Christopher Fletcher, Ling Ren, Xiangyao Yu, and
Srinivas Devadas. Path ORAM: An Extremely Simple
Oblivious RAM Protocol. In ACM Conference on
Computer and Communications Security, 2013.

[31] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith.
A Sound Type System for Secure Flow Analysis.
Journal of Computer Security, 4(2), 1996.

[32] Xiao Shaun Wang, Yan Huang, TH Chan, Abhi
Shelat, and Elaine Shi. Scoram: Oblivious ram for
secure computation. In ACM Conference on Computer
and Communications Security. ACM.

[33] Yan Huang and Jonathan Katz and David Evans.
Quid Pro Quo-tocols: Strengthening Semi-Honest
Protocols with Dual Execution. In 33rd IEEE
Symposium on Security and Privacy, 2012.

[34] Andrew C. Yao. Protocols for Secure Computations.
In 23rd Symposium on Foundations of Computer
Science, 1982.

[35] Samee Zahur and David Evans. Circuit Structures for
Improving Efficiency of Security and Privacy Tools.
In 34th IEEE Symposium on Security and Privacy,
2013.

[36] Yihua Zhang, Aaron Steele, and Marina Blanton.
PICCO: A General-Purpose Compiler for Private
Distributed Computation. In ACM Conference on
Computer and Communications Security, 2013.

Appendix

Given the difficulty of formally describing the full C
language as described in the ISO standard, we describe
our rules using a simplified C language where int and
bool are the only data types, along with their obliv
counterparts. The only control structures are if, obliv if
and while loops. It includes functions, but we exclude
structures, pointers, arrays, and other complex features.
We also restrict declarations so that they may each
introduce only a single new variable.

The rules are shown in Figure 10. The notations we
use are given in Figure 9.

At the global level, we use a slightly different
notation: Γ ` D ⇓ Γ′ denotes the fact that that D is a
valid global definition under Γ, and it produces a new
type environment Γ′ (we will skip rules for global dec-
larations without accompanying definitions, but they
are similar). These rules are shown in Figure 11. These
simply specify the Γ and ∆ values with which each
function body is processed. Additional notations used
here:

∆n(t) = {return-t,nObl}
∆o(t) = {return-t}
Γ′F = freeze(Γ′)

While these rules just presented are enough to create
the type-checker for our language, we also need the
semantics of our constructs formally specified in order
to prove any properties about not leaking information.
In this case, we take an operational approach by
specifying rewrite rules. These are shown in Figure 12.
The function convert(c,code) takes in Obliv-C code
and rewrites it to produce plain C code, assuming they
need to be executed in the context of the condition c.
For brevity, we provide a simplified version of these
rules that just includes the interesting cases. After these
transformations, an additional pass is made to replace
the type names with C structures representing the obliv
basic types.

At this point, it is easy to see that we never emit
anything to convert an obliv variable to a non-obliv
one at any point, and the generated code has no control
dependecy on obliv data. This, along with the type
system, proves that our language never leaks any data
about obliv variables (other than by using reveal()
family functions).

17



s, t are used for types
t1...n is a shorthand for the sequence t1, . . . , tn
(t1...n)→ t is the type of a function that takes n arguments of types t1...n and returns a t
(t1...n) obliv→ t is the type of the corresponding obliv function
e is for expressions.
f is for the name of a function.
x, y for variables
σ for a single statement, S for a sequence of statements, ε for the empty sequence
O = {obliv int, obliv bool}
F = {∀t /∈ O : frozen t}
D is the set of all syntactically correct declarations
Γ is the current type mapping
∆⊆ {loop,nObl,∀t.return-t} holds information about the current set of allowed control flow operations.
〈Γ ; ∆〉 ` S means S is a valid sequence of statements under 〈Γ ; ∆〉
〈Γ ; ∆〉 ` e : t means e is a valid expression of type t under 〈Γ ; ∆〉
(x : t)1...n is a shorthand for x1 : t1, . . . ,xn : tn
freeze(Γ) = {x : freeze(t) | ∀x : t ∈ Γ}
freeze(t) = (frozen t) if t /∈ O, t if t ∈ O
unfreeze(t) = t ′ if t = (frozen t ′) ∈ F , t otherwise. unfreeze(Γ) is analogous.

Figure 9: Notations used in Figure 10.

18



〈Γ,x : t ; ∆〉 ` S t x ∈ D
〈Γ ; ∆〉 ` t x;S

〈Γ ; ∆〉 ` σ 〈Γ ; ∆〉 ` S σ /∈ D
〈Γ ; ∆〉 ` σ S

〈Γ ; ∆〉 ` ε

〈Γ ; ∆〉 ` S σ = {S}
〈Γ ; ∆〉 ` σ

〈Γ ; ∆〉 ` e : t t /∈ O obliv t ∈ O
〈Γ ; ∆〉 ` e : obliv t

〈Γ ; ∆〉 ` e1 : t 〈Γ ; ∆〉 ` e2 : t
〈Γ ; ∆〉 ` (e1 op e2) : t

〈Γ ; ∆〉 ` x :s, e : t s ∈ O∨ t /∈ O s /∈ F
〈Γ ; ∆〉 ` x = e;

〈Γ ; ∆〉 ` σ 〈Γ ; ∆〉 ` e : t t /∈ O
〈Γ ; ∆〉 ` if (e) σ

〈Γ ; ∆, loop〉 ` σ 〈Γ ; ∆〉 ` e : t t /∈ O
〈Γ ; ∆〉 ` while (e) σ

loop ∈ ∆ σ ∈ {break,continue}
〈Γ ; ∆〉 ` σ ;

return-t ∈ ∆ 〈Γ ; ∆〉 ` e : t
〈Γ ; ∆〉 ` return e;

〈freeze(Γ) ; /0〉 ` σ 〈Γ ; ∆〉 ` e
〈Γ ; ∆〉 ` obliv if (e) σ

〈unfreeze(Γ),x :obliv bool ; ∆〉 ` σ

〈Γ ; ∆〉 ` ∼obliv(x) σ

〈Γ ; ∆〉 ` (e : t)1...n 〈Γ ; ∆〉 ` f :(t1...n) obliv→ t
〈Γ ; ∆〉 ` f (e1, . . . ,en) : t

〈Γ ; ∆〉 ` (e : t)1...n 〈Γ ; ∆〉 ` f :(t1...n)→ t (nObl) ∈ ∆

〈Γ ; ∆〉 ` f (e1, . . . ,en) : t

Figure 10: Type rules for our language extensions for simplified C.

19



Γ1 ` D1 ⇓ Γ2 Γ2 ` D2 ⇓ Γ3

Γ1 ` D1D2 ⇓ Γ3

Γ ` t
Γ ` t x;⇓ Γ∪{x : t}

Γ ` tr, t1...n Γ′ = Γ∪{ f :(t1...n)→ tr} 〈Γ′,(x : t)1...n ; ∆n(tr)〉 ` S
Γ ` tr f (t1 x1, t2 x2, . . . , tn xn){S} ⇓ Γ′

Γ ` tr, t1...n Γ′ = Γ∪{ f :(t1...n) obliv→ tr} 〈Γ′F,(x : t)1...n ; ∆o(tr)〉 ` S

Γ ` tr f (t1 x1, t2 x2, . . . , tn xn) obliv {S} ⇓ Γ′

Figure 11: Rules for type checking global declarations.

convert(c,v1 = v2;)≡
{

obliv_c_copy(&v1,&v2); if c is statically true
obliv_c_condAssign(&c,&v1,&v2); otherwise

convert(c1,obliv if (c2)B1 else B2)≡ convert(c1&c2,B1)convert(c1&!c2,B2)

convert(c, f (e1, . . . ,en);)≡
{

f (c,e1, . . . ,en); if f is an obliv function
f (e1, . . . ,en); otherwise

convert(c,∼ obliv(v)B)≡ convert(true,obliv bool v = c;B)

convertFunc(tr f (t1 v1, . . . , tn vn) obliv B)≡
tr f (c, t1 v1, . . . , tn vn) convert(c,B) where c is fresh

convertFunc(tr f (t1 v1, . . . , tn vn)B)≡
tr f (t1 v1, . . . , tn vn) convert(true,B)

Figure 12: Rewrite rules for compiling Obliv-C to plain C.

20


