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Abstract. In typical applications of homomorphic encryption, the first step consists for Alice to
encrypt some plaintext m under Bob’s public key pk and to send the ciphertext c = HEpk(m) to
some third-party evaluator Charlie. This paper specifically considers that first step, i.e. the problem
of transmitting c as efficiently as possible from Alice to Charlie. As previously noted, a form of
compression is achieved using hybrid encryption. Given a symmetric encryption scheme E, Alice
picks a random key k and sends a much smaller ciphertext c′ = (HEpk(k),Ek(m)) that Charlie
decompresses homomorphically into the original c using a decryption circuit CE−1 .

In this paper, we revisit that paradigm in light of its concrete implementation constraints; in
particular E is chosen to be an additive IV-based stream cipher. We investigate the performances
offered in this context by Trivium, which belongs to the eSTREAM portfolio, and we also propose
a variant with 128-bit security: Kreyvium. We show that Trivium, whose security has been firmly
established for over a decade, and the new variant Kreyvium have an excellent performance.
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1 Introduction

Since the breakthrough result of Gentry [Gen09] achieving fully homomorphic encryption (FHE), many
works have been published on simpler and more efficient schemes based on homomorphic encryption. Be-
cause they allow arbitrary computations on encrypted data, FHE schemes suddenly opened the way to ex-
citing new applications, in particular cloud-based services in several areas (see e.g. [NLV11,GLN12,LLN14]).

Compressed encryption. In these cloud applications, it is often assumed that some data is sent
encrypted under a homomorphic encryption (HE) scheme to the cloud to be processed in a way or
another. It is thus typical to consider, in the first step of these applications, that a user (Alice) encrypts
some data m under some other user’s public key pk (Bob) and sends some homomorphic ciphertext
c = HEpk(m) to a third-party evaluator in the Cloud (Charlie). The roles of Alice and Bob are clearly
distinct, even though they might be played by the same entity in some applications.

However, all HE schemes proposed so far suffer from a very large ciphertext expansion; the transmis-
sion of c between Alice and Charlie is therefore a very significant bottleneck in practice. The problem
of reducing the size of c as efficiently as possible has first been considered in [NLV11] wherein m is
encrypted with a symmetric encryption scheme E under some key k randomly chosen by Alice, who then
sends a much smaller ciphertext c′ = (HEpk(k),Ek(m)) to Charlie. Given c′, Charlie then exploits the
homomorphic property of HE and recovers the original

c = HEpk(m) = CE−1 (HEpk(k),Ek(m))

by homomorphically evaluating the decryption circuit CE−1 . This can be assimilated to a compression
method for homomorphic ciphertexts, c′ being the result of applying a compressed encryption scheme to
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the plaintextm and c being recovered from c′ using a ciphertext decompression procedure. In that approach
obviously, the new encryption rate |c′|/|m| becomes asymptotically close to 1 for long messages, which
leaves no significant margin for improvement. However, the paradigm of ciphertext compression leaves
totally open the question of how to choose E in a way that minimizes the decompression overhead, while
preserving the same security level as originally intended.

Prior art. The cost of a homomorphic evaluation of several symmetric primitives has been investigated,
including several optimized implementations of AES [GHS12,CCK+13,DHS14], and of the lightweight
block ciphers Simon [LN14] and Prince [DSES14]. Usually very simple, lightweight block ciphers seem
natural candidates for efficient evaluations in the encrypted domain. However, they may also lead to much
worse performances than a homomorphic evaluation of, say, AES. Indeed, contemporary HE schemes use
noisy ciphertexts, where a fresh ciphertext includes a noise component which grows along with homomor-
phic operations. Usually a homomorphic multiplication increases the noise by much larger proportions
than a homomorphic addition. The maximum allowable level of noise (determined by the system param-
eters) then depends mostly on the multiplicative depth of the circuit. Many lightweight block ciphers
balance out their simplicity by a large number of rounds, e.g. KATAN and KTANTAN [CDK09], with the
effect of considerably increasing their multiplicative depth. This type of design is therefore prohibitive in
a HE context. Still Prince appears to be a much more suitable block cipher for homomorphic evaluation
than AES (and than Simon), because it specifically targets applications that require a low latency; it is
designed to minimize the cost of an unrolled implementation [BCG+12] rather than being designed to
optimize e.g. silicon area.

At Eurocrypt 2015, Albrecht, Rechberger, Schneider, Tiessen and Zohner observed that the usual
criteria that rule the design of lightweight block ciphers are not appropriate when designing a symmetric
encryption scheme with a low-cost homomorphic evaluation [ARS+15]. Indeed, both the number of
rounds and the number of binary multiplications required to evaluate an Sbox have to be taken into
account. Minimizing the number of rounds is a crucial issue for low-latency ciphers like Prince, while
minimizing the number of multiplications is a requirement when designing a block cipher for efficient
masked implementations (see e.g. [GLSV14]).

These two criteria have been considered together for the first time by Albrecht et al. in the recent de-
sign of a family of block ciphers called LowMC [ARS+15] with very small multiplicative size and depth5.
However, the proposed instances of LowMC, namely LowMC-80 and LowMC-128, have recently had
some security issues [DLMW15]. They actually present some weaknesses inherent in their low multiplica-
tive complexity. Indeed, the algebraic normal forms (i.e., the multivariate polynomials) describing the
encryption and decryption functions are sparse and have a low degree. This type of features is usually
exploited in algebraic attacks, cube attacks and their variants, e.g. [CP02,CM03,DS09,ADMS09]. While
these attacks are rather general, the improved variant used for breaking LowMC [DLMW15], named
interpolation attack [JK97], specifically applies to block ciphers. Indeed it exploits the sparse algebraic
normal form of some intermediate bit within the cipher using that this bit can be evaluated both from
the plaintext in the forward direction and from the ciphertext in the backward direction. This technique
leads to several attacks including a key-recovery attack against LowMC-128 with time complexity 2118

and data complexity 273, implying that the cipher does not provide the expected 128-bit security level.

Our contributions. We emphasize that beyond the task of designing a HE-friendly block cipher, re-
visiting the whole compressed encryption scheme (in particular its internal mode of operation) is what
is really needed in order to take these concrete HE-related implementation constraints into account.

First, we identify that homomorphic decompression is subject to an offline phase and an online
phase. The offline phase is plaintext-independent and therefore can be performed in advance, whereas the
online phase completes decompression upon reception of the plaintext-dependent part of the compressed
ciphertext. Making the online phase as quick as technically doable leads us to choose an additive IV-
based stream cipher to implement E. However, we note that the use of a lightweight block cipher as
the building-block of that stream cipher usually provides a security level limited to 2n/2 where n is the
block size [Rog11], thus limiting the number of encrypted blocks to (typically) less than 232 (i.e. 32GB
for 64-bit blocks).

5 It is worth noting that in a HE context, reducing the multiplicative size of a symmetric primitive might not
be the first concern (while it is critical in a multiparty computation context, which also motivated the work of
Albrecht et al. [ARS+15]), whereas minimizing the multiplicative depth is of prime importance.
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As a result, we propose our own candidate for E: the keystream generator Trivium [CP08], which
belongs to the eSTREAM portfolio of recommended stream ciphers, and a new proposal called Kreyvium,
which shares the same internal structure but allows for bigger keys of 128 bits6. The main advantage of
Kreyvium over Trivium is that it provides 128-bit security (instead of 80-bit) with the same multiplicative
depth, and inherits the same security arguments. It is worth noticing that the design of a variant of
Trivium which guarantees a 128-bit security level has been raised as an open problem for the last ten
years, see e.g. [Eni14, p. 30]. Beside a higher security level, it also accommodates longer IVs, so that it
can encrypt up to 46·2128 plaintext bits under the same key, with multiplicative depth only 12. Moreover,
both Trivium and Kreyvium are resistant against the interpolation attacks used for breaking LowMC
since these ciphers do not rely on a permutation which would enable the attacker to compute backwards.

We implemented our construction and instantiated it with Trivium, Kreyvium and LowMC in CTR-
mode. Our results show that the promising performances attained by the HE-dedicated block cipher
LowMC can be achieved with well-known primitives whose security has been firmly established for over
a decade.

Organization of the paper. We introduce a general model and a generic construction to compress
homomorphic ciphertexts in Sec. 2. Our construction using Trivium and Kreyvium is described in Sec. 3.
Subsequent experimental results are presented in Sec. 4.7

2 A Generic Design for Efficient Decompression

In this section, we describe our model and generic construction to transmit compressed homomorphic
ciphertexts between Alice and Charlie. We use the same notation as in the introduction: Alice wants
to send some plaintext m, encrypted under Bob’s public key pk (of an homomorphic encryption scheme
HE) to a third party evaluator Charlie.

2.1 Offline/Online Phases in Ciphertext Decompression

Most practical scenarios would likely find it important to distinguish between three distinct phases within
the homomorphic evaluation of CE−1 :

1. an offline key-setup phase which only depends on Bob’s public key and can be performed once and
for all before Charlie starts receiving compressed ciphertexts encrypted under Bob’s key;

2. an offline decompression phase which can be performed only based on some plaintext-independent
material found in the compressed ciphertext;

3. an online decompression phase which aggregates the result of the offline phase with the plaintext-
dependent part of the compressed ciphertext and (possibly very quickly) recovers the decompressed
ciphertext c.

As such, our general-purpose formulation c′ = (HEpk(k),Ek(m)) does not allow to make a clear distinction
between these three phases. In our context, it is much more relevant to reformulate the encryption scheme
as an IV-based encryption scheme where the encryption and decryption process are both deterministic
but depend on an IV:

Ek(m)
def
=
(
IV,E′k,IV (m)

)
.

Since the IV has a limited length, it can be either transmitted during an offline preprocessing phase, or
may alternately correspond to a state which is maintained by the server. Now, to minimize the latency

6 Independently from our results, another variant of Trivium named Trivi-A has been proposed [CCHN15]. It
handles larger keys but uses longer registers. It then needs more rounds for mixing the internal state, which
means that it is much less adapted to our setting than Kreyvium.

7 In App. D, we also present a second candidate for E that relies on a completely different technique based on the
observation that multiplication in binary fields is F2-bilinear, making it possible to homomorphically exponen-
tiate field elements with a log-log-depth circuit. We also report a random oracle based proof that compressed
ciphertexts are semantically secure under an appropriate complexity assumption. We show, however, that this
second approach remains disappointingly impractical.
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of homomorphic decompression for Charlie, the online phase should be reduced to a minimum. The most
appropriate choice in this respect consists in using an additive IV-based stream cipher Z so that

E′k,IV (m) = Z(k, IV )⊕m .

In this reformulation, the decompression process is clearly divided into a offline precomputation stage
which only depends on pk, k and IV , and an online phase which is plaintext-dependent. The online phase
is thus reduced to a mere XOR between the plaintext-dependent part of the ciphertext E′k,IV (m) and
the HE-encrypted keystream HE(Z(k, IV )), which comes essentially for free in terms of noise growth in
HE ciphertexts. All expensive operations (i.e. homomorphic multiplications) are performed during the
offline decompression phase where HE(Z(k, IV )) is computed from HE(k) and IV .

2.2 Our Generic Construction

We devise a generic construction based on a homomorphic encryption scheme HE with plaintext space
{0, 1}, an expansion function G mapping `IV -bit strings to strings of arbitrary size, and a fixed-size
parametrized function F with input size `x, parameter size `k and output size N . The construction is
depicted on Fig. 1.

k

IV

HEpk(·)

Z

G

x1 xt

F F F · · · F

z1 z2 z3 · · · ztkeystream =

offline

online

Alice Charlie

m ⊕ m⊕ keystream

HEpk(k)

IV

G

x1 xt

CF CF CF · · · CF

HEpk(keystream)

C⊕ HEpk(m)

Fig. 1. Our generic construction. The multiplicative depth of the circuit is equal to the depth of CF . This will
be the bottleneck in our protocol and we want the multiplicative depth of F to be as small as possible. With
current HE schemes, the circuit C⊕ is usually very fast (addition of ciphertexts) and has a negligible impact on
the noise in the ciphertext.

Compressed encryption. Given an `m-bit plaintext m, Bob’s public key pk and IV ∈ {0, 1}`IV , the
compressed ciphertext c′ is computed as follows:

1. Set t = d`m/Ne,
2. Set (x1, . . . , xt) = G(IV ; t`x),
3. Randomly pick k ← {0, 1}`k ,
4. For 1 ≤ i ≤ t, compute zi = Fk(xi),
5. Set keystream to the `m leftmost bits of z1 || . . . || zt,
6. Output c′ = (HEpk(k),m⊕ keystream).
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Ciphertext decompression. Given c′ as above, Bob’s public key pk and IV ∈ {0, 1}`IV , the ciphertext
decompression is performed as follows:

1. Set t = d`m/Ne,
2. Set (x1, . . . , xt) = G(IV ; t`x),
3. For 1 ≤ i ≤ t, compute HEpk(zi) = CF (HEpk(k), xi) with some circuit CF ,
4. Deduce HEpk(keystream) from HEpk(z1), . . . ,HEpk(zt),
5. Compute c = HEpk(m) = C⊕ (HEpk(keystream),m⊕ keystream).

The circuit C⊕ computes HE(a⊕ b) given HE(a) and b where a and b are bit-strings of the same size.
In our construction, the cost of decompression per plaintext block is fixed and roughly equals one single
evaluation of the circuit CF ; most importantly, the multiplicative depth of the decompression circuit is
also fixed, and set to the depth of CF .

How secure are compressed ciphertexts? From a high-level perspective, compressed homomorphic
encryption is just hybrid encryption and relates to the generic KEM-DEM construct. However it just
cannot inherit from the general security results attached to the KEM-DEM framework [AGKS05,HK07]
since taking some HE scheme to implement the KEM part does not even fulfill the basic requirements
that the KEM be IND-CCA or even IND-CCCA. It is usual that HE schemes succeed in achieving CPA
security but often grossly fail to realize any form of CCA1 security, to the point of admitting simple key
recovery attacks [CT15]. Therefore common KEM-DEM results just do not apply here.

On the other hand, CPA security is arguably strong enough for compressed homomorphic encryption,
given that in practice Alice may always provide a signature σ(c′) together with c′ to Charlie to ensure
origin and data authenticity. Thus, the right level of security requirement on the compressed encryption
scheme itself seems to be just IND-CPA for concrete use. However, it is not known what minimal security
assumptions to require from a homomorphic KEM and a general-purpose DEM to yield a KEM-DEM
scheme that is provably IND-CPA. As a result of that, evidence that CPA security is reached may only
be provided on a case-by-case basis given a specific embodiment.

Instantiating the paradigm. The rest of the paper focuses on how to choose the expansion function
G and function F so that the homomorphic evaluation of CF is as fast (and its multiplicative depth as
low) as possible. In our approach, the value of IV is assumed to be shared between Alice and Charlie
and needs not be transmitted along with the compressed ciphertext. For instance, IV is chosen to be an
absolute constant such as IV = 0` where ` = `IV = `x. Another example is to take for IV ∈ {0, 1}` a
synchronized state that is updated between transmissions. Also, the expansion function G is chosen to
implement a counter in the sense of the NIST description of the CTR mode [Nat01], for instance

G(IV ; t`) = (IV, IV � 1, . . . , IV � (t− 1)) where a� b = (a+ b) mod 2` .

Finally, F is chosen to follow a specific design to ensure both an appropriate security level and a low
multiplicative depth. We focus in Section 3 on the keystream generator corresponding to Trivium, and
on a new variant, called Kreyvium.

Interestingly, the output of an iterated PRF used in counter mode is computationally indistinguishable
from random [BDJR97, Th. 13]. Hence, under the assumption that Trivium or Kreyvium is a PRF8,
the keystream z1 || . . . || zt produced by our construction is also indistinguishable. However, this is
insufficient to prove that the compressed encryption scheme is semantically secure (IND-CPA), because
the adversary also sees HEpk(k) during the IND-CPA game, which cannot be proven not to make the
keystream distinguishable. Although the security of this approach is empiric, Section 3 provides a strong
rationale for the Kreyvium design and makes it the solution with the smallest homomorphic evaluation
latency known so far.

Why not using a block cipher for F? Although not specifically in these terms, the use of lightweight block
ciphers like Prince and Simon has been proposed in the context of compressed homomorphic ciphertexts
e.g. [LN14,DSES14]. However a complete encryption scheme based on the ciphers has not been defined.
This is a major issue since the security provided by all classical modes of operation (including all variants

8 Note that this equivalent to say that Kreyvium instantiated with a random key and mapping the IV’s to the
keystream is secure [BG07, Sec. 3.2].
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of CBC, CTR, CFB, OFB, OCB. . . ) is inherently limited to 2n/2 where n is the block size [Rog11] (this
is also emphasized in e.g. [KL14, p. 95]). Only a very few modes providing beyond-birthday security have
been proposed [Iwa06,Yas11,LST12] but they induce a higher implementation cost and their security is
usually upper-bounded by 22n/3.

In other words, the use of a block cipher operating on 64-bit blocks like Prince or Simon-32/64
implies that the number of blocks encrypted under the same key should be significantly less that 232 (i.e.
32GB for 64-bit blocks). Therefore, only block ciphers with a large enough block size, like the LowMC
instantiation with a 256-bit block proposed in [ARS+15], are suitable in applications which may require
the encryption of more than 232 bits under the same key.

3 Trivium and Kreyvium, Two Low-Depth Stream Ciphers

Since an additive stream cipher is the optimal choice, we now focus
on keystream generation, and on its homomorphic evaluation. An
IV-based keystream generator is decomposed into:

– a resynchronization function, Sync, which takes as input the IV
and the key (possibly expanded by some precomputation phase),
and outputs some n-bit initial state;

– a transition function Φ which computes the next state of the
generator;

– a filtering function f which computes a keystream segment from
the current internal state.

internal state

�
�

�
�

�
�

�
�

�� ��?

?

?

�

-

? ?

k IV

keystream

Φ

f

Sync

Since generating N keystream bits may require a circuit of depth up to

(depth(Sync) +N depth(Φ) + depth(f)) ,

the best design strategy for minimizing this value consists in choosing a transition function with a small
depth. The extreme option is to choose for Φ a linear function as in the CTR mode where the counter
is implemented by an LFSR. An alternative strategy that we will investigate consists in choosing a
nonlinear transition whose depth does not increase too fast when it is iterated. In App. B, the reader
may find a discussion on the influence of Sync on the multiplicative depth of the circuit depending on
which quantity should be encrypted under the HE scheme.

Size of the internal state. A major specificity of our context is that a large internal state can be easily
handled. Indeed, in most classical stream ciphers, the internal-state size usually appears as a bottleneck
because the overall size of the quantities to be stored highly influences the number of gates in the
implementation. This is not the case in our context. It might seem, a priori, that increasing the size of
the internal state automatically increases the number of nonlinear operations (because the number of
inputs of Φ increases). But, this is not the case if a part of this larger internal state is used, for instance,
for storing the secret key. This strategy can be used for increasing the security at no implementation cost.
Indeed, the complexity of all generic attacks aiming at recovering the internal state of the generator is
O(2n/2) where n is the size of the secret part of the internal state even if some part is not updated during
the keystream generation. For instance, the time-memory-data-tradeoff attacks in [Bab95,Gol97,BS00]
aim at inverting the function which maps the internal state of the generator to the first keystream bits.
But precomputing some values of this function must be feasible by the attacker, which is not the case
if the filtering or transition function depends on some secret material. On the other hand, the size n′ of
the non-constant secret part of the internal state determines the data complexity for finding a collision
on the internal state: the length of the keystream produced from the same key is limited to 2n

′/2. But,
if the transition function or the filtering function depends on the IV, this limitation corresponds to the
maximal keystream length produced from the same key/IV pair. It is worth noticing that many attacks
require a very long keystream generated from the same key/IV pair and do not apply in our context
since the keystream length is strictly limited by the multiplicative depth of the circuit.
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3.1 Trivium in the HE setting

Trivium [CP08] is one of the seven stream ciphers recommended by the eSTREAM project after a 5-year
international competition [ECR05]. Due to the small number of nonlinear operations in its transition
function, it appears as a natural candidate in our context.

Description. Trivium is a synchronous stream cipher with a key and an IV of 80 bits each. Its internal
state is composed of three registers of sizes 93, 84 and 111 bits, having an internal state size of 288 bits in
total. Here, we use for the internal state the notation introduced by the designers: the leftmost bit of the
93-bit register is s1, and its rightmost one is s93; the leftmost bit of the register of size 84 is s94 and the
rightmost s177; the leftmost bit of register of size 111 is s178 and the rightmost s288. The initialization
and the generation of an N -bit Keystream are described below.

(s1, s2, . . . , s93)← (K0, . . . ,K79, 0, . . . , 0)
(s94, s95, . . . , s177)← (IV0, . . . , IV79, 0, . . . , 0)
(s178, s179, . . . , s288)← (0, . . . , 0, 1, 1, 1)
for i = 1 to 1152 +N do

t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288

if i > 1152 do
output zi−1152 ← t1 + t2 + t3

end if
t1 ← t1 + s91 · s92 + s171
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69
(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)

end for

No attack better than an exhaustive key search is known so far on the full Trivium. It can therefore
be considered as a secure cipher. The family of attacks that seems to provide the best result on round-
reduced versions is the cube attack and its variants [DS09,ADMS09,FV13]. They recover some key bits
(resp. provide a distinguisher on the keystream) if the number of initialization rounds is reduced to 799
(resp. 885) rounds out of 1152. The highest number of initialization rounds that can be attacked is 961:
in this case, a distinguisher exists for a class of weak keys [KMN11].

Multiplicative depth. It is easy to see that the multiplicative depth grows quite slowly with the
number of iterations. An important observation is that, in the internal state, only the first 80 bits in
Register 1 (the keybits) are initially encrypted under the HE and that, as a consequence, performing
hybrid clear and encrypted data calculations is possible (this is done by means of the following simple
rules: 0 · [x] = 0, 1 · [x] = [x], 0 + [x] = [x] and 1 + [x] = [1] + [x], where the square brackets denote
encrypted bits and where in all but the latter case, a homomorphic operation is avoided which is specially
desirable for multiplications). This optimization allows for instance to increase the number of bits which
can be generated (after the 1152 blank rounds) at depth 12 from 42 to 57 (i.e., a 35% increase). Then, the
relevant quantity in our context is the multiplicative depth of the circuit which computes N keystream
bits from the 80-bit key. The proof of the following proposition is given in the App. C.

Proposition 1. In Trivium, the keystream length N(d) which can be produced from the 80-bit key with
a circuit of multiplicative depth d, d ≥ 4, is given by

N(d) = 282×
⌊d

3

⌋
+


81 if d ≡ 0 mod 3

160 if d ≡ 1 mod 3

269 if d ≡ 2 mod 3

.
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3.2 Kreyvium

Our first aim is to offer a variant of Trivium with 128-bit key and IV, without increasing the multiplicative
depth of the corresponding circuit. Besides a higher security level, another advantage of this variant is
that the number of possible IVs, and then the maximal length of data which can be encrypted under the
same key, increases from 280Ntrivium(d) to 2128Nkreyvium(d). Increasing the key and IV-size in Trivium is a
challenging task, mentioned as an open problem in [Eni14, p. 30] for instance. In particular, Maximov and
Biryukov [MB07] pointed out that increasing the key-size in Trivium without any additional modification
cannot be secure due to some attack with complexity less than 2128. A first attempt in this direction
has been made in [MB07] but the resulting cipher accommodates 80-bit IV only, and its multiplicative
complexity is higher than in Trivium since the number of AND gates is multiplied by 2.

Description. Our proposal, Kreyvium, accommodates a key and an IV of 128 bits each. The only
difference with the original Trivium is that we have added to the 288-bit internal state a 256-bit part
corresponding to the secret key and the IV. This part of the state aims at making both the filtering and
transition functions key- and IV-dependent. More precisely, these two functions f and Φ depend on the
key bits and IV bits, through the successive outputs of two shift-registers K∗ and IV ∗ initialized by the
key and by the IV respectively. The internal state is then composed of five registers of sizes 93, 84, 111,
128 and 128 bits, having an internal state size of 544 bits in total, among which 416 become unknown
to the attacker after initialization.

We will use the same notation as the description of Trivium, and for the additional registers we use
the usual shift-register notation: the leftmost bit is denoted by K∗127 (or IV ∗127), and the rightmost bit
(i.e., the output) is denoted by K∗0 (or IV ∗0 ). Each one of these two registers are rotated independently
from the rest of the cipher. The generator is described below, and depicted on Fig. 2.

(s1, s2, . . . , s93)← (K0, . . . ,K92)
(s94, s95, . . . , s177)← (IV0, . . . , IV83)
(s178, s179, . . . , s288)← (IV84, . . . , IV127, 1, . . . , 1, 0)
(K∗127,K

∗
126, . . . ,K

∗
0 )← (K0, . . . ,K127)

(IV ∗127, IV
∗
126, . . . , IV

∗
0 )← (IV0, . . . , IV127)

for i = 1 to 1152 +N do
t1 ← s66 + s93
t2 ← s162 + s177
t3 ← s243 + s288 + K∗0

if i > 1152 do
output zi−1152 ← t1 + t2 + t3

end if
t1 ← t1 + s91 · s92 + s171 + IV∗0
t2 ← t2 + s175 · s176 + s264
t3 ← t3 + s286 · s287 + s69
t4 ← K∗0
t5 ← IV ∗0
(s1, s2, . . . , s93)← (t3, s1, . . . , s92)
(s94, s95, . . . , s177)← (t1, s94, . . . , s176)
(s178, s179, . . . , s288)← (t2, s178, . . . , s287)
(K∗127,K

∗
126, . . . ,K

∗
0 )← (t4,K

∗
127, . . . ,K

∗
1 )

(IV ∗127, IV
∗
126, . . . , IV

∗
0 )← (t5, IV

∗
127, . . . , IV

∗
1 )

end for

Related ciphers. KATAN [CDK09] is a lightweight block cipher with a lot in common with Trivium. It
is composed of two registers, whose feedback functions are very sparse, and have a single nonlinear term.
The key, instead of being used for initializing the state, is introduced by XORing two key information-
bits per round to each feedback bit. The recently proposed stream cipher Sprout [AM15], inspired by
Grain but with much smaller registers, also inserts the key in a similar way: instead of using the key
for initializing the state, one key information-bit is XORed at each clock to the feedback function.
We can see the parallelism between these two ciphers and our newly proposed variant. In particular,
the previous security analysis on KATAN shows that this type of design does not introduce any clear
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Fig. 2. Kreyvium. The three registers in the middle correspond to the original Trivium. The modifications
defining Kreyvium correspond to the two registers in blue.

weakness. Indeed, the best attacks on round-reduced versions of KATAN so far [FM14] are meet-in-the-
middle attacks, that exploit the knowledge of the values of the first and the last internal states (due to
the block-cipher setting). As this is not the case here, such attacks, as well as the recent interpolation
attacks against LowMC [DLMW15], do not apply. The best attacks against KATAN, when excluding
MitM techniques, are conditional differential attacks [KMN10,KMN11].

Design rationale. In Kreyvium, we have decided to XOR the keybit K∗0 to the feedback function of
the register that interacts with the content of (s1, . . . , s63) the later, since (s1, . . . , s63) is initialized with
some key bits. The same goes for the IV ∗ register. Moreover, as the keybits that start entering the state
are the ones that were not in the initial state, all the keybits affect the state at the earliest.

We also decided to initialize the state with some keybits and with all the IV bits, and not with a
constant value, as this way the mixing will be performed quicker. Then we can expect that the internal-
state bits after initialization are expressed as more complex and less sparse functions in the key and IV
bits.

Our change of constant is motivated by the conditional differential attacks from [KMN11]: the condi-
tions needed for a successful attack are that 106 bits from the IV or the key are equal to ’0’ and a single
one needs to be ’1’. This suggests that values set to zero “encourage” non-random behaviors, leading to
our new constant. In other words, in Trivium, an all-zero internal state is always updated in an all-zero
state, while an all-one state will change through time. The 0 at the end of the constant is added for
preventing slide attacks.

Multiplicative depth. Exactly as for Trivium, we can compute the number of keystream bits which can
be generated from the key at a given depth. The only difference with Trivium is that the first register now
contains 93 key bits instead of 80. For this reason, the optimization using hybrid plaintext/ciphertext
calculations is a bit less interesting: for any fixed depth d ≥ 4, we can generate 11 bits less than with
Trivium.

Proposition 2. In Kreyvium, the keystream length N(d) which can be produced from the 128-bit key
with a circuit of multiplicative depth d, d ≥ 4, is given by

N(d) = 282×
⌊d

3

⌋
+


70 if d ≡ 0 mod 3

149 if d ≡ 1 mod 3

258 if d ≡ 2 mod 3

.
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Security analysis. We investigate in more detail how all the known attacks on Trivium, and some other
techniques, can apply to Kreyvium.

TMDTO. TMDTO attacks aiming at recovering the initial state of the cipher do not apply since the
size of the secret part of the internal state (416 bits) is much larger than twice the key-size. As discussed
at the beginning of Section 3, the size of the whole secret internal state has to be taken into account,
even if the additional 128-bit part corresponding to K∗ is independent from the rest of the state. On the
other hand, TMDTO aiming at recovering the key have complexity larger than exhaustive key search
(even without any restriction on the precomputation time) since the key and the IV have the same
size [HS05,CLP05].

Internal-state collision. As discussed in Section 3, a distinguisher may be built if the attacker is able to
find two colliding internal states, since the two keystream sequences produced from colliding states are
identical. Finding such a collision requires around 2144 keystream bits generated from the same key/IV
pair, which is much longer than the maximal keystream length allowed by the multiplicative depth of the
circuit. But, for a given key, two internal states colliding on all bits except on IV ∗ lead to two keystreams
which have the same first 69 bits since IV ∗ affects the keystream only 69 clocks later. Moreover, if the
difference between the two values of IV ∗ when the rest of the state collides lies in the leftmost bit,
then this difference will affect the keystream bits (69 + 128) = 197 clocks later. This implies that, within
around 2144 keystream bits generated from the same key, we can find two identical runs of 197 consecutive
bits which are equal. However, this property does not provide a valid distinguisher because a random
sequence of length 2144 blocks is expected to contain much more collisions on 197-bit runs. Therefore,
the birthday-bound of 2144 bits provides a limit on the number of bits produced from the same key/IV
pair, not on the bits produced from the same IV.

Cube attacks [DS09,FV13] and cube testers [ADMS09]. As previously pointed out, they provide the best
attacks for round-reduced Trivium. In our case, as we keep the same main function, but we have two
additional XORs per round, thus a better mixing of the variables, we can expect the relations to get
more involved and hamper the application of previously defined round-reduced distinguishers. One might
wonder if the fact that more variables are involved could ease the attacker’s task, but we point out here
that the limitation in the previous attacks was not the IV size, but the size of the cubes themselves.
Therefore, having more variables available is of no help with respect to this point. We can conclude that
the resistance of Kreyvium to these types of attacks is at least the resistance of Trivium, and even better.

Conditional differential cryptanalysis. Because of its applicability to both Trivium and KATAN, the
attack from [KMN11] is definitely of interest in our case. In particular, the highest number of blank rounds
is reached if some conditions on two registers are satisfied at the same time (and not only conditions on
the register controlled by the IV bits in the original Trivium). In our case, as we have IV bits in two
registers, it is important to elucidate whether an attacker can take advantage of introducing differences
in two registers simultaneously. First, let us recall that we have changed the constant to one containing
mostly 1. We previously saw that the conditions that favor the attacks are values set to zero in the initial
state. In Trivium, per design, we have (108+4+13) = 125 bits already fixed to zero in the initial state, 3
are fixed to one and the others can be controlled by the attacker in the weak-key setting (and the attacker
will force them to be zero most of the time). Now, instead, we have 64 bits forced to be 1, 1 equal to
zero, and (128+93) = 221 bits of the initial state controlled by the attacker in the weak-key setting, plus
potentially 21 additional bits from the key still not used, that will be inserted during the first rounds.
We can conclude that, while in Trivium is possible in the weak-key setting, to introduce zeros in the
whole initial state but in 3 bits, in Kreyvium, we will never be able to set to zero 64 bits, implying that
applying the techniques from [KMN11] becomes much harder. Additionally, as in the discussion on cube
attacks, we can also hope here that we get more involved relations that will provide a better resistance
against these attacks.

Algebraic attacks. Several algebraic attacks have been proposed against Trivium, aiming at recovering
the 288-bit internal state at the beginning of the keystream generation (i.e., at time t = 1153) from
the knowledge of the keystream bits. The most efficient attack of this type is due to Maximov and
Biryukov [MB07]. It exploits the fact that the 22 keystream bits at time 3t′, 0 ≤ t′ < 22, are determined
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by all bits of the initial state at indexes divisible by 3 (starting from the leftmost bit in each register).
Moreover, once all bits at positions 3i are known, then guessing that the outputs of the three AND gates
at time 3t′ are zero provides 3 linear relations between the bits of the internal state and the keystream
bits. The attack then consists of an exhaustive search for some bits at indexes divisible by 3. The other
bits in such positions are then deduced by solving the linear system derived from the keystream bits
at positions 3t′. Once all these bits have been determined, the other 192 bits of the initial state are
deduced from the other keystream equations. This process must be iterated until the guess for the
outputs of the AND gates is correct. In the case of Trivium, the outputs of at least 125 AND gates
must be guessed in order to get 192 linear relations involving the 192 bits at indexes 3i+ 1 and 3i+ 2.
This implies that the attack has to be repeated (4/3)125 = 252 times. From these guesses, we get many
linear relations involving the bits at positions 3i only, implying that only an exhaustive search with
complexity 232 for the other bits at positions 3i is needed. Therefore, the overall complexity of the attack
is around 232 × 252 = 284. A similar algorithm can be applied to Kreyvium, but the main difference
is that every linear equation corresponding to a keystream bit also involves one key bit. Moreover, the
key bits involved in the generation of any 128 consecutive output bits are independent. It follows that
each of the first 128 linear equations introduces a new unknown in the system to solve. For this reason,
it is not possible to determine all bits at positions 3i by an exhaustive search on less than 96 bits like
for Trivium. Moreover, the outputs of more than 135 AND gates must be guessed for obtaining enough
equations on the remaining bits of the initial state. Therefore the overall complexity of the attack exceeds
296 × 252 = 2148 and is much higher that the cost of the exhaustive key search. It is worth noticing that
the attack would have been more efficient if only the feedback bits, and not the keystream bits, would
have been dependent on the key. In this case, 22 linear relations independent from the key would have
been available to the attacker.

4 Experimental Results

In this section, we discuss and compare the practicality of our generic construction when instantiated
with Trivium, Kreyvium and the HE-dedicated cipher LowMC. The expansion function G implements
a mere counter, and the aforementioned algorithms are used to instantiate the function F that produces
N bits of keystream per iteration—cf. Prop. 1 and 2.9

HE framework. In our experiments, we considered two HE schemes: the BGV scheme [BGV14] and the
FV scheme [FV12] (a scale-invariant version of BGV). The BGV scheme is implemented in the library
HElib [HS14] and has become de facto a standard benchmarking library for HE applications. Similarly,
the FV scheme was previously used in several HE benchmarkings [FSF+13,LN14,CDS15], is conceptually
simpler than the BGV scheme, and is one of the most efficient HE schemes.10 Additionally, batching
was used [SV14], i.e. the HE schemes were set up to encrypt vectors in an SIMD fashion (component-
wise operations, and rotations via the Frobenius endomorphism). The number of elements that can be
encrypted depends on the number of terms in the factorization modulo 2 of the cyclotomic polynomial
used in the implementation. This batching allowed us to perform several Trivium/Kreyvium/LowMC
in parallel in order to increase the throughput.

Parameter selection for subsequent homomorphic processing. In all the previous works on the
homomorphic evaluation of symmetric encryption schemes, the parameters of the underlying HE scheme
were selected for the exact multiplicative depth required and not beyond [GHS12,CLT14,LN14,DSES14,ARS+15].
This means that once the ciphertext is decompressed, no further homomorphic computation can actually
be performed by Charlie – this makes the claimed timings considerably less meaningful in a real-world
context.

In this work, we benchmarked both parameters for the exact multiplicative depth and parameters able
to handle circuits of the minimal multiplicative depth plus 7 to allow further homomorphic processing

9 Note that these propositions only hold when hybrid clear and encrypted data calculations are possible between
IV and HE ciphertexts. This explains the slight differences in the number of keystream bits per iteration
(column “N”) between Tab. 1 and 2.

10 In our experiments, we used the Armadillo compiler implementation of FV [CDS15]. This source-to-source
compiler turns a C++ algorithm into a Boolean circuit, optimizes it, and generates an OpenMP parallel code
which can then be combined with a HE scheme.
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Table 1. Latency and throughput for the algorithms using HElib on a single core of a mid-end 48-core server (4
x AMD Opteron 6172 processors with 64GB of RAM).

Algorithm
security

N
used

#slots
latency throughput

level κ × depth sec. bits/min

Trivium-12 80 45
12 600 1417.4 1143.0

19 720 4420.3 439.8

Trivium-13 80 136
13 600 3650.3 1341.3

20 720 11379.7 516.3

Kreyvium-12 128 42
12 504 1715.0 740.5

19 756 4956.0 384.4

Kreyvium-13 128 124
13 682 3987.2 1272.6

20 480 12450.8 286.8

LowMC-128 ? ≤ 118 256
13 682 3608.4 2903.1

20 480 10619.6 694.3

LowMC-128 [ARS+15] ? ≤ 118 256
13 682 3368.8 3109.6

20 480 9977.1 739.0

by Charlie (which is obviously what is expected in applications of homomorphic encryption). We chose
7 because, in practice, numerous applications use algorithms of multiplicative depth smaller than 7 (see
e.g. [GLN12,LLN14]). In what follows we compare the results we obtain using Trivium, Kreyvium and
also the LowMC cipher. For LowMC, we benchmarked not only our own implementation but also the
LowMC implementation of [ARS+15] available at https://bitbucket.org/malb/lowmc-helib. Minor
changes to this implementation were made in order to obtain an equivalent parametrization of HElib.
The main difference between the latter implementations is that the implementation from [ARS+15] uses
an optimized method for multiplying a Boolean vector and a Boolean matrix, namely the “Method of
Four Russians”. This explains why our implementation is approximately 6% slower, as it performs 2–3
times more ciphertext additions.

Experimental results using HElib. For sake of comparison with [ARS+15], we ran our implemen-
tations and their implementation of LowMC on a single core using HElib. The results are provided
in Tab. 1. We recall that the latency refers to the time required to perform the entire homomorphic
evaluation whereas the throughput is the number of blocks processed per time unit.

Experimental results using FV. On Tab. 2, we present the benchmarks when using the FV scheme.
The experiments were performed using either a single core (in order to compare with BGV) or on all
the cores of the machine the tests were performed on. The execution time acceleration factor between
48-core parallel and sequential executions is given in the column “Speed gain”. While good accelerations
(at least 25 times) were obtained for Trivium and Kreyvium algorithms, the acceleration when using
LowMC is significantly smaller (∼ 10 times). This is due to the huge number of operations in LowMC
that created memory contention and huge slowdown in memory allocation.

Interpretation. First, we would like to recall that LowMC-128 must be considered in a different
category because of the existence of a key-recovery attack with time complexity 2118 and data complexity
273 [DLMW15]. However, it has been included in the table in order to show that the performances
achieved by Trivium and Kreyvium are of the same order of magnitude. An increase in the number of
rounds of LowMC-128 (typically by 4 rounds) is needed in order to achieve 128-bit security, but this
would have a non-negligible impact on its homomorphic evaluation performance, as it would require to
increase the depth of the cryptosystem supporting the execution. For instance, a back-of-the-envelope
estimation for four additional rounds leads to a degradation of its homomorphic execution performances
by a factor of about 2 to 3 (more computations with larger parameters), making the approach in this
paper much more competitive.
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Table 2. Latency of our construction when using the FV scheme on a mid-end 48-core server (4 x AMD Opteron
6172 processors with 64GB of RAM).

Algorithm
security

N
used latency (sec.)

Speed gain
level κ × depth 1 core 48 cores

Trivium-12 80 57
12 681.5 26.8 × 25.4

19 2097.1 67.6 × 31.0

Trivium-13 80 136
13 888.2 33.9 × 26.2

20 2395.0 77.2 × 31.0

Kreyvium-12 128 46
12 904.4 35.3 × 25.6

19 2806.3 82.4 × 34.1

Kreyvium-13 128 125
13 1318.6 49.7 × 26.5

20 3331.4 97.9 × 34.0

LowMC-128 ? ≤ 118 256
14 1531.1 171.0 × 9.0

21 3347.8 329.0 × 10.2

It is worth noticing that the minimal multiplicative depth for which valid LowMC output ciphertexts
were obtained was 14 for the FV scheme and 13 for the BGV scheme (the theoretical multiplicative depth
is 12 but the high number of additions in LowMC explains this difference11).

Our results show that Trivium and Kreyvium have a smaller latency than LowMC, but have a slightly
smaller throughput. As already emphasized in [LN14], real-world applications of homomorphic encryption
(which are often cloud-based applications) should be implemented in a transparent and user-friendly way.
In the context of our approach, the latency of the offline phase is still an important parameter aiming
at an acceptable experience for the end-user even when a sufficient amount of homomorphic keystream
could not be precomputed early enough because of overall system dimensioning issues.

Also Trivium and Kreyvium are more parallelizable than LowMC is. Therefore, our work shows that
the promising performances obtained by the recently proposed HE-dedicated cipher LowMC can also
be achieved with Trivium, a well-analyzed stream cipher, and a variant aiming at achieving 128 bits
of security. Last but not least, we recall that our construction was aiming at compressing the size of
transmissions between Alice and Charlie. We support an encryption rate |c′|/|m| that becomes asymp-
totically close to 1 for long messages, e.g. for `m = 1GB message length, our construction instantiated
with Trivium (resp. Kreyvium), yields an expansion rate of 1.08 (resp. 1.16).

5 Conclusion

Our work shows that the promising performances obtained by the recently proposed HE-dedicated cipher
LowMC can also be achieved with Trivium, a well-known primitive whose security has been thoroughly
analyzed, e.g. [MB07,DS09], and [ADMS09,FV13,KMN11]. The 10-year analysis effort from the whole
community, initiated by the eSTREAM competition, enables us to gain confidence in its security. Also
our variant Kreyvium, with a 128-bit security, benefits from the same analysis since the core of the cipher
is essentially the same.

From a more fundamental perspective, one may wonder how many multiplicative levels are strictly
necessary to achieve a secure compressed encryption scheme, irrespective of any performance metric such
as the number of homomorphic bit multiplications to perform in the decompression circuit. We already
know that a multiplicative depth of dlog κe+ 1 is achievable for κ-bit security (cf. App. D). Can one do
better or prove that this is a lower bound?

11 We would like to emphasize that the multiplicative depth is only an approximation of the homomorphic depth
required to absorb the noise generated by the execution of a given algorithm [LP13]. This approximation
neglects the noise induced by additions and thus does not hold for too addition-intensive algorithms such as
those in the LowMC family.
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However, the provable security of a KEM-DEM construct where the KEM is homomorphic remains
an open question. In particular, assuming the KEM part is just IND-CPA, what would be the minimum
security requirements expected from the DEM part to yield an IND-CPA construction?
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bouchi, and Aaram Yun. Batch Fully Homomorphic Encryption over the Integers. In EUROCRYPT,
volume 7881 of LNCS, pages 315–335. Springer, 2013.

CDK09. Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and KTANTAN - A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In CHES, volume 5747 of LNCS,
pages 272–288. Springer, 2009.

CDS15. Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Armadillo: a compilation chain for privacy pre-
serving applications. In ACM CCSW, 2015.

CLP05. Christophe De Cannière, Joseph Lano, and Bart Preneel. Comments on the rediscovery of time
memory data tradeoffs. Technical report, eSTREAM - ECRYPT Stream Cipher Project, 2005.
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Binary Curves - (Or How to Solve Discrete Logarithms in F 24·1223 and F 212·367). In CRYPTO, Part
II, volume 8617 of LNCS, pages 126–145. Springer, 2014.

GLN12. Thore Graepel, Kristin E. Lauter, and Michael Naehrig. ML Confidential: Machine Learning on
Encrypted Data. In ICISC, volume 7839 of LNCS, pages 1–21. Springer, 2012.
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A Number of AND and XOR gates in Trivium and Kreyvium

A more thorough analysis of the number of AND and XOR gates in the different circuits is provided in
Table 3. The keystream length is the maximum possible for a given multiplicative depth. It is lower for
the BGV scheme (batched) because the IV is no more a boolean string so less circuit optimization are
possible. For the FV scheme (non-batched) the table gives the number of executed gates in the worst
case. The actual number of executed gates can be lower as it depends on the employed IV.

Table 3. Number of AND and XOR gates to homomorphically evaluate in Trivium and Kreyvium for FV and
BGV schemes.

Algorithm λ
FV BGV

#ANDs #XORs keystream #ANDs #XORs keystream

Trivium-12 80 3237 15019 57 3183 14728 45

Trivium-13 80 3474 16537 136 3474 16537 136

Kreyvium-12 128 3311 18081 46 3288 17934 42

Kreyvium-13 128 3564 19878 125 3561 19866 124

B Which quantity must be encrypted under the HE?

In order to limit the multiplicative depth of the decryption circuit, we may prefer to transmit a longer
secret k̃, from which more calculations can be done at a small multiplicative depth. Typically, for a
block cipher, the sequence formed by all round-keys can be transmitted to the server. In this case, the
key scheduling does not have to be taken into account in the homomorphic evaluation of the decryption
function. Similarly, stream ciphers offer several such trade-offs between the encryption rate and the
encryption throughput. The encryption rate, i.e., the ratio between the size of c′ = (HEpk(k),Ek(m))
and the plaintext size `m, is defined as

ρ =
|c′|
`m

=
|Ek(m)|
`m

+
|k̃| × (HE expansion rate)

`m
.

The extremal situation obviously corresponds to the case where the message encrypted under the homo-
morphic scheme is sent directly, i.e., c′ = HEpk(m). The multiplicative depth here is 0, as no decryption
needs to be performed. In this case, ρ corresponds to the HE expansion rate.

The following alternative scenarios can then be compared.
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1. Only the secret key is encrypted under the homomorphic scheme, i.e., k̃ = k. Then, since we focus
on symmetric encryption schemes with rate 1, we get

ρ = 1 +
`k × (HE expansion rate)

`m

which is the smallest encryption rate we can achieve for an `k-bit security. In a nonce-based stream
cipher, `m is limited by the IV size `IV and by the maximal keystream length N(d) which can be
produced for a fixed multiplicative depth d ≥ depth(Sync)+depth(f). Then, the minimal encryption
rate is achieved for messages of any length `m ≤ 2`IVN(d).

2. An intermediate case consists in transmitting the initial state of the generator, i.e., the output of
Sync. Then, the number of bits to be encrypted by the HE increases to the size n of the internal
state, while the number of keystream bits which can be generated from a given initial state with a
circuit of depth d corresponds to N(d+ depth(Sync)). Then, we get

ρ = 1 +
n× (HE expansion rate)

N(d+ depth(Sync))
,

for any message length. The size of the internal state is at least twice the size of the key. Therefore,
this scenario is not interesting, unless the number of plaintext bits `m to be encrypted under the
same key is smaller than twice N(d+ depth(Sync)).

C Proofs of Propositions 1 and 2

We first observe that, within any register in Trivium, the degree of the leftmost bit is greater than or
equal to the degrees of the other bits in the register. It is then sufficient to study the evolution of the
leftmost bits in the three registers. Let ti(d) denotes the first time instant (starting from t = 1) where the
leftmost bit in Register i is computed by a circuit of depth d. The depth of the feedback bit in Register i
can increase from d to (d+1) if either a bit of depth (d+1) reaches a XOR gate in the feedback function,
or a bit of depth d reaches one of the inputs of the AND gate. From the distance between the leftmost
bit and the first bit involved in the feedback (resp. and the first entry of the AND gate) in each register,
we derive that

t1(d+ 1) = min(t3(d+ 1) + 66, t3(d) + 109)

t2(d+ 1) = min(t1(d+ 1) + 66, t1(d) + 91)

t3(d+ 1) = min(t2(d+ 1) + 69, t2(d) + 82)

In Trivium, the first key bits K78 and K79 enter the AND gate in Register 1 at time t = 13 (starting
from t = 1), implying t2(1) = 14. Then, t3(1) = 83 and t1(1) = 149. This leads to

t1(4) = 401, t2(4) = 296 and t3(4) = 335 .

From d = 3, the differences ti[d+ 1]− ti[d] are large enough so that the minimum in the three recurrence
relation corresponds to the right-hand term. We then deduce that, for d ≥ 4,

– if d ≡ 1 mod 3,

t1(d) = 282× (d− 1)

3
+ 119, t2(d) = 282× (d− 1)

3
+ 14, t3(d) = 282× (d− 1)

3
+ 53.

– if d ≡ 2 mod 3,

t1(d) = 282× (d− 2)

3
+ 162, t2(d) = 282× (d− 2)

3
+ 210, t3(d) = 282× (d− 2)

3
+ 96.

– if d ≡ 0 mod 3,

t1(d) = 282× (d− 3)

3
+ 205, t2(d) = 282× (d− 3)

3
+ 253, t3(d) = 282× (d− 3)

3
+ 292.
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The degree of the keystream produced at time t corresponds to the minimum between the degrees of
the bit at position 66 in Register 1, the bit at position 69 in Register 2 and the bit at position 66 in
Register 3. Then, for d > 3,

N(d) = min(t1(d+ 1) + 64, t2(d+ 1) + 67, t3(d+ 1) + 64) .

This leads to, for any d ≥ 4,

N(d) = 282×
⌊d

3

⌋
+


81 if d ≡ 0 mod 3

160 if d ≡ 1 mod 3

269 if d ≡ 2 mod 3

.

In Kreyvium, the recurrence relations defining the ti(d) are the same. The only difference is that the
first key bits now enter the AND gate in Register 1 at time t = 1, implying t2(1) = 2. Then, t3(1) = 71,
t1(1) = 137 and t3[2] = 85. The situation is then similar to Trivium, except that we start from

t1(4) = 390, t2(4) = 285 and t3(4) = 324 .

These three values are equal to the values obtained with Trivium minus 11. This fixed difference then
propagated, leading to, for any d ≥ 4,

– if d ≡ 1 mod 3,

t1(d) = 282× (d− 1)

3
+ 108, t2(d) = 282× (d− 1)

3
+ 3, t3(d) = 282× (d− 1)

3
+ 42.

– if d ≡ 2 mod 3,

t1(d) = 282× (d− 2)

3
+ 151, t2(d) = 282× (d− 2)

3
+ 199, t3(d) = 282× (d− 2)

3
+ 85.

– if d ≡ 0 mod 3,

t1(d) = 282× (d− 3)

3
+ 194, t2(d) = 282× (d− 3)

3
+ 242, t3(d) = 282× (d− 3)

3
+ 281.

We eventually derive that, for Kreyvium, for any d ≥ 4,

N(d) = 282×
⌊d

3

⌋
+


70 if d ≡ 0 mod 3

149 if d ≡ 1 mod 3

258 if d ≡ 2 mod 3

.

D Another Approach: Using Discrete Logs on Binary Fields

We now introduce a second, discrete-log based embodiment of the generic compressed encryption scheme
of Section 2.2. We recall that the homomorphic encryption scheme HEpk(·) is assumed to encrypt sepa-
rately each plaintext bit. For h ∈ F2n , we identify h with the vector of its coefficients and therefore by
HEpk(h), we mean the vector composed of the encrypted coefficients of h.

This approach attempts to achieve provable security while ensuring a low-depth circuit CF . For this,
we require G to be a PRNG and IV to be chosen at random at encryption time and transmitted within
c′. This allows us to prove that c′ is semantically secure under a well-defined complexity assumption.
Simultaneously, we use exponentiation in a binary field to instantiate F , which yields a circuit CF of
depth dlog `ke. Performance estimations, however, show that Approach 2 is rather impractical.

D.1 Description

In this approach, the operating mode picks a fresh IV ← {0, 1}`IV for each compressed ciphertext. The
expansion function G is instantiated by some PRNG that we will view as a random oracle in the security
proof. Also, we set

`x = N = n ,

and therefore F maps n-bit inputs to n-bit outputs under `k-bit parameters. Given k ∈ {0, 1}`k and
x ∈ {0, 1}n, Fk(x) views x as a field element in F2n and k as an `k-bit integer, computes z = xk over F2n ,
views z as an n-bit string and outputs z. This completes the description of the compressed encryption
scheme.
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D.2 A log-log-depth exponentiation circuit over F2n

We describe a circuit Cexp which, given a field element h ∈ F2n and an encrypted exponent HEpk(k) with
k ∈ {0, 1}`k , computes HEpk(h

k) and has multiplicative depth at most dlog `ke.
Stricto sensu, Cexp is not just a Boolean circuit evaluated homomorphically, as it combines compu-

tations in the clear, homomorphic F2-arithmetic on encrypted bits, and F2-arithmetic on mixed cleart-
ext/encrypted bits.
Cexp uses implicitly some irreducible polynomial p to represent F2n and we denote by ⊕ and ⊗p the

field operators. The basic idea here is that for any a, b ∈ F2n , computing HE(a⊗p b) from HE(a),HE(b)
requires only 1 multiplicative level, simply because ⊗p is F2-bilinear. Therefore, knowing p and the
characteristics of HE, we can efficiently implement a bilinear operator on encrypted binary vectors to
compute

HE(a⊗p b) = HE(a) ⊗HE
p HE(b) .

A second useful observation is that for any a ∈ F2n and β ∈ {0, 1}, there is a multiplication-free way
to deduce HE(aβ) from a and HE(β). When β = 1, aβ is just a and aβ = 1F2n

= (1, 0, . . . , 0) otherwise.
Therefore to construct a vector v = (v0, . . . , vn−1) = HE(aβ), it is enough to set

vi :=

{
HE(0) if ai = 0
HE(β) if ai = 1

for i = 1, . . . , n− 1 and

v0 :=

{
HE(β ⊕ 1) if a0 = 0
HE(1) if ai = 1

where it does not matter that the same encryption of 0 be used multiple times. Let us denote this
procedure as

HE(aβ) = La (HE(β)) .

Now, given as input h ∈ F2n , Cexp first computes in the clear hi = h2
i

for i = 0, . . . , `k − 1. Since

hk = hk00 ⊗p h
k1
1 ⊗p · · · ⊗p h

k`k−1

`k−1 ,

one gets

HE(hk) = HE
(
hk00

)
⊗HE
p HE

(
hk11

)
⊗HE
p · · · ⊗HE

p HE
(
h
k`k−1

`k−1

)
= Lh0

(HE (k0)) ⊗HE
p Lh1

(HE (k1)) ⊗HE
p · · · ⊗HE

p Lh`k−1
(HE (k`k−1)) .

Viewing the `k variables as the leaves of a binary tree, Cexp therefore requires at most dlog `ke levels of
homomorphic multiplications to compute and return HEpk(h

k).

D.3 Security Results

Given some homomorphic encryption scheme HE and security parameters κ, n, `k, we define a family of
decision problems {DPt}t>0 as follows.

Definition 1 (Decision Problem DPt). Let pk← HE.KeyGen(1κ) be a random public key, k ← {0, 1}`k
a random `k-bit integer and g1, . . . , gt, g

′
1, . . . , g

′
t ← F2n , 2t random field elements. Distinguish the distri-

butions

Dt,1 =
(
pk,HEpk(k), g1, . . . , gt, g

k
1 , . . . , g

k
t

)
and

Dt,0 = (pk,HEpk(k), g1, . . . , gt, g
′
1, . . . , g

′
t) .

Theorem 1. Viewing G as a random oracle, the compressed encryption scheme described above is se-
mantically secure (IND-CPA), unless breaking DPt is efficient, for messages of bit-size `m with (t−1)n <
`m ≤ tn.
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Proof (Sketch). A random-oracle version of the PRNG function G is an oracle that takes as input a pair
(IV, `) where IV ∈ {0, 1}`IV and ` ∈ N∗, and returns an `-bit random string. It is also imposed to the
oracle that G(IV ; `1) be a prefix of G(IV ; `2) for any IV and `1 ≤ `2.

We rely on the real-or-random flavor of the IND-CPA security game and build a reduction algorithm
R that uses an adversary AG against the scheme to break DPt as follows. R is given as input some
(pk,HEpk(k), g1, . . . , gt, g̃1, . . . , g̃t) sampled from Dt,b and has to guess the bit b. R runs AG(pk) and
receives some challenge plaintext m? ∈ {0, 1}`m where (t − 1)n < `m ≤ tn. R makes use of its input to
build a compressed ciphertext c′ as follows:

1. Set keystream to the `m leftmost bits of g̃1 || . . . || g̃t,
2. Pick a random IV ? ← {0, 1}`IV ,
3. Abort if G(IV ?; `′) is already defined for some `′,
4. Set G(IV ?; tn) to g1 || . . . || gt.
5. Set c′ = (HEpk(k), IV ?,m? ⊕ keystream),

R then returns c′ to A and forwards A’s guess b̂ to its own challenger. At any moment, R responds to
A’s queries to G using fresh random strings for each new query or to extend a past query to a larger
size. Obviously, all the statistical distributions comply with their specifications. Consequently c′ is an
encryption of m? if the input instance comes from Dt,1 and is an encryption of some perfectly uniform
plaintext if the instance follows Dt,0. The reduction is tight as long as the abortion probability q2−`IV

remains negligible, q being the number of oracle queries made by A. ut

Interestingly, we note the following fact about our family of decision problems.

Theorem 2. For any t ≥ 2, DPt is equivalent to DP2.

Proof. Obviously, a problem instance (pk,HEpk(k), g1, . . . , gt, g̃1, . . . , g̃t) sampled from Dt,b can be con-
verted into an instance of D2,b for the same b, by just removing g3, . . . , gt and g̃3, . . . , g̃t. This operation
preserves the distributions of all inner variables. Therefore DPt can be reduced to DP2. Now, we describe
a reduction R which, given an instance (pk,HEpk(k), g1, g2, g̃1, g̃2) sampled from D2,b, makes use of an
adversary A against DPt to successfully guess b. R converts its instance of D2,b into an instance of Dt,b

as follows. For i = 3, . . . , t, R randomly selects αi ← Z/(2n − 1)Z and sets

gi = gαi1 g1−αi2 , g̃i = g̃αi1 g̃1−αi2 .

It is easily seen that, if g̃1 = gk1 and g̃2 = gk2 then g̃i = gki for every i. If however g̃1, g̃2 are uniformly and
independently distributed over F2n then so are g̃3, . . . , g̃t. Our reduction runs A over that instance and
outputs the guess b̂ returned by A. Obviously R is tight. ut

Overall, the security of our compressed encryption scheme relies on breaking DP1 for messages of
bit-size at most n and on breaking DP2 for larger messages. Beyond the fact that DP2 reduces to DP1,
we note that these two problems are unlikely to be equivalent since DP2 is easily broken using a DDH
oracle over F2n while DP1 seems to remain unaffected by it.

D.4 Performance Issues

Concrete security parameters. Note that our decisional security assumptions DPexp
t for all t ≥ 1

reduce to the discrete logarithm computation in the finite field F2n . Solving discrete logarithm in finite
fields of small characteristics is currently a very active research area, marked notably by the quasi-
polynomial algorithm of Barbulescu, Gaudry, Joux and Thomé [BGJT14]. In particular, the expected
security one can hope for has been recently completely redefined [GKZ14,AMOR14]. In our setting, we
will select a prime n so that computing discrete logarithms in F2n has complexity 2κ for κ-bit security.
The first step of Barbulescu et al. algorithm runs in polynomial time. This step has been extensively
studied and its complexity has been brought down to O((2log2 n)6) using a very complex and tight analysis
by Joux and Pierrot [JP14]. As for the quasi-polynomial step of the algorithm, its complexity can be
upper-bounded, but in practice numerous trade-off can be used and it is difficult to give to lower bound
it [BGJT14,AMOR14]. To remains conservative in our choice of parameters, we will base our security
on the first step. To ensure a 80-bit (resp. 128-bit) security level, one should therefore choose a prime
n of log2 n ≈ 14 bits (resp. 23 bits), i.e. work in a finite field of about 16, 000 elements (resp. 4 million
elements).
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How impractical is this approach? We now briefly see why our discrete-log based construction on
binary fields is impractical. We focus more specifically on the exponentiation circuit Cexp whose most
critical subroutine is a general-purpose field multiplication in the encrypted domain. Taking homomorphic
bit multiplication as the complexity unit and neglecting everything else, how fast can we expect to
multiply encrypted field elements in F2n?

When working in the cleartext domain, several families of techniques exist with attractive asymp-
totic complexities for large n, such as algorithms derived from Toom-Cook [Bod07] or Schönhage-
Strassen [Pin89]. It is unclear how these different strategies can be adapted to our case and with what
complexities12. However, let us optimistically assume that they could be adapted somehow and that one
of these adaptations would just take n homomorphic bit multiplications.

A straightforward implementation of Cexp consists in viewing all circuit inputs Lhi(HE(ki)) as generic
encrypted field elements and in performing generic field multiplications along the binary tree, which
would require `k · n homomorphic bit multiplications. Taking `k = 160, n = 16000 and 0.5 seconds for
each bit multiplication (as a rough estimate of the timings of Section 4), this accounts for more than 14
days of computation.

This can be improved because the circuit inputs are precisely not generic encrypted field elements;
each one of the n ciphertexts in Lhi(HE(ki)) is known to equal either HE(ki), HE(ki⊕1), HE(0) or HE(1).
Similarly, a circuit variable of depth 1 i.e.

Lhi(HE(ki)) ⊗HE
p Lhi+1(HE(ki+1)) ,

contains n ciphertexts that are all an encryption of one of the 16 quadratic polynomials akiki+1 + bki +
cki+1 + d for a, b, c, d ∈ {0, 1}. This leads us to a strategy where one simulates the τ first levels of field
multiplications at once, by computing the 2dlog `ke−τ dictionaries of the form{

HE
(
kb0i k

b1
i+1 · · · k

b2τ−1

i+2τ−1

)}
b0,...,b2τ−1∈{0,1}

and computing the binary coefficients (in clear) to be used to reconstruct each bit of the 2dlog `ke−τ

intermediate variables of depth τ from the dictionaries through linear (homomorphic) combinations.
By assumption, this accounts for nothing in the total computation time. The rest of the binary tree is
then performed using generic encrypted field multiplications as before, until the circuit output is fully
aggregated. This approach is always more efficient than the straightforward implementation and optimal
when the total number (

22
τ

− 2τ − 1
)
· 2dlog `ke−τ +

(
2dlog `ke−τ−1 − 1

)
· n

of required homomorphic bit multiplications is minimal. With `k = 160 and n = 16000 again, the best
choice is for τ = 4. Assuming 0.5 seconds for each bit multiplication, this still gives a prohibitive 6.71
days of computation for a single evaluation of Cexp.

12 One could expect these techniques to become the most efficient ones here since their prohibitive overhead
would disappear in the context of homomorphic circuits.
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