
New directions in nearest neighbor searching

with applications to lattice sieving

Anja Becker∗1, Léo Ducas†2, Nicolas Gama3, and Thijs Laarhoven4

1EPFL, Lausanne, Switzerland, anja.becker@epfl.ch
2CWI, Amsterdam, The Netherlands, leo.ducas@cwi.nl

3UVSQ, Versailles, France, nicolas.gama@prism.uvsq.fr
4TUe, Eindhoven, The Netherlands, mail@thijs.com

Abstract

To solve the approximate nearest neighbor search prob-
lem (NNS) on the sphere, we propose a method using
locality-sensitive filters (LSF), with the property that
nearby vectors have a higher probability of surviving
the same filter than vectors which are far apart. We in-
stantiate the filters using spherical caps of height 1−α,
where a vector survives a filter if it is contained in the
corresponding spherical cap, and where ideally each fil-
ter has an independent, uniformly random direction.

For small α, these filters are very similar to the
spherical locality-sensitive hash (LSH) family previously
studied by Andoni et al. For larger α bounded away
from 0, these filters potentially achieve a superior per-
formance, provided we have access to an efficient ora-
cle for finding relevant filters. Whereas existing LSH
schemes are limited by a performance parameter of
ρ ≥ 1/(2c2 − 1) to solve approximate NNS with ap-
proximation factor c, with spherical LSF we potentially
achieve smaller asymptotic values of ρ, depending on the
density of the data set. For sparse data sets where the
dimension is super-logarithmic in the size of the data
set, we asymptotically obtain ρ = 1/(2c2− 1), while for
a logarithmic dimensionality with density constant κ we
obtain asymptotics of ρ ∼ 1/(4κc2).

To instantiate the filters and prove the existence of
an efficient decoding oracle, we replace the independent
filters by filters taken from certain structured random
product codes. We show that the additional structure in
these concatenation codes allows us to decode efficiently
using techniques similar to lattice enumeration, and we
can find the relevant filters with low overhead, while at
the same time not significantly changing the collision

∗Supported by the Swiss National Science Foundation, grant

numbers 200021-126368 and 200020-153113
†Supported by an NWO Free Competition Grant.

probabilities of the filters.
We finally apply spherical LSF to sieving algo-

rithms for solving the shortest vector problem (SVP)
on lattices, and show that this leads to a heuristic
time complexity for solving SVP in dimension n of
(3/2)n/2+o(n) ≈ 20.292n+o(n). This asymptotically im-
proves upon the previous best algorithms for solving
SVP which use spherical LSH and cross-polytope LSH
and run in time 20.298n+o(n). Experiments with the
GaussSieve validate the claimed speedup and show that
this method may be practical as well, as the polyno-
mial overhead is small. Our implementation is available
under an open-source license.

1 Introduction

Nearest neighbor searching (NNS). The near-
est neighbor search problem (NNS) is an important al-
gorithmic problem in various fields, such as machine
learning, coding theory, pattern recognition, and data
compression [DHS00, SDI05, Bis06, Dub10, RMS12].
Given an n-dimensional data set of size N , the prob-
lem is to preprocess a data structure such that, given a
query vector later, we can quickly identify nearby vec-
tors in time O(Nρ) for ρ < 1.

Locality-sensitive hashing (LSH). One well-
known technique for solving NNS is locality-sensitive
hashing (LSH) [IM99]. Using locality-sensitive hash
functions, which have the property that nearby vectors
are more likely to be mapped to the same output value
than distant pairs of vectors, one builds several hash
tables with buckets of nearby vectors. A query is
answered by going through all vectors which have at
least one hash in common with the target vector, and
searching these candidates for a near neighbor.

Approximate NNS. In case the nearest point in
the data set is known to be a factor c closer than

all other points in the data set, or when the returned
point is allowed to be at most a factor c further away
than the nearest neighbor, recent techniques of Andoni
et al. [AINR14, AR15a, AIL+15] have shown how to
answer queries in time O(Nρ) with

ρ =
1

2c2 − 1
+ o(1)

where the order term vanishes in high dimensions.
Within the class of LSH algorithms, these results are
essentially optimal [Dub10, OWZ14].1

Lattices. One recent application of LSH is to
speed up algorithms for solving the shortest vector prob-
lem (SVP) on lattices. Given a set B = {b1, . . . ,bn} ⊂
Rn of n linearly independent vectors, the lattice associ-
ated to B is the set of all integer linear combinations of
the basis vectors:

L(B) =

{
n∑
i=1

λibi : λi ∈ Z

}
.

Given a basis of a lattice, the shortest vector problem
asks to find a shortest (w.r.t. the Euclidean norm) non-
zero vector in this lattice. Estimating the computa-
tional hardness of SVP is particularly relevant for es-
timating the security of and selecting parameters for
lattice-based cryptography [LP11, vdPS13].

Lattice sieving. A recent class of algorithms for
solving SVP is lattice sieving [AKS01, NV08, MV10],
which are algorithms running in time and space 2O(n).
Heuristic sieving algorithms are currently the fastest
algorithms known for solving SVP in high dimensions,
and various recent work has shown how these algorithms
can be sped up with NNS techniques [BGJ15, BL15,
Laa15, LdW15]. The fastest heuristic algorithms to
date for solving SVP in high dimensions are based
on spherical LSH [AR15a, LdW15] and cross-polytope
LSH [AIL+15, BL15] and achieve time complexities of
20.298n+o(n).

1.1 Contributions and outline. After introducing
some preliminary notation, terminology, and describing
some useful lemmas about geometric objects on the
sphere in Section 2, the paper is organized as follows.

Locality-sensitive filtering (LSF). In Section 3
we introduce the concept of locality-sensitive filtering
(LSF), which in short corresponds to locality-sensitive

1Recent work [AR15b] suggests that the asymptotic bound

ρ ≥ 1/(2c2 − 1) on LSH only holds under certain non-trivial
assumptions, such as a low description complexity of the hash
regions. As these assumptions do not necessarily hold in high-

density settings, it is not clear whether it is possible to achieve
smaller values of ρ in the high-density regime.

hashing where only few vectors are actually assigned
to buckets. Conceptually, this is similar to approaches
of e.g. [Dub10, MO15]. We analyze its properties, its
relation with LSH, and how this potentially leads to
an improved performance over LSH given access to a
certain decoding oracle.

Spherical LSF. To instantiate these filters on the
sphere, in Section 4 we propose to use filters defined by
taking a random unit vector s and letting a vector w
pass through this filter iff 〈w, s〉 ≥ α for some α ∈ [0, 1).
We highlight similarities and differences with spherical
LSH [AR15a] and show how this potentially leads to an
improved performance over spherical LSH.

Random product codes. All these results de-
pend on the existence of an efficient decoding oracle. To
instantiate this oracle, in Section 5 we propose to use
spherical cap filters where the random vectors are taken
from a certain structured code C over the sphere such
that, given a query vector v, we can compute all rele-
vant filters with minimal overhead using list decoding.
A crucial issue is to prove that filters from such a code C
behave as well as uniformly random and independently
chosen filters, which is shown in the appendix.

Practical aspects. While random product codes
satisfy all the properties we need to prove that two
nearby vectors almost always have a common neighbor
among the filter vectors, these codes may not be very
efficient in practice, as the individual block codes have
subexponential size and are not efficiently decodable. In
Section 6 we discuss practical aspects of these codes, and
how we may or may not be able to replace these fully
random block codes by even more structured codes.

Application to lattice sieving. In Section 7 we
apply our method to lattice sieving, and show that we
obtain an asymptotic complexity for solving SVP of only
20.292n+o(n), improving upon the 20.298n+o(n) complex-
ity using spherical or cross-polytope LSH. Figure 1 il-
lustrates the asymptotic time-memory tradeoffs of our
algorithm and other results from the literature. Exper-
imental results show that the improvement is relevant
in moderate dimensions as well. Our implementation is
shared under an open-source license [Duc15].

Relation with May and Ozerov’s techniques.
Independently of our work, Herold [Her15] studied
how the nearest neighbor technique introduced by May
and Ozerov for decoding binary codes [MO15] can be
converted to angular distances, and what this would
lead to for lattice sieving. For the Nguyen-Vidick
sieve [NV08], he showed that this leads to the same
time complexity of 20.292n+o(n) using very similar, if
not equivalent techniques. One important difference
between his work and ours is that Herold’s result
uses the fact that in the Nguyen-Vidick sieve one

Ti
m
e
=
Sp
ac
e

●

●
● ●

●●●●

●●●●

●●

● ●

●●

NV
'08

M
V
'10

W
LT
B
'11

ZP
H
'13

BG
J
'14

BGJ '14

Laa '15

Laa '15

LdW
'15

/ BL
'15

LdW '15 / BL '15

BGJ '15

(this work)

(this work)

(this work)

20.20 n 20.25 n 20.30 n 20.35 n
20.25 n

20.30 n

20.35 n

20.40 n

20.45 n

Space complexity

T
im
e
co
m
pl
ex
ity

Figure 1: The asymptotic time-memory trade-off for
sieving algorithms in high dimensions.

has to solve batch-NNS, i.e. solving many instances
of NNS at the same time rather than one at a time.
This means that the same techniques do not directly
apply to the GaussSieve or to the general nearest
neighbor problem without introducing the list-decoding
of random product codes.

2 Preliminaries

Geometric objects on the sphere. Let µ be
the canonical Lebesgue measure over Rn, and let 〈·, ·〉
denote the standard Euclidean inner product. We
denote the unit sphere by Sn−1 := {x ∈ Rn : ‖x‖ = 1}
and half-spaces by Hv,α := {x ∈ Rn : 〈v,x〉 ≥ α}. For
v,w ∈ Sn−1 such that 〈v,w〉 = cos θ and α, β ∈ [0, 1]
we denote spherical caps and wedges by:

Cv,α := Sn−1 ∩Hv,α,

Wv,α,w,β := Sn−1 ∩Hv,α ∩Hw,β .

The following two lemmas estimate the volume of spher-
ical caps and wedges for large n. We denote these quan-
tities as follows, where 〈v,w〉 = cos θ and v,w ∈ Sn−1:

Cn(α) :=
µ(Cv,α)

µ(Sn−1)
,

Wn(α, β, θ) :=
µ(Wv,α,w,β)

µ(Sn−1)
.

Lemma 2.1 is elementary [MV10, Lemma 4.1], while
Lemma 2.2 is proved in Appendix A.

Lemma 2.1. (Volume of a spherical cap) For
arbitrary α ∈ (0, 1), we have

Cn(α) = poly(n) ·
(√

1− α2
)n

.

Lemma 2.2. (Volume of a wedge) For arbitrary
constants α, β ∈ (0, 1), we have

Wn(α, β, θ) = poly(n) ·
(√

1− γ2
)n

,

with γ =

√
α2 + β2 − 2αβ cos θ

sin2 θ
.

In the special case α = β, we obtain

Wn(α, α, θ) = poly(n) ·

(√
1− 2α2

1 + cos θ

)n
.

Nearest neighbor searching (NNS). The near-
est neighbor search (NNS) problem is defined as fol-
lows [IM99]. Given a list of n-dimensional vectors,

L = {w1,w2, . . . ,wN} ⊂ Rn,

preprocess L in such a way that, given a query vector
v /∈ L later, one can efficiently find an element w∗ ∈ L
which is close(st) to v. In the setting of nearest neighbor
search on the sphere, we assume that all vectors lie on
the unit sphere, i.e., L ⊂ Sn−1. This special case itself
is relevant in various practical applications, but also in
theory as the paper [AR15a] shows a reduction from
NNS in the entire Euclidean space to NNS on the sphere.
Thus an important problem is finding efficient methods
for solving NNS on the sphere.

A common relaxation of NNS is approximate NNS:
find a “nearby” neighbor in L, which is allowed to be
a factor c further away from the target vector than the
nearest neighbor. A slight variant of this problem that
we will consider here is: given that all vectors in L lie at
distance r2 except for one element at distance r1 < r2,
find this one nearby element. On the unit sphere, a
distance r translates to an angle θ = arccos(1− 1

2r
2).

Locality-sensitive hashing (LSH). One method
for solving high-dimensional NNS relies on the use
of locality-sensitive hash functions h sampled from a
certain hash function family H. Informally, these
functions map vectors w to low-dimensional sketches
h(w), such that nearby vectors v,w have a higher
probability of having the same sketch (i.e. h(v) = h(w))
than faraway vectors. In other words, these functions
are sensitive to how nearby (local) vectors are in space,
in assigning equal output values to different vectors.

To use these hash families to solve NNS, one gen-
erally uses the following method described in [IM99].
First, choose t · k random hash functions hi,j ∈ H, and
combine k of them at a time through concatenation to
build t different hash functions h1, . . . , ht defined by
hi(v) = (hi,1(v), . . . , hi,k(v)). Then, given the list L,
we build t different hash tables T1, . . . , Tt, where for
each hash table Ti we insert w ∈ L into the bucket
labeled hi(w). Finally, given a vector v, we compute
its t images hi(v), gather all the candidate vectors that
collide with v in at least one of these hash tables as a
list of candidates, and search this set of candidates for a
nearest neighbor. With a suitable hash function family
H and well-chosen parameters k and t, this may guar-
antee that nearby vectors will always collide in at least
one hash table (except with negligible probability), and
faraway vectors almost never collide with v. Comput-
ing a query’s t hashes and performing comparisons with
the colliding vectors may then require less effort than a
naive linear search.

Solving approximate NNS with LSH. Let the
function p, describing collision probabilities between
vectors at angle θ, be defined as follows:

p(θ) := Pr
h∼H

[h(v) = h(w) | v,w ∈ Sn−1, 〈v,w〉 = cos θ].

As is well-known in LSH literature, the power of an
LSH family H in distinguishing between nearby vectors
at angle θ1 and distant vectors at angle θ2 can be

captured by the performance indicator ρ = log p(θ1)
log p(θ2) as

the following lemma illustrates2.

Lemma 2.3. Let H be an LSH family with collision
probability function p. Then we can solve approximate
NNS with parameters θ1, θ2 in time Q = Õ(Nρ), with
parameters

k =
logN

log 1/p(θ2)
, ρ =

log 1/p(θ1)

log 1/p(θ2)
,

t = exp

[
logN · log 1/p(θ1)

log 1/p(θ2)

]
,

Spherical LSH. Recently an LSH family for the
sphere was proposed by Andoni et al. [AINR14, AR15a]
which works as follows. First, sample U = 2Θ(

√
n)

vectors s1, . . . , sU ∈ Rn from an n-dimensional Gaussian
distribution with average norm 1. To each si we then
associate a hash region as follows:

Hsi :=
(
Sn−1 ∩Hsi,α

)
\
i−1⋃
j=1

Hsj .

2For simplicity, this assumes that the angle of a query vector

with all vectors w ∈ L is exactly θ2, except for one special nearby
vector w∗ ∈ L which has angle θ1 with v.

With the choices α = n−1/4 and U = 2Θ(
√
n), it is

guaranteed that with high probability, at the end the
entire sphere is covered by these hash regions and each
point can be assigned a hash value between 1 and U .
On the other hand, taking α = n−1/4 and U = 2Θ(

√
n)

guarantees that computing hashes can trivially be done
in 2Θ(

√
n) = 2o(n) time by going through all hash

regions until a nearby vector si is found. One set of
points corresponds to one hash function h, and sampling
h ∼ H corresponds to sampling s1, . . . , sU ∈ Rn from a
Gaussian distribution.

The following result, implicitly stated in [AINR14,
Lemma 3.3] and [AR15a, Appendix B.1], describes the
probability of collision for this hash family, and the
resulting expression for ρ:

p(θ) = exp

[
−
√
n

2
tan2

(
θ

2

)
(1 + o(1))

]
,

ρ =
log 1/p(θ1)

log 1/p(θ2)
=

tan2 (θ1/2)

tan2 (θ2/2)
(1 + o(1)).

3 Locality-sensitive filtering (LSF)

Instead of locality-sensitive (hash) functions, we will
consider locality-sensitive mappings or filters, where
each filter maps a vector to a binary value: either a
vector survives the filter, or it does not. Alternatively,
a filter f maps an input list L of size N to an output
list Lf ⊆ L of points which pass through this filter. We
would like a filter to only assign vectors to the same
bucket if vectors are nearby in space. In other words,
the filters should be chosen such that after applying (a
sequence of) filter(s) to an input set L, the output set
L′ only contains points which are nearby.

To solve the nearest neighbor problem with these
filters, we propose the following method. Given a
distribution F of filters, we draw t·k filters fi,j ∈ F , and
combine k at a time to build t filters fi, where w passes
through the concatenated filter fi if it passes through
all partial filters fi,j for j = 1, . . . k. Then, given the
list L, we build t different filtered buckets L1, . . . , Lt,
where a vector w ∈ L is inserted into the bucket Li
iff w survives the concatenated filter fi. Finally, given
a query vector v, we check which of the concatenated
filters it passes through, gather all the candidate vectors
that pass through at least one of the filters that v passes
through, and search this set of candidates for a nearest
neighbor. With a suitable partial filter distribution
F and parameters k and t, this allows us to solve
(approximate) NNS.

Performance of LSF. For analyzing the perfor-
mance of LSF, we assume that we have an efficient or-
acle O which identifies the concatenated filters a vector
v passes through (the relevant filters) in time O(Fv),

where Fv is the number of relevant filters for v out of
all t concatenated filters. This assumption is crucial,
as without this we will not obtain an improved perfor-
mance over LSH. Assuming the distribution F is spheri-
cally symmetric, similar to collision probabilities in LSH
we define

p(θ) := Pr
f∼F

[v,w ∈ Lf | v,w ∈ Sn−1, 〈v,w〉 = cos θ].

Note that the difference with LSH is that a collision is
now defined as two vectors passing through the same
filter, rather than obtaining the same hash value. Now,
v survives a sequence of k partial filters with probability
p(0)k, so Fv = O(t ·p(0)k). On the other hand, a vector
w at angle θ with v collides with v in a k-concatenated
filter with probability p(θ)k. As all N vectors (but
one) are assumed to lie at angle θ2 with v, the costs
of processing a query with an efficient oracle are

Q = Õ(t · p(0)k + t · p(θ2)k ·N).

The first term above counts the average number of
colliding relevant vectors for the single nearby vector,
while the second term counts the number of distant
vectors colliding with our query vector.

Next, to guarantee that we will find a nearby
vector at angle θ1 with probability 1 − ε, we need
1 − (1 − p(θ1)k)t = O(t · p(θ1)k) ≥ 1 − ε, or t =
O(1/p(θ1)k). We further want to minimize the total cost
Q of processing a query, which corresponds to balancing
the two contributions to Q; larger k and t leads to more
selective filtering and fewer comparisons, but increases
the cost of finding the relevant filters. Equating the
two terms in Q, minimizing the overall query cost,
translates to p(0)k = p(θ2)k · N up to subexponential
terms. Solving for k, we obtain expressions for k and t,
which in turn can be substituted into Q to find the best
parameters for LSF as follows.

Theorem 3.1. Let F be an LSF distribution with col-
lision probability function p, and let O be an efficient
oracle for computing v’s relevant filters in time O(|Fv|).
Then we can solve approximate NNS with parameters θ1

and θ2 in time Q = Õ(Nρ), with parameters

k =
logN

log p(0)/p(θ2)
, ρ =

log p(0)/p(θ1)

log p(0)/p(θ2)
,

t = exp

[
logN · log 1/p(θ1)

log p(0)/p(θ2)

]
.

Notice the similarity with LSH and Lemma 2.3,
where the only difference is that in some cases a 1 is
replaced by p(0). In LSH the function p denotes collision
probabilities in the hash table, and as each vector is

always assigned to a hash bucket for a hash function
h, we have p(0) = 1. Indeed, substituting p(0) = 1
we obtain the expressions from Lemma 2.3. For LSF
however we only get a collision of v with itself in filter
f if v survives filter f ; if v is filtered out, we will not get
a collision between v and itself. So generally p(0) < 1
for LSF, leading to strictly lower (better) values ρ than
for LSH, and for LSF we get strictly larger values t.

Remark. The above theorem is given only as an
illustration of our approach, as we do not know of any
implementation of such an oracle when the set of filters
is chosen independently at random from F . In Section 5
we do provide such an oracle for a set of filters that are
more structured, yet still ensuring the proper collision
probabilities.

4 Spherical LSF

We will instantiate the concept of LSF with the fol-
lowing spherical cap LSF distribution F . A filter is
constructed by drawing a random vector s ∈ Sn−1,
and a vector w passes through this filter if it satisfies
〈w, s〉 ≥ α. In other words, a vector w passes a filter if
it lies in the spherical cap centered at s of height 1−α.
Comparing this to spherical LSH, this means that for a
filter vector s, the corresponding filtered region is:

Hs := Sn−1 ∩Hs,α.

The probability that two vectors survive the same
filter is exactly proportional to the volume of a wedge
W(α, α, θ); v and w survive the filter corresponding to s
iff s lies in the wedge defined by v and w. By Lemma 2.2
we therefore obtain:

p(θ) = exp

[
n

2
ln

(
1− 2α2

1 + cos θ

)
(1 + o(1))

]
.

If we assume we have an efficient oracle for determining
a vector’s relevant filters, then by Theorem 3.1 we
obtain a performance parameter ρ of

ρ =
log
(
1− α2

)
− log

(
1− 2α2

1+cos θ1

)
log (1− α2)− log

(
1− 2α2

1+cos θ2

) (1 + o(1)).

Notice that a Taylor series expansion of ρ for α ≈ 0

gives us ρ
(α≈0)∼ tan2(θ1/2)

tan2(θ2/2) which is equivalent to the

exponent ρ of spherical LSH. In other words, for small α
the performance of spherical LSF (provided an oracle O
exists) will be equivalent to the performance of spherical
LSH.

Optimizing α and fixing k = 1. An intrinsic
lower bound on k is given by k ≥ 1, which implies

k =
logN

log p(0)/p(θ2)
≥ 1

=⇒ α ≤ α0 :=

√
1 +

N2/n(cos θ2 − 1)

2N2/n − cos θ2 − 1
.

Depending on N, θ1, θ2, as well as on the existence of
efficient decoding oracles for given α, this bounds which
values α can be used. We further observe that ρ is
decreasing in α, which implies one should choose α to
be as large as possible. This suggests taking α = α0 is
optimal, which corresponds to fixing k = 1. In that case,
we always only use one filter for each of the t combined
filters.

Note that the upper bound α0 is decreasing with
N2/n, and so high-density settings with N = exp(κn)
for large density κ are easier to solve than low-density
cases. For κ → ∞ we further obtain α0 →

√
2/2,

while for κ → 0 the upper bound on α becomes α0 =
(2ε+O(ε2))1/2.

Exponent ρ for r1 = 1
c

√
2 and r2 =

√
2. For

general θ1, θ2, N , we now have a recipe to choose our
parameters α, t, ρ and k = 1. To study the performance
of spherical LSF and compare it with other results,
let us focus on the random case of [AR15a], where
θ1 = arccos(1− 1

c2) and θ2 = π
2 , so that nearby vectors

are a factor c closer than faraway (orthogonal) vectors.
In that case we obtain the upper bound

α0 =

√
N2/n − 1

2N2/n − 1
=

√
e2κ − 1

2e2κ − 1
.

Figure 2 illustrates the values of ρ for different c and κ.
Performing a Taylor series expansion for ρ for small

κ (and fixed c > 1), we obtain

ρ =
1− κ

2c2 − 1
+

κ

(2c2 − 1)2
+O(κ2). (κ→ 0)

Alternatively, if we look at high-density settings, then
for arbitrary c and large κ we obtain:

ρ = − 1

2κ
log

(
1− 1

2c2 − 1

)
+O

(
1

κ2

)
. (κ→∞)

For large approximation factors c this implies that ρ ∼
1

2c2 for small κ and ρ ∼ 1
4κc2 for large κ.

The low-density regime. In the low density case
N = 2o(n) or κ = o(1), the exponent ρ of spher-
ical LSF tends to the same value as in spherical
LSH [AINR14, AR15a]. Nevertheless, spherical LSF
could be significantly faster in practice, because ρ tends

α → 0

α = 0.4

α = 0.5

α = 0.6

α = 0.7

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

⟶ Approximation factor c

⟶
E
xp
on
en
t
ρ

Figure 2: The performance parameter ρ for spherical
LSF against the approximation factor c, in the random
setting (cf. [AR15a]) and for asymptotically large n. For
κ→ 0, we have α ≤ α0 → 0 and ρ(c)→ 1/(2c2 − 1).

to its limit from below depending on κ = o(1), and the
hidden subexponential term may be smaller. Note that
the density can always be increased to κ = Ω(1/ log n)
via the Johnson-Lindenstrauss transform [JL84].

5 Random product codes

To build an oracle that is able to efficiently determine
the set of relevant filters for a given vector in the context
of spherical LSF, we will modify the distribution of
filters; rather than randomly sampling all of the filters
independently, we will sample a code C on the sphere
which determines which filters we use, and which admits
a fast decoding algorithm for finding the relevant vectors
using list decoding. Below we choose m = O(polylog n),
and we assume n = m ·b for an integral block size b. We
further identify vectors in Rn with tuples of m vectors
in Rb, e.g. v = (v1, . . . ,vm) ∈ (Rb)m.

Definition 5.1. (Random product codes) The
distribution Rn,m,B on subsets of Rn of size M = Bm

is defined as the distribution of codes C of the form

C = Q · (C1 × C2 × · · · × Cm),

where Q is a uniformly random rotation over Rn and
the subcodes Ci ⊂

√
1/m · Sb−1 for i = 1, . . . ,m are

sets of B uniformly random and independently sampled
vectors over the sphere

√
1/m · Sb−1.

We need two properties for random product codes
C ∼ Rn,m,B to be useful for our purposes: the
code must be efficiently decodable, and it must behave
(almost) as good as a fully random code over the sphere,
when considering the probabilities of collision between
two vectors on the sphere.

5.1 List-decodability of random product codes.
We first describe an efficient list decoding method for
the above random product codes in the regime where
the list L has exponential size in n. A short description
is given in the following proof.

Lemma 5.1. There exists an algorithm that, given the
description Q,C1, . . . , Cm of a random product code
C ∼ Rn,m,B and a target vector t, returns the set
S = C ∩ Ct,α in average time

TLD(M,α) = O(nB +mB logB +m ·M · Cn(α))

over the randomness of C ∼ Rn,m,B.

Proof. The algorithm receives as input a code C =
Q · (C1 × · · · × Cm) where |Cj | = B; a target vector
t ∈ Sn−1; and a parameter α < 1. We first compute
v = Q−1t and parse v as (v1, . . . ,vm) ∈ (Rb)m.

For each set of elements in Cj we compute all
〈vi, ci,j〉 and sort them into lists Lj , hence obtaining
m lists of size B. We now wish to identify all vectors
c = (ci,j)i∈[1,B],j∈[1,m] ∈ C1×· · ·×Cm for which 〈v, c〉 ≥
α
∑m
i=1 ‖vi‖. To do so, we visit the enumeration tree in

a depth-first manner. Its nodes at level k ≤ m are
labeled by C1× · · · ×Ck, and the parenthood is defined
by the direct prefix relation. We use the sorted lists Lj
to define in which order to visit siblings. Because of this
ordering, if a node has no solution in its descendants,
then we know that all its next siblings will not lead to
a solution either. This allows to prune the enumeration
tree and guarantees that the number of visited nodes
is no larger than 2m|S|, where |S| is the number of
solutions.

The overall running time is the sum of the three
following terms: m · B dot products of dimension b,
followed by O(m · B logB) operations for the sorting
step, and finally the visit of O(m · |S|) nodes for the
pruned enumeration, where |S| = O(M · Cn(α)). �

Efficient decoding algorithm. The algorithm
outlined in the proof of Lemma 5.1 is explicitly de-
scribed as Algorithm 1. It is inspired by the lat-
tice enumeration algorithm of Fincke, Pohst, and Kan-
nan [Kan83, FP83], with some additional precomputa-
tions exploiting the structure of the code, which largely
shrinks the enumeration tree. In this algorithm we de-
note ci,j for j ∈ [1, B] the elements of Ci after the sort,

Algorithm 1 EfficientListDecoding(C, t, α)

Require: The descriptionQ ∈ Rn×n and C1, . . . , Cm ⊂
Rb of the code C; a target vector t ∈ Rn; and α < 1.

Ensure: Return all α-close code words S = C ∩ Ct,α.
1: Sort each Ci by decreasing dot-product with ti.
2: Precompute m bounds Ri = α−

∑m
k=i+1 dk,1.

3: Initialize an empty output set S ← ∅.
4: for each j1 ∈ [1, B] s.t. di,j1 ≥ R1 do
5: for each j2 ∈ [1, B] s.t. di,j2 ≥ R2 − d1,j1 do
6: [...]
7: for each jm ∈ [1, B] s.t. di,jm ≥ Rm−d1,j1−
d2,j2 − · · · − dm−1,jm−1

do
8: S ← S ∪ {(c1,j1 , . . . , cm,jm)}
9: end for

10: [...]
11: end for
12: end for
13: return S

and di,j = 〈ci,j , ti〉 their dot product with part of the
target vector t.

For simplicity, the core of the pseudo-code is de-
scribed as m imbricated for-loops. If m is a variable
and not a fixed parameter, we let the reader replace
the m loops with its equivalent recursive or while-based
construction. The sorting phase in steps 1,2 requires
O(mB) dot-product computations and runs in Õ(mB)
comparisons. Then the subsets of indexes in each for-
loop are contiguous and easy to compute, since each list
is already sorted by decreasing di,j . An equivalent way
of presenting the k-th for-loop would be “for jk ∈ [1, p]”

where p is the smallest index s.t. di,p ≤ Ri−
∑k−1
l=1 dl,jl ,

which can quickly be found by binary search.
If an index jk is rejected at the k-th for-loop, we

know that the partial vector (c1,j1 , . . . , ck,jk) cannot
be extended as a neighbor, since even after adding
all maximum partial dot products dl,1 for l ≥ k + 1,
the overall dot product remains smaller than α. This,
combined with the fact that the condition in the m-
th for-loop is exactly 〈t, (c1,j1 , . . . , cm,jm)〉 ≥ α, proves
that the algorithm enumerates C ∩ Ct,α, i.e., all code
words which are neighbor to t.

Furthermore, unlike classical enumeration methods,
this additional property proves that there is no dead
branch during enumeration: each time we enter the k-th
for-loop on index jk, we are guaranteed that at least the
neighbor (c1,j1 , . . . , ck,jk , ck+1,1, . . . , cm,1) will be added
to the list S. Thus, the overall complexity of the for-loop
parts is proportional to m times the size of C ∩ Ct,α.

Efficient list-decodability regime. If the pa-
rameters ensure that the average output size M · Cn(α)
is larger than B logB, then we are in the regime of effi-

cient list decoding: the running time is essentially pro-
portional to the output size. This is trivially the case
when M = t = 2Ω(n), α = Ω(1) and m = log n for the
dense case of Section 4. In the sparse case, relying on
the Johnson-Lindenstrauss transform [JL84] to ensure
N = 2Θ(n/ logn) this is easily adjusted to m = log2 n.

5.2 Randomness of random product codes. On
average over the randomness of the code, for two vectors
v,w at angle θ we expect exactly M · Wn(α, α, θ) code
words c to simultaneously fulfill 〈v, c〉 ≥ α and 〈w, c〉 ≥
α. But it could be the case that the set I = C∩Ww,α,v,β

is empty most of the time, and very large in some cases;
this is in particular the case if all the points of C are
concentrated in a small region of the space, or are in
some other way not well-distributed over the sphere.

To ensure that the code is useful for our task, we
need not only consider how large M ·Wn(α, β, θ) is, but
also make sure that C behaves similarly to a random
code with respect to intersections with random wedges.
The following theorem states that the probability of
collision for random product codes does not deviate
much from the probability of collision for completely
random codes.

Theorem 5.1. (Random behavior of RPC) For
large n, suppose that M · Wn(α, β, θ) → 0 or M ·
Wn(α, β, θ) ≥ 2Õ(

√
n). Then, for v,w ∈ Sn−1 at angle

θ, over the choice C ∼ Rn,m,B, the probability q that a
code word c ∈ C lies in the wedge Wv,α,w,β satisfies:

q ≥ min
{
M · Wn(α, β, θ) · 2Õ(

√
n) , 1− negl(n)

}
,

q ≤ min{M · Wn(α, β, θ) , 1 }.

The proof of Theorem 5.1 is detailed in Appendix C.
Intuitively, the proof relies on the fact that if 〈v,w〉 =
cos θ and m is reasonably small, then with high prob-
ability the block-wise dot products satisfy 〈vi,wi〉 ≈
1
m cos θ for i = 1, . . . ,m, and with high probability
‖vi‖, ‖wi‖ ≈ 1/

√
m. This means that the total, n-

dimensional wedge can be well-approximated by a carte-
sian product of m wedges of dimension b = n/m:

Wv,α,w,β ≈
m∏
i=1

1√
m
W√mvi,α,

√
mwi,β .

The proof consists in formalizing this approximation,
showing that the losses in this approximation are small,
and using this approximation to compute collision prob-
abilities for random product codes.

5.3 Application to LSF. Equipped with this code
we may now replace, in the construction of Sections 3

and 4, the set of t independent filters, by a set of
filters defined by a code C ∼ Rn,m,(t1/m). Algorithm 1
provides the efficient oracle that computes the set of
relevant filters for a given target vector. Theorem 5.1
ensures that the probabilities of collisions (and hence,
the complexity analysis) presented in Sections 3 and 4
also hold when the filters are not chosen independently
but according to a random product code.

6 Practical aspects

While spherical LSF with random product codes as de-
scribed in the previous sections achieves small asymp-
totic exponents ρ, at first sight this scheme looks very
similar to spherical LSH [AR15a], which is known to be
theoretically optimal for low-density settings but seems
less useful in practice due to the high sub-exponential
cost of computing hash values: without imposing any
structure on the set of U = 2Θ(

√
n) hash vectors

s1, . . . , sU in spherical LSH, decoding cannot be done
faster than in time 2Θ(

√
n) by simply going through all

these vectors one by one to find the first one that is
nearby. Although the subcodes C1, . . . , Cm in spheri-
cal LSF have sub-exponential size as well, the cost of
computing all inner products and sorting them to find
the good ones may be costly. Indeed, preliminary ex-
periments show that the sorting of the blockwise inner
products is one of the main bottlenecks of answering a
query.

Structured subcodes. A natural way to try to
improve upon the sub-exponential costs is to make the
subcodes Ci more structured. Ultimately, we would like
the subcodes Ci to be:

(1) of the appropriate size t1/m;

(2) smooth on the unit sphere;

(3) efficiently decodable.

Smoothness. In (2), “smooth” means that if we
have a subcode of size proportional to 1/Wn/m(α, β, θ),
then we know that on average a random wedge on
the sphere with parameters α, β, θ contains 1 point
from the subcode, but this is not enough; we want
the distribution to be strongly concentrated around its
mean. For instance, subcodes for which all code words
are clustered on one part of the sphere still have a good
average number of code words in a random wedge, but
in many cases a random wedge will be empty, meaning
that with high probability we will not find a collision in
the filters between nearby vectors.

Decoding complexity. For (3), “efficiently” de-
codable could mean various things. A smooth code
which we can decode slightly faster than with a brute
force search over all code words could already lead to big

savings compared to the current, naive approach of us-
ing fully random subcodes and decoding in linear time.
In other words, any decoding time better than O(|Ci|)
for the subcodes could already be interesting. If we can
go much further than this, and we can construct smooth
spherical codes of the appropriate size for which decod-
ing can be done in sublinear time (or even logarithmic
time), then note that we do not need to decompose the
code into subcodes at all. This decomposition is purely
to make the decoding time subexponential in n.

Designing smooth subcodes. To make sure that
a subcode is smooth, intuitively one would like the
points on the sphere to be as equally spaced as pos-
sible, such that the maximum distance from a point on
the sphere to a code word is minimized. The problem of
finding suitable codes then seems closely related to de-
signing efficiently decodable spherical codes and spher-
ical packings or coverings. Finding smooth subcodes
which lead to a significant practical decoding advantage
is left for future work, although we mention that using
hypercross-polytopes or hypersimplices does not seem
to work as these are not smooth. Note that subcodes
related to spherical coverings may also be of interest for
designing an LSF-based nearest neighbor scheme with
no false negatives [Pag16]; if we have subcodes for which
each wedge on the sphere is non-empty, then we can
guarantee that nearby vectors will always collide in at
least one of the filters. In practice, our code implemen-
tation does some heuristic effort towards smoothness,
by starting from a random subcode, and having them
push each other away other when they are too close on
the sphere. This seems to lead to non-negligible savings
of roughly 20%− 50% in the explored parameter set.

Pruning the tree. Besides structuring the sub-
codes, one could try to save on the costs of computing
and sorting blockwise inner products by noting that if
〈v,w〉 = cos θ and m is reasonably small, then with
high probability the block-wise dot products satisfy
〈vi,wi〉 ≈ 1

m cos θ. In particular, the blockwise dot
products will be large if two vectors are nearby. This
means that instead of computing and sorting all par-
tial inner products, one could just store only those code
words from the subcode with a sufficiently large inner
product with the query vector. As most of the block-
wise dot products will be concentrated around 0, this
may reduce the size of the sublists significantly.

Reusing subcodes. An easy way to slightly save
on the space complexity of storing all the filter vectors
is to reuse the subcodes and set C1 = C2 = · · · = Cm.
This is also what is done in our implementation in the
following section. Unless there is a spherically asym-
metric structure in the data set, this extra condition
on the subcodes should not make the scheme any worse

and slightly more practical. This also means that find-
ing one nice subcode in dimension b = n/m suffices to
construct a suitable product code C.

Decoding subcodes separately. Finally, observe
that the proof of smoothness of random product codes
relies on approximating a wedge on an n-dimensional
sphere by the Cartesian product of m = O(log n) sub-
wedges on (n/m)-dimensional unit spheres. This sug-
gests that rather than using list-decoding, and search-
ing for code words c ∈ C such that 〈v, c〉 ≥ α, one
could also decode subcodes directly and look for tu-
ples c = (c1, . . . , cm) ∈ C1 × · · · × Cm such that
〈vi, ci〉 ≥ α/m for each i = 1, . . . ,m. This would also
make decoding significantly easier; decode each block
separately, and take all combinations of solutions for
each subcode.

However, this modification significantly affects the
practical performance of the scheme, as in that case the
collision probabilities of the entire, concatenated code
are roughly given by the product of the collision proba-
bilities of the subcodes3. This means that for instance
the performance parameter ρ, which is not affected by
raising both the subcode collision probabilities p̃(θ1) and
p̃(θ2) to the same powerm, is almost exactly the same as
the parameter ρ̃ for the subcodes. As a result, decoding
each subcode separately is not any better than decod-
ing based only on one subcode, and ignoring all other
subcodes! Note that in theory the dimension of the sub-
codes n/m = O(n/ log n) is almost as big as the dimen-
sion n of the entire code, and so decoding each subcode
separately is sufficient to achieve the same asymptotic
performance. In practice however, the correlated list-
decoding where all blocks are jointly decoded is crucial
for obtaining a superior performance over just using one
O(n/ log n)-dimensional code for decoding.

7 Application to lattice sieving

Let us now consider an explicit application of the
proposed framework: to speed up the search for nearby
vectors inside lattice sieving algorithms for solving
the shortest vector problem in high dimensions. The
application of nearest neighbor searching techniques to
sieving has previously been described in [BGJ15, BL15,
Laa15, LdW15].

Classical sieving. Given a basis B of a lattice
L(B), we can easily sample reasonably long lattice
vectors using Klein’s nearest plane algorithm [Kle00]

3This is slightly inaccurate, as it assumes that the events

〈vi, ci〉 ≥ α/m are independent for different i, where v and
c lie on the unit sphere in Rn. However, using concentration
inequalities on the blockwise norms (see e.g. Lemma C.2) we can

almost consider these events as independent, in which case the
probabilities for the subcodes multiply.

according to a distribution which is statistically close to
a discrete Gaussian distribution over the lattice of large
variance. Then, given an input list of lattice vectors, a
sieve performs a polynomial number of times a sieving
or reduction step, where we use the basic idea that if
v,w ∈ L(B), then also v ± w ∈ L, and if our list of
lattice vectors is long enough, then we will find many
pairs v,w such that ‖v ±w‖ ≤ max{‖v‖, ‖w‖}. So by
simply comparing pairs of vectors in a large list, we can
build a list of shorter lattice vectors just by looking at
sums/differences of pairs of vectors.

For analyzing these sieving algorithms, an assump-
tion which is commonly made is that if we scale the
input lists of each of these sieving applications to lie on
the unit sphere, then these vectors are uniformly dis-
tributed on the sphere. With this heuristic assumption,
the resulting complexities seem to be much closer to re-
ality; the best provable bounds on sieving [PS09] only
show that one can solve SVP in time 22.465n+o(n), while
heuristic analyses and experimental results suggest the
current best time complexity for sieving may be around
20.30n+o(n) in high dimensions n.

Nearest neighbor speed-ups. A naive way to
perform pairwise comparisons is to compare all pos-
sible pairs of vectors and see if their sum or differ-
ence results in a shorter lattice vector. Observe that
if two vectors cannot reduce one another, then clearly
it must hold that their pairwise angle is larger than
60◦. Similarly, if two vectors can reduce each other,
then their angle is close to 60◦, so a test for pairwise
reductions is roughly equivalent to the test if the angle
between two vectors of (almost) similar length is at most
θ1 = π/3. To guarantee that the output list of shorter
vectors is large enough to perform further reductions
in the following iterations, Nguyen and Vidick [NV08]
showed that N must be of the order (4/3)n/2+o(n).
A quadratic search of pairs in each step then leads
to a time complexity of the order (4/3)n+o(n) ≈
20.415n+o(n). However, replacing the quadratic search
by nearest neighbor techniques, it is actually possible
to perform these searches in sub-quadratic time. Var-
ious improvements were suggested over the last few
years [BGJ14, BGJ15, Laa15, WLTB11, ZPH13], with
the current best time exponent standing at 20.298n+o(n)

using spherical LSH [AR15a, LdW15] or cross-polytope
LSH [AIL+15, BL15].

Asymmetric choice of α and β. In the reduction
phase of a lattice sieve, we are interested in finding pairs
of vectors v,w at an angle at most θ1 = π/3 if they
exist. These vectors allow us to obtain a shorter vector
v ± w. As described in the previous sections, we fix
k = 1, and here we make an a priori asymmetric choice
of the parameters α and β in spherical LSF:

• α ∈ (0, 1) represents the query parameter for
finding the relevant vectors of a given target vector;

• β ∈ (0, 1) represents the insertion parameter for
finding all filters that a vector is inserted in.

Larger α correspond to more selective querying, which
means the querying will be cheaper as fewer buckets are
visited. For fixed β, this comes at the cost of having to
use more filters to make sure the query is successful,
and so more space is required. On the other hand,
large β correspond to more selective insertion in the
database. In particular, if α < β, then more effort
is spent on constructing the database (preprocessing)
than on answering a query. This could be compared to
probing techniques of e.g. [Pan06].

Answering a query. Now, given two parameters
α and β, we can describe the costs of answering a query
(computing the relevant vectors, and comparing to then
be computed as follows.

Theorem 7.1. (Costs of one query) Let k = 1.
Given N points which are uniformly distributed on the
sphere and indexed by t spherical filters with parameters
α, β, the time to answer a query is:

Tquery = Õ(t · C(α) · [1 +N · C(β)]).

Proof. First, to answer a query, we compute the O(t ·
C(α)) relevant filters with minimal overhead using list-
decodable random product codes. As we assume the
vectors in L are uniformly distributed on the sphere, and
all filters cover an equal portion of the sphere, each filter
bucket will roughly have the same size. In total each list
vector has been inserted in O(t · C(β)) filters, leading to
O(N · t · C(β)) total entries in the filter database, and
O(N · C(β)) vectors per filter. The cost of computing
relevant filters is therefore Õ(t · C(α)), and the cost of
comparing the vector to all other vectors in these filters
is Õ(t · C(α) ·N · C(β)). �

Total costs of sieving. Besides minor initializa-
tion costs of the lattice sieve, the algorithm’s complexity
can be described by poly(n) applications of the sieve,
where each sieve performs N queries to the database.
The overall cost of the sieve can thus be summarized
as Õ(N · t · C(α) · [1 +N · C(β)]). To further analyze
the sieve complexity, to make sure that we do not miss
nearby vectors at angle 60◦, we need to choose the num-
ber of filters sufficiently large. In particular, the prob-
ability that two vectors at angle 60◦ are found through
a collision is Õ(t · Wn(α, β, π3)) and must be close to 1.
This means that we need to choose t as

t = Õ
(

1
/
Wn(α, β, π3)

)
.

Together with the previous analysis and the bound
N = (4/3)n/2+o(n), this means that the total costs of
answering queries in sieving can be summarized as:

T1 = Õ
(
N · C(α) · [1 +N · C(β)]

Wn(α, β, π3)

)
= Õ

((
4(1−α2)

3−4(α2+β2−αβ)

)n
2

[
1 +

(
4(1−β2)

3

)n
2

])
.

Besides these costs, in sieving the construction of the
database is part of the overall complexity as well. Filling
the database with list points means that for each of the
N lattice vectors we need to compute the t·C(β) relevant
filters. This leads to an added “preprocessing” cost of

T2 = Õ
(

N · C(β)

Wn(α, β, π3)

)
= Õ

((
4(1−β2)

3−4(α2+β2−αβ)

)n
2

)
.

Note that the space complexity is given by essentially
having to store N vectors and t ·N · C(β) filter entries:

S = Õ
(
N +

N · t · C(β)

Wn(α, β, π3)

)
= Õ

((
4
3

)n
2 +

(
4(1−β2)

3−4(α2+β2−αβ)

)n
2

)
.

What remains is an optimization over α and β to
minimize the time T = T1 + T2 and the space S. Three
options stand out:

• For α = β = 1
2 we obtain the best time complexity:

T = (3/2)n/2+o(n) ≈ 20.292n+o(n),

S = (3/2)n/2+o(n) ≈ 20.292n+o(n).

• For α = 1
4 and β = 1

2 , we obtain the best time com-
plexity without increasing the space complexity:

T = (5/3)n/2+o(n) ≈ 20.368n+o(n),

S = (4/3)n/2+o(n) ≈ 20.208n+o(n).

• For α ∈ (1
4 ,

1
2) and β = 1

2 , we obtain the best
time complexities for given space complexities, as
illustrated by the blue curve Figure 1.

As introduced in [BGJ15] and later also applied
in [Laa15, LdW15], it is also possible to obtain the best
running time while maintaining a memory complex-
ity of (4/3)n/2+o(n) = 20.208n+o(n) as indicated in Fig-
ure 1. Unfortunately, to obtain this space complexity,
one would have to use the Nguyen-Vidick sieve [NV08],
which performs quite poorly in practice compared to
the GaussSieve [MV10]. For the GaussSieve, the curve
in Figure 1 is the best time/memory trade-off we can
obtain with this method.

Experimental results. To show the practicability
of our proposed sieve algorithm, we implemented the
LSF acceleration in the GaussSieve algorithm [MV10].
We ran experiments on an Intel Quad-Core(TM) Q9550
at 2.83GHz with 4GB RAM. Our implementation is not
vectorized or parallelized. As input bases, we chose
LLL-reduced bases of the SVP lattice challenge [SGBN]
in dimensions 50 to 72. We chose α ∈ {0.44, 0.47} as
α = β = 0.50 appears to be slightly worse in practice,
even though it is optimal asymptotically. Figure 3
compares the running time of our new algorithm with
the GaussSieve.

We observe that the acceleration matches predic-
tions from the theoretical analysis. For example, with
α = 0.44, we predict an asymptotic time complexity of
approximately 20.307n+o(n) or a speed-up of 20.108n+o(n)

compared to the GaussSieve algorithm. This closely
matches the observed speed-up of 2(0.513−0.405)n+o(n) =
20.108n+o(n). Note that the estimated time complexities
do not exactly match the quadratic and sub-quadratic
estimates of 20.415n+o(n) and 20.307n+o(n), which is con-
sistent with various previous experiments performed us-
ing the GaussSieve [BL15, Laa15, MV10]. This is most
likely caused by having to reduce a vector 2o(n) times,
which leads to a o(n) term in the exponent which for a
least-squares fit in low dimensions distorts the leading
constant approximation. However, as we only modified
the search routine, these factors cancel out when com-
paring the complexities of different GaussSieve-based al-
gorithms.

Acknowledgments

The authors thank Daniel Dadush, Ilya Razenshteyn,
Benne de Weger, and the anonymous reviewers for valu-
able suggestions and comments. The authors also thank
Gottfried Herold and Elena Kirshanova for enlightening
discussions in Bochum, and for pointing us to the rela-
tion with May and Ozerov’s techniques.

References

[AIL+15] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven,
Ilya Razenshteyn, and Ludwig Schmidt. Practical and
optimal LSH for angular distance. In NIPS, 2015.

[AINR14] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen,
and Ilya Razenshteyn. Beyond locality-sensitive hash-
ing. In SODA, pages 1018–1028, 2014.

[AKS01] Miklós Ajtai, Ravi Kumar, and Dandapani Sivaku-
mar. A sieve algorithm for the shortest lattice vector
problem. In STOC, pages 601–610, 2001.

[AR15a] Alexandr Andoni and Ilya Razenshteyn. Optimal
data-dependent hashing for approximate near neigh-
bors. In STOC, pages 793–801, 2015.

Figure 3: The running times of the basic GaussSieve algorithm (red), the GaussSieve with hyperplane
LSH [Cha02, Laa15] (blue), and the GaussSieve with spherical LSF with different parameters (green and orange).
Points indicate experimental data, lines indicate least-squares fits of the form 2an+b for constants a, b. For
simplicity we have only performed experiments for dimensions which are divisible by the number of blocks m.

[AR15b] Alexandr Andoni and Ilya Razenshteyn. Tight
lower bounds for data-dependent locality-sensitive
hashing. 2015.

[BGJ14] Anja Becker, Nicolas Gama, and Antoine Joux. A
sieve algorithm based on overlattices. In ANTS, pages
49–70, 2014.

[BGJ15] Anja Becker, Nicolas Gama, and Antoine Joux.
Speeding-up lattice sieving without increasing the
memory, using sub-quadratic nearest neighbor search.
Cryptology ePrint Archive, Report 2015/522, 2015.
http://eprint.iacr.org/.

[Bis06] Christopher M. Bishop. Pattern Recognition and
Machine Learning (Information Science and Statis-
tics). Springer-Verlag New York, 2006.

[BL15] Anja Becker and Thijs Laarhoven. Efficient (ideal)
lattice sieving using cross-polytope LSH. Cryptology
ePrint Archive, Report 2015/823, 2015.

[Cha02] Moses S. Charikar. Similarity estimation tech-
niques from rounding algorithms. In STOC, pages 380–
388, 2002.

[DHS00] Richard O. Duda, Peter E. Hart, and David G.
Stork. Pattern Classification (2nd Edition). Wiley-
Interscience, 2000.

[Dub10] Moshe Dubiner. Bucketing coding and information
theory for the statistical high-dimensional nearest-

neighbor problem. IEEE Transactions on Information
Theory, 56(8):4166–4179, 2010.

[Duc15] Léo Ducas. LDSieve: Implementation of lattice
sieving with list decoding, 2015. https://github.com/
lducas/LDSieve/.

[FP83] Ulrich Fincke and Michael Pohst. A procedure for
determining algebraic integers of given norm. Com-
puter algebra, pages 194–202, 1983.

[Her15] Gottfried Herold. Applications of nearest neighbor
search techniques to the BKW algorithm (draft), to
appear. 2015.

[IM99] Piotr Indyk and Rajeev Motwani. Approximate
nearest neighbors: towards removing the curse of
dimensionality. In STOC, pages 604–613, 1999.

[JL84] William B. Johnson and Joram Lindenstrauss. Ex-
tensions of Lipschitz mappings into a Hilbert space.
Contemporary Mathematics, 26:189–206, 1984.

[Kan83] Ravi Kannan. Improved algorithms for integer
programming and related lattice problems. In STOC,
pages 193–206, 1983.

[Kle00] Philip Klein. Finding the closest lattice vector when
it’s unusually close. In SODA, pages 937–941, 2000.

[Laa15] Thijs Laarhoven. Sieving for shortest vectors in
lattices using angular locality-sensitive hashing. In
CRYPTO, pages 3–22, 2015.

[LdW15] Thijs Laarhoven and Benne de Weger. Faster siev-
ing for shortest lattice vectors using spherical locality-
sensitive hashing. In LATINCRYPT, pages 101–118,
2015.

[LM00] Béatrice Laurent and Pascal Massart. Adaptive
estimation of a quadratic functional by model selection.
Annals of Statistics, pages 1302–1338, 2000.

[LP11] Richard Lindner and Chris Peikert. Better key sizes
(and attacks) for LWE-based encryption. In CT-RSA,
pages 319–339, 2011.

[MO15] Alexander May and Ilya Ozerov. On computing
nearest neighbors with applications to decoding of
binary linear codes. In EUROCRYPT, pages 203–228,
2015.

[MV10] Daniele Micciancio and Panagiotis Voulgaris.
Faster exponential time algorithms for the shortest vec-
tor problem. In SODA, pages 1468–1480, 2010.

[NV08] Phong Q. Nguyen and Thomas Vidick. Sieve al-
gorithms for the shortest vector problem are practi-
cal. Journal of Mathematical Cryptology, 2(2):181–207,
2008.

[OWZ14] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Opti-
mal lower bounds for locality-sensitive hashing (except
when q is tiny). ACM Transactions on Computation
Theory, 6(1:5):1–13, 2014.

[Pag16] Rasmus Pagh. Locality-sensitive hashing without
false negatives. In SODA, 2016.

[Pan06] Rina Panigraphy. Entropy based nearest neighbor
search in high dimensions. In SODA, pages 1186–1195,
2006.

[PS09] Xavier Pujol and Damien Stehle. Solving the short-
est lattice vector problem in time 22.465n. Cryptology
ePrint Archive, Report 2009/605, pages 1–7, 2009.

[RMS12] DA Rachkovskij, IS Misuno, and SV Slipchenko.
Randomized projective methods for the construction of
binary sparse vector representations. Cybernetics and
Systems Analysis, 48(1):146–156, 2012.

[SDI05] Gregory Shakhnarovich, Trevor Darrell, and Piotr
Indyk. Nearest-neighbor methods in learning and
vision: Theory and practice. MIT Press, 2005.

[SGBN] Michael Schneider, Nicolas Gama, P. Baumann,
and P. Nobach. SVP challenge: http://www.

latticechallenge.org/svp-challenge/.
[vdPS13] Joop van de Pol and Nigel P. Smart. Estimating

key sizes for high dimensional lattice-based systems. In
IMACC, pages 290–303, 2013.

[WLTB11] Xiaoyun Wang, Mingjie Liu, Chengliang Tian,
and Jingguo Bi. Improved Nguyen-Vidick heuristic
sieve algorithm for shortest vector problem. In ASI-
ACCS, pages 1–9, 2011.

[ZPH13] Feng Zhang, Yanbin Pan, and Gengran Hu. A
three-level sieve algorithm for the shortest vector prob-
lem. In SAC, pages 29–47, 2013.

A Asymptotics of the volume of a wedge

We restate the preliminary lemma and give its proof.

Lemma A.1. (Restatement of Lemma 2.2) For

arbitrary constants α, β ∈ (0, 1), we have

Wn(α, β, θ) = poly(n) ·
(√

1− γ2
)n

,

with γ =

√
α2 + β2 − 2αβ cos θ

sin2 θ
.

In the special case α = β, we obtain

Wn(α, α, θ) = poly(n) ·

(√
1− 2α2

1 + cos θ

)n
.

Let us compute the volume of a wedge with param-
eters (α, β, θ), which is the volume of the intersection of
the spherical caps centered at v = (1, 0, . . . , 0) (defined
by 〈v,x〉 ≥ α) and at w = (cos θ, sin θ, 0, . . . , 0) (defined
by 〈w,x〉 ≥ β).

Let f denote the orthogonal projection from the n-
dimensional unit sphere to the two-dimensional plane
spanned by the vectors v and w. For any measurable
subset U of the two-dimensional circle, the volume of
the preimage f−1(U) is given by:∫

x,y∈U

µ(Sn−3)

µ(Sn−1)

(√
1− x2 − y2

)n−4

dx dy.

Alternatively, if U is described in terms of radial coor-
dinates r and φ:∫

r,φ∈U

µ(Sn−3)

µ(Sn−1)

(√
1− r2

)n−4

r dr dφ.

For all r ∈ [0, 1], let us write g(r) =
∫
φ:(r,φ)∈U dφ ∈

[0, 2π]. If U is the projection of a cap intersection, then
g(r) is a continuous function from [0, 1] to [0, 2π]. We
make use of the following lemma:

Lemma A.2. Let γ ∈ (0, 1), and let g(r) be a continu-
ous function on (γ, 1) equivalent to (r − γ)ν for some
positive real number ν > 0. Then, as n→∞,∫ 1

γ

g(r)
(√

1− r2
)n

dr ∼ A ·

(√
1− γ2

)n
nν+1

,

where A =
(

γ
1−γ2

)ν+1

Γ(ν + 1) does not depend on n.

Proof. We write g(x) = h(x)(x − γ)ν where h(x) is
continuous over (γ, 1), has limit h(x) → 1 as x → γ,
and is bounded by H > 0. Then, using the change of
variable t = n(r − γ), the integral rewrites as∫ n(1−γ)

t=0

h
(
γ + t

n

) (
t
n

)ν (
1− γ2 − 2γt

n −
t2

n2

)n/2
dt
n

= (1−γ2)n/2

nν+1

∫ ∞
t=0

χ{t≤(1−γ)n}h
(
γ + t

n

)
tν

×
(

1− 2γt
(1−γ2)n −

t2

(1−γ2)n2

)n/2
dt.

Obviously, the term inside the integral converges to
tν exp(− γt

1−γ2) for all t ≥ 0, and is bounded by

Htν exp(− γt
1−γ2), which is integrable over R+. By

the dominated convergence theorem, the integral term
converges to

∫∞
0
tν exp(− γt

1−γ2), which is a standard
Laplace integral equal to the expression for A. This
concludes the proof. �

In the case of the wedge, the set U is simply
a rounded triangle, defined by the three inequalities
〈v,x〉 ≥ α, 〈w,x〉 ≥ β, and ‖x‖ = 1. The point of
smallest norm in this rounded triangle is the vector c
satisfying 〈v, c〉 = α and 〈w, c〉 = β, and its norm is
γ. In this case, the function g(r) is null over [0, γ],
continuous and increasing over [γ, 1], and admits the
equivalent in Θ(r − γ) when r is close to γ. Thus,
applying Lemma A.2, the volume of the wedge is a
Θ(1

n2 (
√

1− γ2)n) for large n, completing the proof.
Note that the main difference between a wedge and

a cap is that for a cap of parameter γ, the function
g(r) would be proportional to Θ((r − γ)1/2), so the

volume of the cap is Θ(1
n3/2 (

√
1− γ2)n) for large n.

Thus, asymptotically, up to some
√
n factor, the cap of

parameter γ and the wedge of parameter α, β, θ have
the same volume.

B Random behavior of random product codes

The proof of Theorem 5.1 is based on the technical
Lemma C.4 given in the next section.

Proof. The second inequality q ≤ M · Wn(α, β, θ) is
straightforward: for any c ∈ C1 × · · · × Cm, over the
randomness ofQ, the probability that c falls inWv,α,w,β

is exactly Wn(α, β, θ). Using the union bound over the
M = Bm code words, the result follows.

The first inequality requires more care. We list the
two geometric facts required to proceed, facts detailed
and proved as Lemma C.4. In the following, we parse
Qv as (v1, . . . ,vm) and Qw as (w1, . . . ,wm).

1. The wedge Wv,α,w,β contains Q−1Π

Q−1Π ⊂ Wv,α,w,β ,

where Q defines a random rotation and Π is a
product of m sub-wedges:

Π =

m∏
i=1

1√
m
W√m·vi,α,√m·wi,β .

2. The aforementioned sub-wedges have parameters
close to the original wedges except with negligible
probability over the choice of Q. That is, for all i

and for ε = Õ(n−1/2),

µ(W√mvi,α,
√
mwi,β)

µ(Sb−1)
≥ Wb(α− ε, β − ε, θ − ε)

≥ W1/m
n (α, β, θ)

/
2Õ(
√
n).

Because of the inclusion (item 1), the probability p
that C ∩ Ww,α,v,β is not empty must be greater than
the probability that each Ci ∩W√mvi,α,

√
mwi,β is non-

empty. Since all codes Ci are perfectly random and
uniformly independent, we have

qi = 1−
(

1−
µ(W√mvi,α,

√
mwi,β)

µ(Sb−1)

)B
,

q ≥ q1q2 . . . qm − negl(n).

For conciseness, we set W = Wn(α, β, θ). Now,
from the second item, we deduce that qi = 1 −

(
1 −

W 1/m
/

2Õ(
√
n)
)B

. We now discuss the two cases:

• If B ·W 1/m → 0, then qi = W 1/m·B
2Õ(
√
n)

, so

q ≥
(
W 1/m ·B

2Õ(
√
n)

)m
≥ W ·Bm

2Õ(
√
n)

=
W ·M
2Õ(
√
n)
.

• If B ·W 1/m ≥ 2Õ(
√
n), then qi = 1 − negl(n), and

we conclude that q ≥ 1− negl(n).

In both cases, that provides the desired result. �

C Approximation of wedges by subwedges

This subsection is devoted to the proof of our main
technical Lemma C.4, given at the end of the section.

Let Un denote the uniform distribution over Sn−1,
and let Nσ2 denote the centered normal distribution
over R of variance σ2. We mainly use the normal dis-
tribution as a proxy to study the uniform distribution,
as the normal distribution is simpler to project on sub-
spaces. We recall that the distribution of the squared
norm of a vector v, sampled from a Nn

1 distribution,
is called the chi-squared distribution with n degrees of
freedom, and is denoted χ2

n.

Lemma C.1. (χ2 Concentration [LM00]) For v
sampled as v ∼ Nn

1 , we have

Pr(‖v‖2 − n ≥ 2
√
nt+ 2t) ≤ exp(−t),

Pr(‖v‖2 − n ≤ 2
√
nt) ≤ exp(−t).

In particular, for t = log2 n we have 1
n‖v‖

2 = 1 +

Õ(n−1/2) except with negligible probability in n.

In the following lemmas we assume that m =
polylog(n), so that blockwise norms and dot products
are strongly concentrated around their means.

Lemma C.2. (Blockwise norms) Let v be sampled
as v ∼ Un, and let us write v = (v1, . . . ,vm) with
vi ∈ Rb for i = 1, . . . ,m. Then, except with negligible
probability, we have that for all i = 1, . . . ,m:

‖vi‖2 =
1

m

(
1 + Õ

(
n−1/2

))
.

Proof. The distribution Un can be sampled by drawing
v′ ← Nn

1/n and taking v = v′/‖v′‖. Writing v =

(v1, . . . ,vm) and v′ = (v′1, . . . ,v
′
m), we then have vi =

v′i/‖v′‖. We conclude the proof by applying Lemma C.1
on each ‖v′i‖ and on ‖v′‖. �

Lemma C.3. (Blockwise inner products) Let
v,w ∼ Un be independent uniform samples conditioned
on 〈v,w〉 = 0. Then, for all i, we have | 〈wi,vi〉 | ≤
Õ(n−1/2) except with negligible probability.

Proof. The distribution of (v,w) may be sampled by
applying Gram-Schmidt orthogonalization to indepen-
dent normal vectors as follows, where v′,w′ ∼ Nn

1/n.

v =
v′

‖v′‖
, w =

w′ − 〈w′,v〉v
‖w′ − 〈w′,v〉v‖

.

By Lemma C.1, we have that except with negligible
probability, 3

4 ≤ ‖v‖, ‖w‖ ≤
5
4 . Additionally, 〈w′,v〉

is distributed according to N1/n under the randomness
of w′, so we have | 〈w′,v〉 | ≤ (log n)/

√
n except

with negligible probability. First, this implies that
‖w′ − 〈w′,v〉v‖ ≥ 1

2 , and we derive:

| 〈wi,vi〉 | ≤ 2 (〈w′i,vi〉 − 〈w′,v〉 ‖vi‖) .

Again, under the randomness of w′, the inner products
〈w′i,vi〉 are distributed according to N‖vi‖2/n, so with
overwhelming probability we have:

〈wi,vi〉 | ≤ 4 · ‖vi‖ · (log n)/
√
n .

Finally, we invoke Lemma C.2 to conclude that, for
all i, we have | 〈wi,vi〉 | ≤ O((log n)/

√
n) except with

negligible probability. �

Using the previous lemmas, we are now ready to
prove the main technical result.

Lemma C.4. (Approximation by wedges) Let v,w
be independent uniformly random samples from Sn−1

conditioned on the fact that 〈v,w〉 = cos θ. Then,

except with negligible probability, for some ε = Õ(n−1/2)
the following holds for all i:

µ(W√mvi,α,
√
mwi,β)

µ(Sb−1)
≥ Wb(α− ε, β − ε, θ − ε).

Additionally, the wedge product

Π =

m∏
i=1

1√
m
W√mvi,α,

√
mwi,β

is included in Wv,α,w,β.

Proof. Let us start by proving the inclusion Π ⊂
Wv,α,w,β . Let x = (x1, . . . ,xm) ∈ Π, that is, each
xi belongs to 1√

m
Sb−1 and satisfies 〈xi,vi〉 ≥ α

m and

〈xi,wi〉 ≥ β
m . Summing over all i, we obtain ‖x‖2 = 1,

〈x,v〉 ≥ α and 〈x,w〉 ≥ β, which concludes the proof
of the inclusion.

We now move to the proof of the main result. First

note thatWa,α,b,β has volumeW(α
‖a‖ ,

β
‖b‖ ,

〈a,b〉
‖a‖‖b‖), so it

suffices to prove that ‖vi‖2 = 1
m (1+Õ(n−1/2)), ‖wi‖2 =

1
m (1 + Õ(n−1/2)) and 〈vi,wi〉 = cos θ

m (1 + Õ(n−1/2)).
The first two statements follow from Lemma C.2 with
overwhelming probability. For the last one, write w′ =
cos θ · v + sin θ ·w′ where v,w′ are sampled uniformly
on the sphere conditioned on being orthogonal. Then:

〈vi,wi〉 = cos θ · ‖vi‖2 + 〈vi,w′i〉

=
cos θ

m

(
1 + Õ

(
1√
n

))
+O

(
log n√
n

)
,

where the second term follows from Lemma C.3. This
concludes the proof. �

