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Abstract

Lattice reduction algorithms are notoriously hard to predict, both in terms of running time
and output quality, which poses a major problem for cryptanalysis. While easy to analyze
algorithms with good worst-case behavior exist, previous experimental evidence suggests that
they are outperformed in practice by algorithms whose behavior is still not well understood,
despite more than 30 years of intensive research. This has lead to a situation where a rather
complex simulation procedure seems to be the most common way to predict the result of their
application to an instance. In this work we present new algorithmic ideas towards bridging
this gap between theory and practice. We report on an extensive experimental study of several
lattice reduction algorithms, both novel and from the literature, that shows that theoretical
algorithms are in fact surprisingly practical and competitive. In light of our results we come to
the conclusion that in order to predict lattice reduction, simulation is superfluous and can be
replaced by a closed formula using weaker assumptions.

One key technique to achieving this goal is a novel algorithm to solve the Shortest Vector
Problem (SVP) in the dual without computing the dual basis. Our algorithm enjoys the same
practical efficiency as the corresponding primal algorithm and can be easily added to an existing
implementation of it.

1 Introduction

Lattice basis reduction is a fundamental tool in cryptanalysis and it has been used to successfully
attack many cryptosystems, based on both lattices, and other mathematical problems. (See for
example [9, 23, 38, 43–46, 60, 61, 65].) The success of lattice techniques in cryptanalysis is due to a
large extent to the fact that reduction algorithms perform much better in practice than predicted
by their theoretical worst-case analysis. Basis reduction algorithms have been investigated in many
papers over the past 30 years [3,6,8,10,12–16,18,20,21,26,28,32,36,39–41,44,47,49,50,53–55,57–
59,62,64,66–68], but the gap between theoretical analysis and practical performance is still largely
unexplained. This gap hinders our ability to estimate the security of lattice based cryptographic
functions, and it has been widely recognized as one of the main obstacles to the use of lattice
cryptography in practice. In this work, we make some modest progress towards this challenging
goal.

By and large, the current state of the art in lattice basis reduction (in theory and in practice)
is represented by two algorithms:
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� the eminently practical Block-Korkine-Zolotarev (BKZ) algorithm of Schnorr and Euchner
[53,59], in its modern BKZ 2.0 incarnation [8] incorporating pruning, recursive preprocessing
and early termination strategies [14,18],

� the Slide reduction algorithm of Gama and Nguyen [15], an elegant generalization of LLL
[27,39] which provably approximates short lattice vectors within factors related to Mordell’s
inequality.

Both algorithms make use of a Shortest Vector Problem (SVP) oracle for lower dimensional
lattices, and are parameterized by a bound k (called the “block size”) on the dimension of these
lattices. The Slide reduction algorithm has many attractive features: it makes only a polynomial
number of calls to the SVP oracle, all SVP calls are to projected sub-lattices in exactly the same
dimension k, and it achieves the best known worst-case upper bound on the length of its shortest

output vector: γ
(n−1)/(2(k−1))
k det(L)1/n, where γk = Θ(k) is the Hermite constant, and det(L) is

the determinant of the lattice. Unfortunately, it has been reported [15, 16] that in experiments
the Slide reduction algorithm is outperformed by BKZ, which produces much shorter vectors for
comparable block size. In fact, [15] remarks that even BKZ with block size k = 20 produces better
reduced bases than Slide reduction with block size k = 50. As a consequence, the Slide reduction
algorithm is never used in practice, and it has not been implemented and experimentally tested
beyond the brief claims made in the initial work [15,16].1

On the other hand, while surprisingly practical in experimental evaluations, the BKZ algorithm
has its own shortcomings too. In its original form, BKZ is not even known to terminate after a
polynomial number of calls to the SVP oracle, and its observed running time has been reported [16]
to grow superpolynomially in the lattice dimension, even when the block size is fixed to some
relatively small value k ≈ 30. Even upon termination, the best provable bounds on the output
quality of BKZ are worse than Slide reduction by at least a polynomial factor [15].2 In practice, in
order to address running time issues, BKZ is often employed with an “early termination” strategy [8]
that tries to determine heuristically when no more progress is expected from running the algorithm.
Theoretical bounds on the quality of the output after a polynomial number of iterations have been
proved [18], but they are worse than Slide reduction by even larger polynomial factors. Another
fact that complicates the analysis (both in theory and in practice) of the output quality of BKZ is
the fact that the algorithm makes SVP calls in all dimensions up to the block size. In theory, this
results in a formula that depends on all worst-case (Hermite) constants γi for i ≤ k. In practice, the
output quality and running time is evaluated by a simulator [8] that initially attempts to numerically
estimate the performance of the SVP oracle on random lattices in all possible dimensions up to k.

Our Contribution We introduce new algorithmic techniques that can be used to design improved
lattice basis reduction algorithms, analyze their theoretical performance, implement them, and
report on their practical behavior through a detailed set of experiments with block size as high as
75, and several data points per dimension for (still preliminary, but already meaningful) statistical
estimation.

1While we are referencing two separate works, both refer to the same experimental study.
2We remark that polynomial approximation factors, while being asymptotically insignificant, can make a sub-

stantial difference in practice, as lattice-based cryptography relies on the hardness of approximating lattice problems
within factors that are super-linear in the lattice dimension. In fact, much effort has been put on minimizing such
factors in the design of cryptographic constructions [1, 2, 31,33,35,48,51,52].
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One of our main findings is that the Slide reduction algorithm is much more practical than
originally thought, and as the dimension increases, it performs almost as well as BKZ, while at
the same time, offering a simple closed-formula to evaluate its output quality. This provides a
simple and effective method to evaluate the impact of lattice basis reduction attacks on lattice
cryptography, without the need to run simulators or other computer programs [8, 67]. Key to our
findings, is a new procedure to enumerate shortest lattice vectors in dual lattices, without the need
to explicitly compute a dual basis. Interestingly, our dual enumeration procedure is almost identical
(syntactically) to the standard enumeration procedure to find short vectors in a (primal) lattice,
and, as expected, it is just as efficient in practice. Using our new procedure, we are able to conduct
experiments using Slide reduction with significantly larger block size than previously reported, and
observe that the gap between theoretical (more predicable) algorithms and practical heuristics gets
pretty narrow already for moderate block size and dimension.

For small block sizes (say, up to 40), there is still a substantial gap between the output quality
of Slide reduction and BKZ in practice. For this setting, we design a new variant of BKZ, based on
lattice duality and a new notion of block reduced basis. Our new DBKZ algorithm can be efficiently
implemented using our dual enumeration procedure, achieving running times comparable to BKZ,
and matching its experimental output quality for small block size almost exactly. (See Figure 5.)
At the same time, our algorithm has various advantages over BKZ, that make it a better target for
theoretical analysis: it only makes calls to an SVP oracle in fixed dimension k, and it is self dual, in
the sense that it performs essentially the same operations when run on a basis or its dual. The fact
that all SVP calls on projected sublattices are in the same fixed dimension k has several important
implications. First, it results in a simpler bound on the length of the shortest output vector, which
can be expressed as a function of just γk. More importantly, this allows to get a practical estimate
on the output quality simply by replacing γk with the value predicted by the Gaussian Heuristic
GH(k), commonly used in lattice cryptanalysis. We remark that the GH(k) formula has been
validated for moderately large values of k, where it gives fairly accurate estimates on the shortest
vector length in k-dimensional sublattices. However, early work on predicting lattice reduction [16]
has also shown that for small k (say, up to k ≤ 25), BKZ sublattices do not follow the Gaussian
Heuristic. As a result, while the BKZ 2.0 simulator of [8] makes extensive use of GH(k) for large
values of k, it also needs to resort to cumbersome experimental estimations for predicting the result
of SVP calls in dimension lower than k. By making only SVP calls on k-dimensional sublattices,
our algorithm obviates the need for any such experimental estimates, and allows to predict the
output quality (under the same, or weaker heuristic assumptions than the BKZ 2.0 simulator) just
using the GH(k) formula. We stress that this is not only true for the length of the shortest vector
found by our algorithm, but one can estimate many more properties of the resulting basis. This
is important in many cryptanalytic settings, where lattice reduction is used as a preprocessing for
other attacks. In particular, using the Gaussian Heuristic we are able to show that a large part of
the basis output by our algorithm can be expected to follow the Geometric Series Assumption [56],
an assumption often made about the output of lattice reduction, but so far never proven. (See
Section 5 for details.) One last potential advantage of only making SVP calls in fixed dimension k
(and, consequently, the ability to use the Gaussian Heuristic for all of them) is that it opens up the
possibility of even more accurate stochastic simulations (or analytic solutions) where the GH(k)
deterministic formula is replaced by a probability distribution (following the length of the shortest
vector in a random k-dimensional lattice). We leave the investigation of such a stochastic simulator
to future work.
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Technical ideas Enumeration algorithms (as typically used within block basis reduction) find
short vectors in a lattice by examining all possible coordinates x1, . . . , xn of candidate short lattice
vectors

∑
i bi · xi with respect to the given lattice basis, and using the length of the projected

lattice vector to prune the search. Our dual lattice enumeration algorithm works similarly, but
without explicitly computing a basis for the dual lattice. The key technical idea is that one can
enumerate over the scalar products yi = ⟨bi,v⟩ of the candidate short dual vectors v and the
primal basis vectors bi.

3 Perhaps surprisingly, one can also compute the length of the projections
of the dual lattice vector v (required to prune the enumeration tree), without explicitly computing
v or a dual basis. The simplicity of the algorithm is best illustrated just by looking at the pseudo
code, and comparing it side-to-side to the pseudo code of standard (primal) lattice enumeration.
(See Algorithms 2 and 3 in Section 7.) The two programs are almost identical, leading to a dual
enumeration procedure that is just as efficient as primal enumeration, and allowing the application
of all standard optimizations (e.g., all various forms of pruning) that have been developed for
enumerating in primal lattices.

On the basis reduction front, our DBKZ algorithm is based on a new notion of block-reduced
basis. Just as for BKZ, DBKZ-reduction is best described as a recursive definition. In fact, the
recursive condition is essentially the same for both algorithms: given a basis B, if b is a shortest
vector in the sublattice generated by the first k basis vectors B[1,k], we require the projection of
B orthogonal to b to satisfy the recursive reduction property. The difference between BKZ and
DBKZ is that, while BKZ requires B[1,k] to start with a shortest lattice vector b = b1, in DBKZ
we require it to end with a shortest dual vector.4 This simple twist in the definition of reduced
basis leads to a much simpler bound on the length of b, improving the best known bound for BKZ
reduction, and matching the theoretical quality of Slide reduction.

Experiments To the best of our knowledge, we provide the first experimental study of lattice
reduction with large block size parameter beyond BKZ. Even for BKZ we improve on the currently
only study involving large block sizes [8] by collecting multiple data points per block size parameter.
This allows us to apply standard statistical methods to try to get a sense of the main statistical
parameters of the output distribution. Clearly, learning more about the output distribution of
these algorithms is highly desirable for cryptanalysis, as an adversary is drawing samples from that
distribution and will utilize the most convenient sample, rather than a sample close to the average.

Finally, in contrast to previous experimental work [8, 16], we contribute to the community by
making our code5 and data6 publicly available. To the best of our knowledge, this includes the
first publicly available implementation of dual SVP reduction and Slide reduction. At the time of
publication of this work, a modified version of our implementation of dual SVP reduction has been
integrated into the main branch of fpLLL [4]. We hope that this will spur more research into the
predictability of lattice reduction algorithms.

3By definition of dual lattice, all these products yi are integers, and, in fact, they are the coordinates of v with
respect to the standard dual basis of b1, . . . ,bn.

4To be precise, we require b∗
k/∥b∗

k∥2 to be a shortest vector in the dual lattice of B[1,k]. See Section 3 for details.
5http://cseweb.ucsd.edu/~miwalter/src/fplll-dual_enum/fplll-dual_enum.zip
6http://cseweb.ucsd.edu/~miwalter/src/fplll-dual_enum/results.zip
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2 Preliminaries

Notation Numbers and reals are denoted by lower case letters. For n ∈ Z+ we denote the set
{0, . . . , n} by [n]. For vectors we use bold lower case letters and the i-th entry of a vector v is
denoted by vi. Let ⟨v,w⟩ =

∑
i vi · wi be the scalar product of two vectors. If p ≥ 1 we define the

p norm of a vector v to be ∥v∥p = (
∑
|vi|p)1/p. We will only be concerned with the norms given

by p = 1, 2, and ∞. Whenever we omit the subscript p, we mean the standard Euclidean norm,
i.e. p = 2. We define the projection of a vector b orthogonal to a vector v as πv(b) = b− ⟨b,v⟩

∥v∥2 v.

Matrices are denoted by bold upper case letters. The i-th column of a matrix B is denoted by bi.
Furthermore, we denote the submatrix comprising the columns from the i-th to the j-th column
(inclusive) as B[i,j] and the horizontal concatenation of two matrices B1 and B2 by [B1|B2]. For
any matrix B and p ≥ 1 we define the induced norm to be ∥B∥p = max∥x∥p=1(∥Bx∥p). For p = 1
(resp. ∞) this is often denoted by the column (row) sum norm; for p = 2 this is also known as the
spectral norm. It is a classical fact that ∥B∥2 ≤

√
∥B∥1∥B∥∞. Finally, we extend the projection

operator to matrices, where πV(B) is the matrix obtained by applying πV to every column bi of
B and πV(bi) = πvk

(· · · (πv1(bi)) · · · ).

2.1 Lattices

A lattice Λ is a discrete subgroup of Rm and is generated by a matrix B ∈ Rm×n, i.e. Λ =
L(B) = {Bx : x ∈ Zn}. If B has full column rank, it is called a basis of Λ and dim(Λ) = n is the
dimension (or rank) of Λ. A lattice has infinitely many bases, which are related to each other by
right-multiplication with unimodular matrices. With each matrixB we associate its Gram-Schmidt-
Orthogonalization (GSO) B∗, where the i-th column b∗

i of B∗ is defined as b∗
i = πB∗

[1,i−1]
(bi) =

bi−
∑

j<i µi,jb
∗
j and µi,j = ⟨bi,b

∗
j ⟩/∥b∗

j∥2 (and b∗
1 = b1). For every lattice basis there are infinitely

many bases that have the same GSO vectors b∗
i , among which there is a (not necessarily unique)

basis that minimizes ∥bi∥ for all i. Transforming a basis into this form is commonly known as size
reduction and is easily and efficiently done using a slight modification of the Gram-Schmidt process.
In this work we will implicitly assume all bases to be size reduced. The reader can simply assume
that any basis operation described in this work is followed by a size reduction. For a fixed matrix
B we extend the projection operation to indices: πi(·) = πB∗

[1,i−1]
(·), so π1(B) = B. Whenever we

refer to the shape of a basis B, we mean the vector (∥b∗
i ∥)i∈[n]. We define D† to be the GSO of D

in reverse order.
For every lattice Λ there are a few invariants associated to it. One of them is its determinant

det(L(B)) =
∏

i ∥b∗
i ∥ for any basis B. Even though the basis of a lattice is not uniquely defined,

the determinant is and it is efficiently computable given a basis. Furthermore, for every lattice
Λ we denote the length of its shortest non-zero vector (also known as the first minimum) by
λ1(Λ), which is always well defined. We use the short-hand notations det(B) = det(L(B)) and
λ1(B) = λ1(L(B)). Minkowski’s theorem is a classic result that relates the first minimum to the
determinant of a lattice. It states that λ1(Λ) ≤

√
γn det(Λ)

1/n, for any Λ with dim(Λ) = n, where
Ω(n) ≤ γn ≤ n is Hermite’s constant. Finding a (even approximate) shortest nonzero vector in
a lattice, commonly known as the Shortest Vector Problem (SVP), is NP-hard under randomized
reductions [25,34].

For every lattice Λ, its dual is defined as Λ̂ = {w ∈ span(Λ)|⟨w,v⟩ ∈ Z for all v ∈ Λ}. It is
a classical fact that det(Λ̂) = det(Λ)−1. For a lattice basis B, let D be the unique matrix that
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satisfies span(B) = span(D) and BTD = DTB = I. Then L̂(B) = L(D) and we denote D as the
dual basis of B. It follows that for any vector w = Dx we have that BTw = x, i.e. we can recover
the coefficients x of w with respect to the dual basis D by multiplication with the transpose of
the primal basis BT . Given a lattice basis, its dual basis is computable in polynomial time, but
requires at least Ω(n3) bit operations using matrix inversion. Finally, if D is the dual basis of B,

their GSOs are related by ∥b∗
i ∥ = 1/∥d†

i∥.
In this work we will often modify a lattice basis B such that its first vector satisfies α∥b1∥ ≤

λ1(B) for some α ≤ 1. We will call this process SVP reduction of B. Given an SVP oracle, it
can be accomplished by using the oracle to find the shortest vector in L(B), prepending it to the
basis, and running LLL (cf. Section 2.3) on the resulting generating system. Furthermore, we will

modify a basis B such that its dual D satisfies α∥dn∥ ≤ λ1(L̂(B)), i.e. its reversed dual basis is
SVP reduced. This process is called dual SVP reduction. Note that if B is dual SVP reduced,
then ∥b∗

n∥ is maximal among all bases of L(B). The obvious way to achieve dual SVP reduction
is to compute the dual of the basis, SVP reduce it as described above, and compute the primal
basis. We present an alternative way to achieve this in Section 7. In the context of reduction
algorithms, the relaxation factor α is usually needed for proofs of termination or running time and
only impacts the analysis of the output quality in lower order terms. In this work, we will sweep
it under the rug and take it implicitly to be a constant close to 1. Finally, we will apply SVP and
dual SVP reduction to projected blocks of a basis B, for example we will (dual) SVP reduce the
block πi(B[i,i+k]). By that we mean that we will modify B in such a way that πi(B[i,i+k]) is (dual)
SVP reduced. This can easily be achieved by applying the transformations to the original basis
vectors instead of their projections.

2.2 Enumeration Algorithms

In order to solve SVP in practice, enumeration algorithms are usually employed, since these are the
most efficient algorithms for currently realistic dimensions. The standard enumeration procedure,
usually attributed to Fincke, Pohst [11], and Kannan [24] can be described as a recursive algorithm:
given as input a basis B ∈ Zm×n and a radius r, it first recursively finds all vectors v′ ∈ L(π2(B))
with ∥v′∥ ≤ r, and then for each of them finds all v ∈ L(B), s.t. π2(v) = v′ and ∥v∥ ≤ r, using b1.
This essentially corresponds to a breadth first search on a large tree, where layers correspond to
basis vectors and the nodes to the respective coefficients. While it is conceptually simpler to think
of enumeration as a BFS, implementations usually employ a depth first search for performance
reasons. Pseudo code can be found in Algorithm 3 in Section 7.

There are several practical improvements of this algorithm collectively known as SchnorrEuch-
ner enumeration [59]: First, due to the symmetry of lattices, we can reduce the search space by
ensuring that the last non zero coefficient is always positive. Furthermore, if we find a vector
shorter than the bound r, we can update the latter. And finally, we can enumerate the coefficients
of a basis vector in order of the length of the resulting (projected) vector and thus increase the
chance of finding some short vector early, which will update the bound r and keep the search space
smaller.

It has also been demonstrated [14] that reducing the search space (and thus the success prob-
ability) – a technique known as pruning – can speed up enumeration by exponential factors. For
more details on recent improvements we refer to [14,19,20,36,68].
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2.3 Lattice Reduction

As opposed to exact SVP algorithms, lattice reductions approximate the shortest vector. The
quality of their output is usually measured in the length of the shortest vector they are able to find
with respect to the root determinant of the lattice. This quantity is denoted by the Hermite factor
δ̄ = ∥b1∥/ det(B)1/n. The Hermite factor depends on the lattice dimension n, but the experiments
of [16] suggest that the root Hermite factor δ = δ̄1/n converges to a constant as n increases for
popular reduction algorithms. During our experiments we found that to be true at least for large
enough dimensions (n ≥ 140).

The LLL algorithm [27] is a polynomial time basis reduction algorithm. A basis B ∈ Zm×n

can be defined to be LLL reduced if B[1,2] is SVP reduced and π2(B) is LLL reduced. From
this it is straight forward to prove that LLL reduction achieves a root Hermite factor of at most

δ ≤ γ
1/4
2 ≈ 1.0746. However, LLL has been reported to behave much better in practice [16,42].

BKZ [53] is a generalization of LLL to larger block size. A basis B is BKZ reduced with block
size k (denoted by BKZ-k) if B[1,min(k,n)] is SVP reduced and π2(B) is BKZ-k reduced. BKZ
achieves this by simply scanning the basis from left to right and SVP reducing each projected block
of size k (or smaller once it reaches the end) by utilizing a SVP oracle for all dimensions ≤ k. It
iterates this process (which is usually called a tour) until no more change occurs. When k = n, this
is usually referred to as HKZ reduction and is essentially equivalent to solving SVP. The following
bound for the Hermite factor holds for b1 of a BKZ-k reduced basis [18]:

∥b1∥ ≤ 2γ
n−1

2(k−1)
+ 3

2

k det(B)1/n (1)

Equation (1) shows that the root Hermite factor achieved by BKZ-k is at most ≲ γ
1

2(k−1)

k . Further-
more, while there is no polynomial bound on the number of calls BKZ makes to the SVP oracle,
Hanrot, Pujol, and Stehlé showed in [18] that one can terminate BKZ after a polynomial number of
calls to the SVP oracle and still provably achieve the bound (1). Finally, BKZ has been repeatedly
reported to behave very well in practice [8,16]. For these reasons, BKZ is very popular in practice
and implementations are readily available in different libraries, e.g. in NTL [63] or fpLLL [4].

In [15], Gama and Nguyen introduced a different block reduction algorithm, namely Slide re-
duction. It is also parameterized by a block size k, which is required to divide the lattice dimension
n, but uses a SVP oracle only in dimension k. 7 A basis B is defined to be slide reduced, if
B[1,k] is SVP reduced, π2(B[2,k+1]) is dual SVP reduced (if k > n), and πk+1(B[k+1,n]) is slide
reduced. Slide reduction, as described in [15], reduces a basis by first alternately SVP reducing
all blocks πik+1(B[ik+1,(i+1)k]) and running LLL on B. Once no more changes occur, the blocks
πik+2(B[ik+2,(i+1)k+1]) are dual SVP reduced. This entire process is iterated until no more changes
occur. Upon termination, the basis is guaranteed to satisfy

∥b1∥ ≤ γ
n−1

2(k−1)

k det(B)1/n (2)

This is slightly better than Equation (1), but the achieved root Hermite factor is also only guar-

anteed to be less than γ
1

2(k−1)

k . Slide reduction has the desirable properties of only making a

7Strictly speaking, the algorithm as described in [15] uses HKZ reduction and thus requires an SVP oracle in lower
dimensions as well. However, the entire analysis in [15] only relies on the SVP reducedness of the projected blocks
and thus the HKZ reduction can be replaced by SVP reduction, which we do in the following.
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polynomial number of calls to the SVP oracle and that all calls are in dimension k (and not in
lower dimensions). The latter allows for a cleaner analysis, for example when combined with the
Gaussian Heuristic (cf. Section 2.4). Unfortunately, Slide reduction has been reported to be greatly
inferior to BKZ in experiments [16], so it is rarely used in practice and we are not aware of any
publicly available implementation.

2.4 The Gaussian Heuristic

The Gaussian Heuristic gives an approximation of the number of lattice points in a “nice” subset of
Rn. More specifically, it says that for a given set S and a lattice Λ, we have |S∩Λ| ≈ vol(S)/ det(Λ).
The heuristic has been proved to be very useful in the average case analysis of lattice algorithms.
For example, it can be used to estimate the complexity of enumeration algorithms [14, 19] or the
output quality of lattice reduction algorithms [8]. For the latter, note that reduction algorithms
work by repeatedly computing the shortest vector in some lattice and inserting this vector in a
certain position of the basis. To estimate the effect such a step has on the basis, it is useful to be
able to predict how long such a vector might be. This is where the Gaussian Heuristic comes in:
using the above formula, one can estimate how large the radius of an n-dimensional ball (this is
the “nice” set) needs to be such that we can expect it to contain a non-zero lattice point (where
n = dim(Λ)). Using the volume formula for the n-dimensional ball, we get an estimate for the
shortest non-zero vector in a lattice Λ:

GH(Λ) =
(Γ(n/2 + 1) · det(Λ))1/n√

π
(3)

If k is an integer, we define GH(k) to be the Gaussian Heuristic (i.e. Equation (3)) for k-
dimensional lattices with unit determinant. The heuristic has been tested experimentally [14], also
in the context of lattice reduction [8,16], and been found to be too rough in small dimensions, but
to be quite accurate starting in dimension > 45. In fact, for a precise definition of random lattices
(which we are not concerned with in this work) it can be shown that the expected value of the
first minimum of the lattice (over the choice of the lattice) converges to Equation (3) as the lattice
dimension tends to infinity.8

Heuristic 1 [Gaussian Heuristic] For a given lattice Λ, λ1(Λ) = GH(Λ).

Invoking Heuristic 1 for all projected sublattices that the SVP oracle is called on during the
process, the root Hermite factor achieved by lattice reduction (usually with regards to BKZ) is
commonly estimated to be [5]

δ ≈ GH(k)
1

k−1 . (4)

However, since the Gaussian Heuristic only seems to hold in large enough dimensions and BKZ
makes calls to SVP oracles in all dimensions up to the block size k, it is not immediately clear how
justified this estimation is. While there is a proof by Chen [7] that under the Gaussian Heuristic,
Equation (4) is accurate for BKZ, this is only true as the lattice dimension tends to infinity. It
might be reasonable to assume that this also holds in practice as long as the lattice dimension is

8One can also formulate Heuristic 1 for a given lattice by assuming it “behaves like a random lattice”. Depending
on the exact definition of what it means for a lattice to “behave like a random lattice”, this version is either stronger
as or equivalent to Heuristic 1.
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large enough compared to the block size, but in practice and cryptanalytic settings this is often
not the case. In fact, in order to achieve an approximation good enough to break a cryptosystem,
a block size at least linear in the lattice dimension is often required. As another approach to
predicting the output of BKZ, Chen and Nguyen proposed a simulation routine [8]. Unfortunately,
the simulator approach has several drawbacks. Obviously, it requires more effort to apply than a
closed formula like (4), since it needs to be implemented and “typical” inputs need to be generated
or synthesized (among others, the shape of a “typical” HKZ reduced basis in dimension 45). On
top of that, the accuracy of the simulator is based on several additional heuristic assumptions, the
validity of which has not been independently verified.

To the best of our knowledge there have been no attempts to make similar predictions for Slide
reduction, as it is believed to be inferior to BKZ and thus usually not considered for cryptanalysis.

3 Self-Dual BKZ

In this section we describe our new reduction algorithm. Like BKZ it is parameterized by a block
size k and a SVP oracle in dimension k, and acts on the input basis B ∈ Zm×n by iterating tours.
The beginning of every tour is exactly like a BKZ tour, i.e. SVP reducing every block πi(B[i,i+k−1])
from i = 1 to n − k + 1. We will call this part a forward tour. For the last block, which BKZ
simply HKZ reduces and where most of the problems for meaningful predictions stem from, we do
something different. Instead, we dual SVP the last block and proceed by dual SVP reducing all
blocks of size k backwards (which is a backward tour). After iterating this process (which we call a
tour of Self-Dual BKZ) the algorithm terminates when no more progress is made. The algorithm
is formally described in Algorithm 1.

Algorithm 1 Self-Dual BKZ

procedure DBKZ (B, k, SVPk)
Input: A lattice basis B ∈ Zm×n, a block size k, a SVP oracle in dimension k
Output: A k-reduced basis B′ (See Definition 1 for a formal definition.)

1 do

2 for i = 1 . . . n− k
3 SVP reduce πi(B[i,i+k−1]) using SVPk

4 for i = n− k + 1 . . . 1
5 dual SVP reduce πi(B[i,i+k−1]) using SVPk

6 while progress is made
7 return B

Note that, like BKZ, Self-Dual BKZ (DBKZ) is a proper block generalization of the LLL algo-
rithm, which corresponds to the case k = 2.

The terminating condition in Line 6 is left ambiguous at this point on purpose as there are
several sensible ways to approach this as we will see in the next section. One has to be careful to,
on the one hand guarantee termination, while on the other hand achieving a meaningful reducedness
definition.

3.1 Analysis

The output of Algorithm 1 satisfies the following reducedness definition upon termination:

9



Definition 1 A basis B = [b1, . . . ,bn] is k-reduced if either n < k, or it satisfies the following
conditions:

� ∥b∗
k∥−1 = λ1( ̂L(B[1,k])), and

� for some SVP reduced basis B̃ of L(B[1,k]), π2([B̃|B[k+1,n]]) is k-reduced.

We first prove that Algorithm 1 indeed achieves Definition 1 when used with a specific termi-
nating condition:

Lemma 1 Let B be an n-dimensional basis. If πk+1(B) is the same before and after one loop of
Algorithm 1, then B is k-reduced.

Proof The proof is inductive: for n = k the result is trivially true. So, assume n > k, and
that the result already holds for n − 1. At the end of each iteration, the first block B[1,k] is

dual-SVP reduced by construction. So, we only need to verify that for some B̃ an SVP reduced
basis for L(B[1,k), the projection π2([B̃|B[k+1,n]]) is also k-reduced. Let B̃ be the SVP reduced
basis produced in the first step. Note that the first and last operation in the loop do not change
L(B[1,k]) and B[k+1,n]. It follows that πk+1(B) is the same before and after the partial tour (the

tour without the first and the last step) on the projected basis π2([B̃|B[k+1,n]]), and so πk+2(B) is

the same before and after the partial tour. By induction hypothesis, π2([B̃|B[k+1,n]]) is k-reduced.
2

Lemma 1 gives a terminating condition which ensures that the basis is reduced. We remark
that it is even possible to adapt the proof such that it is sufficient to check that the shape of the
projected basis πk+1(B) is the same before and after the tour, which is much closer to what one
would do in practice to check if progress was made (cf. Line 6). However, this requires to relax the
definition of SVP-reduction slightly, such that the first vector is not necessarily a shortest vector,
but merely a short vector achieving Minkowski’s bound. Since this is the only property of SVP
reduced bases we need for the analysis below, this does not affect the worst case output quality.
Finally, we are aware that it is not obvious that either of these conditions are ever met, e.g. (the
shape of) πk+1(B) might loop indefinitely. However, in Section 4 we show that one can put a
polynomial upper bound on the number of loops without sacrificing worst case output quality.

To show that the output quality of Self-Dual BKZ in the worst case is at least as good as BKZ’s
worst case behavior, we analyze the Hermite factor it achieves:

Theorem 1 If B is k-reduced, then λ1(B[1,k]) ≤
√
γk

n−1
k−1 · det(B)1/n.

Proof Assume without loss of generality that L(B) has determinant 1, and let ∆ be the determinant
of L(B[1,k]). Let λ ≤ √γk∆1/k and λ̂ ≤ √γk∆−1/k be the lengths of the shortest nonzero primal

and dual vectors of L(B[1,k]). We need to prove that λ ≤ √γk
n−1
k−1 .

We first show, by induction on n, that the determinant ∆1 of the first k − 1 vectors is at most√
γk

n−k+1 det(B)(k−1)/n =
√
γk

n−k+1. Since B is k-reduced, this determinant equals ∆1 = λ̂ ·∆ ≤
√
γk∆

1−1/k. (This alone already proves the base case of the induction for n = k.) Now, let B̃ be a
SVP reduced basis of L(B[1,k]) satisfying the k-reduction definition, and consider the determinant

∆2 = ∆/λ of π2(B̃). Since π2([B̃|B[k+1,n]]) has determinant 1/∥b̃1∥ = 1/λ, by induction hypothesis

we have ∆2 ≤
√
γk

n−k(1/λ)(k−1)/(n−1).

10



∆ = λ∆2 ≤
√
γk

n−kλ
n−k
n−1 ≤ √γkn−k(

√
γk∆

1
k )

n−k
n−1 =

√
γk

(n−k)n
n−1 ∆

n−k
k(n−1) .

Rising both sides to the power (n− 1)/n we get ∆1− 1
n ≤ √γnn−k∆

1
k
− 1

n , or, equivalently, ∆1− 1
k ≤

√
γk

n−k. It follows that ∆1 = λ̂∆ ≤ √γk∆1− 1
k ≤ √γkn−k+1, concluding the proof by induction.

We can now prove the main theorem statement. Recall from the inductive proof that ∆ ≤
√
γk

n−kλ
n−k
n−1 . Therefore, λ ≤ √γk∆1/k ≤ √γk

n
k λ

n−k
k(n−1) . Solving for λ, proves the theorem. 2

4 Dynamical System

Proving a good running time on DBKZ directly seems just as hard as for BKZ, so in this section
we analyze the DBKZ algorithm using the dynamical system technique from [18].

Let B = [b1, . . . ,bn] be an input basis to DBKZ, and assume without loss of generality
that det(B) = 1. During a forward tour, our algorithm computes a sequence of lattice vectors
B′ = [b′

1, . . . ,b
′
n−k] where each b′

i is set to a shortest vector in the projection of [bi, . . . ,bi+k−1]
orthogonal to [b′

1, . . . ,b
′
i−1]. This set of vectors can be extended to a basis B′′ = [b′′

1, . . . ,b
′′
n] for

the original lattice. Since [b′
1, . . . ,b

′
i−1] generates a primitive sublattice of [bi, . . . ,bi+k−1], the

projected sublattice has determinant det(L(b1, . . . ,bi+k−1))/ det(L(b′
1, . . . ,b

′
i−1)), and the length

of its shortest vector is

∥(b′
i)
∗∥ ≤ √γk

(
det(L(b1, . . . ,bi+k−1))

det(L(b′
1, . . . ,b

′
i−1))

)1/k

. (5)

At this point, simulations based on the Gaussian Heuristics typically assume that (5) holds with
equality. In order to get a rigorous analysis without heuristic assumptions, we employ the amor-
tization technique of [18, 19]. For every i = 1, . . . , n − k, let xi = log det(b1, . . . ,bk+i−1) and
x′i = log det(b′

1, . . . ,b
′
i). Using (5), we get for all i = 1, . . . , n− k,

x′i = x′i−1 + log ∥(b′
i)
∗∥

≤ x′i−1 + α+
xi − x′i−1

k
= ωx′i−1 + α+ (1− ω)xi

where ω = (1− 1/k), α = 1
2 log γk and x′0 = 0. By induction on i,

x′i ≤ α
1− ωi

1− ω
+ (1− ω)

i∑
j=1

ωi−jxj ,

or, in matrix notation x′ ≤ b+Ax where

b = αk

 1− ω
...

1− ωn−k

 A =
1

k


1
ω 1
...

. . .
. . .

ωn−k−1 · · · ω 1

 .
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Since all the entries of A are positive, we also see that if Xi ≥ xi are upper bounds on the initial
values xi for all i, then the vector X ′ = AX +b gives upper bounds on the output values x′i ≤ X ′

i.
The vector x′ describes the shape of the basis matrix before the execution of a backward tour.

Using lattice duality, the backward tour can be equivalently formulated by the following steps:

1. Compute the reversed dual basis D of B′

2. Apply a forward tour to D to obtain a new dual basis D′

3. Compute the reversed dual basis of D′

The reversed dual basis computation yields a basis D such that, for all i = 1, . . . , n− k,

yi = log det(d1, . . . ,dk+i−1)

= − log(det(B′)/ det([b′
1, . . . ,b

′
n−k+1−i]))

= log det([b′
1, . . . ,b

′
n−k+1−i]) = x′n−k+1−i.

So, the vector y describing the shape of the dual basis at the beginning of the backward tour is
just the reverse of x′. It follows that applying a full (forward and backward) DBKZ tour produces
a basis such that if X are upper bounds on the log determinants x of the input matrix, then the
log determinants of the output matrix are bounded from above by

R(AR(AX + b) + b) = (RA)2X + (RA+ I)Rb

where R is the coordinate reversal permutation matrix. This leads to the study of the discrete time
affine dynamical system

X 7→ (RA)2X + (RA+ I)Rb. (6)

4.1 Output Quality

We first prove that this system has at most one fixed point.

Claim 1 The dynamical system (6) has at most one fixed point.

Proof Any fixed point is a solution to the linear system ((RA)2 − I)X + (RA + I)Rb = 0. To
prove uniqueness, we show that the matrix ((RA)2 − I) is non-singular, i.e., if (RA)2x = x then
x = 0. Notice that the matrix RA is symmetric, so we have (RA)2 = (RA)TRA = ATA. So
proving ((RA)2 − I) is non-singular is equivalent to showing that 1 is not an eigenvalue of ATA.
We have ρ(ATA) = ∥A∥22 ≤ ∥A∥1∥A∥∞, where ρ(·) denotes the spectral radius of the given matrix
(i.e. the largest eigenvalue in absolute value). But we also have

∥A∥∞ = ∥A∥1 =
1

k

n−k−1∑
i=0

ωi =
1− ωn−k

k(1− ω)
= 1− ωn−k < 1 (7)

which shows that the absolute value of any eigenvalue of ATA is strictly smaller than 1.2

We need to find a fixed point for (6). We have proved that (RA)2− I is a non-singular matrix.
Since (RA)2 − I = (RA + I)(RA − I), it follows that (RA ± I) are also non singular. So, we
can factor (RA+ I) out of the fixed point equation ((RA)2 − I)x+ (RA+ I)Rb = 0, and obtain
(RA−I)x+Rb = 0. This shows that the only fixed point of the full dynamical system (if it exists)
must also be a fixed point of a forward tour x 7→ R(Ax+ b).
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Claim 2 The fixed point of the dynamical system x 7→ R(Ax+ b) is given by

xi =
(n− k − i+ 1)(k + i− 1)

k − 1
α. (8)

Proof The unique fixed point of the system is given by the solution to the linear system (R−A)x =
b. We prove that (8) is a solution to the system by induction on the rows. For the first row, the
system yields

xn−k − x1/k = α. (9)

From (8) we get that xn−k = n−1
k−1α and x1 = k(n−k)

k−1 α. Substituting these into (9), the validity is
easily verified.

The r-th row of the system is given by

xn−k−r+1 −
1

k

 r∑
j=1

ωr−jxj

 =
1− ωr

1− ω
α (10)

which is equivalent to

xn−k−r+1 + ω

xn−k−r+2 −
1

k

r−1∑
j=1

ωr−1−jxj

− xr
k
− ωxn−k−r+2 =

1− ωr

1− ω
α. (11)

By induction hypothesis, this is equivalent to

ω

(
1− ωr−1

1− ω

)
α+ xn−k−r+1 −

xr
k
− ωxn−k−r+2 =

1− ωr

1− ω
α. (12)

Substituting (8) in for i = n− k − r + 1, r, and n− k − r + 2, we get

xn−k−r+1−
xr
k
−ωxn−k−r+2 =

kr(n− r)− (n− r − k + 1)(r + k − 1)− (k − 1)(r − 1)(n− r + 1)

k(k − 1)
α

which, after some tedious, but straight forward, calculation can be shown to be equal to α (i.e. the
fraction simplifies to 1). This in turn shows that the left hand side of (12) is equivalent to

ω

(
1− ωr−1

1− ω

)
α+ α

which is equal to its right hand side. 2

Note that since x1 corresponds to the log determinant of the first block, applying Minkowski’s
theorem results in the same worst case Hermite factor as proved in Theorem 1.

4.2 Convergence

Consider any input vector v and write it as v = x+ e, where x is the fixed point of the dynamical
system as in (8). The system sends v to v 7→ RAv+b = RAx+RAe+b = x+RAe, so the differ-
ence e to the fixed point is mapped to RAe in each iteration. In order to analyze the convergence of
the algorithm, we consider the induced norm of the matrix ∥RA∥p = ∥A∥p, since after t iterations
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the difference is (RA)te and so its norm is bounded by ∥(RA)te∥p ≤ ∥(RA)t∥p∥e∥p ≤ ∥RA∥tp∥e∥p.
So if the induced norm of A is strictly smaller than 1, the corresponding norm of the error vector
follows an exponential decay. While the spectral norm of A seems hard to bound, the 1 and the in-
finity norm are straight forward to analyze. In particular, we saw in (7) that ∥A∥∞ = 1−ωn−k. This
proves that the algorithm converges. Furthermore, let the input be a basis B (with det(B) = 1),
the corresponding vector v = (log det(b1, . . . ,bk+i−1))1≤i≤n and write v = x + e. Then we have
∥e∥∞ = ∥v − x∥∞ ≤ ∥v∥∞ + ∥x∥∞ ≤ poly(n, size(B)). This implies that for

t = polylog(n, size(B))/ωn−k ≈ O(e(n−k)/k)polylog(n, size(B)) (13)

we have that ∥(RA)te∥ ≤ c for constant c. Equation (13) already shows that for k = Ω(n), the
algorithm converges in a number of tours polylogarithmic in the lattice dimension n, i.e. makes
at most Õ(n) SVP calls. In the initial version of this work, proving polynomial convergence for
arbitrary k was left as an open problem. Recently, Neumaier filled this gap [37]. In what follows
we reformulate his proof using our notation for completeness, but we stress that this is originally
Neumaier’s work.

Claim 3 Let x be the fixed point of the dynamical system as defined in Claim 2 and ri = ei/xi be
the relative error of the dynamical system. Then, if r, r′ are the relative errors before and after the
execution of one iteration of the system, then ∥r′∥∞ ≤ (1− ϵ)∥r∥∞ for ϵ = 1/(1+n2/(4k(k−1))) ≈
(2k/n)2. When k ≥ n/2, it is enough to take ϵ = (k − 1)/(n− 1).

Proof Assume without loss of generality that ∥r∥∞ = (k − 1)/α, i.e., |ei| ≤ ((k − 1)/α)xi =
(n − k − i + 1)(k + i − 1) for all i = 1, . . . , n − k. We need to prove that |r′j | = |(RAe)j |/xj ≤
((k − 1)/α)(1− ϵ) for all j, or, equivalently,

|(Ae)j | = |(RAe)n−k−j+1| ≤
k − 1

α
(1− ϵ)xn−k−j+1 = j(n− j)(1− ϵ).

By the definition of A, we have

|(Ae)j | ≤
1

k

j∑
i=1

ωj−i|ei| ≤
1

k

j∑
i=1

ωj−i(n− k − i+ 1)(k + i− 1) ≡ f(j).

So, it is enough to prove that the function f(j) on the right hand side satisfies f(j) ≤ j(n−j)(1−ϵ).
We prove this inequality by induction on j, under the assumption that

ϵ ≤ g(j) ≡ k(k − 1)

k(n− 2j − 1) + j(n− j)
.

� base case (j = 1): f(1) = n− k ≤ (n− 1)(1− ϵ) if and only if ϵ ≤ g(0) = (k − 1)/(n− 1).

� inductive step: assume f(j) ≤ j(n− j)(1− ϵ) by inductive hypothesis. We need to prove that

f(j + 1) = ωf(j) +
(n− k − j)(k + j)

k
≤ k − 1

k
j(n− j)(1− ϵ) +

(n− k − j)(k + j)

k

is at most (j + 1)(n− (j + 1))(1− ϵ). This is true if an only if ϵ ≤ g(j).
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This concludes the inductive proof, as long as ϵ ≤ g(j) for j = 0, . . . , (n − k). Finally, we observe
that the function g(j) is minimized at j = n

2 −k, with minimum g(n2 −k) = 1/(1+n2/(4k(k−1))).
When k > n/2, the minimum is achieved at j < 0 and g(j) is monotonically increasing for j ≤ 0.
So it is enough to take ϵ = g(0) = (k − 1)/(n− 1).2

By a similar argument as above, this shows that the error can be made arbitrarily close to 0 in
O((n/2k)2)polylog(n, size(B)) tours.

5 Heuristic Analysis

In the context of cryptanalysis, we are more interested in the average case behavior of algorithms.
For this we can use a very simple observation to predict the Hermite factor achieved by DBKZ.
Note that the proof of Theorem 1 is based solely on Minkowski’s bound λ1(B) ≤ √γn det(B)1/n.
Replacing it with Heuristic 1 yields the following corollary.

Corollary 1 Applying Heuristic 1 to every lattice that is passed to the SVP oracle during the

execution of Algorithm 1, if B is k-reduced, then λ1(B1,k) = GH(k)
n−1
k−1 det(B)1/n.

As the Hermite factor is the most relevant quantity in many cryptanalytic settings, Corollary
1 is already sufficient for many intended applications in terms of output quality. We remark that
the proof of achieved worst-case output quality of Slide reduction also only relies on Minkowski’s
bound. This means the same observation can be used to predict the average case behavior of Slide
reduction and yields the same estimate as Corollary 1. In fact, from the recursive definition of Slide
reduction it is clear that this yields even more information about the returned basis: we can use
Corollary 1 to predict the norm of ∥bik+1∥ for all i ∈ [n/k]. A short calculation shows that these
vectors follow a geometric series, supporting a frequently assumed behavior of lattice reduction,
namely the Geometric Series Assumption [56].

However, many attacks [30,44] require to estimate the average case output much more precisely.
Fortunately, applying a similar trick as in Corollary 1 to the dynamical systems analysis in Section 4
allows us to obtain much more information about the basis. For this, note that again we can replace
Minkowski’s theorem in the analysis by Heuristic 1. This transformation changes the dynamical
system in (6) only slightly, the only difference being that α = 1

2 logGH(k). As the analysis is
independent of the constant α, we can translate the fixed point in (8) to information about the
shape of the basis that DBKZ is likely to return.

Corollary 2 Applying Heuristic 1 to every lattice that is passed to the SVP oracle during the
execution of Algorithm 1, the fixed point of the heuristic dynamical system, i.e. (6) with α =
logGH(k), is (8) with the same α and implies that after one more forward tour, the basis satisfies

∥b∗
i ∥ = GH(k)

n+1−2i
k−1 det(L(B))

1
n (14)

for all i ≤ n− k.

Proof According to (8), upon termination of Algorithm 1 the output basis satisfies

log(det([b1, . . . ,bi])) =
(n− k − i+ 1)(k + i− 1)

k − 1
α
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By Heuristic 1 we have log ∥b1∥ = α + x1/k, from which Equation (14) easily follows for i = 1.
Now assume (14) holds for all j < i. Then we have, again by Heuristic 1, log ∥b∗

i ∥ = α + (xi −∑
j<i log ∥b∗

j∥)/k. Invoking the induction hypothesis, Equation (14) easily follows for all i ≤ n− k.
2

Corollary 2 shows that the output of the DBKZ algorithm, if terminated after a forward tour,
can be expected to closely follow the GSA, at least for all i ≤ n − k and can be computed using
simple closed formulas. It is noteworthy that the self-dual properties of DBKZ imply that if
terminated after a backward tour, the GSA holds for all i ≥ k. This means, depending on the
application one can choose which part of the output basis to predict. Moreover, we see that DBKZ
allows to predict a much larger part of the basis than Slide reduction solely based on the Gaussian
Heuristic. If one is willing to make additional assumptions, i.e. assumptions about the shape of a
k-dimensional HKZ reduced basis, the BKZ simulator allows to predict the shape of the entire basis
output by BKZ. Obviously, the same assumptions can be used to estimate the remaining parts of
the shape of the basis in the case of Slide reduction and DBKZ, since a final application of a HKZ
reduction to individual blocks of size k only requires negligible amount of time compared to the
running time of the entire algorithm. Furthermore, since the estimation of the known part of the
shape (from Corollary 2 and 1) do not depend on these additional assumptions, the estimation for
Slide reduction and DBKZ is much less sensitive to the (in-)correctness of these assumptions, while
errors propagate during the BKZ simulation.

To compare the expected output of BKZ, DBKZ, and Slide reduction, we generated a Goldstein-
Mayer lattice [17] in dimension n = 200 with numbers of bit size 2000, applied LLL to it, and
simulated the execution of BKZ with block size k = 100 until no more progress was made. The
output in terms of the logarithm of the shape of the basis for the first 100 basis vectors is shown in
Figure 1 and compared to the GSA. Recall that the latter represents the expected output of DBKZ
and, to some degree, Slide reduction. Under the assumption that Heuristic 1 and the BKZ simulator
are accurate, one would expect BKZ to behave a little worse than the other two algorithms in terms
of output quality.

6 Experiments

For an experimental comparison, we implemented DBKZ and Slide reduction in fpLLL. SVP re-
duction in fplll is implemented in the standard way as described in Section 2.1. For dual SVP
reduction we used the algorithm explained in the Section 7.

6.1 Methodology

In the context of cryptanalysis we are usually interested in the root Hermite factor achievable using
lattice reduction in order to choose parameters for cryptosystems, as this often determines the
success probability and/or complexity of an attack. It is clear that merely reporting on the average
root Hermite factor achieved is of limited use for this. Instead we will view the resulting root
Hermite factor achieved by a certain reduction algorithm (with certain parameters) as a random
variable and try to estimate the main statistical parameters of its distribution. We believe this
will eventually allow for more meaningful security estimates. The only previous experimental work
studying properties of the underlying distribution of the root Hermite factor [16] suggests that it
is a Gaussian-like but the study is limited to relatively small block sizes.
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Figure 1: Expected shape of the first 100 basis vectors in dimension n = 200 after BKZ compared to the
GSA. Note that the latter corresponds exactly to the expected shape of the first 100 basis vectors after
DBKZ (cf. 2).

Since experiments with lattice reduction are rather time consuming, it is infeasible to generate as
much data as desirable to estimate statistical parameters like the mean value and standard deviation
accurately. A standard statistical technique to overcome this is to use bootstrapping to compute
confidence intervals for these parameters. Roughly speaking, in order to compute the confidence
interval for an estimator from a set of N samples, we sample l sets of size N with replacement from
the original samples and compute the estimator for each of them. Intuitively, this should give a
sense of the variability of the estimator computed on the samples. Our confidence interval with
confidence parameter α, according to the bootstrap percentile interval method, is simply the α/2
and 1−α/2 quantiles. For further discussion we refer to [69]. Throughout this work we use α = .05
and l = 100. The complete confidence intervals for mean value and standard deviation are listed
in Appendix B. Whenever we refer to the standard deviation of a distribution resulting from the
application of a reduction algorithm and computing the root Hermite factor achieved, we mean the
maximum of the corresponding confidence interval.

It is folklore that the output quality of lattice reduction algorithms measured in the root Hermite
factor depends mostly on the block size parameter rather than on properties of the input lattice,
like the dimension or bit size of the numbers, at least when the lattice dimension and size of the
numbers is large enough. A natural approach to comparing the different algorithms would be to fix
a number of lattices of certain dimension and bit size and run the different algorithms with varying
block size on them. Unfortunately, Slide reduction requires the block size to divide the dimension.9

To circumvent this we select the dimension of the input lattices depending on the block sizes we
want to test, i.e. n = t · k, where k is the block size and t is a small integer. This is justified
as most lattice attacks involve choosing a suitable sublattice to attack, where such a requirement
can easily be taken into account. Since for very small dimensions block reduction performs a little
better then in larger dimensions, we need to deal with a trade-off here: on the one hand we need
to ensure that the lattice dimension n is large enough, even for small block sizes, so that the result

9While it is trivial to generalize Slide reduction to other block sizes, the performance in terms of the achieved
output quality of the basis deteriorates somewhat in this case compared to other reduction algorithms [29].
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is not biased positively for small block sizes due to the small dimension. On the other hand, if the
lattice dimension grows very large we would have to increase the precision of the GSO computation
significantly which would result in an artificial slow down and thus limit the data we are able to
collect. Our experiments and previous work [16] suggest that the bias for small dimensions weakens
sufficiently as soon as the lattice dimension is larger than 140, so for the lattice dimension n we
select the smallest multiple t of the block size k such that t · k ≥ 140.

For each block size we generated 10 different subset sum lattices in dimension n in the sense
of [19] and we fix the bit size of the numbers to 10 ·n following previous work [19,36]. Experimental
studies [42] have shown that this notion of random lattices is suitable in this context as lattice
reduction behaves similarly on them as on “random” lattices in a mathematically more precise
sense [17]10. Then we ran each of the three reduction algorithms with corresponding block size on
each of those lattices. For BKZ and DBKZ we used the same terminating condition: the algorithms
terminate when the slope of the shape of the basis does not improve during 5 loop iterations in
a row (this is the default terminating condition in fpLLL’s BKZ routine with auto abort option
set). Finally, for sufficiently large block sizes (k > 45), we preprocessed the local blocks with BKZ-
(k/2) before calling the SVP oracle, since this has been shown to achieve good asymptotic running
time [68] and also seemed a good choice in practice in our experiments.

6.2 Results

Figure 2 shows the average output quality including the confidence interval produced by each of the
three algorithms in comparison with the prediction based on the Gaussian Heuristic (cf. Equation
(4)). It demonstrates that BKZ and DBKZ have comparable performance in terms of output
quality and clearly outperform Slide reduction for small block sizes (< 50), which confirms previous
reports [16]. For some of the small block sizes (e.g. k = 35) BKZ seems to perform unexpectedly
well in our experiments. To see if this is indeed inherent to the algorithms or a statistical outlier
owed to the relatively small number of data points, we ran some more experiments with small block
sizes. We report on the results in Appendix A, where we show that the performance of BKZ and
DBKZ are actually extremely close for these parameters.

Furthermore, Figure 2 shows that all three algorithms tend towards the prediction given by
Equation (4) in larger block sizes, supporting the conjecture, and Slide reduction becomes quite
competitive. Even though BKZ still seems to have a slight edge for block size 75, note that the
confidence intervals for Slide reduction and BKZ are heavily overlapping here. This is in contrast
to the only previous study that involved Slide reduction [16], where Slide reduction was reported
to be entirely noncompetitive in practice and thus mainly of theoretical interest.

Figure 3 shows the same data separately for each of the three algorithms including estimated
standard deviation. The data does not seem to suggest that one or the other algorithm behaves
“nicer” with respect to predictability – the standard deviation ranges between 0.0002 and 0.0004
for all algorithms, but can be as high as 0.00054 (cf. Appendix B). Note that while these numbers
might seem small, it affects the base of the exponential that the short vector is measured in, so
small changes have a large impact. The standard deviation varies across different block sizes, but
there is no evidence that it might converge to smaller values or even 0 in larger block sizes. So we
have to assume, that it remains a significant factor for larger block sizes and should be taken into
account in cryptanalysis. It is entirely conceivable that the application of a reduction algorithm

10In fact, subset sum lattices are extremely similar to the random lattices of [17].
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Figure 2: Confidence interval of average root Hermite factor for random bases as computed by different
reduction algorithms and the prediction given by Equation (4).

yields a root Hermite factor significantly smaller than the corresponding mean value.
In order to compare the runtime of the algorithms we ran separate experiments, because due to

the way we selected the dimension, the data would exhibit a somewhat strange “zigzag” behavior.
For each block size 50 ≤ k ≤ 75 we generated again 10 random subset sum lattices with dimension
n = 2k and the bit size of the numbers was fixed to 1400. Figure 4 shows the average runtime for
each of the algorithms and block size in log scale. It shows that the runtime of all three algorithms
follows a close to single exponential (in the block size) curve. This supports the intuition that the
runtime mainly depends on the complexity of the SVP oracle, since we are using an implementation
that preprocesses the local blocks before enumeration with large block size. This has been shown
to achieve an almost single exponential complexity (up to logarithmic factors in the exponent) [68].

The data also shows that in terms of runtime, Slide reduction outperforms both, BKZ and
DBKZ. But again, with increasing block size the runtime of the different algorithms seem to con-
verge to each other. Combined with the data from Figure 2 this suggests that all three algorithms
offer a similar trade-off between runtime and achieved Hermite factor for large block sizes.

This shows that Slide reduction is not only theoretically interesting with its cleaner and tighter
analysis of both, output quality and runtime, but also quite competitive in practice. It should
be noted that we analyzed Slide reduction as described in [15]. While significant research effort
has been spent on improving BKZ, essentially nothing along these lines has been done with re-
gards to Slide reduction. We hope that the results reported here will initiate more research into
improvements, both in practice and theory, of Slide reduction.
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Figure 3: Same as Figure 2 with estimated standard deviation
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Figure 4: Average runtime in seconds for random bases in dimension n = 2k for different reduction algorithms
(in log scale).
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7 Dual Enumeration

Similar to Slide reduction, DBKZ makes intensive use of dual SVP reduction of projected blocks.
The obvious way to achieve this reduction is to compute the dual basis for the projected block,
run the primal SVP reduction on it, and finally compute the primal basis of the block. While the
transition between primal and dual basis is a polynomial time computation and is thus dominated
by the enumeration step, it does involve matrix inversion, which can be quite time consuming in
practice. To address this issue, Gama and Nguyen [15] proposed a different strategy. Note that SVP
reduction, as performed by enumeration, consists of two steps: (1) the coordinates of a shortest
vector in the given basis are computed, and (2) this vector is inserted into the basis. Gama and
Nguyen observe that for dual SVP reduction, (2) can be achieved using the coordinates obtained
during the dual enumeration by solely operating on the primal basis. Furthermore, note that the
enumeration procedure (step (1)) only operates on the GSO of the basis so it is sufficient for (1)
to invert the GSO matrices of the projected block, which is considerably easier since they consist
of a diagonal and an upper triangular matrix. However, this still incurs a computational overhead
of Ω(n3).

We now introduce a way to find the coordinates of a shortest vector in the dual lattice without
computing the dual basis or dual GSO. As a warm-up, note that the enumeration procedure applied
to the dual basis computes all possible coefficients of short vectors in the dual basis. We can
enumerate these coefficients xi = ⟨v,bi⟩ ∈ Z of the shortest dual vector v directly and bound the
complexity of this approach the following way:

xi = ⟨v,bi⟩ = ⟨v,b∗
i ⟩ −

∑
j<i

µi,j⟨v,b∗
j ⟩.

Setting x∗j = ⟨v,b∗
j ⟩, which we can compute from (x1, . . . , xj), we get

xi +
∑
j<i

µi,jx
∗
j = ⟨v,b∗

i ⟩

and so

|xi +
∑
j<i

µi,jx
∗
j | ≤ ∥v∥∥b∗

i ∥ ≤
λ̂1

∥d†
i∥

which is exactly what one would expect, i.e. it corresponds to the complexity of enumerating all
dual lattice points in a parallelepiped. This simple observation suggests that there is an algorithm
to compute the coordinates of the shortest dual vector just as efficient as for the shortest primal
vector. However, without the dual basis there is no obvious way to evaluate the quality of a solution,
i.e. the lengths of a dual vector given only its coordinates in the dual basis. Furthermore, without
being able to evaluate partial solution, we can only enumerate in parallelepipeds, while classical
enumeration in the primal is able to enumerate lattice points in a sphere by subtracting the length
of partial solutions from the enumeration radius. The following Lemma addresses this issue and
will result in a dual enumeration algorithm that strongly resembles the primal enumeration routine.

Lemma 2 Let B be a lattice basis and w an arbitrary vector in the linear span of B. Let x be the
coefficient vector expressing w with respect to the dual basis, i.e., xi = ⟨w,bi⟩ for all i ≤ n. Then,
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for any k ≤ n, the (uniquely defined) vector w(k) ∈ span(B[1,k]) such that ⟨w(k),bi⟩ = xi for all

i ≤ k, can be expressed as w(k) =
∑

i≤k αib
∗
i /∥b∗

i ∥2 where

αi = xi −
∑
j<i

µi,jαj . (15)

Proof The conditionw(k) ∈ span(B[1,k]) directly follows from the definition ofw(k) =
∑

i≤k αib
∗
i /∥b∗

i ∥2.
We need to show that this vector also satisfies the scalar product conditions ⟨w(k),bi⟩ = xi for all
i ≤ k. Substituting the expression for w(k) in the scalar product we get

⟨w(k),bi⟩ =
∑
j≤k

αj

⟨b∗
j ,bi⟩
∥b∗

j∥2
=

∑
j≤i

αj

⟨b∗
j ,bi⟩
∥b∗

j∥2
= αi +

∑
j<i

αjµi,j = xi

where the last equality follows from the definition of αi. 2

This shows that if we enumerate the levels from k = 1 to n (note the reverse order as opposed to
primal enumeration) we can easily compute αk from all the given or previously computed quantities
in O(n). The length of w(k) is given by

∥w(k)∥2 =
∑
i≤k

α2
i /∥b∗

i ∥2 = ∥w(k−1)∥2 + α2
k/∥b∗

k∥2. (16)

To obtain an algorithm that is practically as efficient as primal enumeration, it is necessary to
apply the same standard optimizations known as SchnorrEuchner enumeration to the dual enumer-
ation. It is obvious that we can exploit lattice symmetry and dynamic radius updates in the same
fashion as in the primal enumeration. The only optimization that is not entirely obvious is enu-
merating the values for xk in order of increasing length of the resulting partial solution. However,
from Equation (15) and (16) it is clear that we can start by selecting xk = ⌊

∑
j<k µk,jαj⌉ in order

to minimize the first value of αk, and then proceed by alternating around this first value just as in
the SchnorrEuchner primal enumeration algorithm.

It is also noteworthy that being able to compute partial solutions even allows us to apply
pruning [14] directly. In summary this shows that dual SVP enumeration should be just as efficient
as primal enumeration. To illustrate this, Algorithm 2 and 3 show the SchnorrEuchner variant of
the two enumeration procedures.11

11The function nextX simply selects the next value for a specific variable in order to alternate correctly around the
center of the interval of valid values. We omit details here since it works identical in both algorithms and requires
auxiliary variables that would clutter the code unnecessarily.
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Algorithm 2 Dual Enumeration

procedure DualEnum(µ, (∥b∗
i ∥2)i∈[n], A)

Input: The GSO of a lattice µ and (∥b∗
i ∥2)i∈[n]

and an upper bound A to the squared length of
a shortest dual vector
Output: The coordinates of a shortest dual
vector in the dual basis D

1 k ← 1
2 while k ≥ 1
3 αk ← xk −

∑
j<k µk,jαj

4 lk ← lk−1 + α2
k/∥b∗

k∥2
5 if lk ≤ A and k = n then

6 s← x, A← lk
7 if lk ≤ A and k < n then

8 k ← k + 1, xk ← ⌊
∑

j<k µk,jαj⌉
9 else

10 k ← k − 1, xk ← nextX(k)
11 return s

Algorithm 3 Primal Enumeration

procedure PrimalEnum(µ, (∥b∗
i ∥2)i∈[n], A)

Input: The GSO of a lattice µ and (∥b∗
i ∥2)i∈[n]

and an upper bound A to the squared length of a
shortest vector
Output: The coordinates of a shortest vector in
the basis B

1 k ← n
2 while k ≤ n
3 αk ← xk +

∑
j>k µj,kxj

4 lk ← lk+1 + α2
k∥b∗

k∥2
5 if lk ≤ A and k = 1 then

6 s← x, A← lk
7 if lk ≤ A and k > 1 then

8 k ← k − 1, xk ← ⌊−
∑

j>k µj,kxj⌉
9 else

10 k ← k + 1, xk ← nextX(k)
11 return s

Implementation Notes To give some experimental evidence that the dual enumeration is just
as efficient as primal enumeration, we implemented it in fpLLL.12 Note that Algorithm 2 can be
easily added to an implementation of Algorithm 3 by using special cases in data accesses and a
few operations. Furthermore, in order to avoid the division in line 4 we precomputed the values
1/∥b∗

k∥2 for all k. We compared the implementation with the primal enumeration on 10 random
bases (in the same sense as in Section 6) in dimension 35 ≤ n ≤ 50. As expected, the rate of
enumeration was close to equal in both cases – around 3.2 ·107 nodes per second (cf. Table1), which
corresponds to slightly more than 100 cycles per node on our 3.4 Ghz test machine. The slight
discrepancies (and the low rate for n = 35) can be explained by the variable number of nodes that
were enumerated and thus certain setup costs are amortized over a different number of nodes.

n 35 40 45 50

primal 2.73 3.16 3.13 3.17
dual 2.77 3.19 3.18 3.27

Table 1: Rate of enumeration (in 107 nodes per s) in primal and dual enumeration

Inserting the Shortest Dual Vector For completeness we briefly review how to insert the
shortest dual vector into the dual basis using its coordinates in the dual basis and operating solely
on the primal basis. Let v be a shortest dual vector. Its coefficients in the dual basis are given by
x = BTv ∈ Zn. Our goal is to transform B into a basis B̄ of the same lattice such that B̄Tv = en,

12At the point of publication of this work, a modified version of this implementation is now included in the main
branch of fplll.
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where en is the n-th vector of the standard basis (which is equivalent to v being the n-th vector of
the dual of B̄). This can be achieved by computing a unimodular matrix U such that Ux = en,
for example by computing the GCD of the non zero coefficients of x (which must be 1 since v
is a shortest dual vector). Then we have en = Ux = UBTv and so with B̄ = BUT , we obtain
en = B̄Tv as desired. Note that we do not need to know v in order to achieve this – knowing x is
sufficient.

It is not immediately clear that the size of the numbers during the execution of this step is
polynomially bounded. However, Gama and Nguyen [15] show that it is if using the right strategy
for the GCD computation and we will skip this detail here.

8 Conclusion and Future Work

While our experimental study of lattice reduction confirms that the average root Hermite factor
achieved by lattice reduction is indeed, as conjectured, given by Equation (4), the standard deviation
is large enough that it is conceivable that a single instance finds a much shorter vector. This means
that cryptanalytic estimates should take this into account. Unfortunately, it is at this point unclear
how to apply our results to cryptanalysis. Before being able to make meaningful security estimates,
there are two issues to solve.

On the one hand, since we usually want to estimate the attack complexity for instances much
too hard to solve in practice, we need a way to predict the standard deviation in a similar way as
the average root Hermite factor. Given our results (cf. Figure 3), we believe it might be reasonable
to assume that the standard deviation is upper bounded by a constant, e.g. σ = 0.0006, but more
work is needed to verify this assumption.

Once we can predict (in a conservative and meaningful way) the mean value and standard
deviation of the underlying distribution of the root Hermite factor achieved by lattice reduction,
we need to find a way to translate this to a root Hermite factor that is unlikely to be achieved
by lattice reduction. Since we do not know the underlying distribution, bounds like Chebyshev’s
inequality spring to mind. Unfortunately, bounds that make no or very weak assumptions on the
underlying distribution are generally very poor and thus would lead to overly conservative estimates.
For example, Equation (4) estimates the mean root Hermite factor achieved by lattice reduction
with block size k = 100 to be δ100 = 1.00926. If we use Chebyshev’s inequality to estimate δ̄100
such that an attacker running BKZ-100 (which is by no means unrealistic) has a probability of less
than 1% (which is actually still quite large) to achieve a root Hermite factor less than δ̄100, we
would need to set δ̄100 = 1.00926 − 10 · σ = 1.00326. This is clearly unrealistic – a root Hermite
factor of 1.005 is still believed to be completely out of reach today and our results give no reason
to believe otherwise.

It is clear that we need to learn more about the underlying distribution in order to aid parameter
selection. For example, using more data one could try to verify experimentally if the distribution
follows a (possibly truncated) Gaussian as already suspected in [16] for small block sizes, which
would allow for much tighter bounds and meaningful estimates. A brief inspection of our data
suggests that this might be true even for larger block sizes, but 10 data points per experiment is
not sufficient to allow for any further conclusions about the distribution. In any case, we believe our
results show that simply relying on the average of a handful of data points is not very meaningful
and we hope that this work can serve as a starting point for more sophisticated approaches to
selecting parameters secure against attacks involving lattice reduction.
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With our new dual enumeration algorithm we provide another tool to practically examine dif-
ferent reduction algorithms. This should facilitate experimental research into reduction algorithms
that make use of dual SVP reduction, like variants of Slide reduction. Future lines of research could
explore if, for example, the block Rankin reduction algorithm of [28] can be efficiently implemented
by using it to apply the densest sublattice algorithm of [10] to the dual lattice. This could be used
to achieve potentially stronger notions of reduction with better output quality.
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A Experimental Comparison for Small Block Size

In this section we present some additional experimental results of BKZ and DBKZ for small block
sizes. We used the same notion of random lattices as in Section 6, but we fixed the lattice dimension
to n = 140. Since lattice reduction is more tractable for small block sizes, we generated 20 random
lattices and ran BKZ and DBKZ on each of them with block size ranging from 20 ≤ k ≤ 50. The
average root Hermite factor achieved by the two algorithms is shown in Figure 5. It shows that the
two algorithms perform almost equally well in this regime.
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Figure 5: Average root Hermite factor for random lattice in dimension n = 140 for BKZ and DBKZ with
small block size k
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B Experimental Data

k µ[min] µ[max] σ[min] σ[min]

BKZ

25 1.0129 1.0132 0.00014910 0.00031542
30 1.0129 1.0131 0.00013775 0.00028044
35 1.0122 1.0127 0.00030272 0.00053605
40 1.0122 1.0125 0.00020367 0.00045143
45 1.0120 1.0122 0.00011779 0.00022000
50 1.0119 1.0122 0.00019697 0.00035792
55 1.0117 1.0119 0.00012984 0.00025347
60 1.0114 1.0116 0.00009925 0.00022226
65 1.0111 1.0114 0.00012052 0.00038869
70 1.0106 1.0109 0.00012487 0.00026133
75 1.0105 1.0107 0.00009756 0.00020439

Slide reduction

25 1.0145 1.0148 0.00016524 0.00034219
30 1.0141 1.0142 0.00005426 0.00017119
35 1.0135 1.0137 0.00013333 0.00022903
40 1.0129 1.0133 0.00018023 0.00041554
45 1.0127 1.0129 0.00013605 0.00027860
50 1.0123 1.0125 0.00014877 0.00026298
55 1.0121 1.0122 0.00005830 0.00009498
60 1.0117 1.0119 0.00013659 0.00022897
65 1.0114 1.0115 0.00009455 0.00017193
70 1.0109 1.0111 0.00012178 0.00023823
75 1.0106 1.0108 0.00010597 0.00019067

Self-Dual BKZ

25 1.0130 1.0133 0.00012817 0.00029479
30 1.0129 1.0131 0.00017812 0.00027150
35 1.0127 1.0129 0.00016756 0.00025963
40 1.0123 1.0126 0.00013635 0.00028876
45 1.0122 1.0123 0.00010143 0.00018625
50 1.0120 1.0123 0.00018334 0.00038216
55 1.0119 1.0123 0.00026051 0.00046222
60 1.0116 1.0120 0.00018311 0.00040919
65 1.0113 1.0116 0.00014412 0.00037256
70 1.0110 1.0112 0.00013096 0.00030097
75 1.0107 1.0109 0.00011095 0.00021169

Table 2: Confidence intervals for mean value µ and standard deviation σ of root Hermite factor achieved by
lattice reduction with block size k
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