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Abstract. Invariant subspace attacks were introduced at CRYPTO 2011 to cryptanalyze
PRINTcipher. The invariant subspaces for PRINTcipher were discovered in an ad hoc
fashion, leaving a generic technique to discover invariant subspaces in other ciphers as an open
problem. Here, based on a rather simple observation, we introduce a generic algorithm to
detect invariant subspaces. We apply this algorithm to the CAESAR candidate iSCREAM,
the closely related LS-design Robin, as well as the lightweight cipher Zorro. For all three
candidates invariant subspaces were detected, and result in practical breaks of the ciphers. A
closer analysis of independent interest reveals that these invariant subspaces are underpinned
by a new type of self-similarity property. For all ciphers, our strongest attack shows the
existence of a weak key set of density 2−32. These weak keys lead to a simple property
on the plaintexts going through the whole encryption process with probability one. All our
attacks have been practically verified on reference implementations of the ciphers.
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Introduction

Block ciphers are one of the most essential cryptographic primitives. Our understanding of how to
build secure block ciphers has greatly advanced in the last 20 years. Nowadays, analyzing a given
block cipher with respect to a large class of non-trivial attacks, including linear and differential
attacks and their variants, is a well-understood process for a large class of block ciphers. However,
when it comes to designing block ciphers with strong performance requirements, often less conser-
vative approaches are chosen. Examples of such performance requirements that have recently been
studied extensively include low hardware footprint (e.g. PRESENT [6], LED [20], KATAN [10]),
low memory consumption on small embedded processors (e.g. ITUBee [21], SPECK [5], PRIDE
[2]), low latency (e.g. PRINCE [7]) and ease of side-channel protection (e.g. Zorro [14], LS-Designs
[15]).

In order to fit within constrained settings, many of these ciphers feature innovative designs: they
may rely on simpler round functions, or minimal key schedules. While in most cases, guarantees
against traditional linear or differential attacks are still offered, the simpler structure of many of
these ciphers may lend itself to new attacks. Careful cryptanalysis is required in order to assess
the security of these new designs; in this process, new techniques have emerged.

One such technique is the invariant subspace attack, introduced in [22] for the cryptanalysis
of PRINTcipher. The general idea behind this attack is the following: assume that the round
function of a cipher maps a coset A of some vector subspace of the inner state to a coset B of
the same space, and a fixed key belonging to A − B is added in every round. Then the set A is
preserved by the round function, and hence remains stable through the whole encryption process.
This property holds for a large set of keys in PRINTcipher, breaking the cipher in a practical
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setting. This type of attack seems particularly well-suited to substitution-permutation networks
(SPN) with a minimal key schedule or cryptographic permutations with highly structured round
constants.

Invariant subspace attacks are unusual in that they rely on an unexpected form of symmetry
in the round function, and yield attacks that are independent of the number of rounds. On the
other hand, the same attributes are shared by attacks based on self-similarity properties. These
properties were first formally defined in [4] to study alternative descriptions of AES, and later used
in [8] to cryptanalyze the SHA-3 candidate Lesamnta and the lightweight cipher XTEA.

Interestingly, despite its fundamental nature, the understanding of symmetries and invariant
subspaces, in block ciphers or cryptographic permutations, is rather limited. The invariant subspace
attack on PRINTCipher was found in an ad hoc fashion and no general approach to detect or
avoid such invariant spaces is known. This is even more surprising as for more involved attacks
like differential and linear attacks and their variations our general understanding of detection and
avoiding those attacks by design is much more evolved.

Our contribution In this paper we aim at increasing the general understanding of invariant
subspaces. For this purpose, and as our first main result, we present a generic algorithm that is
able to detect invariant subspaces. The running time of this algorithm depends on the block size
of the primitive and the density of the existing invariant subspaces. In particular, it is especially
efficient if relatively large invariant subspaces exist. As the impact of an invariant subspace increases
with its dimension, this can be seen as detecting stronger attacks significantly faster than minor
attacks.

We apply this generic algorithm to the lightweight cipher Robin introduced at FSE 2014 as
a concrete instance of the LS-design framework [15], the closely related CAESAR [1] candidate
iSCREAM [18], as well the lightweight cipher Zorro presented at CHES 2013 [14]. In all cases
the algorithm is able to detect invariant subspaces.4 Attacks resulting from these invariant sub-
spaces break all three ciphers in a practical setting. All attacks have been verified on reference
implementations of the ciphers.

As our second main contribution, we show that the invariant subspaces we have discovered are
underpinned by a type of self-similarity property of independent interest, stemming from a linear
map commuting with the round function. Surprisingly, such a map exists for all three ciphers,
despite Robin and Zorro having quite different structures. As a result, we obtain stronger attacks on
our target ciphers. We also hope to provide useful insight for the design and analysis of ciphers with
minimal key schedules as well as for the choice of round constants in cryptographic permutations.

More specifically, our attacks show the existence of weak keys in Robin, Zorro, as well as
iSCREAM in the chosen-tweak scenario. In all cases, the proportion of weak keys is 2−32 within
the set of all keys. Encryption of a single chosen plaintext is enough to determine whether a key
is weak, making our weak key setting very practical. Once a key is recognized as weak, a simple
property on plaintexts goes through the whole encryption process with probability one, breaking
plaintext confidentiality. In addition, the full 128-bit encryption key can be recovered using one
chosen plaintext in time complexity 264. We also show that all three ciphers are instantly broken
in the related-key setting, without any weak key requirement; although only iSCREAM claims
security in this model.

In the case of LS-designs, we furthermore present a second attack, based on S-box-dependent
invariant subspaces, without an underlying self-similarity. We obtain a new set of weak keys with
the same properties as above, including the fact that they can be detected using a single chosen
plaintext. However when applying this second attack to Robin and iSCREAM, we obtain a much
rarer set of weak keys, with only one key in 280 being weak. We then fine-tune this attack against
iSCREAM, and obtain a ratio of weak keys of 2−48, at the cost of requiring 232 chosen-tweak
chosen plaintexts in order to detect whether a key is weak; once a weak key is detected, the full
128-bit key can be recovered in time complexity 248 with no additionnal data.

4 The source code of our tool is available at http://invariant-space.gforge.inria.fr.
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Regarding LS-designs, it should be pointed out that while our first attack breaks Robin and
iSCREAM in a practical setting, Fantomas and SCREAM appear to be safe. Moreover, in the case
of Robin and iSCREAM, a careful tweak of the ciphers should be able to prevent our attacks. Thus,
the security of the LS-design framework in general is not called into question. On the contrary, in
the case of Zorro, our attack adds to other attacks suggesting that partial nonlinear layers should
be approached with caution.

Related work Invariant subspace attacks were introduced in [22]. Their application to PRINTci-
pher relies on undesirable properties induced by its 3-bit S-boxes. By contrast, most of our attacks
(except the second attack on Robin and iSCREAM) are actually independent of a particular choice
of S-boxes.

A thorough analysis of invariant subspaces in PRINTcipher was subsequently carried out in
[9]. Using a dedicated tool, the authors were able to enumerate all invariant subspaces of PRINTci-
pher, of the type uncovered in the previous article. However their approach is tailored to PRINT-
cipher, and does not extend to other ciphers.

An older line of work has studied “linear factors” of DES [27,11,13], which bear some resem-
blance to invariant subspaces. The existence of a linear factor is an even stronger property than
that of an invariant subspace: essentially, it asks that a (linearly defined) portion of the ciphertext
only depend on (linearly defined) portions of the plaintext and key. Nonetheless, it is interesting
to note that our attacks do uncover a linear factor in Robin and Zorro (cf. Appendix B), although
only in a weak key setting.

Along a similar line, the attack on SAFER in [24] should be mentioned. It exploits the action
of the cipher on cosets of a vector space as a whole, rather than isolating a specific trail or
characteristic.

Self-similarity properties were used to attack hash functions and block ciphers in [8]. It should
be noted that self-similarity is a very wide framework, encompassing attacks ranging from proba-
bility one related-key differentials to slide attacks. To the best of our knowledge, the commutation
property we consider here is very different from any previous work.

There is no prior cryptanalysis of LS-designs. As for iSCREAM, an issue with the padding
in the original CAESAR submission of SCREAM and iSCREAM was pointed out in [28] and
subsequently corrected. Our attacks have caused iSCREAM to be temporarily withdrawn from the
CAESAR competition for a redesign [17].

By contrast, many attacks have been carried out against Zorro, mostly differential or linear in
nature [19,30,26,3,29]. The best attack in [3] is a differential attack requiring 241 data and time
complexity 245 to break the full cipher. Our attack is of a different nature: it holds in the weak
key setting (with 296 weak keys out of 2128), requires minimal data and time, and is independent
of the number of rounds. Similar to [3], our attack can be readily extended to Zorro-like ciphers
using the approach in Appendix F.

Structure of the paper

In Section 1, we recall the definitions of invariant subspace and present our generic algorithm for
detecting such invariant subspaces. In Section 2, we provide a description of LS-designs, including
our targets Robin and iSCREAM. In Sections 3, 4 and 5, we develop our attacks against LS-designs,
introduce a particular self-similarity property, the resulting invariant subspaces, and finally describe
a different invariant subspace attack not underpinned by self-similarity. In Section 6, we apply our
self-similarity and invariant subspace attacks to Zorro. Finally, in Section 7, we conclude with a
discussion of our results and outline interesting open problems.

1 A Generic Algorithm to Detect Invariant Subspaces

In this section we first recall the invariant subspace attack and later present our algorithmic
approach to detect invariant subspaces in a generic manner.



1.1 Invariant Subspace Attacks

Invariant subspace attacks were introduced and applied to PRINTCipher in [22]. We briefly recall
the basic principle here.

Consider a n-bit block cipher with round function FK consisting of a key addition and a SP
layer F : Fn2 → Fn2 . That is, FK is defined by FK(x) = F (x+K). Assume the SP-layer F is such
there exists a subspace A ⊆ Fn2 and two constants u, v ∈ Fn2 with the property:

F (u+A) = v +A

Then, given a (round) key K ∈ u− v +A, i.e. K = KA + u− v with KA ∈ A, the following holds:

FK(v +A) = F (v +A+ u− v) = F (u+A) = v +A

i.e. the round function maps the affine subspace v+A onto itself. If all round keys are in u−v+A,
in particular if identical round keys are used as in LS-designs and Zorro, then this property is
iterative over an arbitrary number of rounds.

In the case where an identical key is added in every round (there is no key schedule), a key
is said to be weak iff it belongs to u − v + A. Whenever a key is weak, plaintexts in v + A are
mapped to ciphertexts in v+A, breaking plaintext confidentiality. The number of weak keys is the
cardinality of A.

In order to detect whether an unknown key is weak, it is enough to encrypt one plaintext in
v + A, and test whether the resulting ciphertext is in the same space. Indeed, over the set of all
keys, false positives will occur with the same frequency as true positives, and can be discarded
with a second chosen plaintext.

1.2 A Generic Algorithm

In this section we present a simple and entirely generic probabilistic algorithm able to discover
invariant subspaces for a given round function. The algorithm gives instant results for vector
subspaces, and is able to discover affine subspaces in time proportional to their density. Despite
its simplicity, this algorithm is enough to automatically discover all invariant subspace attacks to
be elaborated upon in the following sections.

The algorithm will identify minimal invariant subspaces and thereby identify invariant subspace
attacks automatically. However, further analysis usually allows to significantly improve upon the
attacks recovered automatically by the algorithm and gain further insights in the structure of
the detected weakness. Furthermore, as the expected running time is determined by the density
of invariant subspaces, it might well be that not all possible attacks are detected. Thus, for the
moment, this generic algorithm cannot be used to fully exclude the existence of invariant subspaces.

Identifying Minimal Subspaces Assume we are given a permutation F : Fn2 → Fn2 . Here F
could be a (keyless) round of a block cipher or a cryptographic permutation (like Keccak-f). Our
goal is to find affine subspaces u+A ⊂ Fn2 such that:

F (u+A) = v +A

for some v ∈ Fn2 .
Our algorithm is based on the following trivial observation.

Lemma 1. Assume u+A is an affine subspace such that F (u+A) is also an affine subspace v+A.
Then for any subset X ⊆ A, the linear span of (F (u+X)− v) ∪X is contained in A.

The idea is to first guess one possible offset u′ of the affine space to be found and use v′ = F (u′).
Next, we guess a one-dimensional subspace of A, denote this by A0. The algorithm will succeed if
and only if u′ +A0 is contained in u+A.



1. We compute Ai+1 from Ai as:

Ai+1 = span{(F (u′ +Ai)− v′) ∪Ai}

2. If the dimension of Ai+1 equals the dimension of Ai, we found an invariant subspace and exit.
3. If not, we continue with step 1.

Thus, the idea is to start with what we denote nucleon of A and map it using F until it stabilizes.
In the case that our initial guess was wrong and u′ + A0 is not contained in some non-trivial
invariant subspace we will end up with the full space after at most n iterations of the above.

Note that it is not necessary to really map the complete spaces Ai using F but a randomly
chosen subset of relatively small size is enough for our purpose and significantly speeds up the
process.

If the largest invariant subspace of F has dimension d, the algorithm will detect this space
(or any invariant subspaces of this space) after an expected number of 22(n−d) guesses for A0 and
u′. Thus, in this basic form, the algorithm becomes quickly impractical. However, in the case of
round functions of a cipher (or a cryptographic permutation) that differ by round constants only,
its running time can be greatly improved as described next.

Knowing the Nucleon For block ciphers with identical round keys or cryptographic permuta-
tions, we actually have a very good idea about the nucleon we want to be included in the space A,
namely the round constants. More precisely, we consider round functions Fi : Fn2 → Fn2 that differ
only by the addition of constants, i.e.

Fi(x) = F (x) + ci

for ci ∈ Fn2 , where for simplicity we assume c0 = 0. We are looking for affine subspaces u+A that
are mapped to v +A by all round functions. In particular

F0(u+A) = F (u+A) = v +A

and
Fi(u+A) = F (u+A) + ci = v +A

which implies
v +A = ci + v +A

and thus ci ∈ A. Thus, given the situation as above, any subspace that is invariant under all round
functions must necessarily contain the linear span of all round constants ci.

For the algorithm outlined above this has significant consequences. Here, the only thing we
have to guess is the offset. Therefore, the expected number of iterations of the algorithm is reduced
from 22(n−d) to 2n−d.

Moreover, after running the algorithm for m iterations with randomly chosen guesses for the
offset, the probability that an invariant subspace of dimension d is not detected by the approach
is given by

pm,n,d :=
(
1− 2n−d

)m
which can be approximated by

log pm,n,d ≈ −m2d−n.

The Algorithm

1: procedure Closure(function F , nucleon A, offset u)
2: v ← F (u)
3: StableCount← 0
4: while StableCount < N do

5: Pick a random x
$←− u+ span{A}



6: if F (x)− v ∈ span{A} then
7: StableCount = StableCount + 1
8: else
9: Add F (x)− v to A

10: StableCount← 0
11: end if
12: end while
13: return u+ span{A}
14: end procedure

For offset u and nucleon A, the above procedure outputs the smallest affine subspace containing
u + span{A}, that is mapped to a coset of the same space by F (with high probability). The
algorithm depends on a global parameter N that controls the risk of error. Namely, when the
algorithm exits, elements of u+span{A} are mapped to v+span{A} with probability greater than
1 − 2−N . This probabilistic result is enough for an invariant subspace attack to go through even
for moderate choices of N .

Guessing the Offset If we are actually looking for stable vector spaces rather than affine spaces,
as will be the case in the S-box independent setting described in Section 3.2, guessing the offset is
not needed: we can choose zero as the offset. Then the algorithm above finds the smallest invariant
subspace instantly.

In the general case where we are looking for any (affine) invariant subspace, we need to guess
one offset u belonging to the affine space we are searching for. Then we can run the procedure
above to find the generated invariant subspace, if it exists (otherwise, the algorithm will simply
output the full space). If the space we are looking for has dimension d, guessing such an offset u
by brute force will require 2n−d tries on average. Of course we just require one invariant subspace;
so in general 2n−d can be replaced by the density of vectors belonging to (non-trivial) invariant
subspaces.

Each iteration of the algorithm requires Gaussian reduction to determine whether a certain
n-bit vector belongs to some subspace, amounting to n2 operations. Hence the overall running
time to find an invariant subspace of dimension d is roughly n2 · 2n−d. Thus if n is large, the above
approach will only work if n − d is relatively small, or more generally the density of invariant
subspaces is large. The case where n is small is also useful in order to find invariant subspaces
through a single S-box: this is how we found spaces in Appendix A (after making the algorithm
deterministic and exhaustive, which is affordable for small n).

1.3 Applications

We applied the algorithm to the block ciphers Zorro, Robin, Fantomas, LED and Noekeon, as
well as to the CAESAR candidate iSCREAM. We chose N = 50 to be very conservative. We ran
the algorithm with approximately 234 iterations for each primitive, stopping earlier in the case
where an invariant subspace was detected. The results are summarized in the table below.

Table 1. Experimental Results: Here n is the block size and d0.001 is the smallest dimension of an
invariant subspace that has a probability to exist upper bounded by 0.001

Primitive n Dimension found d0.001 Running Time (h)

LED 64 - 34 24

Noekeon [12] 128 - 98 40

Fantomas 128 - 98 40

Robin 128 96 - 22

iSCREAM 128 96 - 22

Zorro 128 96 - <1



For LED, Noekeon and Fantomas, no invariant subspaces were detected given our limited
iterations. In that case, Table 1 indicates the dimension d0.001 of the largest invariant subspace
that has a probability to exist upper bounded by 0.001. More precisely, if x denotes the codimension
of the largest invariant subspace, each random guess of an offset has probability 2−x of falling into
this subspace. After T tries, the probability of not having found the subspace is thus (1− 2−x)T ≈
e−T2−x

. We want this probability to be 1/1000 within T = 232 tries, which yields x = 32 −
log(ln(1000)) ≈ 30, so d0.001 ≈ n − 30. Thus it is unlikely that invariant subspaces of dimension
above 98 exist for Noekeon. However, the existence of smaller subspaces cannot be excluded with
high probability by our results.

As we will show below, for Zorro, Robin and the CAESAR candidate iSCREAM the largest
invariant subspace has dimension 96 out of 128, i.e. density 2−32. Thus the time complexity is
expected to be 232 Gaussian eliminations on 128× 128 binary matrices. Our experiments confirm
this estimation. Discovering the invariant subspace took 22 hours on a single desktop PC equipped
with an Intel Xeon Core i7 with 12 virtual cores used in parallel.

In the case of Zorro, we chose to use a single round as target function, rather than the four
rounds separating key addition. It turns out many cosets of the invariant subspace in Appendix E
are sent to another coset by a single round (namely, all cosets stemming with offsets where cells 0
and 3 are equal). Our generic approach discovers this fact and the associated subspace instantly,
hence the “< 1” time in the previous table.

As mentioned in the introduction, a detailed analysis of the findings of the generic algorithm
allows to understand the underlying structure of the invariant subspaces we have found, and
improve the attacks. We present those findings in the following sections.

2 Description of LS-Designs, Robin, and iSCREAM

2.1 LS-Designs

LS-designs were introduced by Grosso, Leurent, Standaert and Varici at FSE 2014 [15]. We refer
the interested reader to their article for a detailed presentation of LS-designs and their design
rationale. For our purpose, a brief technical description suffices.

An LS-design is a block cipher encrypting n-bit plaintext blocks using a n-bit key. The inner
state of the cipher, as well as the plaintext, ciphertext, and key, are all represented as an r× c bit
array, with r the number of rows and c the number of columns. A concrete LS-design is parametrized
by the following components:

– A choice of r and c. The size of the key and message blocks is n = r · c.
– An r-bit S-box s.
– A bijective linear map ` on c-bit vectors, called the L-box.
– A number of rounds t.
– A choice of k-bit round constants C(i) for 1 ≤ i ≤ t.

In order to encrypt a given n-bit plaintext block, the plaintext is first loaded into the inner
state of the cipher, and the master key is added in (all additions are bitwise XORs). Then a round
function is applied successively for rounds 1 to t. At that point the cipherext is equal to the inner
state. The round function at round i proceeds as follows:

1. The round constant C(i) is added to the inner state.
2. The S-box s is applied to each column of the state.
3. The L-box ` is applied to each row of the state.
4. The n-bit master key K is added to the state.

2.2 Notation

When dealing with LS-designs, we will always use the previous notation; that is:



r the number of rows of the state.
c the number of columns.
n the size of the state; that is, n = r · c.
s the r-bit S-box.
S the S-box step; that is, the application of s on each column of the state.
` the c× c binary matrix representing the linear layer, identified with the corre-

sponding linear map on Fc2.
L the L-box step; that is, application of ` on each row of the state.

2.3 Robin

In [15], two concrete LS-designs are proposed, Robin and Fantomas. The idea behind Robin is
that both the S-box and L-box are involutive. This allows the same circuitry to be reused when
computing these components and their inverse operation, i.e. when encrypting and decrypting. This
saves valuable space on embedded devices when both encryption and decryption capabilities are
required. The trade-off is that involutive components have more structure, resulting in a slightly
higher number of rounds to reach the same security level as an LS-design based on non-involutive
components.

Robin strictly fits within the LS-design framework recalled in the previous section. As such it
can be fully described by the following parameters:

– The inner state of Robin has 8 rows and 16 columns, resulting in 128-bit blocks and a 128-bit
key.

– The 8-bit involutive S-box is given in [15].
– The 16-bit involutive L-box is depicted as a 16× 16 binary matrix on Fig. 1.
– The number of rounds is 16.
– At round i (starting from 1), the round constant C(i) is zero outside of the first row, where it

is equal to `(i), with ` the L-box matrix.
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Fig. 1. Matrix representing the L-box of Robin and iSCREAM. Dark cells stand for 1’s and white
cells for 0’s.

2.4 iSCREAM

SCREAM and iSCREAM [18] are two authenticated ciphers closely related to LS-designs. In fact
iSCREAM is essentially a tweaked version of Robin, together with a Tweakable Authenticated
Encryption (TAE) mode of operation [23]. Meanwhile SCREAM is similar to Fantomas, with a



different linear layer. The TAE mode of operation requires a tweakable block cipher [23]. Accord-
ingly, the difference between the block cipher underlying iSCREAM and Robin stems from the
introduction of a 128-bit tweak T into the (previously non-existent) key schedule.

In the remainder of this article we focus on weaknesses of the block cipher on which iSCREAM
is built, independently of the mode of operation. We may abuse notations and write iSCREAM to
mean its underlying block cipher.

This block cipher can be described as an LS-design, except for the fact that during the key
addition phase, instead of adding in K every round: at odd rounds, K + T is added; while at even
rounds, T ≪c 1 is added, where T ≪c 1 denotes a circular shift of the columns of T by one
column towards the left. The combination of two rounds is called a step. Beside that, iSCREAM
can be described by the following parameters:

– The inner state of iSCREAM has 8 rows and 16 columns, resulting in 128-bit blocks and a
128-bit key.

– The S-box and L-box are those of Robin.
– The number of rounds depends on the required security level. The original article lists six

variants. However the primary recommendation for iSCREAM as per CAESAR requirements
is 12 steps (24 rounds) [16]. A secondary recommendation claiming related-key security has 14
steps (28 rounds). Since our attacks are essentially independent of the number of rounds, we
omit other variants.

– At round i (starting from 1), the round constant C(i) is zero outside of the first row, where it
is equal to 27 · i modulo 256 (affecting only the first 8 bits of the row).

3 Invariant Permutation Attack

In the next two sections, we analyze the invariant subspace discovered by the generic algorithm on
Robin and iSCREAM. This subspace is actually induced by a particular type of self-similarity of
independent interest, as is the invariant subspace of Zorro. Using this self-similarity directly results
in an even stronger attack, as will be discussed below.

We start by recalling the concept of self-similarity and explaining a link to commutating lin-
ear maps. These concepts will afterwards be applied to LS-designs in general and to Robin and
iSCREAM in particular (as well as to Zorro in Section 6).

3.1 Self-Similarity Properties and Linear Commutant

In [4] and [8], self-similarity in general is defined as:

Definition 1 (Self-similarity in a block cipher). For a fixed block cipher E, let EK(x) denote
the ciphertext block resulting from the encryption of plaintext block x under key K. A self-similarity
relation is given by invertible and efficiently computable mappings φ, ψ, θ such that:

∀K,x : θ(EK(x)) = Eψ(K)(φ(x))

What we are interested in is the case where M = φ = ψ = θ is a linear map. This situation
will arise if the cipher follows a generalized Even-Mansour structure where key-independent round
functions Fi alternate with the addition of a fixed key K (i.e. no key schedule); and M commutes
with the round functions Fi. This last condition is very demanding; but this is precisely what
happens in both Robin and Zorro, despite their different structure. We expand on why this might
be the case in the discussion (Section 7). The following lemma sums up the attack.

Lemma 2. Consider a block cipher composed of round functions Fi separated by addition of a
fixed key K. Suppose there exists a linear map M such that M commutes with the Fi’s. Then:

∀x : M(EK(x)) = EM(K)(M(x))

In particular, if K = M(K):

∀x : M(EK(x)) = EK(M(x))



The commutativity ofM and the round functions can be interpreted from the invariant subspace
perspective. Indeed, if we let A = ker(M i + Id) for any i, A is an invariant subspace5. Of course
self-similarity is a stronger property stemming from a stronger requirement on the cipher.

In our applications, M will be involutive, so we focus on the case i = 1. In the remainder,
whenever two plaintext blocks (or ciphertext blocks, or inner states, or keys) satisfy x2 = M(x1),
we say that they are related. If a plaintext block (or ciphertext block, or inner state, or key) is
related to itself, we say that it is self-related. A weak key is a self-related key. In short, our attack
states that weak keys map self-related plaintexts to self-related ciphertexts; while related keys map
pairs of related plaintexts to pairs of related ciphertexts.

3.2 S-box-Independent Setting

We now focus on the case where the cipher is a substitution-permutation network (SPN), whose
round function Fi consists of an S-box layer with identical S-boxes, a linear map L, addition of
a round constant C(i), and addition of a fixed key K. From the invariant subspace (resp. self-
similarity) perspective, we are interested in subspaces (resp. linear maps) that traverse (resp.
commute with) each of these components.

It is quite apparent that the main roadblock is the non-linear S-box layer. However even in a
generic setting where we do not take into account a particular choice of S-box, any permutation
of the S-box inputs will commute with the S-box layer (due to S-boxes being identical). Thus we
restrict our attention to permutations of S-box inputs rather than general linear maps.

In terms of invariant subspaces, this corresponds to subspaces containing those vectors whose
coordinates belonging to the same cycle in the permutation are equal; that is, subspaces that only
require S-box inputs to be equal to some other input, or independent. We call such spaces equality
spaces. Note that these are vector subspaces and no longer affine subspaces. Our strongest attacks
actually occur in this setting.

As for constant and key addition, asking that their addition commutes with M amounts to
asking that they belong to ker(M + Id). Now it remains to find permutations that commute with
the linear layer. An efficient algorithm to do so is provided in Appendix G. The invariant subspace
variant seems more difficult, as we do not know an algorithm able to efficiently enumerate equality
spaces that traverse a linear map.

3.3 Key Recovery

The self-similarity attack above breaks plaintext confidentiality. In addition, if the commuting
permutation P is involutive (as will be the case in our applications), efficient key recovery may
be possible. In short, the part of the key corresponding to fixed points of the permutation can be
guessed independently of the rest.

Intuitively, this is because if two self-related inner states differ only outside the fixed points of
the permutation P , this difference will never be propagated to the fixed points of P . This is clear
for the S-box layer (because the permutation operates on entire S-box inputs), but also holds for
the linear layer. A general statement and proof are provided in Appendix B. In fact the proof also
encompasses the case where the S-box layer is partial.

What we show in the appendix is that the cipher contains an embedded subcipher operating
on the fixed points F of the permutation: we can project self-related plaintexts and ciphertexts on
F and obtain a well-defined map. Note that this embedded subcipher may lend itself to further
attacks; this is a direction we have not investigated, as we believe ciphers are sufficiently broken
at that point.

5 It may be that a non-trivial commuting matrix leads only to trivial invariant subspaces, as evidenced
by the 2 × 2 binary matrix with rows [01] and [11]. However if M is involutive, ker(M + Id) is at least
half of the space.



3.4 Invariant Permutation Attack on LS-Designs

Notation. In the S-box-independent setting of Section 3.2, for an LS-design, a permutation of
S-box inputs is simply a permutation of the columns of the state. Let us write P for such a
permutation. We always denote by the lowercase p its effect on a single row. Thus, P is the
application of p on each row of the state. We identify p with the corresponding c× c permutation
matrix. We adopt notations from Section 2.2.

The particular structure of LS-designs means that P commutes with L iff p commutes with `.
This is still a strong requirement, but we expect the L-box of an LS-design to have some structure
in order to provide a good branch number, especially if it is involutive. In the case of Robin for
instance, the linear layer is built from a Reed-Muller code and provides plenty of structure. Applied
to LS-designs, Lemma 2 becomes:

Lemma 3. For an LS-design, assume there exists a permutation P with the following properties:

– P commutes with L.
– P (C(i)) = C(i) for all round indices i.

Then for any plaintext message m:

EncP (K)(P (m)) = P (EncK(m))

In particular, if K = P (K):
EncK(P (m)) = P (EncK(m))

Note that the identity permutation trivially satisfies the above requirements. Hereafter we
always assume P is non-trivial. If ncycles(p) is the number of cycles of p, weak keys form a
proportion 2−r·(c−ncycles(p)) of all keys (namely, those keys whose columns are equal on each cycle
of p).

Key Recovery The previous attack breaks plaintext confidentiality. In addition, when P is
involutive, efficient key recovery is possible, as announced in Section 3.3. A general statement
and proof are provided in Appendix B.

It may still be worthwhile to provide a simpler statement dedicated to LS-designs. This is what
we propose below.

Lemma 4. Consider an LS-design, and assume there exists a permutation P with the same re-
quirements as in Lemma 3. Also assume that P is an involution. Consider a weak key K = P (K).
Denote by F the set of fixed points of P .

Take any self-related plaintext m = P (m). Then the value of the ciphertext EncK(m) on the
columns in F only depends on the value of m and K on the same columns.

Proof. Since P is an involution, all of its cycles have length 1 or 2. Hence we can partition the
columns of the state into three subsets F , A, B, such that P is the identity on F , and maps A and
B into each other. Take any self-related message m that is zero on F . Then the linear layer maps
m to a self-related state L(m) that is also zero on F . To see this, write m = mA +mB , where mA

is equal to m on A, and zero elsewhere, and likewise mB is equal to m on B and zero elsewhere.
Then P (mA) = mB , hence P (L(mA)) = L(mB) by commutativity of P and L. Since P is the
identity on F , this implies that L(mA) + L(mB) is zero on F , so L(m) is zero on F .

Thus, if m = P (m) is zero on F , so is L(m). By linearity, this implies that if m1 and m2 are
self-related and equal on F , then so are L(m1) and L(m2). Thus, the property that two self-related
states are equal on F goes through the linear layer. This property automatically goes through the
S-box layer since it is column-wise. Since the same key and round constants are added to both
sides, they have no impact. Hence this property goes through the whole cipher.

As a direct consequence, the value of the key on the columns corresponding to fixed points
of P can be guessed independently of the rest of the key by using any self-related plaintext. In
addition, the embedded subcipher is a smaller LS-design, and may lend itself to further attacks.
As a side note, both this lemma and the previous one also show that the cipher is malleable in a
strong sense.



Permutation Characteristic Instead of considering only permutations P commuting with L,
we can naturally look for pairs of permutations (P,Q) such that L · P = Q · L. We denote this by
P → Q, representing the fact that if two inner states are related by P before the linear layer, then
after the linear layer they are related by Q.

From there we can hope to build a form of characteristic P0 → P1 → P2 → P3 → . . . The
commutative case in the previous section corresponds to P → P . Note that the set of permutations
P such that Q = L · P · L−1 is a permutation forms a group. Also note that if L is involutive,
P → Q is equivalent to Q→ P : indeed L ·P = Q ·L implies P−1 ·L = L ·Q−1, implies L ·Q = P ·L:
hence any transition P → Q yields an iterative characteristic of length at most 2.

A particularly interesting case occurs whenever P → Pα for some α 6= 0. Indeed, in that case
we automatically have a cyclic characteristic P → Pα → Pα

2 → · · · → Pα
i

= P . Moreover the
attack from Lemma 3 goes through with exactly the same requirements on the key and round
constants (namely they are self-related by P ).

Application to Robin Applying our attack to Robin amounts to finding a permutation p com-
muting with the matrix ` in Fig. 1, such that P leaves all round constants C(i) invariant. More
generally, as pointed out just above, we can actually look at transitions P → Q, i.e. permutations
p, q such that ` · p = q · `. It turns out there are 720 such transitions, and all of them are of the
form P → P−1. Moreover 76 of these permutations are involutive, and hence commute with L.

Recall that the round constants of Robin are defined as C(i) = `(i) on the first row, and
zero on the others, for 1 ≤ i ≤ t. Hence we want p(`(i)) = `(i), which amounts to p(i) = i
by commutativity. Since i ranges from 1 to 16, what we are looking for is simply permutations
leaving the first 5 columns fixed. It turns out there exists exactly one such permutation, namely
the involutive permutation P0 switching columns 8, 9, 10, 11 respectively with columns 12, 13, 14,
15. Looking at Fig. 1, one can indeed see that permuting the rows and columns of the matrix of `
by p0 leaves the matrix invariant, which is the same as saying p0 commutes with `.

With P0, weak keys are simply keys whose last four columns are equal to the previous four. In
particular the proportion of weak keys is 2−32. Furthermore P0 leaves the first 8 columns fixed, so
Lemma 4 shows that for self-related plaintexts, the first 8 columns of ciphertexts only depend on
the first 8 columns of plaintext and key. This makes it possible to guess the value of the master
key on the first 8 columns independently of the rest of the key. This means 64 bits of the key
can be guessed separately; then the remaining 64 bits are symmetric through P0, so only 32 bits
remain to be guessed. Thus the full key can be recovered in time complexity 264 by encrypting
any self-related message. This may yield a few solutions, which can be checked against any other
plaintext/ciphertext pair.

Table 2. Permutations p0, p1 and p2. Fixed points are omitted.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p0 12 13 14 15 8 9 10 11

p1 8 9 10 15 4 5 6 7

p2 12 13 14 11 7 4 5 6

Beside P0, two other permutations P1 and P2 commuting with L leave the round constants
invariant up to the very last round (cf. Table 2). This means related plaintexts are mapped to
related inner states after 15 encryption rounds; followed by the final constant addition, S-box
layer, L-box layer, and key addition. The final linear layer can be reversed, and the resulting states
will agree on pairs of columns transposed by P on which C(16) is equal. In both cases, there is one
such pair, so self-related keys with respect to P1 and P2 can still be detected easily by encrypting
a few self-related plaintexts, reversing the last linear layer, and checking that these two columns
agree.

Permutations P1 and P2 both leave 8 columns fixed and hence yield an attack with essentially
the same properties as P0. Actually some key bits can be recovered faster than with P0 thanks



to the one-round differential at the end, but this involves the symmetric part of the key (that is,
outside the fixed points of the permutation) and thus the overall key recovery time is still 264.

Application to iSCREAM Recall that iSCREAM and Robin share the same linear layer. Round
constants only affect the first eight columns of the state, and so we are looking for permutations
commuting with L and leaving the first eight columns unchanged. As a matter of fact, there exists
exactly one such permutation, namely the same permutation P0 as above, which switches the last
four columns of the state with the previous four.

Another difference between Robin and iSCREAM is the number of rounds, but that is actually
irrelevant for our attack. The last difference is the presence of a tweak in the key schedule. Recall
that at odd rounds, T +K is added, while at even rounds, T ≪c 1 is added, where T is a 128-bit
tweak. In a chosen-tweak scenario, we can simply set T to zero, or any other value such that T
and T ≪c 1 are invariant by P . Then the attack against Robin from the previous section applies
to iSCREAM essentially unchanged, with the same consequences.

A small variant of our attack is also possible when using P0 as the commuting permutation.
What we truly want is that K + T and T ≪c 1 should be self-related. This amounts to asking
that columns 8, 9, 10, 11 should be equal to columns 12, 13, 14, 15. Since T ≪c 1 is a column-wise
shift of T by one column towards the left, this means that columns 9, 10, 11, 12 of T should be
equal to columns 13, 14, 15, 0. Note that there is no condition on column 8 of T . As a consequence,
for K + T to be self-related for some choice of T , it is enough to ask that columns 9, 10, 11 of
K should be equal to columns 13, 14, 15. Indeed in that case, we can fix T to be all-zero, except
for column 8 which can take any value: exactly one such choice of T will satisfy that K + T is
self-related. Thus we obtain a larger set of weak keys (with ratio 2−24), at the cost of requiring 28

chosen-tweak messages in order to detect whether a fixed unknown key is weak.
In addition, some variants of iSCREAM claim related-key security. If two keys are related by

P0, then our attack applies immediately without any weak key requirement, following the first
consequence of Lemma 3. That is, related plaintexts are mapped by the related keys to related
ciphertexts. Thus it is easy to check whether a pair of keys is related, and the cipher is broken in
a strong sense.

Generalizations of the Permutation Attack There appears to be a few simple ways in which
our attack could be generalized. We discuss them briefly here.

We could consider a probabilistic version of the attack. Instead of requiring L · P = P · L, we
could consider P ’s such that the kernel of L ·P −P ·L is almost the full space. In the case of Robin
or iSCREAM, this would incur a cost at least 2−8 per round.

Another natural extension is to consider cases where all round constants are P -invariant except
for the last few rounds (or first few rounds). Then our attack goes through most of the encryption
process, and eventually yields a differential attack on the remaining rounds. When encrypting
self-related plaintexts, this differential attack turns into an inner differential.

4 Invariant Equality Space Attack

In this section we study invariant subspaces for LS-designs following the S-box-independent setting
of Section 3.2. We begin by defining equality spaces, and then present our results on Robin and
iSCREAM. On the way, we will recover the invariant subspace detected by our generic algorithm
(Section 1.3), and link it to the commuting permutations from the previous section.

4.1 Equality Spaces

As always, we use notations from Section 2.2. We always view n-bit vectors as an r × c matrix.
In Section 3.2, we defined equality spaces in general terms for an SPN; we now provide a more
specific definition suited to LS-designs.



Definition 2. A subspace E of {0, 1}c is an equality space iff there exists a partition of {0, . . . , c−
1} such that E is the set of vectors whose values on coordinates belonging to the same class in the
partition are equal.

The dimension of E is the number of classes of the partition. By Er we denote the set of
n-bit states whose columns belonging to the same class in the partition underlying E are equal.
Equivalently, this means that every row of the state belongs to E, hence the notation Er. By
extension we also call Er an equality space. The point of this definition is that equality spaces are
preserved by the S-box layer. The question is to determine which equality spaces are also preserved
by the linear layer. That is, we are looking for equality spaces E ⊂ {0, 1}c such that `(E) = E.

As pointed out in Section 3.1, when a permutation P commutes with L, the equality space
defined by the cycles of P is preserved by the linear layer. The idea is that equality spaces preserved
by the linear layer do not necessarily stem from a commuting permutation. Conversely, commuting
permutations are an interesting special case, since they lead to a stronger property: indeed, when
considering equality spaces rather than permutations, we are looking at a property of a single state,
and there is no equivalent to the property that distinct related plaintexts are mapped to related
ciphertexts; there is also no equivalent to Lemma 4. Meanwhile, Lemma 3 becomes:

Lemma 5. For an LS-design, assume there exists an equality space E such that:

– `(E) = E.
– C(i) ∈ Er for all round indexes i.

Then for any key K and plaintext message m:

If K ∈ Er and m ∈ Er then EncK(m) ∈ Er

The lemma trivially holds if E is the full space {0, 1}c; hereafter we assume this is not the
case. Then we have an attack in the weak key setting, where weak keys are keys in Er. Hence the
proportion of weak keys is 2−r·(c−dim(E)).

4.2 Variants of the Attack

Essentially the same extensions as in Section 3.4 apply to equality spaces.
Characteristics: if the image F = L(E) of an equality space E is also an equality space, we

write E → F . As with permutations, we can aim to build a characteristic E0 → E1 → . . . over
several rounds. Note that the set of equality spaces is closed under intersection, and as a direct
consequence, the set of equality spaces E such that L(E) is an equality space is also closed under
intersection. If L is involutive, E → F is equivalent to F → E, so characteristics are automatically
cyclic.

Probabilistic attack: Instead of asking F = L(E), we can require the dimension of the
quotient space F/L(E) to be small.

Differential ending: If all round constants are in the required equality spaces except for the
last few (or first few) rounds, it may be possible to cover the remaining rounds with an inner
differential characteristic. Indeed in the case E → E, the equality space attack may be seen as an
all-zero inner differential attack.

Differential attack: the entire attack itself may be transposed into the differential world, at
the expense of becoming probabilistic. Consider a state difference living in Er with L(E) = E.
Then at each round, require that the S-box layer preserves this equality; that is, the output of some
S-boxes which receive equal input, should remain equal. Note that if E stems from an involutive
permutation commuting with L, the columns corresponding to fixed points of the permutation can
be set to a zero difference: this will be preserved by the linear layer (cf. the proof of Lemma 4).
This attack avoids key and round constant requirements, at the cost of much lower probability,
and hence high data requirements. In practice this would lead to a weaker attack against Robin
than truncated differential product trails in the original article [15], because the branch number is
8 and the non-fixed points of P0 involve 8 S-boxes.



4.3 Application to Robin and iSCREAM

Since Robin and iSCREAM share the same linear layer L, we consider them together. We enumer-
ated all equality spaces E such that L(E) is an equality space (there are around 233 partitions of
16 elements, so this is feasible), and analyzed the results.

Our first observation is that there are many more well-behaved equality spaces E (in the sense
that L(E) is also an equality space), than well-behaved permutations P (in the sense that Q =
L · P · L−1 is also a permutation). Namely, there are 720 well-behaved permutations for L, while
there are 30162 well-behaved spaces of dimension 8 or more. Even if we remove from this list spaces
that are an intersection of larger well-behaved spaces (and thus could have a chance of indirectly
resulting from well-behaved permutations), 7746 well-behaved spaces remain.

Recall that L is involutive, so any transition E → F (i.e. L(E) = F with E and F two equality
spaces) yields a cyclic characteristic E → F → E. Hence all well-behaved spaces belong to cycles
of length 1 or 2. The aforementioned 7746 intersection-reduced well-behaved spaces of dimension
at least 8 form 2506 cycles of length 1 (that is, E → E) and 2620 cycles of length 2 (that is
E → F → E). Thus equality spaces offer considerably more potential attacks, depending on round
constants.

However, all equality spaces compatible with actual round constants for Robin minus the last
round, and hence directly usable in an attack, stem from commuting permutations. There exist
four such spaces: three of them correspond to permutations P0, P1 and P2 from Table 2, and
the last one is a space of dimension 8 resulting from the composition of any two of the previous
permutations (any combination yields the same permutation or its inverse). As for iSCREAM, the
only well-behaved space compatible with round constants is the one resulting from P0. Thus, our
previous attack is not improved. Moreover, the largest well-behaved spaces have dimension 12 and
all stem from involutive permutations (there are 15 of them). The largest well-behaved equality
spaces not stemming from a well-behaved permutation have dimension 10. This may be interpreted
to mean that the strongest phenomenon is due to commuting permutations.

Thus for both Robin and iSCREAM, the equality space induced by P0 is the only equality
space that goes through the whole cipher, including the last round. This space has dimension 96
over F2, and it is the invariant subspace automatically discovered by the generic algorithm from
Section 1.

4.4 A note on Fantomas and SCREAM

The matrix L of Fantomas is a permutation of the lines and columns of the matrix of Robin. As
a consequence, they have the same number of well-behaved permutations and spaces. However we
found no cycle among well-behaved spaces of Fantomas of dimension 6 or more (lower dimensions
would yield very weak attacks); and no characteristic of length more than 2. Hence Fantomas seems
safe from this attack.

The same is true for SCREAM. However, it is worth noting that there exists no well-behaved
permutation for the matrix of SCREAM, while we found 5404 well-behaved spaces of dimension 8
or more.

5 A Second Invariant Subspace Attack on LS-Designs

In this section we present a different invariant subspace attack on LS-designs, which may be
regarded as a form of dual of the previous attack. This attack does not stem from an underlying
permutation; nor does it have an equivalent for Zorro. Thus, this section is specific to LS-designs,
and takes advantage of their particular structure: namely, the fact that LS-designs not only rely
on a layer of identical S-boxes, but also on a layer of identical L-boxes.

Now that we have understood the invariant subspace discovered by our generic algorithm as
being an equality space, i.e. a space that is automatically preserved by the S-box layer, it is natural
to ask if something similar can be done with the L-box layer. That is, we are now going to look
for a property that is automatically preserved by the L-box layer.



This gives us more freedom, since we can leverage linearity. Essentially, if all columns of the
state live in the same linear subspace, this will remain true after the linear layer (in Appendix D,
we prove that this is in fact the most general property generically preserved by the linear layer);
whereas in the previous case, we were limited to equality spaces. Beside this difference, the attack
is essentially a dual version of the previous one, reversing the roles of the L-box and S-box layers.

5.1 Description of the Attack

In the previous attack, we searched for equality spaces E ⊂ {0, 1}c on the rows of the state such
that `(E) = E. Instead, we are now interested in general linear subspaces A ⊂ {0, 1}r on the
columns of the state such that s(A) = A. Once again, if A is a linear space on the columns (or one
of its cosets), we denote by Ac the set of states whose columns all belong to A.

The core of the attack is the following: assume s(A) = A for some linear space A. If the inner
state lies in Ac, this will remain true after the S-box layer. Moreover, this property is automatically
preserved by the linear layer. Indeed, the linear layer of an LS-design is not truly “line-wise”:
precisely because the same linear map is applied to each row, the linear layer may be seen as
directly adding together column vectors. From this point of view, it becomes clear that if all
columns lie in the same linear space A, this remains true after the linear layer.

Thus we are still within the invariant subspace framework, and follow the corresponding strat-
egy: we choose A such that all round constants belong to Ac, and we consider a weak key scenario
by requiring that the key also lie in Ac. If these requirements are fulfilled, plaintexts in Ac are
mapped to ciphertexts in Ac.

More generally, we can consider cosets of linear spaces (i.e. affine spaces) rather than just linear
spaces: indeed, as long as each coordinate at the output of ` is the sum of an odd number of
coordinates at the input, the linear layer still preserves the property that all columns belong to a
fixed coset. The following lemma sums up the attack.

Lemma 6. Let u, v, w be r-bit vectors, and A be a linear subspace of r-bit vectors. Assume the
following conditions hold:

– The S-box s maps all vectors in u+A to vectors in v +A.
– Either v = 0 or all rows of the matrix of ` have an odd number of 1’s.
– The columns of all round constants are in w +A.
– The columns of the key are in (u+ v + w) +A.

Then any plaintext in (u+w) +A is encrypted into a ciphertext in (u+w) +A (and conversely).

Weak keys are keys in (u+ v+w) +E. This means a proportion 2−c·(r−dim(A)) of keys is weak.

5.2 Application to Robin and iSCREAM

In the case of Robin, the second condition in Lemma 6 is automatically true. In order to satisfy
the third condition (round constants), since round constants only affect the first row of the state,
we require that the r-bit vector denoted by 1, with 1 on the first row and 0 elsewhere, belongs
to E. To instantiate the attack, it remains to look for affine spaces whose direction contains the
vector 1, that are mapped by the S-box to affine spaces with the same direction.

It turns out the largest such spaces have dimension 3, and are mapped into themselves. We
list all six choices in Table 3. Since these spaces have dimension 3, and the state has 8 rows and
16 columns, a proportion 2−16·5 = 2−80 of keys are weak. This means our attack is considerably
weaker than the first one against Robin. By comparison, a generic multi-target time-memory trade-
off with 248 memory would lead to key recovery for the same proportion of keys. Of course our
attack requires no memory or table lookup.

We now turn to iSCREAM. Recall that its S-box is the same as that of Robin, and round
constants still only affect the first row of the state. We want both K +T and T to live in the same
coset, so we require T to lie in (u+ v +w +A)c, and K to lie in Ac. In our actual attack we have
u = v and w = 0 so in the end, we can set the tweak to zero (or any value in Ac), and the attack
goes through with the same parameters as before.



Table 3. Six affine spaces of dimension 3 invariant through s.

Values in A Dir(A)

00 01 26 27 84 85 a2 a3 01 26 84

18 19 7c 7d 9e 9f fa fb 01 64 86

28 29 32 33 8a 8b 90 91 01 1a a2

3c 3d 5e 5f b2 b3 d0 d1 01 62 8e

44 45 66 67 c8 c9 ea eb 01 22 8c

4e 4f 54 55 6c 6d 76 77 01 1a 22

5.3 Taking Advantage of the iSCREAM Tweak Schedule

In the case of iSCREAM, it is possible to leverage the tweak schedule to create a trade-off between
the ratio of weak keys and the number of chosen-tweak messages required to detect a weak key.
To simplify notations, we explain this technique using vector spaces; it extends to their cosets in a
straightforward manner. Assume we have two vector spaces A and B with S(A) = B. As before,
we assume 1 ∈ A and 1 ∈ B so that round constants belong to Ac and Bc. Since S is involutive,
we have S(B) = A, so A→ B → A is a characteristic for the the S-box.

In order for this characteristic to traverse encryption, we need K +T ∈ Ac, and T ≪c 1 ∈ Bc,
which is equivalent to T ∈ Bc. For this it is enough to ask K ∈ Ac+Bc = (A+B)c. Indeed in that
case, write K = KA + KB with KA ∈ Ac and KB ∈ Bc. Then for T = KB , we have K + T ∈ Ac
and T ∈ Bc, which is precisely what we want. Of course the key is unknown to the attacker, so
she cannot compute T in this way. Instead, she can try every value in the supplementary space of
Ac in (A+B)c (which is smaller than Bc, if only because 1 ∈ A ∩B). For exactly one such value
of the tweak, every plaintext in Ac will be encrypted to a ciphertext in Bc.

Now the question is to find two spaces A and B as above. Actually we look for cosets of linear
spaces with the same properties, since the linear layer of iSCREAM also preserves these cosets. In
summary, we look for affine spaces u+ A 6= v + B such that S(u+ A) = v + B, and 1 belongs to
A ∩B.

It turns out the largest such spaces have dimension 3. There are 11 such spaces (counting only 1
for u+A→ v+B and v+B → u+A), listed in Appendix A. Furthermore, 8 of these spaces satisfy
dim(A+B) = 5, which is the maximal possible value since 1 belongs to A∩B. Thus K ∈ (A+B)c

yields a ratio of weak keys of 2−c·(r−dim(A+B)) = 2−48.
In order to detect whether a key is weak, one needs to encrypt a message for each tweak in

the supplementary of Ac in (A+B)c, which is of dimension 2 · c, hence 232 chosen-tweak messages
are required (for a random key and a given choice of the tweak, a false positive has probability
only 2−80, and can be discarded by one additionnal chosen-tweak message). Finally, once a weak
key is detected in this way, we know K + T ∈ Ac for one specific T , hence K = T + Ac, so only
2c·dim(A) = 248 possibilities remain for the value of the key.

5.4 Variants of the Attack

It seems natural to consider a probabilistic version of the attack, where instead of requiring that
every vector in u+A be mapped by the S-box to a vector in v +A, we only require most of them
to comply. If only x elements in u+A are not mapped to v +A, the probability to pass an S-box
is 1 − x/2r. The cost for each round is then (1 − x/2r)c. In the case of Robin, there is no A of
dimension 4 with x < 3, so there does not appear to be an obvious interesting probabilistic version
of the attack.

6 Commuting Permutation and Invariant Subspace for Zorro

6.1 Description of Zorro

The block cipher Zorro was introduced at CHES 2013 [14]. Like LS-designs, the design goal is to
offer a cipher that can efficiently be made resistant to side-channel attacks through masking [25].



This is achieved by two main techniques: first, a carefully constructed 8-bit S-box; and second, an
AES-like structure where S-boxes are only applied on the first row of the state.

The 128-bit state is represented as a 4× 4 array of 8-bit cells. The round function applies the
following transformations:

– SubBytes: A fixed 8-bit S-box is applied to the first row of the state.
– AddConstant: At round i, the constants i, i, i and i << 3 are added to the four cells of the

first row (from left to right).
– ShiftRow: This step is identical to AES. Row i, counting from zero, is shifted by i cells to the

left.
– MixColumns: This step is again identical to AES. A fixed 4 × 4 circulant matrix on F28 is

applied to each column of the state. The matrix is the same as that of AES.

Four consecutive rounds are called a step. After each step, the 128-bit master key is simply
added to the inner state: there is no key schedule. Encryption consists in key addition, followed by
6 steps (24 rounds), each followed by key addition.

6.2 Self-Similarity and Invariant Subspace

We are interested in an S-box-independent commuting linear map, as in Section 3.1. To simplify,
we focus on a single round: commuting with every round is a sufficient condition to commute with
every step. Thus we are looking for a linear map M acting as a permutation on the S-boxes, and
commuting with the linear layer.

Since there are only four S-boxes, there are only 24 choices for the permutation. In fact, because
the constant added to the fourth S-box is different from the others, we impose that this S-box
should remain fixed by the permutation, leaving only 6 possibilities. In this way, our linear map
will automatically commute with both the S-box and constant addition layers.

For each of the 6 permutation choices on the first 3 S-boxes, the set of linear maps behaving
as this particular permutation on the first 4 cells, and independently on the other cells, is itself a
vector space. Furthermore the commutant of the linear layer is naturally a vector space. Thus, it
suffices to intersect these two spaces to find a solution, if it exists.

It turns out there exists exactly one solution, for the permutation swapping the first and third
S-boxes, and leaving the other two fixed. This solution is given in Appendix E, together with the
resulting invariant subspace. This subspace has dimension 12 over F28 , that is, 96 over F2. Hence
the proportion of weak keys is 2−32.

In Appendix F, we show how to enumerate all invariant subspaces for Zorro, and deduce that
the previous space is in fact the only invariant subspace (in the S-box-independent setting). The
strategy used to enumerate spaces extends naturally to any SPN with a partial S-box layer of only
a few S-boxes per round.

6.3 Key Recovery

The key recovery strategy from Section 3.4 extends to partial S-box layers such as Zorro. In brief, if
an involutive linear map commutes with the components of an SPN, and acts as a permutation on
the S-box inputs, part of the key may be recovered independently of the rest. When the S-box layer
is full, i.e. the commuting map is simply a permutation, this part of the key corresponds to the
fixed poins of the permutation. When the S-box layer is partial, and hence the commuting map M
is not fully a permutation, the role of the non-fixed points is essentially played by I = Im(M +Id).
A formal statement and proof are provided in Appendix B.

The consequence for Zorro is that once a key is recognized as weak, 64 bits of the key can be
guessed independently of the rest using one chosen plaintext (any self-related plaintext). Indeed,
the part of the key in I only influences the part of the ciphertext in I. After these 64 bits have
been recovered by brute force, only 32 bits remain to be guessed, due to the key being weak. Thus
key recovery requires only one chosen plaintext and a time complexity of 264 offline encryptions.



7 Conclusion

In this article, we present a unified cryptanalysis of several ciphers based on invariant properties
traversing the cipher under certain conditions, while providing generic tools for this type of attack.
Our attacks are able to break lightweight ciphers Robin, iSCREAM and Zorro in a practical setting.

Our attacks from sections 4 and 5 are quite similar in principle. The state of an LS-design is
a rectangular array. A fixed line-wise operation is performed in each direction. Each attack looks
for properties of the inner state that would be structurally preserved in one direction (in the sense
that this does not depend on the specificities of the S-box or linear layer), that would happen to
also be preserved in the other (this time due to the particular choices of S or L).

In the case where the generic direction is linear, any linear space is preserved, and under some
conditions any coset; if it is nonlinear, only equality spaces are preserved. In appendix C and D,
we prove that these are in fact the most general properties structurally preserved in each direction,
so our attacks fully realize the program outlined in the previous paragraph. It remains an open
question whether a similar attack could in some way combine information from both directions;
that is, neither direction would preserve the invariant property in a fully generic way.

Concerning our first attack on LS-designs from sections 3 and 4 (encompassing both invariant
permutations and invariant equality spaces), the structure of the linear map is a key component. It
seems unlikely that the attack could succeed in cases where the linear layer is not involutive. Indeed,
as shown by the matrices of SCREAM and Fantomas, even in the presence of a large number of
well-behaved equality spaces, it appears that iterative characteristics do not occur by accident. By
contrast, if the linear layer is involutive, any well-behaved equality space (or permutation) yields a
cyclic characteristic of length at most 2; and indeed, in the case of Robin and iSCREAM, thousands
of iterative characteristics exist. Of course, the matrix of Robin and iSCREAM has much more
structure than a generic involutive matrix.

It is quite striking that exactly the same attacks exist on Zorro, despite its quite different struc-
ture (byte-oriented vs. bit-oriented, partial S-box layer vs. full, AES-like vs. somewhat SERPENT-
like). It is worth noting however that both ciphers attempt precisely the same goal, namely to offer
efficient masked implementations. As a result both reduce non-linear operations to a minimum per
round, while giving more weight to the linear layer; LS-designs achieve this by parallelizing the
S-box through bit slicing; Zorro by resorting to a partial S-box layer. In both cases the contribution
of the non-linear layer is very structured with respect to the linear layer; this, together with the
minimal key schedule and simple round constants leads to our attacks.

We note that all our attacks can be prevented by a careful choice of round constants. One needs
only ensure that no weaker (such as probabilistic or differential) version of the attack is left behind.
This is particularly true when claiming related-key security (as in iSCREAM), since in this setting
our attacks do not require weak keys, and hence weaker probabilistic versions are quite relevant.

Going back to the generic algorithm used to find the attacks, an interesting open problem is
to specialize it to SPN structures, hoping to achieve better time complexity. In particular, it may
be worthwhile to find an algorithm that is able to enumerate all invariant subspaces through a
layer of n S-boxes, given n and the S-box. With improvements in time complexity, it may become
possible to entirely disprove the existence of invariant subspaces for some SPNs.

Finally, we hope our analysis contributes some insight for the design of future ciphers with
minimal key schedules and the choice of round constants in cryptographic permutations.
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12. Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. NESSIE proposal: Noekeon.
Homepage http://gro.noekeon.org/, 2000.

13. Jan-Hendrik Evertse. Linear structures in blockciphers. In Advances in Cryptology - EUROCRYPT
’87, Workshop on the Theory and Application of of Cryptographic Techniques, Amsterdam, The Nether-
lands, April 13-15, 1987, Proceedings, volume 304 of Lecture Notes in Computer Science, pages 249–266.
Springer, 1987.
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A Well-Behaved Affine Spaces for the Robin and iSCREAM S-Box

Only spaces whose direction contains 1 are listed.

Values in u+A Basis of A Values in v +B = S(u+A) Basis of B dim(A+B)

00 01 26 27 84 85 a2 a3 01 26 84 00 01 26 27 84 85 a2 a3 01 26 84 3

18 19 7c 7d 9e 9f fa fb 01 64 86 18 19 7c 7d 9e 9f fa fb 01 64 86 3

28 29 32 33 8a 8b 90 91 01 1a a2 90 91 8a 8b 32 33 28 29 01 1a a2 3

3c 3d 5e 5f b2 b3 d0 d1 01 62 8e b2 b3 d0 d1 3c 3d 5e 5f 01 62 8e 3

44 45 66 67 c8 c9 ea eb 01 22 8c c8 c9 ea eb 44 45 66 67 01 22 8c 3

4e 4f 54 55 6c 6d 76 77 01 1a 22 77 76 6d 6c 55 54 4f 4e 01 1a 22 3

28 29 32 33 6c 6d 76 77 01 1a 44 90 91 8a 8b 54 55 4e 4f 01 1a c4 4

28 29 32 33 4e 4f 54 55 01 1a 66 90 91 8a 8b 76 77 6c 6d 01 1a e6 4

2e 2f 38 39 8c 8d 9a 9b 01 16 a2 6f 6e 63 62 cd cc c1 c0 01 0c a2 4

08 09 2e 2f 8c 8d aa ab 01 26 84 4d 4c 6f 6e c1 c0 e3 e2 01 22 8c 5

08 09 38 39 9a 9b aa ab 01 30 92 4d 4c 63 62 cd cc e3 e2 01 2e 80 5

0a 0b 12 13 c6 c7 de df 01 18 cc 2c 2d 36 37 68 69 72 73 01 1a 44 5

0e 0f 16 17 c2 c3 da db 01 18 cc bd bc ad ac f1 f0 e1 e0 01 10 4c 5

20 21 3e 3f 86 87 98 99 01 1e a6 59 58 5d 5c e9 e8 ed ec 01 04 b0 5

22 23 34 35 80 81 96 97 01 16 a2 78 79 74 75 d8 d9 d4 d5 01 0c a0 5

24 25 3a 3b 82 83 9c 9d 01 1e a6 47 46 43 42 fd fc f9 f8 01 04 ba 5

4a 4b 50 51 8e 8f 94 95 01 1a c4 e4 e5 f4 f5 a8 a9 b8 b9 01 10 4c 5

B Key Recovery for SPN with Commuting Permutation

We show that the key recovery strategy from Section 3.4 extends to Zorro. In fact we are going to
prove the more general result announced in Section 3.3.

We want to encompass the case where the S-box layer is only partial. To do so, we relax the
requirement that the commuting linear map M be a permutation, as follows. We ask that the
linear map commuting with the round function present itself as a block matrix, where the first
block covers all S-box inputs, and is only allowed to permute them as before; while the second
block is a general bijective linear map with no further restriction (if the S-box layer is not partial,
this second block is simply nonexistent).

In this more general case, the role of the points that were not fixed by the permutation will be
played by Im(M + Id) (which indeed cannot contain any non-zero fixed point of M–note that we
still require M to be involutive). Let us then denote S = ker(M + Id) (the self-related space we
have considered so far), and define I = Im(M + Id). Observe that because M is involutive, I is a
subspace of S (indeed, (M + Id)(M(x) + x) = M(M(x) + x) + M(x) + x = M(M(x)) + x = 0).
Our claim is the following.

Lemma 7. Consider an SPN whose round function is composed of:

– A potentially partial S-box layer;

– A linear layer L;

– Addition of a fixed key K;

– Addition of rounds constants.

We assume the existence of an involutive linear map M commuting with all of these components.
Furthermore M is a block matrix, where the first block covers all S-box inputs, and only permutes
them; while the second block is a general bijective linear map with no further restriction.



Let S = ker(M + Id) and I = Im(M + Id). We already know that x ∈ S and K ∈ S implies
EK(x) ∈ S. But in addition:

∀K1,K2, x1, x2 ∈ S :
x1 + x2 ∈ I
K1 +K2 ∈ I

}
⇒ EK1

(x1) + EK2
(x2) ∈ I

Proof. We show that if two self-related inner states s1 and s2 satisfy s1 + s2 ∈ I, this remains
true after every component of the round function:

– S-box layer: let us restrict our attention to the part E of the state affected by S-boxes. We
view E as a subspace of the states, and we group bits corresponding to the same S-box input
together to view E as a space on Fb2, where b is the bit size of an S-box. We know that M acts
as a permutation P on E. Since P is involutive, E can be decomposed into 3 disjoint subspaces
E = F + A + B, where F are the fixed points of the permutation, and A and B are mapped
to each other by P . Let Z be the space of vectors whose value is zero on F in the previous
decomposition.
We claim that I = S ∩ Z. Indeed I ⊆ S because P is involutive; and I ⊆ Z because P (x) + x
equals zero on fixed points of P ; so I ⊆ S ∩Z. Conversely choose x ∈ S ∩Z; then let x′ be the
projection of x on A (parallel to B+Z); then x = x′+P (x′). To see this, use the decomposition
along Z + A + B: x and x′ + P (x′) are both zero on Z; they are equal on A, as x and x′ are
equal on A by definition and P (x′) is zero; and finally they are equal on B because they are
equal on the rest and both sides are self-related. Thus we have shown I ⊇ S ∩Z; so I = S ∩Z.
Now observe that if s1 and s2 satisfy s1 + s2 ∈ Z, this remains true after the S-box layer, since
belonging to Z for the sum of two states only means that the columns of these two states in F
are equal. We already know that belonging to S is preserved by the S-box layer; so in the end
s1 + s2 ∈ S ∩ Z = I implies that this is still true after the S-box layer.

– Linear layer: assume s1 + s2 ∈ I; then L(s1) + L(s2) ∈ L(I). However L(I) = I, because L
commutes with M + Id, so the property of belonging to the image of M + Id is stable by L.
Indeed, ∀x : x ∈ I ⇔ x = P (y) + y ⇔ L(x) = P (L(y)) + L(y)⇔ L(x) ∈ I.

– Constant addition: this step does not affect the value of s1 + s2.
– Key addition: it is assumed that K1+K2 ∈ I, so s1+s2 ∈ I implies (s1+K1)+(s2+K2) ∈ I.

As a consequence, provided the key is in S (i.e. weak), and we encrypt self-related plaintexts,
the value of the ciphertext on any supplementary space F of I in S only depends on the value of
the plaintext and key on the same space (we denote this supplementary space by F , as in the case
where M is a permutation on the full state, the fixed points of M is a valid choice). This allows
us to try and guess the value of the key on F independently of the rest of the key, by encrypting
any self-related plaintext.

The number of key bits we are thus allowed to guess independently of the rest is the dimension of
F , which is dim(S)−dim(I) = 2 ·dim(S)−n (this number is positive because M is an involution).
Another viewpoint is that the cipher contains an embedded subcipher operating on F with a
dim(F )-bit key: we can project self-related plaintexts, ciphertexts and keys on F parallel to I and
obtain a well-defined new cipher.

C Properties Structurally Preserved by the S-Box Layer

In the following, we show that belonging to an equality space is essentially the only property that is
preserved by the S-Box layer of an LS-design, under the hypothesis that we do not use any specific
property of the S-box. While this is fairly intuitive, a formal proof may still be meaningful, if only
as a complement to the proof in Appendix D.

Note that there is a small subtlety: the property that is being preserved is not only that all
rows lie in some fixed equality space, but also that they are not included in any equality space
stemming from a coarser partition. That is, not only columns that are equal remain equal, but
so do columns that are distinct. This is mostly irrelevant for our attack; nonetheless, it has to be
taken into account in a formal proof.



Earlier we wrote Er to denote the set of states whose rows all lie in some equality space E.
Accordingly, we now write Er to denote the subset of Er containing the states that not only satisfy
that columns belonging to the same class in the partition underlying E are equal, but also that
columns belonging to distinct classes are distinct.

Consider an LS-design with r rows and c columns, L-box L and S-box S. Assume we have two
properties P and Q over the set of states S such that for all states x, P (x) ⇔ Q(S(x)), where S
abusively denotes the column-wise application of S on the columns of x.

Let us write P = {x ∈ S : P (x)} and Q = {x ∈ S : Q(x)}. Our goal is to show that P = Q,
and that P is a union of sets of the form Er. For any state x, define E(x) ⊆ {0, 1}c as the equality
space defined by the partition p of {0, . . . , c−1} such that i and j are in the same class iff columns
i and j of x are equal.

Lemma 8. For any two states x and y, there exists an S-box S such that S(x) = y iff E(x) = E(y).

Proof. If S(x) = y, clearly columns that are equal in x are still equal in y, and distinct columns
are still distinct by bijectivity of S. As a consequence E(x) = E(y). Conversely, if E(x) = E(y),
the image of S on each column of x can be defined as the value of y on the same column. The
condition E(x) = E(y) guarantees that there is no contradiction.

Corollary 1. If x ∈ P then E(x)r ⊆ Q.

Proof. Since our hypothesis is that we use no specific property of S, any possible image of
x ∈ P through an S-box must belong to Q. By the previous lemma, the possible images of x
through an S-box are all states y such that E(x) = E(y), which is precisely the set E(x)r. Hence
E(x)r ⊆ Q.

As a result,
⋃
x∈P E(x)r ⊆ Q. Since x ∈ E(x)r, this implies P ⊆ Q. By symmetry P = Q, and

P ⊆
⋃
x∈P E(x)r ⊆ Q = P, so P is a union of sets of the form Er.

D Properties Structurally Preserved by the Linear Layer

In the following, we show that the only property structurally preserved by the linear layer of an LS-
design is that the columns of the state generate a fixed linear space. By “structurally preserved”,
we mean preserved under the hypothesis that we do not use any specific property of the linear map
L. The general outline of the proof is the same as that of Appendix C.

Note that there is a small subtlety: the property that is being preserved is not only that all
columns of the state lie in some fixed linear space, but that they actually generate a fixed space.
This is mostly irrelevant for our attack; nonetheless, it has to be taken into account in a formal
proof. Earlier we wrote Ac to denote the set of states whose columns all lie in some subspace
A ⊆ {0, 1}r. Accordingly, we now write Ac to denote the subset of Ac containing the states whose
columns not only lie in A, but also generate A.

Consider an LS-design with r rows and c columns, L-box L and S-box S. Assume we have two
properties P and Q over the set of states S such that for all states x, P (x) ⇔ Q(L(x)), where L
abusively denotes the row-wise application of L on the columns of x. Let us write P = {x ∈ S :
P (x)} and Q = {x ∈ S : Q(x)}. Our goal is to show that P = Q, and that P is a union of sets of
the form Ac. For any state x, define A(x) as the subspace of {0, 1}r generated by the columns of
x.

Lemma 9. For any two states x and y, there exists an L-box L such that L(x) = y iff A(x) = A(y).

Proof. If L(x) = y, clearly the columns of y are linear combinations of the columns of x, so
A(y) ⊆ A(x). Since L is invertible, by symmetry A(y) = A(x).

Conversely, assume A(x) = A(y). For 0 ≤ i < r and 0 ≤ j < c, denote by xi,j the bit at the
intersection of row i and column j. Furthermore xi,∗ denotes the i-th row of x, and x∗,j denotes
the j-th column. Now define:

D(x) = {F ⊆ {0, 1}r :
∑
i∈F

xi,∗ = 0}



The core observation is that this is essentially the annihilator of A(x) in the dual space ({0, 1}r)∗.
Indeed, note that for any F ⊆ {0, 1}r,

∑
i∈F xi,∗ = 0 iff this holds on each column of x, i.e.

∀0 ≤ j < c,
∑
i∈F xi,j = 0. Now observe that x∗,j 7→

∑
i∈F xi,j is a linear functional on {0, 1}r,

so D(x) is the set of F ’s such that the corresponding linear functionals cancel all columns of x.
Since the columns of x generate A(x), this means exactly that these F ’s correspond to the linear
functionals in the annihilator of A(x).

Thus D(x) is (in a natural bijection with) the annihilator of A(x). The point of this observation
is that our hypothesis A(x) = A(y) is equivalent to D(x) = D(y). This will prove useful shortly.
Choose a maximal subset I ⊆ {0, . . . , r− 1} such that the rows of x with indexes in I are indepen-
dent. Since D(x) = D(y), the same subset of rows of y is also independent. Thus we can choose a
bijective map L such that L(xi,∗) = yi,∗ for each i ∈ I.

Now we claim that L(xi,∗) = yi,∗ for all i. Indeed, all indexes i not in I correspond to rows of
x that are linear combinations of rows with indexes in I. Furthermore because D(x) = D(y), the
corresponding rows in y result from the same linear combinations of rows of y. Hence by linearity
L(x) = y.

Corollary 2. If x ∈ P then A(x)c ⊆ Q.

Proof. Since our hypothesis is that we use no specific property of L, any possible image of
x ∈ P through an L-box must belong to Q. By the previous lemma, the possible images of x
through an L-box are all states y such that A(x) = A(y), which is precisely the set A(x)c. Hence
A(x)c ⊆ Q.

As a result,
⋃
x∈P A(x)c ⊆ Q. Since x ∈ A(x)c, this implies P ⊆ Q. By symmetry P = Q, and

P ⊆
⋃
x∈P A(x)c ⊆ Q = P, so P is a union of sets of the form Ac.

E Commuting Linear Map and Invariant Subspace for Zorro

The commuting linear map M is represented as a 16 × 16 matrix over F28 , using the AES repre-
sentation of F28 as F2[x]/(x8 + x4 + x3 + x+ 1).



0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 34 101 35 101 50 249 50 249 249 116 249 116

0 0 0 0 101 35 101 34 249 50 249 50 116 249 116 249

0 0 0 0 35 101 34 101 50 249 50 249 249 116 249 116

0 0 0 0 101 34 101 35 249 50 249 50 116 249 116 249

0 0 0 0 17 86 17 86 1 0 0 0 249 50 249 50

0 0 0 0 86 17 86 17 0 0 0 1 50 249 50 249

0 0 0 0 17 86 17 86 0 0 1 0 249 50 249 50

0 0 0 0 86 17 86 17 0 1 0 0 50 249 50 249

0 0 0 0 51 190 51 190 86 17 86 17 35 101 34 101

0 0 0 0 190 51 190 51 17 86 17 86 101 34 101 35

0 0 0 0 51 190 51 190 86 17 86 17 34 101 35 101

0 0 0 0 190 51 190 51 17 86 17 86 101 35 101 34


The invariant subspace ker(M + Id) is generated by the following 12 row vectors, in the same

representation.



(1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

(0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0)

(0 0 0 0 1 0 0 0 0 0 0 38 0 0 159 0)

(0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 3)

(0 0 0 0 0 0 1 0 0 0 0 38 0 0 159 0)

(0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 3)

(0 0 0 0 0 0 0 0 1 0 0 79 0 0 38 1)

(0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0)

(0 0 0 0 0 0 0 0 0 0 1 79 0 0 38 1)

(0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0)

(0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1)

F Enumerating Invariant Subspaces for Zorro

We view the inner state of Zorro as the 16-dimensional vector space E over F28 . We have a basis
e0, . . . , e15 corresponding to the cells of the state. The linear layer of Zorro is viewed as a bijective
linear map L : E → E.

Define E1 = span{e0, . . . , e3}, the linear space over the first row of the inner state, where S-
boxes are applied. Similarly define E2 = span{e4, . . . , e15}. We are interested in stable subspaces
S ⊂ E, i.e. L(S) = S. Since we also want these spaces to be stable through the S-box and constant
addition layers, we have some additional constraints.

Namely, we want our stable subspace to be the direct sum of an equality space on the S-box
inputs (in the sense of Section 3.2), and a general vector subspace on the rest of the state; so that
the S-box layer is traversed automatically. That is, S = S1⊕S2 with S1 = S∩E1 and S2 = S∩E2;
and in addition, each cell e0, . . . , e3 should be either independent, or equal to one of the other
three cells. Furthermore, in order to traverse the constant addition layer, where at round i, the
constant i, i, i, i << 3 is added respectively to e0, e1, e2, e3, we require that the fourth cell e3 be
independent of the others.

To summarize:
Our goal. We want to find stable subspaces S ⊂ E, i.e. L(S) = S satisfying the following two

conditions:

(1) S = S1 ⊕ S2, with S1 = S ∩ E1 and S2 = S ∩ E2.

(2)

S1 = span{e0, e1, e2, e3} = E1

or S1 = span{e0 ⊕ e1, e2, e3}
or S1 = span{e0, e1 ⊕ e2, e3}
or S1 = span{e0 ⊕ e2, e1, e3}
or S1 = span{e0 ⊕ e1 ⊕ e2, e3}

What we will do is find the smallest and largest solutions (for the inclusion order) to this
problem, which are the most interesting. We will also have access to the other solutions if required.
To reach this goal, we proceed in three steps.

Step 1. Choose S1 among the five possibilities above. In the remainder, S1 is fixed, and we
always impose S ∩ E1 = S1.

Since S1 ⊆ S and S is stable by L, clearly Li(S1) ⊆ S for all i, where Li denotes the i-th
iteration of L. Denote by S1 =

⊕∞
i=0 Li(S) the closure of S1 by L. We have S1 ⊆ S and S1 is

stable by L.
Observe that L is idempotent (because it can be viewed as a permutation of a finite number of

elements), so L−1 = Lk for some k > 0. Hence the closure by L and L−1 is the same: S1 is closed
by both. Also note that the closure can be computed effectively, as the sequence An =

⊕n
i=0 Li(S)

stabilizes as soon as An+1 = An, and it can only increase less than 16 times (the dimension of E)
until then, so at worst S1 = A16.



Once we have computed S1, two things can happen. Either S1 does not satisfy conditions (1)
and (2) above. Since S1 ⊂ S is a necessity, this implies that S also fails these conditions, so there
is no solution for our choice of S1: we need to start over with a different choice. On the other hand,
if S1 does satisfy both conditions, we have found a solution. In fact we have found the smallest
solution (for the inclusion order) to our problem. Our goal now is to find the largest solution (and
enumerate intermediate solutions if we want).

In the remainder, we assume that S1 satisfies conditions (1) and (2).
Step 2. Quotient E by S1, and denote by π : E → E/S1 the corresponding projection. Now

define the quotient map:

L′ : E/S1 → E/S1

[x] 7→ [L(x)]

where [x] denotes the class of an element in E′ = E/S1. This map is well-defined because for
all x, y ∈ E, [x] = [y] iff x ⊕ y ∈ S1 iff L(x ⊕ y) ∈ S1 (because S1 is stable by L and L−1) iff
[L(x)] = [L(y)].

Define E′2 = π(E2). The point of quotienting is the following lemma:

Lemma 10. A subspace S ⊆ E is stable by L and satisfies (1) and (2) iff S′ = π(S) is stable by
L′ and satisfies S′ ⊆ E′2.

Thus we reduce our original problem to a simpler equivalent problem (which we will solve in
step 3) with a single condition S′ ⊆ E′2. The trivial solution π(S) = {0} corresponds to the minimal
solution S = S1 we have already found; in general, π preserves inclusion, so the smallest and largest
solutions are the same on both sides.

Proof of the lemma. We prove the implication in each direction. First, assume S is stable and
satisfies (1) and (2). Then π(S) is stable: for [x] ∈ π(S), L′([x]) = [L(x)] ∈ π(S) by stability of S.
Moreover S = S1 ⊕ S2, so π(S) = π(S1) ⊕ π(S2), and π(S1) ⊆ π(S1) = {0}, so π(S) ⊆ π(S2) ⊆
π(E2) = E′2.

Conversely, assume π(S) is stable by L′ and satisfies π(S) ⊆ E′2. Recall that we have fixed
S1 ⊆ S, so S1 ⊆ S. Let us show that S is stable: pick x ∈ S, then [L(x)] ∈ π(S) by stability of S′,
so L(x) = s+ s1 with s ∈ S and s1 ∈ S1 ⊆ S, so L(x) ∈ S.

Now we show that condition (1) holds. Observe that for any subspace A ⊆ E, π−1(π(A)) =
A⊕S1. As a consequence, since S1 ⊆ S, we have S = π−1(π(S)). On the other hand, π(S ∩E2) =
π(S) ∩ π(E2) = π(S) since π(S) ⊆ π(E2). Hence S = π−1(π(S ∩ E2)), so S = S1 ⊕ (S ∩ E2). We
have already assumed S1 = S1 ⊕ (S1 ∩ E2), so we get S = S1 ⊕ (S ∩ E2) and we are done. As for
condition (2), it holds iff it holds for S1, which is already assumed.

Step 3. At Step 2, we have reduced our problem to finding S′ ⊆ E′2 stable by L′ : E′ → E′.
Note that E′, E′2 and L′ are all effectively computable. Also note that any solution S′ to this
problem yields a solution of the original problem defined by S = π−1(S′); and conversely. Now we
separate two cases, depending on whether we chose S1 = E1 or otherwise.

Case 1: S1 = E1. In this case, E′2 = E′, so the condition S′ ⊆ E′2 is empty, and we need only
find subspaces S′ stable for L′. In fact E′ itself is stable by L′, but this corresponds to the trivial
solution S = E, which we do not care about.

However we only have to find stable subspaces for L′ with no extra condition. We can write the
matrix of L′ in (block) Jordan form. Finding (non-trival) maximal spaces amounts to choosing all
columns except the leftmost block in one Jordan block. The highest dimensional spaces correspond
to excluding the smallest such block.

Case 2: S1 ( E1. In this case, E′2 ( E′ so E′2 is not a trivial solution. Moreover E′2 may not be
stable by L′. However, since S′ ⊆ E′2 is stable by L′, we have L′(S′) ⊆ E′2 hence S′ ⊆ L′−1(E′2). We
can iterate this reasoning to deduce S′ ⊆ L′−i(E′2) for all i ≥ 0. This means S′ ⊆

⋂∞
i=0 L′−i(E′2).

As we have already observed earlier, L′ is idempotent, so we can define E∩ =
⋂∞
i=0 L′i(E′2)

=
⋂∞
i=0 L′−i(E′2); and furthermore, n 7→

⋂n
i=0 L′i(E′2) stabilizes as soon as two consecutive terms

are equal, so we need only iterate less than 16 times to compute E∩.



Thus we have S′ ⊆ E∩. Now observe that E∩ is in fact stable by L′ (again, because L′ is
idempotent). As a result, S′ = E∩ is the (unique, as it turns out) largest solution to our problem,
and we are done. If we want smaller intermediate solutions (between S′ = {0} and S′ = E∩, if
they are different) we can write the matrix of L′ on E∩ (which is well-defined because E∩ is stable
by L′) in Jordan form, and proceed as in the previous step.

(Note: if we only want to find the largest space, in the case S1 6= E1, it is enough to iterate
S1⊕E2 through L, take the intersection of all resulting spaces, and check that S1 is still included.)

Application to Zorro. The process described above could be easily adapted to any Zorro-
like cipher, in the sense of any SPN with a partial non-linear layer of a few S-boxes per round.
In the case of Zorro, we find that for S1 = span{e0, e1, e2, e3}, S1 = span{e0 ⊕ e1, e2, e3} and
S1 = span{e0, e1 ⊕ e2, e3}, S1 is the whole space; while for S1 = span{e0 ⊕ e1 ⊕ e2, e3}, e1 ∈ S1,
which contradicts the choice of S1. Hence the only remaining choice is S1 = span{e0 ⊕ e2, e1, e3}.
For this choice, S1 is the invariant subspace in Appendix E. Moreover E∩ = {0}, so there is no
other solution. Thus, it turns out that the subspace in Appendix E is the only invariant subspace
for Zorro in the S-box-independent setting.

G Enumerating Permutations that Commute with a Linear Map

Our target linear map is regarded as a binary matrix M . We will not only enumerate permutations
that commute with M , but also all couples of permutations (P,Q) such that P · M = M · Q.
Indeed these couples can be used in characteristics as in Section 3.4. In this appendix we describe
a heuristic algorithm that gives instant results for all cases we have encountered.

Denote by n the size of M , i.e. M is a n×n binary matrix. Note that P ·M is a permutation of
the rows of M , while M ·Q is a permutation of its columns. The core of our algorithm lies in the
following simple observation. For any subset R ⊆ {1, . . . , n} of rows of size r, if we denote by MR

the r × n submatrix of M restricted to rows in R, then the columns of MR are a permutation of
the columns of (M ·Q)R. As a consequence, the number of columns containing only 1’s is the same
on both sides. If P ·M = M ·Q, we can check this property for (P ·M)R and MR, independently
of Q.

This allows us to build P step by step: as soon as we have guessed the image of at least two
elements by P , we can check that the previous criterion holds. That is, say we have guessed P (1)
and P (2); then we can check that rows 1 and 2 of M contain the same number of columns with
two 1’s as its rows P (1) and P (2). If not our guess of P is invalid.

This yields the following algorithm: we guess P (1), then P (2), and so forth, scanning the tree
of all permutations P . However, each time we venture a new guess, we check the previous criterion.
If it is not satisfied, we prune the branch. Despite the simplicity of the criterion (which could easily
be strengthened), in practice wrong choices are pruned very quickly, and we only scan a very small
portion of the tree of permutations.

Once valid choices of full P are determined as outlined above, since M is expected to be
invertible, all of its columns are distinct; hence there is only one possible choice of Q for a given
choice of P . In all practical cases we have encountered (for the matrices of Robin, SCREAM and
Fantomas), results are instant. In fact, we implemented a simpler algorithm where we only checked
the previous criterion for pairs of rows as opposed to any subset: this proved to be enough in
practice.
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