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Abstract. There is a growing need to develop lightweight cryptographic primitives suitable for resource-constrained
devices permeating in increasing numbers into the fabric of life. Such devices are exemplified none more so than
by batteryless radio frequency identification (RFID) tags in applications ranging from automatic identification and
monitoring to anti-counterfeiting. Pandaka is a lightweight cipher together with a protocol proposed in INFO-
COM 2014 for extremely resource limited RFID tags. It is designed to reduce the hardware cost (area of silicon)
required for implementing the cipher by shifting the computationally intensive task of cryptographically secure
random number generation to the reader. In this paper we evaluate Pandaka and demonstrate that the communica-
tion protocol contains flaws which completely break the security of the cipher and make Pandaka susceptible to
de-synchronisation. Furthermore, we show that, even without the protocol flaws, we can use a guess and determine
method to mount an attack on the cipher for the more challenging scenario of a known-plaintext attack with an
expected complexity of only 255. We conclude that Pandaka needs to be amended and highlight simple measures to
prevent the above attacks.

1 Introduction

Lightweight cryptography has received extensive coverage in recent years due to the growth in low cost pervasive
computing technologies such as Radio Frequency Identification (RFID) propelled by significant progress in low power
microelectronics and lower manufacturing costs. Batteryless RFID tags are extremely cheap, typically less than 50
cents, and enable remote and precise identification of objects or people using wireless communication between readers
connected to back-end servers and tags attached to the objects or people [17]. The growing ubiquity of RFID systems
and their deployment in sensitive and in high-value environments, such as their use in national passports, continue
to stimulate research into the security of these low cost computing devices. However, the limited resources available
at the tags, as a consequence of the desire to drive tag costs down [30], present new challenges to the provision of
security mechanisms for RFID systems [9, 10].

Multiple lightweight ciphers have been proposed for such resource limited environments in the recent litera-
ture [4, 11–13, 18, 20, 22, 23, 31, 32], since exiting standard cryptographic primitives, such as AES (Advanced En-
cryption Standard), are much too area and power intensive to be practicable for implementation on low cost batteryless
RFID tags [10, 19, 29]. However, since these ciphers are designed at the limits imposed by technology such as the
number of gate equivalents (GEs) and available harvested power on batteryless tags, they are incapable of incorpo-
rating considerable security margins built into standard cryptographic mechanisms. Therefore, it is unsurprising that
attacks that successfully break lightweight ciphers are frequently reported [2, 7].

Recently, Chen et al. [8] suggested Pandaka—a stream cipher tigether with a communication protocol that ex-
ploit the resource imbalance between the tags and the back-end server, based on the concept of secure server-aided
computations [1, 21], to develop a lightweight cryptographic mechanism. Essentially, Pandaka shifts the bulk of the
cryptographic operations to the reader, thereby reducing the implementation footprint at the tag.

At its core, Pandaka is a stream cipher that combines a secret state with a random seed generated by the reader to
create a pseudo-random derived key which is subsequently XORed with a message block to encrypt it. The random
seed, indicators in the Pandaka nomenclature, is also used for perturbing the state prior to the next round of encryption.
For block integrity, Pandaka uses the 16 bit Cyclic Redundancy Check (CRC) generator, already available on a typical
RFID tag [15]. The cipher has two suggested configurations, a 16 bit version, Pandaka(16,6), that has 96 bits of state,
and a 32 bit version, Pandaka(32,6), with 192 bits of state.

We analyse the Pandaka cipher and protocol and make the following contributions:



BN-1(0)BN-1(1)BN-1(2)BN-1(3)...BN-1(L-2)BN-1(L-1)

B0(L-1) B0(L-2) ... B0(3) B0(2) B0(1) B0(0)

B1(0)B1(1)B1(2)B1(3)...B1(L-2)B1(L-1)

.....................

1

1

0

...

B0(0)B0(1)B0(2)B0(3)...B0(L-2)B0(L-1)

BN-1(0)BN-1(1)BN-1(2)BN-1(3)...BN-1(L-2)BN-1(L-1)

D(0)D(1)D(2)D(3)...D(L-2)D(L-1)

Base keys

Indicators

Derived keys

t t tt t t

t t

tt

t t tt

t t tt

t t

t

tt t t

t t tt t t

t tt tt

Fig. 1: Generating the derived key

– Describe a known-indicators attack on Pandaka, which exposes a weakness in the linear relationship between the
state and the derived key. (Section 3.)

– Present an effective known-plaintext only attack on Pandaka, demonstrating that the security of the cipher depends
on the size of the indicators rather than on the size of the reported internal state. (Section 4.)

– Highlight two weaknesses in the protocol’s integrity mechanism: information disclosure; and a potential for de-
synchronisation even in the absence of an active attacker. In the case of the Pandaka(16,6) configuration, the
former completely reveals the plaintext in each block. (Section 5.)

– Analyse the weaknesses of the cipher and suggest directions for addressing them. (Section 6.)

2 Pandaka

Pandaka is a stream cipher that uses a shared secret between a tag and a reader, which we refer to as the base keys,
and a random seed called indicators to generate a pseudorandom derived key. Subsequently, the derived key is XORed
with the plaintext to produce the ciphertext. After generating the derived key, Pandaka updates the base keys based on
the contents of the indicators. This update creates new base key material for the encryption of the next block.

Following Chen et al. [8], we use Pandaka(L,N) to denote an instance of Pandaka with a block size of L bits and N
base keys. Each base key has a length of L bits, hence the size of the state of Pandaka(L,N) is L×N. The length of the
indicators is N +2.

The rest of this section describes the derived-key generation and the base-key update (or in other words state
update) procedure. We also describe the protocol Pandaka uses for transferring the indicators from the reader at the
heart of the base-key update procedure.

2.1 Derived key generation

Pandaka uses N bits of the N +2 indicator bits to select base keys. Each of these base-key selection bits corresponds
to one of the base keys. As illustrated in Figure 1, Pandaka computes the bitwise XOR of the base keys whose
corresponding bits in the indicators are set to generate the derived key.
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More formally, let Bt
k(i) denote bit i mod L of the value of the kth base key, where k = {0,1, ...,N−1}, used for

the t th encryption and let It(k) denote the kth bit of the indicator used for the t th encryption. The derived key for the
encryption Dt(i) is calculated using

Dt(i) = Bt
0(i) · It(0)⊕Bt

1(i) · It(1)⊕ . . .⊕Bt
N−1(i) · It(N−1) (1)

where ⊕ and · are the XOR and the AND operations. We recall that these are also the addition and multiplication
operations in GF(2).

2.2 Base key update procedure

In order to avoid using the same base keys for multiple encryptions, Pandaka perturbs the base keys after generating
the derived key. The base key update procedure only modifies the base keys used for the current encryption, i.e. those
selected by the N base-key selection bits of the indicators. Subsequently, each of the selected base keys is rotated one
bit to the left.

Following a rotation operation, Pandaka flips select set of base key bits. The decision on which bits to flip is based
on the values of the additional two bits, i.e. bits N and N + 1, of the indicators. If the value of these two bits is 00,
no bits in the base keys are flipped, otherwise, for bit patterns 01, 10 and 11, Pandaka flips the base key bits whose
position i modulo 3 is 0, 1, and 2, respectively.

Thus,

Bt+1
k (i) =

{
Bt

k(i) if It(k) = 0
Bt

k(i−1)⊕FL(i, It) if It(k) = 1 (2)

where FL is the flip function defined as:

FL(i, I) =


1 if I(N) = 1, I(N +1) = 0 and i mod 3 = 0
1 if I(N) = 0, I(N +1) = 1 and i mod 3 = 1
1 if I(N) = 1, I(N +1) = 1 and i mod 3 = 2
0 otherwise

(3)

2.3 Communication protocol

The indicators used for encryption and decryption are generated by the reader. We assume that these are generated by
a cryptographically secure random number generator. These indicators need to be communicated securely to the tag.
The Pandaka protocol relies on a pre-agreed initial secret key between a tag and a reader to initiate communication.
The Pandaka protocol is designed such that after each communication round the tag and the reader both share a secret
derived key they can use to continue the communication.

The protocol uses three data block formats. F1 blocks are used for transferring data from the reader to the tag. F2
and F3 blocks are used for transferring data from the tag to the reader. The protocol also includes protection against
communication error.

FFF111 blocks The F1 blocks consist of two sections. The N + 2 least significant bits (LSBs) of the block contain the
indicators used for encrypting and decrypting the next block. The other L−N−2 bits are for data. To send a message,
the reader splits it into groups of L−N−2 bits, and sends each of these groups in the data section of an F1 block.

FFF222 blocks The reader sends F2 blocks to provide the tag with indicators for the blocks the tag sends. Each F2 block
contains

⌊ L
N+2

⌋
sets of indicators. Of these,

⌊ L
N+2

⌋
−1 are used for encrypting F3 blocks sent from the tag to the reader,

and the last set of indicators is used for encrypting the next F2 or F1 block sent by the reader. If (N + 2)6 | L, then L
mod (N +2) most significant bits (MSBs) of the F2 block are set to zero.

FFF333 blocks Data is sent from the tag to the reader in F3 blocks. Each block contains L data bits encrypted using
indicators previously sent to the tag in an F2 block. The Pandaka protocol does not specify how the reader and the tag
agree on the number of F3 blocks needed for a tag message.
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Message integrity To ensure message integrity, each block is transmitted with a 16-bit cyclic redundancy check
(CRC) code, using the specification outlined in the air interface protocol used by RFID tags, as specified in [15]. The
CRC code is calculated on the block before the block is encrypted. On receipt, the block is decrypted and the CRC
code is calculated again and matched against the transmitted code to help detect bit errors.

3 Known-Indicators Attack

First we analyse the cipher under a known-plaintext attack scenario where the corresponding indicators for a number
of consecutive F1 messages are also know. This is a simple extension of the common known-plaintext threat model
to Pandaka. We show how an adversary can successfully use this information to recover the base keys of the tag.
Successfully obtaining the base keys will allow an attacker to completely decipher all future communications. This
attack exploits the weakness that the cipher relies completely on linear operations to generate the derived key.

We use Pt(i) to denote the ith bit of the t th decrypted message and Ct(i) to denote the ith bit of the corresponding
encrypted message. We note that the derived key, Dt , used for encrypting the message can be calculated using Dt =
Pt ⊕Ct where ⊕ is a bitwise XOR operation.

For each base key we compute two values: i) Qt
k — the number of times that the kth base key has been used for

generating the derived key; and ii) F t
k(i) — the flips applied to the ith bit of base key k since the first messages, i.e.

when t = 0. More formally,

Q0
k = 0

Qt+1
k = Qt

k + It(k)
(4)

and
F 0

k (i) = 0

F t+1
k (i) =

{
F t

k(i)) if It(k) = 0
F t

k(i−1)⊕FL(i, It) if It(k) = 1
(5)

We note that Bt
k(i) = B0

k(i−Qt
k)⊕F t

k(i−Qt
k). Hence,

Pt(i)⊕Ct(i) = Dt(i) =
N−1⊕
k=0

(B0
k(i−Qt

k)⊕F t
k(i−Qt

k)) · It(l) (6)

or equivalently,
N−1⊕
k=0

B0
k(i−Qt

k) · It(l) = Pt(i)⊕Ct(i)⊕
N−1⊕
k=0

Fkt(i−Qt
k) · It(l) (7)

Recall that in F1 blocks, for 0 ≤ i < N + 2 we have Pt(i) = It+1(i). Hence, given plaintext, ciphertext and indicators
of T consecutive F1 blocks, an attacker can construct T L−N− 2 linear equations in B0

k(i) over GF(2). Solving this
linear system reveals the values of the base key.

The resultant linear system has a very distinctive and sparse structure which can be exploited to rapidly evaluate
a solution to the system of equations. Figure 2 shows the matrix representation of a system of equations created for a
choice of six sets of indicators for Pandaka(16,6), where shaded blocks indicate the value 1 and clear blocks indicate
the value 0. The base-key selection bits of these indicators are 110100, 110010, 011100, 110100, 100100 and 001000.

As Figure 2 demonstrates, the matrix is divided into N groups of L columns, each group corresponding to a base
key. The rows are also divided into groups of L, each group corresponding to a set of indicators. An L×L block is
empty if the corresponding indicator bit is 0, otherwise, the block contains a possibly rotated L×L identity matrix.
The size of the rotation is determined by the number of instances the corresponding base key has been selected by
previous indicators.

For T ≤ N, the number of equations in the system is less than the size of the base-key bits NL, hence at least N+1
blocks are required to solve the system. However, having N + 1 blocks does not guarantee a solution, to solve the
system its rank must be equal to NL. In other words, the system should have NL independent equations.

4



Fig. 2: Structure of a linear system

The number of blocks required depends on the values of the base key selection bits in the indicators in each block.
Figure 3 shows the distribution of the number of blocks required over 1,000,000 random instances of the attack. On
average Pandaka(16,6) and Pandaka(32,6) require 7.76 and 8.12 blocks, respectively, with a worst case scenario of 27
blocks.

4 Known-Plaintext Attack

The attack we describe in the previous section assumes the attacker knows the indicators. However, since the indicators
are assumed to be randomly chosen, such an assumption may be unrealistic. Furthermore a known-indicators attack is
also not included in the threat models considered by Chen et al. [8].

In this section, we remove the notion of known indicators and instead consider the more challenging known-
plaintext attack. We describe a known-plaintext attack which allows an adversary to completely recover the base
key using the plaintext (excluding the indicators) and the corresponding ciphertext of only a handful of consecutive F1
blocks. By breaking the base key, such an attacker can successfully decrypt further message blocks exchanged between
the tag and the reader.

Here we use a guess and determine [3, 16, 27] approach where we guess the values of the indicators of some of the
blocks and subsequently apply the procedure from the known-indicators attack in Section 3 to determine the values of
the base keys.

The attack uses the recursive algorithm shown in Algorithm 1. It scans all possible values of the indicator sets,
starting with I0. For each value, the attack builds a system of linear equations using the technique discussed in Section 3
and, based on the properties of the linear system, decides on one of three options to proceed. If the linear system is
inconsistent, it is clear that the current guess is wrong and the attack moves to the next guess. If the system is consistent,
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Fig. 3: Distribution of the number of blocks required for a known-indicators attack

there are two possibilities: i) the rank of the system is NL, in which case we can solve the system, find the initial value
of the base keys and verify the solution; or ii) the rank of the system is less than NL where we do not have a solution
and need to recursively guess the next set of indicators.

We use Gauss elimination with implicit row pivoting to test for consistency and to calculate the rank of the linear
system. We note that the (T −1)L−N−2 first equations in the system do not depend on the value of the indicators of
the T th round. Consequently, we do not need to apply the Gauss elimination process to the entire matrix for each guess.
Instead, we can pre-compute the result of the elimination on the first (T − 1)L−N− 2 equations once. We can then
use the pre-computed value to complete the elimination process on the L rows that are affected through the recursive
process of guessing the indicators.

It is important to note that the value of the flipped bits (see Equation 3) of the selected base keys does not affect the
structure of the system of equations. That is, bit flips only affect the right-hand side of Equation 7. Therefore, we can
reuse the results of one Gauss elimination to all four indicator values that share the base-key selection bits and only
differ in the value of the two flip bits. (i.e. indicator bits that define the four possible bit flips given in Equation 3.)

Furthermore, we can optimise the guess and determine approach by halting the guessing of indicators when the
rank of the system is greater than NL−N and instead adding an adequate number of equations of the form B0

k(i) = x j
to obtain a full-ranked system and evaluate its solution. The number of equations we add is smaller than the number
of base-key selection bits in an indicator; hence, this approach reduces the number of cases we need to evaluate.

In order to calculate the expected number of guesses to completely recover the base keys of Pandaka(16,6) and
Pandaka(32,6) we first examine the structure of the linear system of equations created by the guesses of the first four
rounds. At this stage, the linear system has 4L−N − 2 equations, or 56 equations for Pandaka(16,6) and 120 for
Pandaka(32,6). The rank of the system is not necessarily the same as the number of equations. Table 1 summarises the
distribution of ranks over all possible combinations of indicators for the first four rounds.

As discussed above, the values of the base-key selection bits in the indicators determine the structure of the linear
system. Using the same sequence of base-key selection bits in Pandaka(16,6) and Pandaka(32,6) produces similar
systems of equations. Consequently, the distribution of the ranks of the linear system of equations indicated by the
probability in in Table 1 are the same in both versions of Pandaka where the only difference is the numeric value of
the ranks.
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input : I: guessed indicators for the first T rounds
P: plaintexts of the first n rounds
C: ciphertexts of the first n rounds

output: Initial base-keys and indicators for the first round, if found

if T > 0 then
Use Equation 7 with I, P, and C to create a system of T L−N−2 linear equations ;
if the system is not consistent then

return false;
if the rank of the system is NL then

Solve the linear system;
if the solution matches all n known rounds then

Output solution;
return true;

else
return false;

end
end

end
foreach possible indicators value i do

I′ = add i to I;
Recursively call this algorithm with I′, P and N;
if result found then

return true;
end
return false

Algorithm 1: Known-Plaintext Attack

We now estimate the number of guesses required for completely scanning all possible values of the indicators
given the indicator bits of the first four rounds. Summing the estimate over all possible combinations of the first four
indicators gives an estimate of the size of the search space for the attack. There are 252 possible indicator values (there
are 256 possible 8 bits combinations, of which the four with no base-key selection are illegal). Consequently, there are
2524 possible combinations of four indicators.

We first look at the case where the indicators result in a system with a maximal rank, i.e. 56 for Pandaka(16,6) and
120 for Pandaka(32,6) and estimate the number of indicator guesses required to completely scan all of the combinations
of indicator bits that result in a consistent non-full ranked system. For that, we generate 1,000 random instances of
Pandaka and evaluate the number of guesses required for solving each. For Pandaka(16,6), we require an average of
9.21 million guesses, with a 99% confidence interval of 0.20 million. For Pandaka(32,6), the average is 9.23 million
and the 99% confidence interval is 0.18 million. We note that, due to the overlap of the confidence intervals, the
estimates for Pandaka(16,6) and for Pandaka(32,6) are statistically indistinguishable. Hence, we conclude that the
number of cases required does not depend on the block length L.

Table 1: Rank distribution after four rounds of guesses
Pandaka(16,6) Pandaka(32,6) Probability

16 32 .000004
24 56 .0002
32 64 .0016
40 88 .0440
47 95 .0008
48 96 .0532
55 119 .0149
56 120 .8852
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We argue that using using the higher estimate above (9.23 million) for the case of a system with a lower rank is
an overestimate of the number of guesses required for covering the whole search space. In a nutshell, when the rank
of the system is lower, more iterations are required for solving the system and thus increasing the number of guesses,
in contrast, when the rank of the system is lower, the probability of the attack ignoring the case due to linear-system
inconsistencies is higher. We argue that the latter grows faster than the former, so that the expected number of guesses
is lower than for a case of a fully-ranked system.

More specifically, we postulate that for each L dependent equations in the system we need to guess another round
of indicators to get a system of degree NL. For simplicity we assume that because we have N+2 indicator bits, adding
another round increases the number of guesses by a factor of 2N+2, or 256 for the two Pandaka configurations.

We validate this assumption by counting the number of guesses required for solving consistent systems of rank
3L−N − 2, i.e. systems in which L equations are dependent. The results are 2,039 million and 2,085 million for
Pandaka(16,6) and Pandaka(32,6), respectively. These numbers are about 225 times larger than our estimate of the
number of guesses required for solving the case of fully-ranked systems. Hence the assumption we used, increasing
the guesses by a factor of 256, is an overestimate of the number of guesses required.

Chen et al. [8] demonstrates that each bit of the derived key is equally likely to be 0 or 1. Consequently, each
dependent equation in the linear system we produce has a 1/2 probability of resulting in an inconsistency. Thus, for a
given guess of four indicators, if the difference between the rank of the system and the number of equations is r, the
probability of the attack proceeding beyond these four indicators is 2−r. Thus, the expected factor is in the order of

2
(N+2)r

L ·2−r = 2
(N+2−L)r

L and because N +2 < L using the estimate of the fully-ranked system is an overestimate of the
number of guesses required for non-fully-ranked systems.

With 2524 possible combinations of indicators for the first four rounds, where 9.23 million guesses are required
for each combination, the size of the search space is estimated at 2524 · 9.23 · 106 ≈ 255. It is important to highlight
that the same attack complexity applies to both Pandaka(16,6) and Pandaka(32,6). More significantly, the complexity
we have evaluated is significantly lower than that postulated by Chen et al. [8] where they claim an attacker will need
to guess all the values of the base keys, or 296 and 2192 for Pandaka(16,6) and Pandaka(32,6), respectively.

The amount of plaintext required depends on the number of blocks required for solving the system. In Section 3
we see that up to 27 blocks may be required, with a typical number of 7 (Pandaka(16,6)) or 8 (Pandaka(32,6)) blocks.
(See Figure 3.) Additionally, because we are trying a large number of guesses, we need further plaintext bits to have a
sufficiently high confidence that we have found the right key. Each additional bit halves the probability of accepting a
wrong guess. Hence, with 255 guesses and 55 additional bits, we have a probability of 1/e of accepting a wrong guess.
With 74 additional bits the probability drops to below one attack in a million. Hence, for the typical case, we require
130 and 266 bits of plaintext for Pandaka(16,6) and Pandaka(32,6), respectively. For the worst case we require 290
and 722 bits.

5 Targeting The Protocol Flaws

Analysis of the communication protocol in Pandaka reveals a key design flaw related to the integrity check employed
using CRCs[28]. The CRC code used for checking the integrity of messages reveals excessive amounts of information
on the contents of the encrypted message.

CRC is a standard method of ensuring message integrity in network communication. RFID tags already include the
circuity for calculating the proposed 16 bit CRC [15] and the CRC is used to identify bit erroneous communications
as a result of bit errors. Pandaka reuses this circuity to ensure its messages’ integrity and thus avoiding the cost of a
dedicated circuity for evaluating the CRC.

5.1 Ciphertext-Only Attack

While the 16 bit CRC offers a high probability of error detection, for example detect any single error burst less than
16 bits, it is designed to protect against unintentional errors and is not cryptographically secure. As described earlier,
Pandaka calculates the CRC on the message before the encryption and transmits it together with the encrypted message.
Thus, the CRC in Pandaka reveals 16 bits of information on the plaintext. For Pandaka(16,6), the 16 bit version of the
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protocol, the CRC effectively discloses the whole plaintext, negating the protection of the encryption. Therefore the
current description of Pandaka(16,6) is completely broken.

For Pandaka(32,6), the CRC could be used to elevate a known-plaintext attack to a known-indicators attack. (See
Section 3.) It is also possible that the CRC could be used as a source of information of the plaintext and subsequently
facilitating a ciphertext only attack on Pandaka(32,6). One possibility for implementing the attack is to guess the 8
indicators bit in F1 blocks. From this information and from the CRC, the attacker can create a set of 24 linear equations
and subsequently use the attack in Section 4 to break the cipher. This attack has the potential of reducing the complexity
of a ciphertext-only attack on Pandaka(32,6) from 2192 to approximately 272.

5.2 Active Attacks

Not being cryptographically secure also means that the CRC does not protect against malicious modifications of
messages. The CRC code is linear, that is, given two messages A and B, CRC(A⊕B) = CRC(A)⊕CRC(B). Thus,
an active attacker can modify transmitted messages by flipping bits in the encrypted message and then calculate the
correct CRC for the modified message even without knowing the contents of the message. However, it should be noted
that such an attacker is beyond the threat model considered by Chen et al. [8].

The weakness of the CRC also results in a vulnerability to de-synchronisation attacks. With a 16 bit CRC, there is a
probability of 2−16 of an arbitrary message having the correct CRC. If an attacker generates enough random messages,
one of them is likely to have the correct CRC. When a tag receives such a message, it is accepted and Pandaka
updates the cipher base-keys. At this stage, the base-keys at the tag diverges from that at the reader, preventing any
further communication between the two. The de-synchronisation attack, Like the message modification vulnerability
described above, is outside the threat model of Chen et al. [8].

6 Discussion

Pandaka aims to reduce the complexity of the tag by shifting the random number generation logic to the reader. While
the idea is appealing and is worth further investigation, the implementation fails to meet the desired security level. In
this section we review the main weaknesses of the implementation and suggest measures for addressing them.

Confusing randomness with security For a stream cipher to be secure its random number generator must have good
statistical properties. The converse, however, does not hold. A “good” random number generator that passes many
standard tests for randomness is not necessarily cryptographically secure.

We recommend that, in addition to statistical tests, Pandaka is subjected to known and successful cryptanalysis
techniques employed with stream and block ciphers such as linear cryptanalysis [24–26], differential cryptanalysis [5,
6], and guess and determine [3, 16, 27].

Linearity Linear systems are easy to reverse because they can be efficiently solved. More significantly, sparse systems
of equations can be stored using less memory and solved extremely rapidly. Consequently, cipher designs aim to avoid
linearity by including non-linear state update functions. Pandaka, however, only uses linear operations to update the
state of the cipher.

The introduction of non-linear state update functions, both for generating the derived key and for perturbing the
base-keys while increasing diffusion, would significantly increase the security of the cipher and provide protection
against our attacks.

Limited base-key perturbation The purpose of the base-keys (or state) update is to provide new key material for
following rounds. Pandaka uses a simple base-key update algorithm whose implementation only requires a small
number of gates. However, the key material is hardly mixed, in fact mixing between base keys are non-existent. In
Pandaka, key material of a base key is only used within the base key and the update (bit flip and rotation) of a given
base-key bit depends only on the state of a single indicator bit and all base keys are updated using the same algorithm.
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Unfortunately, despite the simplicity in the hardware implementation, the algorithm is extremely easy to analyse
and break. By combining the values of multiple key bits from multiple base keys to determine each updated base-key
bit will increase the security of the procedure.

Synchronisation Pandaka is a synchronous cipher with no mechanism for re-synchronisation of the sender (e.g. tag)
and receiver (e.g. reader) in the event of lost messages. While the problem of bit errors have been addressed with
the CRC, the cipher will easily self de-synchronise during: i) packet loss that often occurs in RFID communication
networks due to packet collisions resulting from basing the air interface protocol of RFID system on the Slotted
ALOHA protocol for facilitating simultaneous communications with multiple other tags[15]; ii) packet corruption and
packet loss due to interferences from other readers communicating nearby that interfere and increase the noise in the
communication channel between a reader and a tag referred to as the reader collision problem[14]; and iii) more rarely,
a CRC collision (bit errors producing a message block with an identical CRC to the original value calculated by the
sender)[28].

Thus Pandaka is vulnerable to self de-synchronisation even without the presence of an active attacker simply from
corrupt messages and packet loss due to the wireless propagation environment and the nature of the communication
protocol between RFID readers and tags.

7 Conclusions

Pandaka is designed for resource limited RFID tags. In order to reduce the hardware (area) cost of implementing the
cipher in silicon chips Pandaka has used short shift registers and linear operations. The computationally intensive task
of generating random numbers is allocated to the more resourceful RFID readers and overcomes the need to implement
such a generator on the tag. Therefore Pandaka manages to significantly reduce the cost of implementing the cipher
on a tag. Together with three message types and reader generated random numbers, Pandaka develops a state update
mechanism that requires minimal hardware at the tag.

In this article we discuss several practical breaks of the Pandaka lightweight stream cipher. In particular, we show
that in the more challenging known-plaintext scenario, using a guess and determine attack approach, Pandaka can
be broken with an attack complexity of 255 guesses using a known plaintext length of approximately 170 bits for
Pandaka(16,6) and approximately 270 bits for Pandaka(32,6). Furthermore, we show that the information leak in the
protocol by way of the CRC completely removes any protection provided by Pandaka(16,6) and dramatically reduces
the attack complexity of a ciphertext-only attack on Pandaka(32,6).

We conclude our analysis by pointing out some of the most severe weaknesses of the cipher. The most obvious
weakness is that the CRC value computed to improve message integrity exposes information on unencrypted blocks.
Then, secondly, the lack of non-linearity in the design of the state update function. Although we suggest avenues for
improving the cipher, any new design may be vulnerable to different attacks from those we have analysed and therefore
a full analysis of the cipher would need to be performed in order to assess the strengths of any potential changes.
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